Analysis of Algorithms All-Pairs Shortest Path

Andres Mendez-Vazquez

November 11, 2015

イロン イロン イヨン イヨン 三日

1/79

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path
 - Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

Other Solutions

The Johnson's Algorithm

Exercises

You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Introduction

Definition of the Problem

- Assumptions
- Observations
- Structure of a Shortest Path
 Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

5 Exercises

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

• Given u and v, find the shortest path.

• Use as a source all the elements in V.

Clearly!!! you can fall back to the old algorithms!!!

イロト イヨト イヨト イヨト

Definition

- Given u and v, find the shortest path.
- Now, what if you want ALL PAIRS!!!
 - Clearly!!! you can fall back to the old algorithms!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

- Given u and v, find the shortest path.
- Now, what if you want ALL PAIRS!!!
- Use as a source all the elements in V.

Clearly!!! you can fall back to the old algorithms!!!

Definition

- Given u and v, find the shortest path.
- Now, what if you want ALL PAIRS!!!
- Use as a source all the elements in V.
- Clearly!!! you can fall back to the old algorithms!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

4 / 79

Use Dijkstra's |V| times!!!

• If all the weights are non-negative.

w. Then, we have $O\left(M^2 E\right)$ is Which is equal $O\left(M^2\right)$ in the case of $E = O\left(M^2 E\right)$

イロン イロン イヨン イヨン

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^2\log V + VE\right)$ complexity.
- Which is equal O(V³) in the case of E = O(V²), but with a hidden large constant c.

イロト 不得 トイヨト イヨト

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O(V^2 \log V + VE)$ complexity.
- Which is equal $O(V^3)$ in the case of $E = O(V^2)$, but with a hidden large constant c.

se Bellman-Ford |*V*| times!!!

- If negative weights are allowed.
- Then, we have $O(V^2 E)$
- Which is equal $O\left(\,V^4
 ight)$ in the case of $E=O(\,V^2)$

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^2\log V + VE\right)$ complexity.
- Which is equal $O(V^3)$ in the case of $E = O(V^2)$, but with a hidden large constant c.

Use Bellman-Ford |V| times!!!

If negative weights are allowed.

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^2\log V + VE\right)$ complexity.
- Which is equal $O(V^3)$ in the case of $E = O(V^2)$, but with a hidden large constant c.

Use Bellman-Ford |V| times!!!

- If negative weights are allowed.
- Then, we have $O(V^2E)$.

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^2\log V + VE\right)$ complexity.
- Which is equal $O(V^3)$ in the case of $E = O(V^2)$, but with a hidden large constant c.

Use Bellman-Ford |V| times!!!

- If negative weights are allowed.
- Then, we have $O(V^2E)$.
- Which is equal $O(V^4)$ in the case of $E = O(V^2)$.

Problems

- Computer Network Systems.
- Aircraft Networks (e.g. flying time, fares).
- Railroad network tables of distances between all pairs of cites for a road atlas.
- Etc.

イロト イヨト イヨト イヨト

Problems

- Computer Network Systems.
- Aircraft Networks (e.g. flying time, fares).
- Railroad network tables of distances between all pairs of cites for a road atlas.
- Etc

(日) (日) (日) (日) (日)

Problems

- Computer Network Systems.
- Aircraft Networks (e.g. flying time, fares).
- Railroad network tables of distances between all pairs of cites for a road atlas.

イロト イヨト イヨト

Problems

- Computer Network Systems.
- Aircraft Networks (e.g. flying time, fares).
- Railroad network tables of distances between all pairs of cites for a road atlas.
- Etc.

イロト イヨト イヨト

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

We have more from

• "Studies in the Economics of Transportation" by Beckmann, McGuire, and Winsten (1956) where the notation that we use for the matrix multiplication alike was first used.

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

We have more from

• "Studies in the Economics of Transportation" by Beckmann, McGuire, and Winsten (1956) where the notation that we use for the matrix multiplication alike was first used.

In addition

G. Tarry, Le probleme des labyrinthes, Nouvelles Annales de Mathématiques (3) 14 (1895) 187–190 [English translation in: N.L. Biggs, E.K. Lloyd, R.J. Wilson, Graph Theory 1736–1936, Clarendon Press, Oxford, 1976, pp. 18–20] (For the theory behind depth-first search techniques).

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

We have more from

• *"Studies in the Economics of Transportation"* by Beckmann, McGuire, and Winsten (1956) where the notation that we use for the matrix multiplication alike was first used.

In addition

- G. Tarry, Le probleme des labyrinthes, Nouvelles Annales de Mathématiques (3) 14 (1895) 187–190 [English translation in: N.L. Biggs, E.K. Lloyd, R.J. Wilson, Graph Theory 1736–1936, Clarendon Press, Oxford, 1976, pp. 18–20] (For the theory behind depth-first search techniques).
- Chr. Wiener, Ueber eine Aufgabe aus der Geometria situs, Mathematische Annalen 6 (1873) 29–30, 1873.

Outline

Introduction

• Definition of the Problem

Assumptions

- Observations
- Structure of a Shortest Path
 Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

Exercises

• You can try them

イロト イヨト イヨト

Assumptions Matrix Representation

Matrix Representation of a Graph

For this, we have that each weight in the matrix has the following values

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

Then, we have $W = \begin{pmatrix} w_{11} & w_{22} & \dots & w_{1k-1} & w_{1n} \\ \ddots & \ddots & & \ddots & \ddots \\ \vdots & \ddots & & \ddots & \vdots \\ w_{n1} & w_{n2} & \dots & w_{nn-1} & w_{nn} \end{pmatrix}$

イロト イボト イヨト イヨト

Important

There are not negative weight cycles.

Assumptions Matrix Representation

Matrix Representation of a Graph

For this, we have that each weight in the matrix has the following values

Important

• There are not negative weight cycles.

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
- Structure of a Shortest PathIntroduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

5 Exercises

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Observations

Ah!!!

• The next algorithm is a dynamic programming algorithm for

The all-pairs shortest paths problem on a directed graph G = (V, E).

Observations

Ah!!!

• The next algorithm is a dynamic programming algorithm for

• The all-pairs shortest paths problem on a directed graph G = (V, E).

A D > A D > A D > A D >

Observations

Ah!!!

- The next algorithm is a dynamic programming algorithm for
 - The all-pairs shortest paths problem on a directed graph G = (V, E).

At the end of the algorithm will generate the following matrix

$$D = \begin{pmatrix} d_{11} & d_{22} & \dots & d_{1k-1} & d_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ d_{n1} & d_{n2} & \dots & d_{nn-1} & d_{nn} \end{pmatrix}$$

Each entry $d_{ij} = \delta(i, j)$.

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations

Structure of a Shortest PathIntroduction

3 The Solutior

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

D Exercises

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Consider Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a SP from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a Shortest Path (SP) from v_i to v_j , where $1 \le i \le j \le k$.

We can do the following

 Consider the shortest path p from vertex i and j, p contains at most m edges.

Consider Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a SP from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a Shortest Path (SP) from v_i to v_j , where $1 \le i \le j \le k$.

We can do the following

- Consider the shortest path p from vertex i and j, p contains at most m edges.
- Then, we can use the Corollary to make a decomposition

$$i \stackrel{p'}{\rightsquigarrow} k \to j \Longrightarrow \delta(i,j) = \delta(i,k) + w_{kj}$$

Idea of Using Matrix Multiplication

- We define the following concept based in the decomposition Corollary!!!
 - $l_{ij}^{(m)} =$ minimum weight of any path from i to j, it contains at most m edges i.e.

$l_{ij}^{(m)}$ could be $\min_k \left\{ l_{ik}^{(m-1)} + w_{kj} ight\}$

< ロ > < 同 > < 回 > < 回 >

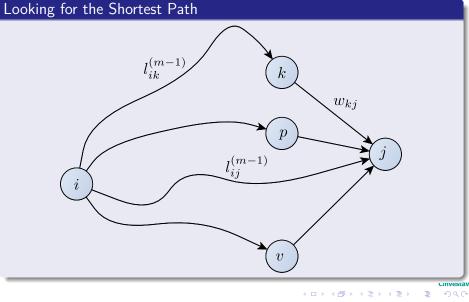
Idea of Using Matrix Multiplication

- We define the following concept based in the decomposition Corollary!!!
- $l_{ij}^{(m)} =$ minimum weight of any path from i to j, it contains at most m edges i.e.

$$l_{ij}^{(m)}$$
 could be $\min_k \left\{ l_{ik}^{(m-1)} + w_{kj}
ight\}$

イロト イヨト イヨト

Graphical Interpretation



Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- Structure of a Shortest PathIntroduction

3 The Solution

The Recursive Solution

- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

6 Exercises

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Recursive Solution

Thus, we have that for paths with ZERO edges

$$U_{ij}^{(0)} = \begin{cases} 0 & \text{ if } i = j \\ \infty & \text{ if } i \neq j \end{cases}$$

Recursion Our Great Friend

Consider the previous definition and decomposition. Thus

Thus, we have that for paths with ZERO edges

$$_{ij}^{(0)} = \begin{cases} 0 & \text{ if } i = j \\ \infty & \text{ if } i \neq j \end{cases}$$

Recursion Our Great Friend

• Consider the previous definition and decomposition. Thus

イロト イボト イヨト イヨト

Thus, we have that for paths with ZERO edges

$$_{ij}^{(0)} = \begin{cases} 0 & \text{ if } i = j \\ \infty & \text{ if } i \neq j \end{cases}$$

Recursion Our Great Friend

• Consider the previous definition and decomposition. Thus

$$u_{ij}^{(m)} = \min\left(l_{ij}^{(m-1)}, \min_{1 \le k \le n} \left\{l_{ik}^{(m-1)} + w_{kj}\right\}
ight)$$

Thus, we have that for paths with ZERO edges

$$_{ij}^{(0)} = \begin{cases} 0 & \text{ if } i = j \\ \infty & \text{ if } i \neq j \end{cases}$$

Recursion Our Great Friend

• Consider the previous definition and decomposition. Thus

$$l_{ij}^{(m)} = \min\left(l_{ij}^{(m-1)}, \min_{1 \le k \le n} \left\{l_{ik}^{(m-1)} + w_{kj}\right\}\right)$$
$$= \min_{1 \le k \le n} \left\{l_{ik}^{(m-1)} + w_{kj}\right\}$$

イロト イボト イヨト イヨト

Why? A simple notation problem

$$l_{ij}^{(m)} = l_{ij}^{(m-1)} + 0 = l_{ij}^{(m-1)} + w_{jj}$$

< ロ > < 回 > < 回 > <</p>

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path
 - Introduction

3 The Solution

The Recursive Solution

The Iterative Version

- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

5 Exercises

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

What is $\delta(i, j)$?

• If you do not have negative-weight cycles, and $\delta\left(i,j\right)<\infty.$

$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = l_{ij}^{(n+1)} = \dots$

 \approx . There, we can compute first $\mathcal{A}^{(2)}$ then compute $\mathcal{A}^{(2)}$ all the way to a $\mathcal{A}^{(2)}$, which contains the actual shortest paths.

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta\left(i,j\right)<\infty.$
- $\bullet\,$ Then, the shortest path from vertex i to j has at most n-1 edges

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = l_{ij}^{(n+2)} = \dots$$

Back to Matrix Multiplication

- We have the matrix $L^{(m)} = \left(l^{(m)}_{ij}
 ight).$
- Then, we can compute first L⁽¹⁾ then compute L⁽²⁾ all the way to L⁽ⁿ⁻¹⁾ which contains the actual shortest paths.

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta\left(i,j\right)<\infty.$
- Then, the shortest path from vertex i to j has at most n-1 edges

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = l_{ij}^{(n+2)} = \dots$$

Back to Matrix Multiplication

• We have the matrix $L^{(m)} = \left(l_{ij}^{(m)}\right)$.

Then, we can compute first $L^{(1)}$ then compute $L^{(2)}$ all the way to $L^{(n-1)}$ which contains the actual shortest paths.

• First, we have that $L^{(1)}=W_i$ since $l^{(1)}_{ij}=w_{ij}$.

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta\left(i,j\right)<\infty.$
- Then, the shortest path from vertex i to j has at most n-1 edges

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = l_{ij}^{(n+2)} = \dots$$

Back to Matrix Multiplication

- We have the matrix $L^{(m)} = \left(l_{ij}^{(m)} \right)$.
- Then, we can compute first $L^{(1)}$ then compute $L^{(2)}$ all the way to $L^{(n-1)}$ which contains the actual shortest paths.

ullet First, we have that $L^{(1)}=W$, since $l^{(1)}_{ii}=w_{ij}.$

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta\left(i,j\right)<\infty.$
- Then, the shortest path from vertex i to j has at most n-1 edges

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = l_{ij}^{(n+2)} = \dots$$

Back to Matrix Multiplication

- We have the matrix $L^{(m)} = \left(l_{ij}^{(m)} \right)$.
- Then, we can compute first $L^{(1)}$ then compute $L^{(2)}$ all the way to $L^{(n-1)}$ which contains the actual shortest paths.

What is $L^{(1)}$?

• First, we have that
$$L^{(1)}=$$
 W , since $l^{(1)}_{ij}=w_{ij}$

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path
 - Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version

Extended-Shoertest-Paths

- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

5 Exercises

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Code

Extended-Shortest-Path(L, W)

1
$$n = L.rows$$

2 let $L' = (l'_{ij})$ be a new $n \times n$
6 for $l = 1$ to n
6 for $k = 1$ to n
6 for $k = 1$ to n
6 for $k = 1$ to n

return L'

Code

Extended-Shortest-Path(L, W)

a
$$n = L.rows$$
a let $L' = (l'_{ij})$ be a new $n \times n$
3 for $i = 1$ to n
3 for $j = 1$ to n
4 $l'_{ij} = \infty$
6 return l'_{ij}

Code

Extended-Shortest-Path(L, W)

1
$$n = L.rows$$

2 let $L' = (l'_{ij})$ be a new $n \times n$
3 for $i = 1$ to n
4 for $j = 1$ to n
5 $l'_{ij} = \infty$
5 for $k = 1$ to n
6 $l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})$

Code

Extended-Shortest-Path(L,W)

1
$$n = L.rows$$

2 let $L' = (l'_{ij})$ be a new $n \times n$
3 for $i = 1$ to n
3 for $j = 1$ to n
4 for $j = 1$ to n
5 $l'_{ij} = \infty$
6 for $k = 1$ to n
7 $l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})$
8 return L'

Complexity

If |V| == n we have that $\Theta(V^3)$.

Complexity

If |V| == n we have that $\Theta(V^3)$.

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path
 - Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths

Looking at the Algorithm as Matrix Multiplication

- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

5 Exercises

• You can try them

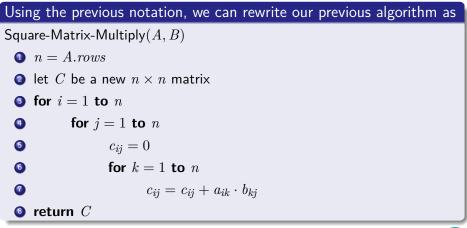
< ロ > < 回 > < 回 > < 回 > < 回 >

Look Alike Matrix Multiplication Operations

Mapping That Can be Thought

- $L \Longrightarrow A$
- $W \Longrightarrow B$
- $L' \Longrightarrow C$
- $\min \Longrightarrow +$
- $\bullet + \Longrightarrow \cdot$
- $\infty \Longrightarrow 0$

Look Alike Matrix Multiplication Operations



イロト イヨト イヨト

Complexity

Thus

The complexity of the **Extended-Shortest-Path** is equal to $O(n^3)$

Returning to the all-pairs shortest-paths problem

It is possible to compute the shortest path by extending such a path edge by edge.

Therefore

If we denote $A \cdot B$ as the "product" of the Extended-Shortest-Path

Returning to the all-pairs shortest-paths problem

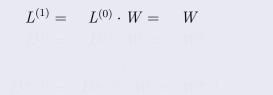
It is possible to compute the shortest path by extending such a path edge by edge.

Therefore

If we denote $A \cdot B$ as the "product" of the **Extended-Shortest-Path**

イロト イボト イヨト イヨト

We have that



We have that

$$L^{(1)} = L^{(0)} \cdot W = W$$
$$L^{(2)} = L^{(1)} \cdot W = W^{2}$$
$$\vdots$$

メロト メロト メヨト メヨト

We have that

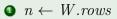
$$L^{(1)} = L^{(0)} \cdot W = W$$
$$L^{(2)} = L^{(1)} \cdot W = W^{2}$$
$$\vdots$$
$$L^{(n-1)} = L^{(n-2)} \cdot W = W^{n-1}$$

・ロト ・日 ・ ・ ヨト ・ ヨ

The Final Algorithm

We have that

Slow-All-Pairs-Shortest-Paths(*W***)**



$$2 L^{(1)} \leftarrow W$$

• for
$$m = 2$$
 to $n - 1$

•
$$L^{(m)} \leftarrow \mathsf{EXTEND}\text{-}\mathsf{SHORTEST}\text{-}\mathsf{PATHS}(L^{(m-1)}, W)$$

5 return $L^{(n-1)}$

With Complexity

Complexity

$$O\left(V^4\right)$$

C?

(1)

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- Structure of a Shortest Path
 - Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication

Example

• We want something faster

A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

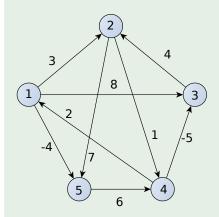
5 Exercises

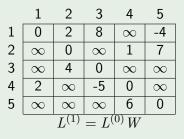
• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Example

We have the following



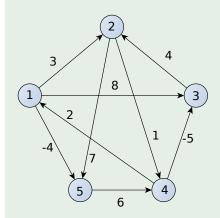


▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

33 / 79

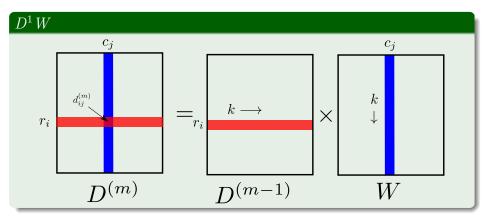
Example

We have the following



-4 -4 ∞ -1 -2 -5 ∞ $L^{(2)} = L^{(1)} W$

Here, we use the analogy of matrix multiplication



イロト イロト イヨト イヨト

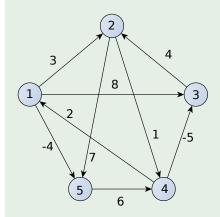
Thus, the update of an element l_{ij}

Example

$$l_{14}^{(2)} = \min \left\{ \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \end{pmatrix} + \begin{pmatrix} \infty \\ 1 \\ \infty \\ 0 \\ 6 \end{pmatrix} \right\}$$
$$= \min \left(\infty & 4 & \infty & \infty & 2 \right)$$
$$= 2$$

Example

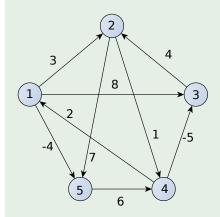
We have the following



-3 -4 -1 -4 -2 -1 -5 $L^{(3)} = L^{(2)} W$

Example

We have the following



-3 -4 -4 -1 -5 -2 -1 $L^{(4)} = L^{(3)} W$

38 / 79

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path
 - Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

6 Exercises

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Recall the following

We are interested only

In matrix $L^{(n-1)}$

In addition

Remember, we do not have negative weight cycles!!!

Fherefore, given the equation

$$\delta\left(i,j\right) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n)} = \dots$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Recall the following

We are interested only

In matrix $L^{(n-1)}$

In addition

Remember, we do not have negative weight cycles!!!

Therefore, given the equation

 $\delta\left(i,j\right) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n)} = \dots$

イロト イヨト イヨト イヨト

Recall the following

We are interested only

In matrix $L^{(n-1)}$

In addition

Remember, we do not have negative weight cycles!!!

Therefore, given the equation

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n)} = \dots$$

イロト イヨト イヨト イヨト

(2)

It implies

$$L^{(m)} = L^{(n-1)}$$

For all

(3)

Thus

It implies

$$L^{(m)} = L^{(n-1)}$$
(3)

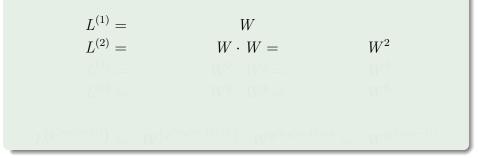
For all

$$m \ge n - 1 \tag{4}$$

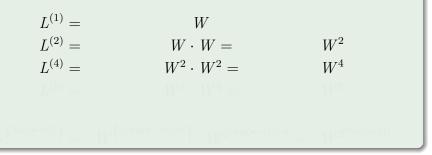
We want something faster!!! Observation!!!

Cinvestav < ロ > < (ア・ < ミ > < ミ > ミ ・ (マ・ へ) 42 / 79

We want something faster!!! Observation!!!



We want something faster!!! Observation!!!



42 / 79

We want something faster!!! Observation!!!

$L^{(1)} =$	W	
$L^{(2)} =$	$W \cdot W =$	W^2
$L^{(4)} =$	$W^2 \cdot W^2 =$	W^4
$L^{(8)} =$	$W^4 \cdot W^4 =$	W^8
	÷	

Because $2^{|lg(n-1)|} \ge n - 1 \Longrightarrow L^{(2^{|lg(n-1)|})} = L^{(n-1)}$ Cinvestav

42 / 79

We want something faster!!! Observation!!!

$$\begin{array}{ccccc} L^{(1)} = & W \\ L^{(2)} = & W \cdot W = & W^2 \\ L^{(4)} = & W^2 \cdot W^2 = & W^4 \\ L^{(8)} = & W^4 \cdot W^4 = & W^8 \\ & \vdots \\ L^{\left(2^{\lceil \log(n-1)\rceil}\right)} = & W^{\left\lceil 2^{\lceil \log(n-1)\rceil-1} \right\rceil} \cdot W^{2^{\lceil \log(n-1)\rceil-1}} = & W^{2^{\lceil \log(n-1)\rceil}} \end{array}$$

Because

Cinvestav

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ E のQC 42/79

We want something faster!!! Observation!!!

$$L^{(1)} = W$$

$$L^{(2)} = W \cdot W = W^{2}$$

$$L^{(4)} = W^{2} \cdot W^{2} = W^{4}$$

$$L^{(8)} = W^{4} \cdot W^{4} = W^{8}$$

$$\vdots$$

$$I^{2^{\lceil \log(n-1) \rceil}} = W^{\lceil 2^{\lceil \log(n-1) \rceil - 1}} \cdot W^{2^{\lceil \log(n-1) \rceil - 1}} = W^{2^{\lceil \log(n-1) \rceil}}$$

Because

 L^{\dagger}

$$2^{\lceil \lg(n-1) \rceil} \ge n-1 \Longrightarrow L^{\left(2^{\lceil \lg(n-1) \rceil}\right)} = L^{(n-1)}$$

Cinvestav

< □ ▶ < 圕 ▶ < 클 ▶ < 클 ▶ E 少QC 42/79

The Faster Algorithm

Complexity of the Previous Algorithm

Slow-All-Pairs-Shortest-Paths(W)

- $1 m \leftarrow W.rows$
- $\textcircled{2} \ L^{(1)} \leftarrow \ W$
- $\ \, \textbf{0} \ \, m \leftarrow 1$
- while m < n 1
- **o** $L^{(2m)} \leftarrow \mathsf{EXTEND}\text{-}\mathsf{SHORTEST}\text{-}\mathsf{PATHS}(L^{(m)}, L^{(m)})$
- \bigcirc return $L^{(m)}$

Complexity

f n = |V| we have that $O\left(V^3 \lg V
ight)$

The Faster Algorithm

Complexity of the Previous Algorithm

Slow-All-Pairs-Shortest-Paths(W)

- $1 m \leftarrow W.rows$
- $2 L^{(1)} \leftarrow W$
- $\ \, \textbf{0} \ \, m \leftarrow 1$
- while m < n 1
- $L^{(2m)} \leftarrow \mathsf{EXTEND}\text{-}\mathsf{SHORTEST}\text{-}\mathsf{PATHS}(L^{(m)}, L^{(m)})$
- \bigcirc return $L^{(m)}$

Complexity

If n = |V| we have that $O(V^3 \lg V)$.

イロト 不得 とくき とくきとう

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- Structure of a Shortest Path
 Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

A different dynamic-programming algorithm

• The Shortest Path Structure

- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

6 Exercises

You can try them

The Shortest Path Structure

Intermediate Vertex

For a path $p = \langle v_1, v_2, ..., v_l \rangle$, an **intermediate vertex** is any vertex of p other than v_1 or v_l .

Define

 $d_{ij}^{(k)} =$ weight of a shortest path between i and j with all intermediate vertices are in the set $\{1, 2, ..., k\}$.

The Shortest Path Structure

Intermediate Vertex

For a path $p = \langle v_1, v_2, ..., v_l \rangle$, an **intermediate vertex** is any vertex of p other than v_1 or v_l .

Define

 $d_{ij}^{(k)}=$ weight of a shortest path between i and j with all intermediate vertices are in the set $\{1,2,...,k\}.$

イロト イロト イヨト イヨト

Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices {1,..., k − 1} is a shortest path from i to j with intermediate vertices {1,..., k}.

- Case II if k is an intermediate vertice. Then, i → k → j and we can make the following statements using Lemma 24.1:
 - ▶ p₁ is a shortest path from i to k with all intermediate vertices in the set {1,..., k − 1}.
 - ▶ p₂ is a shortest path from k to j with all intermediate vertices in the set {1,..., k − 1}.

$$\implies d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

Simply look at the following cases cases

 Case I k is not an intermediate vertex, then a shortest path from i to *j* with all intermediate vertices {1,..., k − 1} is a shortest path from i to *j* with intermediate vertices {1,..., k}.

$$\implies d_{ij}^{(k)} = d_{ij}^{(k-1)}$$

- Case II if k is an intermediate vertice. Then, i → k → j and we can make the following statements using Lemma 24.1:
 - ▶ p₁ is a shortest path from i to k with all intermediate vertices in the set {1,..., k − 1}.
 - ▶ p₂ is a shortest path from k to j with all intermediate vertices in the set {1,..., k − 1}.

$$\implies d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

イロン イロン イヨン イヨン

Simply look at the following cases cases

 Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices {1,..., k − 1} is a shortest path from i to j with intermediate vertices {1,..., k}.

$$\implies d_{ij}^{(k)} = d_{ij}^{(k-1)}$$

Case II if k is an intermediate vertice. Then, i → k → j and we can make the following statements using Lemma 24.1:

set $\{1, ..., k - 1\}$. p_2 is a shortest path from k to j with all intermediate vertices in the set $\{1, ..., k - 1\}$.

$$\implies d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

< ロ > < 同 > < 回 > < 回 >

Simply look at the following cases cases

 Case I k is not an intermediate vertex, then a shortest path from i to *j* with all intermediate vertices {1,..., k − 1} is a shortest path from i to *j* with intermediate vertices {1,..., k}.

$$\implies d_{ij}^{(k)} = d_{ij}^{(k-1)}$$

- Case II if k is an intermediate vertice. Then, i → k → j and we can make the following statements using Lemma 24.1:
 - ▶ p_1 is a shortest path from *i* to *k* with all intermediate vertices in the set $\{1, ..., k 1\}$.

Simply look at the following cases cases

 Case I k is not an intermediate vertex, then a shortest path from i to *j* with all intermediate vertices {1,..., k − 1} is a shortest path from i to *j* with intermediate vertices {1,..., k}.

$$\implies d_{ij}^{(k)} = d_{ij}^{(k-1)}$$

- Case II if k is an intermediate vertice. Then, i → k → j and we can make the following statements using Lemma 24.1:
 - ▶ p₁ is a shortest path from i to k with all intermediate vertices in the set {1,..., k − 1}.
 - ▶ p₂ is a shortest path from k to j with all intermediate vertices in the set {1,..., k − 1}.

< ロ > < 同 > < 回 > < 回 >

Simply look at the following cases cases

 Case I k is not an intermediate vertex, then a shortest path from i to *j* with all intermediate vertices {1,..., k − 1} is a shortest path from i to *j* with intermediate vertices {1,..., k}.

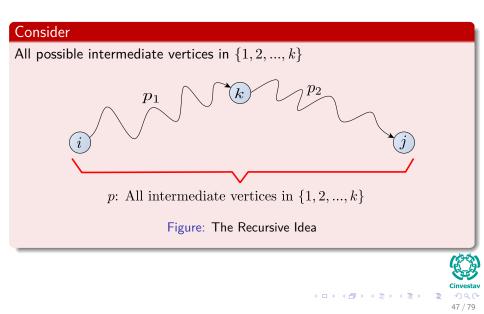
$$\implies d_{ij}^{(k)} = d_{ij}^{(k-1)}$$

- Case II if k is an intermediate vertice. Then, i → k → j and we can make the following statements using Lemma 24.1:
 - ▶ p₁ is a shortest path from i to k with all intermediate vertices in the set {1,..., k − 1}.
 - ▶ p₂ is a shortest path from k to j with all intermediate vertices in the set {1,..., k − 1}.

$$\implies d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

< ロ > < 同 > < 回 > < 回 >

The Graphical Idea



The Recursive Solution

The Recursion

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

Final answer when k = r

We recursively calculate $D^{(n)}=\left(\, d^{(n)}_{ij}
ight)$ or $d^{(n)}_{ij}=\delta\left(i,j
ight)$ for all $i,j\in V.$.

The Recursive Solution

The Recursion

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

Final answer when k = n

We recursively calculate
$$D^{(n)} = \left(d^{(n)}_{ij}\right)$$
 or $d^{(n)}_{ij} = \delta\left(i, j\right)$ for all $i, j \in V$.

イロト イロト イヨト イヨト

Recursive Version

Recursive-Floyd-Warshall(W)

- $\ \, {\bf 0} \ \, D^{(n)} \ \, {\rm the} \ n \times n \ \, {\rm matrix} \ \ \,$
- for i = 1 to n
- for j = 1 to n
 - $D^{(n)}[i,j] = \mathsf{Recursive-Part}(i,j,n,W)$
 - $igodoldsymbol{O}$ return $D^{(n)}$

Recursive Version

Recursive-Floyd-Warshall(W)

- $\bullet \ D^{(n)} \ {\rm the} \ n \times n \ {\rm matrix}$
- ${\rm ②} \ \ {\rm for} \ i=1 \ {\rm to} \ n$

$$D^{(n)}[i,j] = \mathsf{Recursive-Part}(i,j,n,W)$$

) return $D^{(r)}$

Recursive Version

Recursive-Floyd-Warshall(W)

- $\bullet \ D^{(n)} \ {\rm the} \ n \times n \ {\rm matrix}$
- ${\rm ②} \ \ {\rm for} \ i=1 \ {\rm to} \ n$

$$D^{(n)}[i,j] = \mathsf{Recursive-Part}(i,j,n,W)$$

• return $D^{(n)}$

The Recursive-Part

Recursive-Part(i, j, k, W)

- **1** if k = 0
- return W[i, j]2

Cinvestav

- A D A A B A A B A A B A
 - 50 / 79

The Recursive-Part

Recursive-Part(i, j, k, W)• if k = 0return W[i, j]2 \bullet if k > 1 $t_1 = \mathsf{Recursive-Part}(i, j, k-1, W)$ 4 $t_2 = \text{Recursive-Part}(i, k, k - 1, W) + \dots$ 6 Recursive-Part(k, j, k-1, W)6

Cinvestav イロトイ圏トイミトイミト ミークへで 50 / 79

The Recursive-Part

Recursive-Part(i, j, k, W)• if k = 0return W[i, j]2 \bullet if k > 1 $t_1 = \mathsf{Recursive-Part}(i, j, k-1, W)$ 4 $t_2 = \text{Recursive-Part}(i, k, k-1, W) + \dots$ 6 Recursive-Part(k, j, k-1, W)6 if $t_1 < t_2$ 1 8 return t₁

Cinvestav イロトイ圏トイヨトイヨト ヨークへで 50/79

The Recursive-Part

Recursive-Part(i, j, k, W)• if k = 0return W[i, j]2 \bullet if k > 1 $t_1 = \mathsf{Recursive-Part}(i, j, k-1, W)$ 4 $t_2 = \text{Recursive-Part}(i, k, k-1, W) + \dots$ 6 Recursive-Part(k, j, k-1, W)6 if $t_1 < t_2$ 1 8 return t₁ 0 else 10 return t_2

3

イロト イボト イヨト イヨト

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- Structure of a Shortest Path
 Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

The Shortest Path Structure

The Bottom-Up Solution

- Floyd-Warshall Algorithm
 - Example

Other Solutions

• The Johnson's Algorithm

5 Exercises

• You can try them

イロト イヨト イヨト

We want to use a storage to eliminate the recursion

For this, we are going to use two matrices

) $D^{(k-1)}$ the previous matrix.

) $D^{(k)}$ the new matrix based in the previous matrix

Now

We want to use a storage to eliminate the recursion

For this, we are going to use two matrices

• $D^{(k-1)}$ the previous matrix.

 $\mathcal{O}^{(k)}$ the new matrix based in the previous matrix

Something Notable

With $D^{(0)}=\,W$ or all weights in the edges that exist.

Now

We want to use a storage to eliminate the recursion

For this, we are going to use two matrices

- $D^{(k-1)}$ the previous matrix.
- ② $D^{(k)}$ the new matrix based in the previous matrix

Something Notable

With $D^{(0)} = W$ or all weights in the edges that exist.

Now

We want to use a storage to eliminate the recursion

For this, we are going to use two matrices

- $D^{(k-1)}$ the previous matrix.
- ② $D^{(k)}$ the new matrix based in the previous matrix

Something Notable

With $D^{(0)} = W$ or all weights in the edges that exist.

In addition, we want to rebuild the answer

For this, we have the predecessor matrix $\boldsymbol{\Pi}$

Actually, we want to compute a sequence of matrices

$\Pi^{(0)}, \Pi^{(1)}, ..., \Pi^{(n)}$

Where

In addition, we want to rebuild the answer

For this, we have the predecessor matrix $\boldsymbol{\Pi}$

Actually, we want to compute a sequence of matrices

 $\Pi^{(0)}, \Pi^{(1)}, ..., \Pi^{(n)}$

Where

$$\Pi = \Pi^{(n)}$$

What are the elements in $\Pi^{(k)}$

Each element in the matrix is as follow

 $\pi_{ij}^{(k)} =$ the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2,...,k\}$

Fhus, we have that

イロト イロト イヨト イヨト

What are the elements in $\Pi^{(k)}$

Each element in the matrix is as follow

 $\pi_{ij}^{(k)} =$ the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2,...,k\}$

Thus, we have that

$$\pi_{ij}^{(0)} = \begin{cases} NULL & \text{ if } i = j \text{ or } w_{ij} = \infty \\ i & \text{ if } i \neq j \text{ and } w_{ij} < \infty \end{cases}$$

イロン イロン イヨン イヨン

Then

We have the following

For $k \geq 1$, if we take the path $i \rightsquigarrow k \rightsquigarrow j$ where $k \neq j$.

For the predecessor of j, we chose k on a shortest path from k with all intermediate vertices in the set $\{1,2,...,k-1\}$

Otherwise, if $d_{i_{1}}^{(k-1)} \leq d_{i_{k}}^{(k-1)} + d_{i_{1}}^{(k-1)}$

We choose the same predecessor of j that we chose on a shortest path from i with all all intermediate vertices in the set $\{1, 2, ..., k-1\}$.

Then

We have the following

For $k\geq 1,$ if we take the path $i\rightsquigarrow k\rightsquigarrow j$ where $k\neq j.$

Then, if $d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

For the predecessor of j, we chose k on a shortest path from k with all intermediate vertices in the set $\{1,2,...,k-1\}$

We choose the same predecessor of j that we chose on a shortest path from i with all all intermediate vertices in the set $\{1, 2, ..., k-1\}$.

Then

We have the following

For $k \geq 1$, if we take the path $i \rightsquigarrow k \rightsquigarrow j$ where $k \neq j$.

Then, if $d_{ii}^{(k-1)} > d_{ik}^{(k-1)} + d_{ki}^{(k-1)}$

For the predecessor of j, we chose k on a shortest path from k with all intermediate vertices in the set $\{1,2,...,k-1\}$

Otherwise, if $d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

We choose the same predecessor of j that we chose on a shortest path from i with all all intermediate vertices in the set $\{1, 2, ..., k-1\}$.

Formally

We have then

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \end{cases}$$

イロト イヨト イヨト イヨト

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path• Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

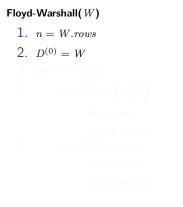
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

5 Other Solutions

• The Johnson's Algorithm

5 Exercises

• You can try them



▷ Given each k, we update using $D^{(k-1)}$ for i = 1 to n for j = 1 to n if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$ $d_{ij}^{(k)} = d_{ij}^{(k-1)}$ $\pi_{ij}^{(k)} = \pi_{ij}^{(k-1)}$ else $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$ $\pi_{ij}^{(k)} = \pi_{kj}^{(k-1)}$

< ロ > < 同 > < 回 > < 回 >

58 / 79

 ${f 14}$. return $D^{(n)}$ and $\Pi^{(n)}$

Floyd-Warshall(W)

1. n = W.rows2. $D^{(0)} = W$ 3. for k = 1 to n - 14. let $D^{(k)} = \left(d_{ij}^{(k)}\right)$ be a new $n \times n$ matrix 5. let $\Pi^{(k)}$ be a new predecessor $n \times n$ matrix

(日) (日) (日) (日) (日)

Floyd-Warshall(W)

1. n = W rows 6. 2. $D^{(0)} = W$ 7. 3. for k = 1 to n - 18. let $D^{(k)} = \left(d_{ij}^{(k)} \right)$ 4. 9. be a new 10. $n \times n$ matrix 11. 5. let $\Pi^{(k)}$ be a new 12. predecessor 13. $n \times n$ matrix

▷ Given each k, we update using $D^{(k-1)}$ for i = 1 to n for j = 1 to n if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$ $d_{ij}^{(k)} = d_{ij}^{(k-1)}$ $\pi_{ij}^{(k)} = \pi_{ij}^{(k-1)}$ else $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$ $\pi_{ij}^{(k)} = \pi_{kj}^{(k-1)}$

4. return $D^{(n)}$ and $\Pi^{(n)}$

(investav ・ロト・(アト・ミト・ミト ヨーのへの 58/79

Floyd-Warshall(W)

1. n = W rows 6. 2. $D^{(0)} = W$ 7. 3. for k = 1 to n - 18. let $D^{(k)} = \left(d_{ij}^{(k)} \right)$ 4. 9. be a new 10. $n \times n$ matrix 11. 5. let $\Pi^{(k)}$ be a new 12. predecessor 13. $n \times n$ matrix

 \triangleright Given each k, we update using $D^{(k-1)}$ for i = 1 to nfor j = 1 to nif $d_{ii}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{ki}^{(k-1)}$ $d_{ii}^{(k)} = d_{ii}^{(k-1)}$ $\pi_{ii}^{(k)} = \pi_{ii}^{(k-1)}$ else $d_{ii}^{(k)} = d_{ik}^{(k-1)} + d_{ki}^{(k-1)}$ $\pi_{ii}^{(k)} = \pi_{ki}^{(k-1)}$ 14. return $D^{(n)}$ and $\Pi^{(n)}$

Lines 1 and 2

Initialization of variables $n \mbox{ and } D^{(0)}$

Lines 1 and 2

Initialization of variables n and $D^{(0)}$

Line 3

In the loop, we solve the smaller problems first with k = 1 to k = n - 1

イロト イヨト イヨト イヨト

Lines 1 and 2

Initialization of variables n and $D^{(0)}$

Line 3

In the loop, we solve the smaller problems first with k = 1 to k = n - 1

• Remember the largest number of edges in any shortest path

Instantiation of the new matrices $D^{(k)}$ and $\prod^{(k)}$ to generate the shortest pats with at least k edges.

イロト イヨト イヨト

Lines 1 and 2

Initialization of variables n and $D^{(0)}$

Line 3

In the loop, we solve the smaller problems first with k = 1 to k = n - 1

• Remember the largest number of edges in any shortest path

Line 4 and 5

Instantiation of the new matrices $D^{(k)}$ and $\prod^{(k)}$ to generate the shortest pats with at least k edges.

Line 6 and 7

This is done to go through all the possible combinations of i's and j's

Line 8

Deciding if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

イロト イヨト イヨト イヨト

Line 6 and 7

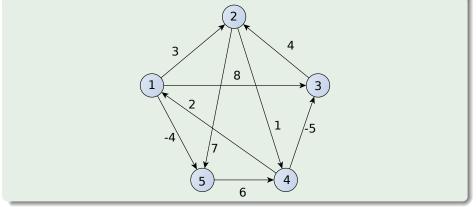
This is done to go through all the possible combinations of i's and j's

Line 8

Deciding if
$$d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

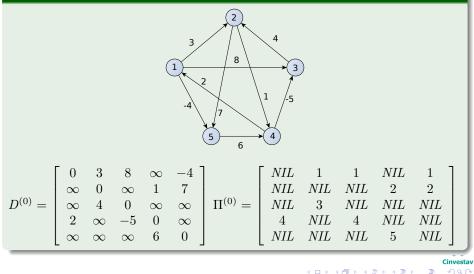
イロト イロト イヨト イヨト

Graph

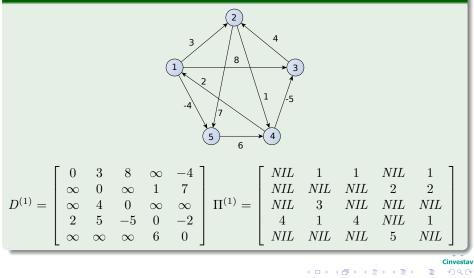


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣

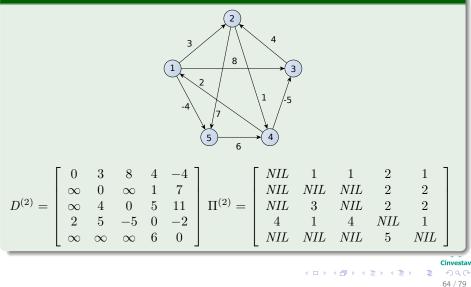
 $D^{(0)}$ and $\Pi^{(0)}$



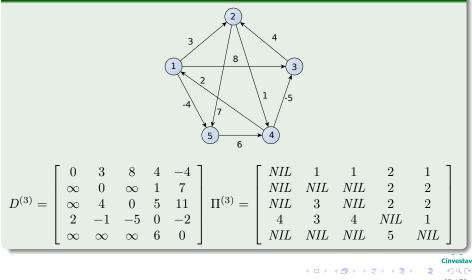
 $D^{(1)}$ and $\Pi^{(1)}$



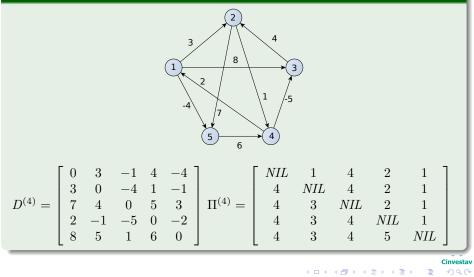
 $D^{(2)}$ and $\Pi^{(2)}$



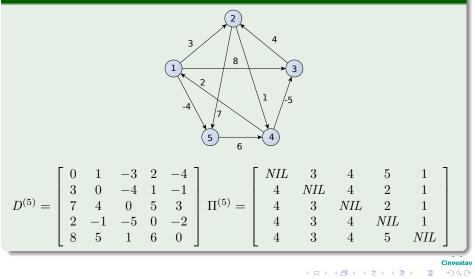
 $D^{(3)}$ and $\Pi^{(3)}$



 $D^{(4)}$ and $\Pi^{(4)}$



 $D^{(5)}$ and $\Pi^{(5)}$



Something Notable

Because the comparison in line 8 takes O(1)

Something Notable

Because the comparison in line 8 takes O(1)

Complexity of Floyd-Warshall is

Time Complexity $\Theta(V^3)$

while news locations, endinogily disclosely bed (solar product) and gradely see

э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Something Notable

Because the comparison in line 8 takes O(1)

Complexity of Floyd-Warshall is

Time Complexity $\Theta(V^3)$

We do not have elaborate data structures as Binary Heap or Fibonacci Heap!!!

The hidden constant time is quite small:

Making the Floyd-Warshall Algorithm practical even with

< ロ > < 同 > < 回 > < 回 >

Something Notable

Because the comparison in line 8 takes O(1)

Complexity of Floyd-Warshall is

Time Complexity $\Theta(V^3)$

We do not have elaborate data structures as Binary Heap or Fibonacci Heap!!!

The hidden constant time is quite small:

 Making the Floyd-Warshall Algorithm practical even with moderate-sized graphs!!!

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path• Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

Other Solutions

The Johnson's Algorithm

• You can try them

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
 - It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

hertore

- It uses something to deal with the negative weight cycles.
 - ► Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.

It can deal with the negative weight cycles.

hertore

- It uses something to deal with the negative weight cycles.
 - ► Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

hertore

- It uses something to deal with the negative weight cycles.
 - Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

What we require

- A re-weighting function $\widehat{w}\left(u,v
 ight)$
 - A shortest path by w is a shortest path by \widehat{w} .
 - All edges are not negative using \widehat{w} .

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

It uses something to deal with the negative weight cycles.

Maybe, we need to transform the weights in order to use them

What we require

- A re-weighting function $\widehat{w}\left(u,v
 ight)$
 - A shortest path by w is a shortest path by \widehat{w} .
 - All edges are not negative using \widehat{w} .

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

It uses something to deal with the negative weight cycles.

Could be a Bellman-Ford detector as before?

What we require

- A re-weighting function $\widehat{w}\left(u,v
 ight)$
 - A shortest path by w is a shortest path by \widehat{w} .
 - All edges are not negative using \widehat{w} .

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
 - Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

• A re-weighting function $\widehat{w}\left(u,v ight)$

- A shortest path by w is a shortest path by \widehat{w} .
- All edges are not negative using \widehat{w} .

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
 - Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

What we require

• A re-weighting function $\widehat{w}\left(u,v\right)$

A shortest path by w is a shortest path by \widehat{w}

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
 - Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

What we require

- A re-weighting function $\widehat{w}\left(u,v\right)$
 - A shortest path by w is a shortest path by \widehat{w} .

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
 - Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

What we require

- A re-weighting function $\widehat{w}\left(u,v\right)$
 - A shortest path by w is a shortest path by \widehat{w} .
 - All edges are not negative using \widehat{w} .

Lemma 25.1

Given a weighted, directed graph G = (D, V) with weight function $w : E \to \mathbb{R}$, let $h : V \to \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$\widehat{w}(u, v) = w(u, v) + h(u) - h(v)$

Let p = ⟨v₀, v₁, ..., v_k⟩ be any path from vertex 0 to vertex k. Then:
p is a shortest path from 0 to k with weight function w if and only if it is a shortest path with weight function ŵ. That is w(p) = δ (v₀, v_k) if and only if ŵ(p) = δ (v₀, v_k).

) Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \hat{w} .

Lemma 25.1

Given a weighted, directed graph G = (D, V) with weight function $w : E \to \mathbb{R}$, let $h : V \to \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$\widehat{w}(u, v) = w(u, v) + h(u) - h(v)$$

Let p = ⟨v₀, v₁, ..., v_k⟩ be any path from vertex 0 to vertex k. Then:
p is a shortest path from 0 to k with weight function w if and only if it is a shortest path with weight function ŵ. That is w(p) = δ (v₀, v_k) if and only if ŵ(p) = δ (v₀, v_k).
Purthermore, G has a negative-weight cycle using weight function w

< ロ > < 同 > < 回 > < 回 >

71/79

Lemma 25.1

Given a weighted, directed graph G = (D, V) with weight function $w : E \to \mathbb{R}$, let $h : V \to \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$\widehat{w}(u, v) = w(u, v) + h(u) - h(v)$$

Let $p = \langle v_0, v_1, ..., v_k \rangle$ be any path from vertex 0 to vertex k. Then:

it is a shortest path with weight function \widehat{w} . That is $w(p) = \delta(v_0, v_0)$ if and only if $\widehat{w}(p) = \widehat{\delta}(v_0, v_k)$.

Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \hat{w} .

Lemma 25.1

Given a weighted, directed graph G = (D, V) with weight function $w : E \to \mathbb{R}$, let $h : V \to \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$\widehat{w}(u, v) = w(u, v) + h(u) - h(v)$$

Let $p = \langle v_0, v_1, ..., v_k \rangle$ be any path from vertex 0 to vertex k. Then:

• p is a shortest path from 0 to k with weight function w if and only if it is a shortest path with weight function \hat{w} . That is $w(p) = \delta(v_0, v_k)$ if and only if $\hat{w}(p) = \hat{\delta}(v_0, v_k)$.

Lemma 25.1

Given a weighted, directed graph G = (D, V) with weight function $w : E \to \mathbb{R}$, let $h : V \to \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$\widehat{w}(u, v) = w(u, v) + h(u) - h(v)$$

Let $p = \langle v_0, v_1, ..., v_k \rangle$ be any path from vertex 0 to vertex k. Then:

- p is a shortest path from 0 to k with weight function w if and only if it is a shortest path with weight function \hat{w} . That is $w(p) = \delta(v_0, v_k)$ if and only if $\hat{w}(p) = \hat{\delta}(v_0, v_k)$.
- Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function ŵ.

A D > A D > A D > A D >

Select h

Such that $w(u, v) + h(u) - h(v) \ge 0$.

$\mathsf{Select}\ h$

Such that $w(u, v) + h(u) - h(v) \ge 0$.

Then, we build a new graph G'

- It has the following elements
 - $V' = V \cup \{s\}$, where s is a new vertex.
 - w(s,v) = 0 for all $v \in V$, in addition to all the other weights

イロト イロト イヨト イヨト

Select h

Such that $w(u, v) + h(u) - h(v) \ge 0$.

Then, we build a new graph G'

- It has the following elements
 - $V' = V \cup \{s\}$, where s is a new vertex.

Simply select $h(v) = \delta(s, v)$.

Select h

Such that $w(u, v) + h(u) - h(v) \ge 0$.

Then, we build a new graph G'

- It has the following elements
 - $V' = V \cup \{s\}$, where s is a new vertex.
 - $E' = E \cup \{(s, v) | v \in V\}.$

イロト イボト イヨト イヨト

Select h

Such that $w(u, v) + h(u) - h(v) \ge 0$.

Then, we build a new graph G'

- It has the following elements
 - $V' = V \cup \{s\}$, where s is a new vertex.
 - $E' = E \cup \{(s, v) | v \in V\}.$
 - $\blacktriangleright \ w(s,v)=0 \ \text{for all} \ v\in V \text{, in addition to all the other weights}.$

イロト イボト イヨト イヨト

Select h

Such that $w(u, v) + h(u) - h(v) \ge 0$.

Then, we build a new graph G'

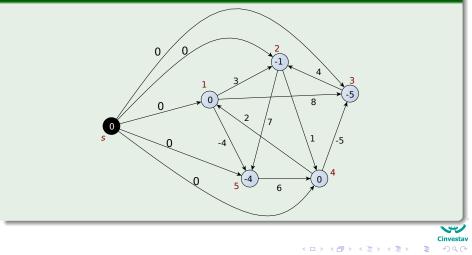
- It has the following elements
 - $V' = V \cup \{s\}$, where s is a new vertex.
 - $E' = E \cup \{(s, v) | v \in V\}.$
 - ▶ w(s,v) = 0 for all $v \in V$, in addition to all the other weights.

Select h

Simply select $h(v) = \delta(s, v)$.

Example

Graph G' with original weight function w with new source s and $h(v)=\delta(s,v)$ at each vertex



73 / 79

Claim

$$w\left(u,v\right) + h\left(u\right) - h\left(v\right) \ge 0$$

By Triangle Inequality

(5)

Claim

$$w(u, v) + h(u) - h(v) \ge 0$$

By Triangle Inequality

- $\delta(s, v) \leq \delta(s, u) + w(u, v)$
- Then by the way we selected h, we have:

$h(v) \leq h(u) + w(u, v)$

(5)

Claim

$$w(u, v) + h(u) - h(v) \ge 0$$
 (5)

By Triangle Inequality

- $\delta(s, v) \leq \delta(s, u) + w(u, v)$
- Then by the way we selected *h*, we have:

$$h(v) \le h(u) + w(u, v) \tag{6}$$

Finally $w(u, v) + h(u) - h(v) \ge 0$ (7) (1) + (2)

Claim

$$w(u, v) + h(u) - h(v) \ge 0$$
 (5)

By Triangle Inequality

- $\delta(s, v) \leq \delta(s, u) + w(u, v)$
- Then by the way we selected *h*, we have:

$$h(v) \le h(u) + w(u, v) \tag{6}$$

イロト イボト イヨト イヨト

Finally

$$w(u, v) + h(u) - h(v) \ge 0$$

э

(7)

Example

The new Graph G after re-weighting G'



イロト イロト イヨト イヨト

2

75 / 79

Pseudo-Code

1.	Compute G' , where: $G' \cdot V = G \cdot E \cup \{(s, v) v \in G \cdot V\}$ and $w(s, v) = 0$ for all $v \in G \cdot V$
	If Bellman-Ford $(G', w, s) == FALSE$
	print "Graphs contains a Neg-Weight Cycle"
	else for each vertex $v \in G', V$
	set $h(v) = v.d$ computed by Bellman-Ford
	for each edge $(u,v)\in G'.E$
	$\widehat{w}(u,v) = w(u,v) + h(u) - h(v)$
	Let $D = (d_{wv})$ be a new $n imes n$ matrix
	for each vertex $u \in G.V$
	run Dijkstra (G, \widehat{w}, u) to compute $\widehat{\delta}\left(u, v ight)$ for all $v \in G.V$
	for each vertex $v \in G.V$
	$d_{uv} = \widehat{\delta}(u, v) + h(v) - h(u)$
	return D
_	Cinvestay

Pseudo-Code

- 1. Compute G', where: $G'.V=G.E\cup\{(s,v)\,|v\in G.V\}$ and $w\,(s,v)=0$ for all $v\in G.V$
- 2. If Bellman-Ford(G', w, s) == FALSE
- 3. print "Graphs contains a Neg-Weight Cycle"

```
5. set h(v) = v.d computed by Bellman-Ford
6. for each edge (u, v) \in G'.E
```

```
\widehat{w}\left(u,v
ight)=w\left(u,v
ight)+h\left(u
ight)-h\left(v
ight)
```

```
. Let D = (d_{uv}) be a new n 	imes n matrix
```

```
9. for each vertex u \in G.V
```

```
run Dijkstra(G,\widehat{w},u) to compute \widehat{\delta}\left(u,v
ight) for all v\in G.V
```

```
for each vertex v \in G. V
```

```
l_{uv}=\widehat{\delta}\left( u,v
ight) +h\left( v
ight) -h\left( u
ight)
```

Pseudo-Code

5.

- 1. Compute G', where: $G'.V=G.E\cup\{(s,v)\,|v\in G.V\}$ and $w\,(s,v)=0$ for all $v\in G.V$
- 2. If Bellman-Ford(G', w, s) == FALSE
- 3. print "Graphs contains a Neg-Weight Cycle"
- 4. else for each vertex $v \in G'.V$
 - set h(v) = v.d computed by Bellman-Ford

```
w(u,v) = w(u,v) + h(u) - h(v)
```

```
9. for each vertex u \in G.V
```

```
run Dijkstra(G,\widehat{w},u) to compute \widehat{\delta}\left(u,v
ight) for all v\in G. V
```

```
for each vertex v \in G.
```

$$d_{uv} = \widehat{\delta}(u, v) + h(v) - h(u)$$

Pseudo-Code

5.

7.

- 1. Compute G', where: $G'.V=G.E\cup\{(s,v)\,|v\in G.V\}$ and $w\,(s,v)=0$ for all $v\in G.V$
- 2. If Bellman-Ford(G', w, s) == FALSE
- 3. print "Graphs contains a Neg-Weight Cycle"
- 4. else for each vertex $v \in G'.V$

```
set h(v) = v.d computed by Bellman-Ford
```

6. for each edge $(u, v) \in G'.E$

$$\widehat{w}(u, v) = w(u, v) + h(u) - h(v)$$

et $D=(\mathit{d_{uv}})$ be a new n imes n matri

. for each vertex $u \in G.V$

```
run Dijkstra(G,\widehat{w},u) to compute \overline{\delta}\left(u,v
ight) for all v\in G.V
```

```
for each vertex v \in G.
```

$$d_{uv} = \widehat{\delta}(u, v) + h(v) - h(u)$$

Pseudo-Code

- 1. Compute G', where: $G'.V=G.E\cup\{(s,v)\,|v\in G.V\}$ and $w\,(s,v)=0$ for all $v\in G.V$
- 2. If Bellman-Ford(G', w, s) = FALSE
- 3. print "Graphs contains a Neg-Weight Cycle"
- 4. else for each vertex $v \in G'.V$
- 5. set h(v) = v.d computed by Bellman-Ford
- 6. for each edge $(u, v) \in G'.E$

7.
$$\widehat{w}(u,v) = w(u,v) + h(u) - h(v)$$

- 8. Let $D = (d_{uv})$ be a new $n \times n$ matrix
 - for each vertex $u \in G.V$
 - run Dijkstra(G, w, u) to compute $\delta(u, v)$ for all $v \in G$.
 - $d_{\mathrm{em}} = \widehat{\delta} \left(u, v \right) + h \left(v \right) h$

Pseudo-Code

1.	Compute $G',$ where: $G'.V=G.E\cup\{(s,v) v\in G.V\}$ and $w(s,v)=0$ for all $v\in G.V$
2.	If Bellman-Ford $(G', w, s) == FALSE$
3.	print "Graphs contains a Neg-Weight Cycle"
4.	else for each vertex $v \in G'.V$
5.	set $h(v) = v.d$ computed by Bellman-Ford
6.	for each edge $(u, v) \in G'.E$
7.	$\widehat{w}(u,v) = w(u,v) + h(u) - h(v)$
8.	Let $D = (d_{uv})$ be a new $n imes n$ matrix
9.	for each vertex $u \in G.V$
10.	run Dijkstra (G,\widehat{w},u) to compute $\widehat{\delta}\left(u,v ight)$ for all $v\in G.V$
	for each vertex $v \in G.V$
	$d_{uv} = \widehat{\delta}\left(u, v\right) + h\left(v\right) - h\left(u\right)$
13.	return D
_	Cinvestav

イロン イボン イヨン イヨン 三日

76 / 79

Pseudo-Code

1.	Compute $G',$ where: $G'.V=G.E\cup\{(s,v) v\in G.V\}$ and $w(s,v)=0$ for all $v\in G.V$
2.	If Bellman-Ford $(G', w, s) == FALSE$
3.	print "Graphs contains a Neg-Weight Cycle"
4.	else for each vertex $v \in G'.V$
5.	set $h\left(v\right) = v.d$ computed by Bellman-Ford
6.	for each edge $(u,v) \in G'.E$
7.	$\widehat{w}\left(u,v ight)=w\left(u,v ight)+h\left(u ight)-h\left(v ight)$
8.	Let $D=(d_{uv})$ be a new $n imes n$ matrix
9.	for each vertex $u \in G.V$
10.	run Dijkstra (G,\widehat{w},u) to compute $\widehat{\delta}\left(u,v ight)$ for all $v\in G.V$
11.	for each vertex $v \in G.V$
12.	$d_{uv}=\widehat{\delta}\left(u,v ight) +h\left(v ight) -h\left(u ight)$
13.	return D

Cinvestav

76 / 79

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Pseudo-Code

1.	Compute $G',$ where: $G'.V=G.E\cup\{(s,v) v\in G.V\}$ and $w(s,v)=0$ for all $v\in G.V$
2.	If Bellman-Ford $(G', w, s) == FALSE$
3.	print "Graphs contains a Neg-Weight Cycle"
4.	else for each vertex $v \in G'.V$
5.	set $h(v) = v.d$ computed by Bellman-Ford
6.	for each edge $(u,v) \in G'.E$
7.	$\widehat{w}\left(u,v ight)=w\left(u,v ight)+h\left(u ight)-h\left(v ight)$
8.	Let $D = (d_{uv})$ be a new $n \times n$ matrix
9.	for each vertex $u \in G.V$
10.	run Dijkstra (G,\widehat{w},u) to compute $\widehat{\delta}\left(u,v ight)$ for all $v\in G.V$
11.	for each vertex $v \in G.V$
12.	$d_{uv} = \widehat{\delta}(u, v) + h(v) - h(u)$
13.	return D
_	Cinvesta

イロン イボン イヨン イヨン 三日

The Final Complexity

• Times:

- ▶ $\Theta(V + E)$ to compute G'
- O(VE) to run Bellman-Ford
- $\blacktriangleright \ \Theta(E) \text{ to compute } \widehat{w}$
- ▶ $O(V^2 \lg V + VE)$ to run Dijkstra's algorithm |V| time using Fibonacci Heaps
- ▶ $O(V^2)$ to compute D matrix
- Total : $O(V^2 \lg V + VE)$
- If $E = O(V^2) \Longrightarrow O(V^3)$

イロン イロン イヨン イヨン

The Final Complexity

- Times:
 - $\Theta(V+E)$ to compute G'
 - O(VE) to run Bellman-Ford
 - $\Theta(E)$ to compute \widehat{u}
 - ▶ O(V² lg V + VE) to run Dijkstra's algorithm |V| time using Fibonacci Heaps
 - $\blacktriangleright O(V^2)$ to compute D matrix
- Total : $O(V^2 \lg V + VE)$
- If $E = O(V^2) \Longrightarrow O(V^3)$

イロト 不得 トイヨト イヨト

The Final Complexity

• Times:

- $\Theta(V+E)$ to compute G'
- O(VE) to run Bellman-Ford
- ▶ O(V² lg V + VE) to run Dijkstra's algorithm |V| time using Fibonacci Heaps
- $O(V^2)$ to compute D matrix
- Total : $O(V^2 \lg V + VE)$
- If $E = O(V^2) \Longrightarrow O(V^3)$

イロト 不得 とくき とくきとう

The Final Complexity

• Times:

- $\Theta(V+E)$ to compute G'
- O(VE) to run Bellman-Ford
- $\blacktriangleright \ \Theta(E) \ {\rm to} \ {\rm compute} \ \widehat{w}$
- ▶ $O\left(V^2 \lg V + VE
 ight)$ to run Dijkstra's algorithm |V| time using
- Fibonacci Heaps
- $O(V^2)$ to compute D matrix
- Total : $O(V^2 \lg V + VE)$
- If $E = O(V^2) \Longrightarrow O(V^3)$

イロト イボト イヨト イヨト

The Final Complexity

• Times:

- $\Theta(V+E)$ to compute G'
- O(VE) to run Bellman-Ford
- $\blacktriangleright \ \Theta(E) \ {\rm to} \ {\rm compute} \ \widehat{w}$
- ▶ $O(V^2 \lg V + VE)$ to run Dijkstra's algorithm |V| time using Fibonacci Heaps

Total : $O(V^2 \lg V + VE)$

イロト 不得 トイヨト イヨト

The Final Complexity

• Times:

- $\Theta(V+E)$ to compute G'
- O(VE) to run Bellman-Ford
- $\blacktriangleright \ \Theta(E) \ {\rm to} \ {\rm compute} \ \widehat{w}$
- ▶ $O(V^2 \lg V + VE)$ to run Dijkstra's algorithm |V| time using Fibonacci Heaps
- $O(V^2)$ to compute D matrix

• Total : $O(V^2 \lg V + VE)$ • If $E = O(V^2) \Longrightarrow O(V^3)$

イロン イヨン イヨン

The Final Complexity

• Times:

- $\Theta(V+E)$ to compute G'
- O(VE) to run Bellman-Ford
- $\Theta(E)$ to compute \widehat{w}
- ▶ $O(V^2 \lg V + VE)$ to run Dijkstra's algorithm |V| time using Fibonacci Heaps
- $O(V^2)$ to compute D matrix
- Total : $O(V^2 \lg V + VE)$

The Final Complexity

• Times:

- $\Theta(V+E)$ to compute G'
- O(VE) to run Bellman-Ford
- $\Theta(E)$ to compute \widehat{w}
- ▶ $O(V^2 \lg V + VE)$ to run Dijkstra's algorithm |V| time using Fibonacci Heaps
- $O(V^2)$ to compute D matrix
- Total : $O(V^2 \lg V + VE)$
- If $E = O(V^2) \Longrightarrow O(V^3)$

Outline

Introductio

- Definition of the Problem
- Assumptions
- Observations
- 2 Structure of a Shortest Path• Introduction

3 The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
 - Example

Other Solutions

• The Johnson's Algorithm

• You can try them

< ロ > < 回 > < 回 > < 回 > < 回 >

Excercises

- 25.1-4
- 25.1-8
- 25.1-9
- 25.2-4
- 25.2-6
- 25.2-9
- 25.3-3

