
All-Pairs Shortest Path

November 12, 2014

1 Introduction
As many things in the history of analysis of algorithms the all-pairs shortest path
has a long history (From the point of view of Computer Science). We can see
the initial results from the book “Studies in the Economics of Transportation”
by Beckmann, McGuire, and Winsten (1956) where the notation that we use for
the matrix multiplication alike was first used. However, if want to see something
quite older, we can look at the studies in classic graph theory by

• G. Tarry, Le probl‘eme des labyrinthes, Nouvelles Annales de Math´e-
matiques (3) 14 (1895) 187–190 [English translation in: N.L. Biggs, E.K.
Lloyd, R.J. Wilson, Graph Theory 1736–1936, Clarendon Press, Oxford,
1976, pp. 18–20].

• Chr. Wiener, Ueber eine Aufgabe aus der Geometria situs, Mathematis-
che Annalen 6 (1873) 29–30, 1873.

• N.L. Biggs, E.K. Lloyd, R.J. Wilson, Graph Theory 1736–1936, Claren-
don Press, Oxford, 1976 (For the theory behind depth-first search

techniques).

2 Possible solutions using
For the problem of finding all the pairs shortest path in a directed graph G =
(V, E), we could use some of the classical algorithms |V |times:

• If all the weights are non-negative use the Dijkstra

– This has, using Fibonacci Heaps, O
!
V 2 log V + V E

"
complexity.

– Which is equal O
!
V 3"

in the case of E = O(V 2), but with a hidden
large constant c.

• If negative weights are allowed use the Bellman-Ford

– Then, we have O
!
V 2E

"
.

1

– Which is equal O
!
V 4"

in the case of E = O(V 2)

However, it is possible to obtain better performances. Actually, the first time
an algorithm solves a problem in polynomial, normally it does not have that
good performance. Nevertheless, as in any algorithm development, the people
developing that algorithm little by little point to new versions that can have
much better performances.

3 Matrix Representation
First, we decide to use a matrix representation of our problem because of the
similarities of the first method to a matrix multiplication. For this, we use the
following weight values:

w
ij

=

Y
_]

_[

0 if i = j

w(i, j) if i ”= j and (i, j) œ E

Œ if i ”= j and (i, j) /œ E

(1)

Then, we have

W =

Q

cccca

w11 w22 ... w1k≠1 w1n

. . .

. . .

. . .
w

n1 w
n2 ... w

nn≠1 w
nn

R

ddddb
. (2)

And, we take the assumption that

• There are not negative weight cycles.

4 Matrix Multiplication Alike Algorithm
Now, using this basic representation, we will develop a dynamic programming
solution by simply looking at the Corollary of Lemma 24.1. This Corollary
allows us to have following decomposition:

i
p

Õ

 k æ j =∆ ”(i, j) = ”(i, k) + w
kj

(3)

Thus, if we define the following variable:

• l
(m)
ij

=minimum weight of any path from i to j, it contains at most m
edges

Think about this the variable can contain values of paths with less than m

edges. Thus, l
(m)
ij

is actually a recursive variable, this could mean that

2

l
(m)
ij

=

Y
]

[
min

k

Ó
l
(m≠1)
ik

+ w
kj

Ô
if you have m edges

l
(m≠1)
ij

if you have m ≠ 1 edges
(4)

Using this ideas we design the following recursion:

• Thus, we have that for paths with m = 0 edges

l
(0)
ij

=
I

0 if i = j

Œ if i ”= j

• For m>0, we have that

l
(m)
ij

= min
3

l
(m≠1)
ij

, min
1ÆkÆn

Ó
l
(m≠1)
ik

+ w
kj

Ô4

= min
1ÆkÆn

Ó
l
(m≠1)
ik

+ w
kj

Ô

Why? A simple notation problem.

l
(m)
ij

= l
(m)
ij

+ 0 = l
(m)
ij

+ w
jj

Before, we get the iterative version of this recursion, it is necessary to know the
value of ” (i, j), and if it is not going to change through the updating process.
This can be simply verified by the following equality:

” (i, j) = l
(n≠1)
ij

= l
(n)
ij

= l
(n+1)
ij

= l
(n+2)
ij

= ...

Using this fact, we have then

• The matrix L(m) =
1

l
(m)
ij

2
contains the paths with at most m edges.

• Then, we can compute first L(1) then compute L(2) all the way to L(n≠1)

which contains the actual shortest paths because a shortest path in the
graph can contain at most n-1 vertices.

But, wait a minute What is L(1)?

• First, we have that L(1) = W , since l
(1)
ij

= w
ij

.

Thus, the iterative all shortest path algorithm is :
Extended-Shortest-Path(L, W)

1. n = L.rows

2. let L

Õ =
!

l

Õ
ij

"
be a new n ◊ n

3

3. for i = 1 to n

4. for j = 1 to n

5. l

Õ
ij = Œ

6. for k = 1 to n

7. l

Õ
ij = min

!
l

Õ
ij , lik + wkj

"

8. return L

Õ

5 Look Alike Matrix Multiplication Operations
If we think on the mapping of symbols into a di�erent set of symbols, we can
interpret certain operations in the all-path algorithm as:

• L =∆ A

• W =∆ B

• LÕ =∆ C

• min =∆ +

• + =∆ ·

• Œ =∆ 0

This observation comes from the following (Algorithm 1).

Figure 1: Square-Matrix-Multiply(A, B)

We can then have the following final solution for all the paths

4

L(1) = L(0) · W = W

L(2) = L(1) · W = W 2

...
L(n≠1) = L(n≠2) · W = W n≠1

The final algorithm looks like :
Slow-All-Pairs-Shortest-Paths(W)

1. n Ω W.rows

2. L

(1) Ω W

3. for m = 2 to n ≠ 1

4. L

(m) ΩEXTEND-SHORTEST-PATHS
!

L

(m≠1)
, W

"

5. return L

(n≠1)

If n = V this algorithm has a complexity O
!
V 4"

. However, this algorithm can
be faster by simply observing that

L(1) = W

L(2) = W · W = W 2

L(4) = W 2 · W 2 = W 4

L(8) = W 4 · W 4 = W 8

...

Thus:

2Álg(n≠1)Ë Ø n ≠ 1 =∆ L(2Álg(n≠1)Ë) = L(n≠1)

Now, we have
Slow-All=Pairs-Shortest-Paths(W)

1. n Ω W.rows

2. L

(1) Ω W

3. m Ω 1

4. while m < n ≠ 1

5. L

(2m) ΩEXTEND-SHORTEST-PATHS
!

L

(m)
, L

(m)
"

6. m Ω 2m

7. return L

(m)

<2->Complexity
If n = V we have that O

!
V 3 lg V

"
.

5

6 A di�erent dynamic-programming algorithm
As in any dynamic programming problem we are required to prove the optimal
substructure of the problem.

6.1 The Shortest Path Structure and the Recursion
We know from previous examples that for the problem:

• For a shortest path p = Èv1, v2, ..., v
l

Í, an intermediate vertex is any
vertex of p other than v1 or v

l

. Then, v1 p and p v
l

are shortest
paths.

Thus, we can do the following definition trick:

• d
(k)
ij

=weight of a shortest path between i and j with all intermediate
vertices are in the set {1, 2, ..., k}.

We have two cases

1. If k is not an intermediate vertex. Then a shortest path from vertex
i to vertex j with all intermediate vertices in the set {1, 2, ..., k ≠ 1} is
also a shortest path from i to j with all intermediate vertices in the set
{1, 2, ..., k}.

2. If k is an intermediate vertex, then we have that i
p1 k

p2 j with p1and
p2 shortest paths with intermediate vertices in {1, 2, ..., k ≠ 1}.

Thus we have that:

d
(k)
ij

=
I

w
ij

if k = 0
min

1
d

(k≠1)
ij

, d
(k≠1)
ik

+ d
(k≠1)
kj

2
if k Ø 1

We can use the recursive version:

6

Algorithm 1 Recursive Version

Recurs ive≠Floyd≠Warshall (W)
Dn the n by n matrix
f o r i = 1 to n

f o r j = 1 to n
Dn[i , j] = Recurs ive≠Part (i , j , n ,W)

return Dn

Recurs ive≠Part (i , j , k ,W)
i f k=0

return W[i , j]
i f k>=1

temp1 = Recurs ive≠Part (i , j , k≠1,W)
temp2 = Recurs ive≠Part (i , k , k≠1,W) + . . .

Recurs ive≠Part (k , j , k≠1,W)
i f temp1<=temp2

return temp1
e l s e

re turn temp2

Thus, the final iterative algorithm with complexity O(V 3) looks like:

Algorithm 2 Floyd-Warshall Algorithm

7 Re-Weigthing
Another thing that can be accomplished to avoid the problem of negative cycles
is the the following:

• Given the weight function w : E æ R, define h : V æ R be any function
mapping vertices into real numbers.

We define
‚w (u, v) = w (u, v) + h (u) ≠ h (v)

7

This function has the following lemma:

Lemma. (Re-weighting does not change shortest paths)

Given a weighted, directed graph G = (D, V) with weight function w : E æ
R, let h : V æ R be any function mapping vertices to real numbers. For each

edge (u, v) œ E, define

‚w (u, v) = w (u, v) + h (u) ≠ h (v)

Let p = Èv1, v2, ..., v
k

Í be any path from vertex 0 to vertex k. Then:

1. p is a shortest path from 0 to k with weight function w if and only if it

is a shortest path with weight function ‚w. That is w(p) = ” (v
o

, v
k

) if and

only if ‚w(p) = ‚” (v
o

, v
k

).

2. Furthermore, G has a negative-weight cycle using weight function w if and

only if G has a negative-weight cycle using weight function ‚w.

Proof. Case 1
We start showing that:

‚w (u, v) = w (u, v) + h (u) ≠ h (v) (5)

For this:

‚w (p) =
kÿ

i=1
‚w (v

i≠1, v
i

)

=
kÿ

i=1
[w (v

i≠1, v
i

) + h (v
i≠1) ≠ h (v

i

)]

=
kÿ

i=1
w (v

i≠1, v
i

) + h (v0) ≠ h (v
k

)

= w (p) + h (v0) ≠ h (v
k

)

Now, observe that h (v0) and h (v
k

) do not depend on the path. Thus,
w(p) = ” (v0, v

k

) ≈∆ ‚w(p) = ‚” (v0, v
k

).
Case 2
Consider any cycle c = Èv0, v1, ..., v

k

Í, v0 = v
k

. Thus

‚w (c) = w(c) + h (v0) ≠ h (v
k

) = w(c) (6)

thus c has a negative weight using w if and only if it has negative weight
using ‚w.

Thus we have the following:

• Select h such that w (u, v) + h (u) ≠ h (v) Ø 0.

8

Then, we build a new graph GÕ

• It has the following elements

– V Õ = V fi {s}, where s is a new vertex.

ú EÕ = E fi {(s, v) |v œ V }.

ú w(s, v) = 0 for all v œ V , in addition to all the other weights.

Therefore, select h thus h(v) = ”(s, v). We have the following claim: w (u, v) +
h (u) ≠ h (v) Ø 0.

By Triangle Inequality:

” (s, v) Æ ”(s, u) + w(u, v) (7)

Then by the way we selected h, we have

h(v) Æ h(u) + w (u, v) .

Finally

w (u, v) + h (u) ≠ h (v) Ø 0

Then, we have the following algorithm:

Algorithm 3 Johnson’s Algorithm

This algorithm has the following complexity:

• �(V + E) to compute GÕ.

• O(V E) to run Bellman-Ford.

• �(E)to compute ‚w.

9

• O
!
V 2 lg E + V E

"
to run Dijkstra’s algorithm |V | time using Fibonacci

Heaps.

• O
!
V 2"

to compute D matrix.

Thus, the total is O(V 2 lg V + E), but if E = O
!
V 2"

=∆ O
!
V 2 lg V

"

10

