Analysis of Algorithms
 All-Pairs Shortest Path

Andres Mendez-Vazquez

November 11, 2015

Outline

(1) Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm
(6) Exercises
- You can try them

Outline

(1) Introduction

- Definition of the Problem
- Assumptions
- Observations

2. Structure of a Shortest Path

- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6. Exercises

- You can try them

Problem

Definition

- Given u and v, find the shortest path.

Problem

Definition

- Given u and v, find the shortest path.
- Now, what if you want ALL PAIRS!!!

Problem

Definition

- Given u and v, find the shortest path.
- Now, what if you want ALL PAIRS!!!
- Use as a source all the elements in V.

Problem

Definition

- Given u and v, find the shortest path.
- Now, what if you want ALL PAIRS!!!
- Use as a source all the elements in V.
- Clearly!!! you can fall back to the old algorithms!!!

What can we use?

What can we use?

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^{2} \log V+V E\right)$ complexity.

What can we use?

Use Dijkstra's $|V|$ times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^{2} \log V+V E\right)$ complexity.
- Which is equal $O\left(V^{3}\right)$ in the case of $E=O\left(V^{2}\right)$, but with a hidden large constant c.

What can we use?

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^{2} \log V+V E\right)$ complexity.
- Which is equal $O\left(V^{3}\right)$ in the case of $E=O\left(V^{2}\right)$, but with a hidden large constant c.

Use Bellman-Ford |V| times!!!

- If negative weights are allowed.

What can we use?

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^{2} \log V+V E\right)$ complexity.
- Which is equal $O\left(V^{3}\right)$ in the case of $E=O\left(V^{2}\right)$, but with a hidden large constant c.

Use Bellman-Ford |V| times!!!

- If negative weights are allowed.
- Then, we have $O\left(V^{2} E\right)$.

What can we use?

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- This has, using Fibonacci Heaps, $O\left(V^{2} \log V+V E\right)$ complexity.
- Which is equal $O\left(V^{3}\right)$ in the case of $E=O\left(V^{2}\right)$, but with a hidden large constant c.

Use Bellman-Ford |V| times!!!

- If negative weights are allowed.
- Then, we have $O\left(V^{2} E\right)$.
- Which is equal $O\left(V^{4}\right)$ in the case of $E=O\left(V^{2}\right)$.

This is not Good For Large Problems

Problems

- Computer Network Systems.

This is not Good For Large Problems

Problems

- Computer Network Systems.
- Aircraft Networks (e.g. flying time, fares).

This is not Good For Large Problems

Problems

- Computer Network Systems.
- Aircraft Networks (e.g. flying time, fares).
- Railroad network tables of distances between all pairs of cites for a road atlas.

This is not Good For Large Problems

Problems

- Computer Network Systems.
- Aircraft Networks (e.g. flying time, fares).
- Railroad network tables of distances between all pairs of cites for a road atlas.
- Etc.

For more on this...

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

For more on this...

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

We have more from

- "Studies in the Economics of Transportation" by Beckmann, McGuire, and Winsten (1956) where the notation that we use for the matrix multiplication alike was first used.

For more on this...

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

We have more from

- "Studies in the Economics of Transportation" by Beckmann, McGuire, and Winsten (1956) where the notation that we use for the matrix multiplication alike was first used.

In addition

- G. Tarry, Le probleme des labyrinthes, Nouvelles Annales de Mathématiques (3) 14 (1895) 187-190 [English translation in: N.L. Biggs, E.K. Lloyd, R.J. Wilson, Graph Theory 1736-1936, Clarendon Press, Oxford, 1976, pp. 18-20] (For the theory behind depth-first search techniques).

For more on this...

Something Notable

As many things in the history of analysis of algorithms the all-pairs shortest path has a long history.

We have more from

- "Studies in the Economics of Transportation" by Beckmann, McGuire, and Winsten (1956) where the notation that we use for the matrix multiplication alike was first used.

In addition

- G. Tarry, Le probleme des labyrinthes, Nouvelles Annales de Mathématiques (3) 14 (1895) 187-190 [English translation in: N.L. Biggs, E.K. Lloyd, R.J. Wilson, Graph Theory 1736-1936, Clarendon Press, Oxford, 1976, pp. 18-20] (For the theory behind depth-first search techniques).
- Chr. Wiener, Ueber eine Aufgabe aus der Geometria situs, Mathematische Annalen 6 (1873) 29-30, 1873.

Outline

(1) Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6. Exercises

- You can try them

Assumptions Matrix Representation

Matrix Representation of a Graph

For this, we have that each weight in the matrix has the following values

$$
w_{i j}= \begin{cases}0 & \text { if } i=j \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

Then, we have $W=$

$$
\left(\begin{array}{ccccc}
w_{11} & w_{22} & \ldots & w_{1 k-1} & w_{1 n} \\
\cdot & \cdot & & & \cdot \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
w_{n 1} & w_{n 2} & \ldots & w_{n n-1} & w_{n n}
\end{array}\right)
$$

Assumptions Matrix Representation

Matrix Representation of a Graph

For this, we have that each weight in the matrix has the following values

$$
w_{i j}= \begin{cases}0 & \text { if } i=j \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

Then, we have $W=\left(\begin{array}{ccccc}w_{11} & w_{22} & \ldots & w_{1 k-1} & w_{1 n} \\ \cdot & \cdot & & & \cdot \\ \cdot & & \cdot & & \cdot \\ \cdot & & & \cdot & \cdot \\ w_{n 1} & w_{n 2} & \ldots & w_{n n-1} & w_{n n}\end{array}\right)$

Important

- There are not negative weight cycles.

Outline

(1) Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3. The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example

5) Other Solutions

- The Johnson's Algorithm

6 Exercises

- You can try them

Observations

Ah!!!

- The next algorithm is a dynamic programming algorithm for

Observations

Ah!!!

- The next algorithm is a dynamic programming algorithm for
- The all-pairs shortest paths problem on a directed graph $G=(V, E)$.

Observations

Ah!!!

- The next algorithm is a dynamic programming algorithm for
- The all-pairs shortest paths problem on a directed graph $G=(V, E)$.

At the end of the algorithm will generate the following matrix

$$
D=\left(\begin{array}{ccccc}
d_{11} & d_{22} & \ldots & d_{1 k-1} & d_{1 n} \\
\cdot & \cdot & & & \cdot \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
d_{n 1} & d_{n 2} & \ldots & d_{n n-1} & d_{n n}
\end{array}\right)
$$

Each entry $d_{i j}=\delta(i, j)$.

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path - Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6) Exercises

- You can try them

Structure of a Shortest Path

Consider Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a SP from v_{1} to v_{k}. Then,

- $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ is a Shortest Path (SP) from v_{i} to v_{j}, where $1 \leq i \leq j \leq k$.

Structure of a Shortest Path

Consider Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a SP from v_{1} to v_{k}. Then,

- $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ is a Shortest Path (SP) from v_{i} to v_{j}, where $1 \leq i \leq j \leq k$.

We can do the following

- Consider the shortest path p from vertex i and j, p contains at most m edges.
- Then, we can use the Corollary to make a decomposition

$$
i \stackrel{p^{\prime}}{\rightsquigarrow} k \rightarrow j \Longrightarrow \delta(i, j)=\delta(i, k)+w_{k j}
$$

Structure of a Shortest Path

Idea of Using Matrix Multiplication

- We define the following concept based in the decomposition Corollary!!!

Structure of a Shortest Path

Idea of Using Matrix Multiplication

- We define the following concept based in the decomposition Corollary!!!
- $l_{i j}^{(m)}=$ minimum weight of any path from i to j, it contains at most m edges i.e.

$$
l_{i j}^{(m)} \text { could be } \min _{k}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}
$$

Graphical Interpretation

Looking for the Shortest Path

三

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6) Exercises

- You can try them

Recursive Solution

Thus, we have that for paths with ZERO edges

$$
l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}
$$

Recursive Solution

Thus, we have that for paths with ZERO edges

$$
l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}
$$

Recursion Our Great Friend

- Consider the previous definition and decomposition. Thus

Recursive Solution

Thus, we have that for paths with ZERO edges

$$
l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}
$$

Recursion Our Great Friend

- Consider the previous definition and decomposition. Thus

$$
l_{i j}^{(m)}=\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right)
$$

Recursive Solution

Thus, we have that for paths with ZERO edges

$$
l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}
$$

Recursion Our Great Friend

- Consider the previous definition and decomposition. Thus

$$
\begin{aligned}
l_{i j}^{(m)} & =\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}
\end{aligned}
$$

Recursive Solution

Why? A simple notation problem

$$
l_{i j}^{(m)}=l_{i j}^{(m-1)}+0=l_{i j}^{(m-1)}+w_{j j}
$$

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6) Exercises

- You can try them

Transforming it to a iterative one

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta(i, j)<\infty$.

Transforming it to a iterative one

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta(i, j)<\infty$.
- Then, the shortest path from vertex i to j has at most $n-1$ edges

$$
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=l_{i j}^{(n+2)}=\ldots
$$

Transforming it to a iterative one

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta(i, j)<\infty$.
- Then, the shortest path from vertex i to j has at most $n-1$ edges

$$
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=l_{i j}^{(n+2)}=\ldots
$$

Back to Matrix Multiplication

- We have the matrix $L^{(m)}=\left(l_{i j}^{(m)}\right)$.

Transforming it to a iterative one

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta(i, j)<\infty$.
- Then, the shortest path from vertex i to j has at most $n-1$ edges

$$
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=l_{i j}^{(n+2)}=\ldots
$$

Back to Matrix Multiplication

- We have the matrix $L^{(m)}=\left(l_{i j}^{(m)}\right)$.
- Then, we can compute first $L^{(1)}$ then compute $L^{(2)}$ all the way to $L^{(n-1)}$ which contains the actual shortest paths.

Transforming it to a iterative one

What is $\delta(i, j)$?

- If you do not have negative-weight cycles, and $\delta(i, j)<\infty$.
- Then, the shortest path from vertex i to j has at most $n-1$ edges

$$
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=l_{i j}^{(n+2)}=\ldots
$$

Back to Matrix Multiplication

- We have the matrix $L^{(m)}=\left(l_{i j}^{(m)}\right)$.
- Then, we can compute first $L^{(1)}$ then compute $L^{(2)}$ all the way to $L^{(n-1)}$ which contains the actual shortest paths.

What is $L^{(1)}$?

- First, we have that $L^{(1)}=W$, since $l_{i j}^{(1)}=w_{i j}$.

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6 Exercises

- You can try them

Algorithm

Code

Extended-Shortest-Path(L, W)
(1) $n=$ L.rows
(2) let $L^{\prime}=\left(l_{i j}^{\prime}\right)$ be a new $n \times n$

Algorithm

Code

Extended-Shortest-Path(L, W)
(1) $n=$ L.rows
(2) let $L^{\prime}=\left(l_{i j}^{\prime}\right)$ be a new $n \times n$
(3) for $i=1$ to n
(9) for $j=1$ to n
©

$$
l_{i j}^{\prime}=\infty
$$

Algorithm

Code

Extended-Shortest-Path(L, W)
(1) $n=L$.rows
(2) let $L^{\prime}=\left(l_{i j}^{\prime}\right)$ be a new $n \times n$
(3) for $i=1$ to n
(4) for $j=1$ to n
(5)

$$
l_{i j}^{\prime}=\infty
$$

(6) for $k=1$ to n
(1

$$
l_{i j}^{\prime}=\min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)
$$

Algorithm

Code

Extended-Shortest-Path(L, W)
(1) $n=$ L.rows
(2) let $L^{\prime}=\left(l_{i j}^{\prime}\right)$ be a new $n \times n$
(3) for $i=1$ to n
(9) for $j=1$ to n
©

$$
l_{i j}^{\prime}=\infty
$$

for $k=1$ to n
O

$$
l_{i j}^{\prime}=\min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)
$$

(8) return L^{\prime}

Algorithm

$23 / 79$

Algorithm

Complexity

If $|V|==n$ we have that $\Theta\left(V^{3}\right)$.

Outline

Introduction
－Definition of the Problem
－Assumptions
－Observations
（2）Structure of a Shortest Path
－Introduction
（3）The Solution
－The Recursive Solution
－The Iterative Version
－Extended－Shoertest－Paths
－Looking at the Algorithm as Matrix Multiplication
－Example
－We want something faster
（1）A different dynamic－programming algorithm
－The Shortest Path Structure
－The Bottom－Up Solution
－Floyd－Warshall Algorithm
－Example
（5）Other Solutions
－The Johnson＇s Algorithm
6 Exercises
－You can try them

Look Alike Matrix Multiplication Operations

Mapping That Can be Thought

- $L \Longrightarrow A$
- $W \Longrightarrow B$
- $L^{\prime} \Longrightarrow C$
- min $\Longrightarrow+$
$\bullet+\Longrightarrow$.
- $\infty \Longrightarrow 0$

Look Alike Matrix Multiplication Operations

Using the previous notation, we can rewrite our previous algorithm as
Square-Matrix-Multiply (A, B)
(1) $n=$ A.rows
(2) let C be a new $n \times n$ matrix
(3) for $i=1$ to n
(9) for $j=1$ to n
©

$$
c_{i j}=0
$$

© for $k=1$ to n
©

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

(8) return C

Complexity

Thus
The complexity of the Extended-Shortest-Path is equal to $O\left(n^{3}\right)$

Using the Analogy

Returning to the all-pairs shortest-paths problem

It is possible to compute the shortest path by extending such a path edge by edge.

Using the Analogy

Returning to the all-pairs shortest-paths problem

It is possible to compute the shortest path by extending such a path edge by edge.

Therefore
If we denote $A \cdot B$ as the "product" of the Extended-Shortest-Path

Using the Analogy

We have that

$$
L^{(1)}=L^{(0)} \cdot W=W
$$

Using the Analogy

We have that

$$
\begin{array}{ll}
L^{(1)}=L^{(0)} \cdot W=W \\
L^{(2)}= & L^{(1)} \cdot W=W^{2}
\end{array}
$$

Using the Analogy

We have that

$$
\begin{array}{rc}
L^{(1)}= & L^{(0)} \cdot W=W \\
L^{(2)}= & L^{(1)} \cdot W=W^{2} \\
\vdots & \\
L^{(n-1)}= & L^{(n-2)} \cdot W=W^{n-1}
\end{array}
$$

The Final Algorithm

We have that

Slow-All-Pairs-Shortest-Paths(W)
(1) $n \leftarrow W$.rows
(2) $L^{(1)} \leftarrow W$
(3) for $m=2$ to $n-1$
(9) $L^{(m)} \leftarrow$ EXTEND-SHORTEST-PATHS $\left(L^{(m-1)}, W\right)$
(6) return $L^{(n-1)}$

With Complexity

Complexity

$$
\begin{equation*}
O\left(V^{4}\right) \tag{1}
\end{equation*}
$$

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6) Exercises

- You can try them

Example

We have the following

	1	2	3	4	5
1	0	2	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0
	$L^{(1)}=L^{(0)} W$				

Example

We have the following

	1	2	3	4	5
1	0	2	8	2	-4
2	3	0	-4	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	8	∞	1	6	0
$L^{(2)}=L^{(1)} W$					

Here, we use the analogy of matrix multiplication
$D^{1} W$

Thus, the update of an element $l_{i j}$

Example

$$
\begin{aligned}
l_{14}^{(2)} & =\min \left\{\left(\begin{array}{lllll}
0 & 3 & 8 & \infty & -4
\end{array}\right)+\left(\begin{array}{c}
\infty \\
1 \\
\infty \\
0 \\
6
\end{array}\right)\right\} \\
& \left.=\min \left(\begin{array}{lllll}
\infty & 4 & \infty & \infty & 2
\end{array}\right)\right\} \\
& =2
\end{aligned}
$$

Example

We have the following

	1	2	3	4	5
1	0	3	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	11
4	2	-1	-5	0	-2
5	8	5	1	6	0
$L^{(3)}=L^{(2)} W$					

Example

We have the following

	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0
$L^{(4)}=L^{(3)} W$					

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6) Exercises

- You can try them

Recall the following

We are interested only
In matrix $L^{(n-1)}$

Recall the following

We are interested only
In matrix $L^{(n-1)}$
In addition
Remember, we do not have negative weight cycles!!!
$40 / 79$

Recall the following

We are interested only
In matrix $L^{(n-1)}$

In addition

Remember, we do not have negative weight cycles!!!
Therefore, given the equation

$$
\begin{equation*}
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n)}=\ldots \tag{2}
\end{equation*}
$$

Thus

It implies

$$
\begin{equation*}
L^{(m)}=L^{(n-1)} \tag{3}
\end{equation*}
$$

Thus

It implies

$$
\begin{equation*}
L^{(m)}=L^{(n-1)} \tag{3}
\end{equation*}
$$

For all

$$
\begin{equation*}
m \geq n-1 \tag{4}
\end{equation*}
$$

Something Faster

Something Faster

We want something faster!!! Observation!!!
$L^{(1)}=$
W
$L^{(2)}=$
$W \cdot W=$
W^{2}

Something Faster

We want something faster!!! Observation!!!

$$
\begin{array}{lcc}
L^{(1)}= & W \\
L^{(2)}= & W \cdot W= & W^{2} \\
L^{(4)}= & W^{2} \cdot W^{2}= & W^{4}
\end{array}
$$

Something Faster

We want something faster!!! Observation!!!

$$
\begin{array}{lcc}
L^{(1)}= & W \\
L^{(2)}= & W \cdot W= & W^{2} \\
L^{(4)}= & W^{2} \cdot W^{2}= & W^{4} \\
L^{(8)}= & W^{4} \cdot W^{4}= & W^{8}
\end{array}
$$

Something Faster

We want something faster!!! Observation!!!

$$
\begin{array}{rlrl}
L^{(1)} & = & W & \\
L^{(2)} & = & W \cdot W= & W^{2} \\
L^{(4)} & = & W^{2} \cdot W^{2}= & W^{4} \\
L^{(8)} & = & W^{4} \cdot W^{4}= & W^{8} \\
L^{\left(2^{[\log (n-1)]}\right)}= & W^{\left[2^{[\log (n-1)]-1}\right\rceil} \cdot W^{2^{[\log (n-1)]-1}}= & W^{2^{[\log (n-1)]}}
\end{array}
$$

Because

Something Faster

We want something faster!!! Observation!!!

$$
\begin{aligned}
L^{(1)} & = & W & \\
L^{(2)} & = & W \cdot W= & W^{2} \\
L^{(4)} & = & W^{2} \cdot W^{2}= & W^{4} \\
L^{(8)} & = & W^{4} \cdot W^{4}= & W^{8} \\
L^{\left(2^{[\log (n-1)]}\right)} & = & W^{\left[2^{[\log (n-1)]-1}\right\rceil} \cdot W^{2^{[\log (n-1)]-1}}= & W^{2^{[\log (n-1)]}}
\end{aligned}
$$

Because

$$
2^{[\lg (n-1)\rceil} \geq n-1 \Longrightarrow L^{\left(2^{[\lg (n-1)\rceil}\right)}=L^{(n-1)}
$$

The Faster Algorithm

Complexity of the Previous Algorithm
Slow-All-Pairs-Shortest-Paths(W)
(1) $n \leftarrow W$.rows
(2) $L^{(1)} \leftarrow W$
(3) $m \leftarrow 1$
(9) while $m<n-1$
(5) $L^{(2 m)} \leftarrow$ EXTEND-SHORTEST-PATHS $\left(L^{(m)}, L^{(m)}\right)$
(0) $m \leftarrow 2 m$
(1) return $L^{(m)}$

The Faster Algorithm

Complexity of the Previous Algorithm
Slow-All-Pairs-Shortest-Paths(W)
(1) $n \leftarrow W$.rows
(2) $L^{(1)} \leftarrow W$
(3) $m \leftarrow 1$
(9) while $m<n-1$
(6) $L^{(2 m)} \leftarrow$ EXTEND-SHORTEST-PATHS $\left(L^{(m)}, L^{(m)}\right)$
(0) $m \leftarrow 2 m$
(1) return $L^{(m)}$

Complexity
 If $n=|V|$ we have that $O\left(V^{3} \lg V\right)$.

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4) A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6. Exercises

- You can try them

The Shortest Path Structure

Intermediate Vertex

For a path $p=\left\langle v_{1}, v_{2}, \ldots, v_{l}\right\rangle$, an intermediate vertex is any vertex of p other than v_{1} or v_{l}.

The Shortest Path Structure

Intermediate Vertex

For a path $p=\left\langle v_{1}, v_{2}, \ldots, v_{l}\right\rangle$, an intermediate vertex is any vertex of p other than v_{1} or v_{l}.

Define

$d_{i j}^{(k)}=$ weight of a shortest path between i and j with all intermediate vertices are in the set $\{1,2, \ldots, k\}$.

The Recursive Idea

Simply look at the following cases cases

- Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices $\{1, \ldots, k-1\}$ is a shortest path from i to j with intermediate vertices $\{1, \ldots, k\}$.

The Recursive Idea

Simply look at the following cases cases

- Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices $\{1, \ldots, k-1\}$ is a shortest path from i to j with intermediate vertices $\{1, \ldots, k\}$.

$$
\Longrightarrow d_{i j}^{(k)}=d_{i j}^{(k-1)}
$$

The Recursive Idea

Simply look at the following cases cases

- Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices $\{1, \ldots, k-1\}$ is a shortest path from i to j with intermediate vertices $\{1, \ldots, k\}$.

$$
\Longrightarrow d_{i j}^{(k)}=d_{i j}^{(k-1)}
$$

- Case II if k is an intermediate vertice. Then, $i \stackrel{p_{1}}{\sim} k \underset{\sim}{p_{2}} j$ and we can make the following statements using Lemma 24.1:

The Recursive Idea

Simply look at the following cases cases

- Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices $\{1, \ldots, k-1\}$ is a shortest path from i to j with intermediate vertices $\{1, \ldots, k\}$.

$$
\Longrightarrow d_{i j}^{(k)}=d_{i j}^{(k-1)}
$$

- Case II if k is an intermediate vertice. Then, $i \stackrel{p_{1}}{\sim} k \underset{\sim}{p_{2}} j$ and we can make the following statements using Lemma 24.1:
- p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1, \ldots, k-1\}$.

The Recursive Idea

Simply look at the following cases cases

- Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices $\{1, \ldots, k-1\}$ is a shortest path from i to j with intermediate vertices $\{1, \ldots, k\}$.

$$
\Longrightarrow d_{i j}^{(k)}=d_{i j}^{(k-1)}
$$

- Case II if k is an intermediate vertice. Then, $i \stackrel{p_{1}}{\sim} k \underset{\sim}{p_{2}} j$ and we can make the following statements using Lemma 24.1:
- p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1, \ldots, k-1\}$.
- p_{2} is a shortest path from k to j with all intermediate vertices in the set $\{1, \ldots, k-1\}$.

The Recursive Idea

Simply look at the following cases cases

- Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices $\{1, \ldots, k-1\}$ is a shortest path from i to j with intermediate vertices $\{1, \ldots, k\}$.

$$
\Longrightarrow d_{i j}^{(k)}=d_{i j}^{(k-1)}
$$

- Case II if k is an intermediate vertice. Then, $i \underset{\sim}{p_{1}} k \stackrel{p_{2}}{\sim} j$ and we can make the following statements using Lemma 24.1:
- p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1, \ldots, k-1\}$.
- p_{2} is a shortest path from k to j with all intermediate vertices in the set $\{1, \ldots, k-1\}$.

$$
\Longrightarrow d_{i j}^{(k)}=d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

The Graphical Idea

Consider

All possible intermediate vertices in $\{1,2, \ldots, k\}$

p : All intermediate vertices in $\{1,2, \ldots, k\}$
Figure: The Recursive Idea

The Recursive Solution

The Recursion

$$
d_{i j}^{(k)}=\left\{\begin{array}{lr}
w_{i j} & \text { if } k=0 \\
\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1
\end{array}\right.
$$

The Recursive Solution

The Recursion

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0 \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1\end{cases}
$$

Final answer when $k=n$
We recursively calculate $D^{(n)}=\left(d_{i j}^{(n)}\right)$ or $d_{i j}^{(n)}=\delta(i, j)$ for all $i, j \in V$.

Thus, we have the following

Recursive Version

Recursive-Floyd-Warshall(W)
(1) $D^{(n)}$ the $n \times n$ matrix

Thus, we have the following

Recursive Version

Recursive-Floyd-Warshall(W)
(1) $D^{(n)}$ the $n \times n$ matrix
(2) for $i=1$ to n
(3) for $j=1$ to n
©

$$
D^{(n)}[i, j]=\text { Recursive-Part }(i, j, n, W)
$$

Thus, we have the following

Recursive Version

Recursive-Floyd-Warshall(W)
(1) $D^{(n)}$ the $n \times n$ matrix
(2) for $i=1$ to n
(3) for $j=1$ to n
© $D^{(n)}[i, j]=$ Recursive-Part (i, j, n, W)
(6) return $D^{(n)}$

Thus, we have the following
The Recursive-Part
Recursive-Part (i, j, k, W)
(1) if $k=0$

- return $W[i, j]$

Thus, we have the following

The Recursive-Part

Recursive-Part (i, j, k, W)
(1) if $k=0$
© return $W[i, j]$

- if $k \geq 1$

0

$$
t_{1}=\text { Recursive-Part }(i, j, k-1, W)
$$

-

-Recursive-Part($k, j, k-1, W)$

Thus, we have the following

The Recursive-Part

Recursive-Part (i, j, k, W)
(1) if $k=0$
© return $W[i, j]$
(0) if $k \geq 1$

0

$$
t_{1}=\text { Recursive-Part }(i, j, k-1, W)
$$

(5)

6 Recursive-Part $(k, j, k-1, W)$
(1) if $t_{1} \leq t_{2}$

- return t_{1}

Thus, we have the following

The Recursive-Part

Recursive-Part (i, j, k, W)
(1) if $k=0$
(c) return $W[i, j]$

- if $k \geq 1$

0
-
6

$$
t_{1}=\text { Recursive-Part }(i, j, k-1, W)
$$

$t_{2}=$ Recursive-Part $(i, k, k-1, W)+\ldots$
(1) if $t_{1} \leq t_{2}$

- return t_{1}
- else
(1) return t_{2}

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6 Exercises

- You can try them

Now

We want to use a storage to eliminate the recursion
For this, we are going to use two matrices

Now

We want to use a storage to eliminate the recursion

For this, we are going to use two matrices
(1) $D^{(k-1)}$ the previous matrix.

Now

We want to use a storage to eliminate the recursion

For this, we are going to use two matrices
(1) $D^{(k-1)}$ the previous matrix.
(2) $D^{(k)}$ the new matrix based in the previous matrix

Now

We want to use a storage to eliminate the recursion

For this, we are going to use two matrices
(1) $D^{(k-1)}$ the previous matrix.
(2) $D^{(k)}$ the new matrix based in the previous matrix

Something Notable

With $D^{(0)}=W$ or all weights in the edges that exist.

In addition, we want to rebuild the answer

For this, we have the predecessor matrix Π
Actually, we want to compute a sequence of matrices

$$
\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(n)}
$$

In addition, we want to rebuild the answer

For this, we have the predecessor matrix Π
Actually, we want to compute a sequence of matrices

$$
\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(n)}
$$

Where

$$
\Pi=\Pi^{(n)}
$$

What are the elements in $\Pi^{(k)}$

Each element in the matrix is as follow

$\pi_{i j}^{(k)}=$ the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2, \ldots, k\}$

What are the elements in $\Pi^{(k)}$

Each element in the matrix is as follow

$\pi_{i j}^{(k)}=$ the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2, \ldots, k\}$

Thus, we have that

$$
\pi_{i j}^{(0)}= \begin{cases}N U L L & \text { if } i=j \text { or } w_{i j}=\infty \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty\end{cases}
$$

Then

We have the following

For $k \geq 1$, if we take the path $i \rightsquigarrow k \rightsquigarrow j$ where $k \neq j$.

Then

We have the following

For $k \geq 1$, if we take the path $i \rightsquigarrow k \rightsquigarrow j$ where $k \neq j$.

$$
\text { Then, if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

For the predecessor of j, we chose k on a shortest path from k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$

Then

We have the following

For $k \geq 1$, if we take the path $i \rightsquigarrow k \rightsquigarrow j$ where $k \neq j$.

$$
\text { Then, if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

For the predecessor of j, we chose k on a shortest path from k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$

$$
\text { Otherwise, if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

We choose the same predecessor of j that we chose on a shortest path from i with all all intermediate vertices in the set $\{1,2, \ldots, k-1\}$.

Formally

We have then

$$
\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{cases}
$$

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction

The Solution

- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

6 Exercises

- You can try them

Final Iterative Version of Floyd-Warshall (Correction by Diego - Class Tec 2015)

Floyd-Warshall(W)

1. $n=W$.rows
2. $D^{(0)}=W$

Final Iterative Version of Floyd-Warshall (Correction by Diego - Class Tec 2015)

Floyd-Warshall(W)

1. $n=W$.rows
2. $D^{(0)}=W$
3. for $k=1$ to $n-1$
4. let $D^{(k)}=\left(d_{i j}^{(k)}\right)$ be a new
$n \times n$ matrix
5. let $\Pi^{(k)}$ be a new
predecessor
$n \times n$ matrix

Final Iterative Version of Floyd-Warshall (Correction by Diego - Class Tec 2015)

Floyd-Warshall(W)

1. $n=W$.rows
2. $D^{(0)}=W$
3. for $k=1$ to $n-1$
4. let $D^{(k)}=\left(d_{i j}^{(k)}\right)$ be a new $n \times n$ matrix
5. let $\Pi^{(k)}$ be a new predecessor $n \times n$ matrix
\triangleright Given each k, we update using $D^{(k-1)}$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } j=1 \text { to } n
$$

$$
\text { if } \begin{aligned}
d_{i j}^{(k-1)} & \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\
d_{i j}^{(k)} & =d_{i j}^{(k-1)} \\
\pi_{i j}^{(k)} & =\pi_{i j}^{(k-1)}
\end{aligned}
$$

else

$$
\begin{aligned}
& d_{i j}^{(k)}=d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\
& \pi_{i j}^{(k)}=\pi_{k j}^{(k-1)}
\end{aligned}
$$

Final Iterative Version of Floyd-Warshall (Correction by Diego - Class Tec 2015)

Floyd-Warshall(W)

1. $n=W$.rows
2. $D^{(0)}=W$
3. for $k=1$ to $n-1$
4. let $D^{(k)}=\left(d_{i j}^{(k)}\right)$ be a new $n \times n$ matrix
5. let $\Pi^{(k)}$ be a new predecessor $n \times n$ matrix
\triangleright Given each k, we update using $D^{(k-1)}$ 6. for $i=1$ to n

$$
\text { for } j=1 \text { to } n
$$

$$
\text { if } \begin{aligned}
d_{i j}^{(k-1)} & \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\
d_{i j}^{(k)} & =d_{i j}^{(k-1)} \\
\pi_{i j}^{(k)} & =\pi_{i j}^{(k-1)}
\end{aligned}
$$

else

$$
\begin{aligned}
d_{i j}^{(k)} & =d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\
\pi_{i j}^{(k)} & =\pi_{k j}^{(k-1)}
\end{aligned}
$$

14. return $D^{(n)}$ and $\Pi^{(n)}$

Explanation

Lines 1 and 2

Initialization of variables n and $D^{(0)}$

Explanation

Lines 1 and 2

Initialization of variables n and $D^{(0)}$

Line 3

In the loop, we solve the smaller problems first with $k=1$ to $k=n-1$

Explanation

Lines 1 and 2

Initialization of variables n and $D^{(0)}$

Line 3

In the loop, we solve the smaller problems first with $k=1$ to $k=n-1$

- Remember the largest number of edges in any shortest path

Explanation

Lines 1 and 2

Initialization of variables n and $D^{(0)}$

Line 3

In the loop, we solve the smaller problems first with $k=1$ to $k=n-1$

- Remember the largest number of edges in any shortest path

Line 4 and 5

Instantiation of the new matrices $D^{(k)}$ and $\prod^{(k)}$ to generate the shortest pats with at least k edges.

Explanation

Line 6 and 7

This is done to go through all the possible combinations of i 's and j 's

Explanation

Line 6 and 7

This is done to go through all the possible combinations of i 's and j 's

Line 8

Deciding if $d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)}$

Example

Graph

Example

$D^{(0)}$ and $\Pi^{(0)}$

$$
D^{(0)}=\left[\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right] \Pi^{(0)}=\left[\begin{array}{ccccc}
N I L & 1 & 1 & N I L & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & N I L & N I L \\
4 & N I L & 4 & N I L & N I L \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right]
$$

Example

$D^{(1)}$ and $\Pi^{(1)}$

$$
D^{(1)}=\left[\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right] \Pi^{(1)}=\left[\begin{array}{ccccc}
N I L & 1 & 1 & N I L & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & N I L & N I L \\
4 & 1 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right]
$$

Example

$D^{(2)}$ and $\Pi^{(2)}$

$$
D^{(2)}=\left[\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right] \Pi^{(2)}=\left[\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 1 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right]
$$

Example

$D^{(3)}$ and $\Pi^{(3)}$

$$
D^{(3)}=\left[\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right] \Pi^{(3)}=\left[\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 3 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right]
$$

Example

$D^{(4)}$ and $\Pi^{(4)}$

$$
D^{(4)}=\left[\begin{array}{ccccc}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right] \Pi^{(4)}=\left[\begin{array}{ccccc}
N I L & 1 & 4 & 2 & 1 \\
4 & N I L & 4 & 2 & 1 \\
4 & 3 & N I L & 2 & 1 \\
4 & 3 & 4 & N I L & 1 \\
4 & 3 & 4 & 5 & N I L
\end{array}\right]
$$

Example

$D^{(5)}$ and $\Pi^{(5)}$

$$
D^{(5)}=\left[\begin{array}{ccccc}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right] \Pi^{(5)}=\left[\begin{array}{ccccc}
N I L & 3 & 4 & 5 & 1 \\
4 & N I L & 4 & 2 & 1 \\
4 & 3 & N I L & 2 & 1 \\
4 & 3 & 4 & N I L & 1 \\
4 & 3 & 4 & 5 & N I L
\end{array}\right]
$$

Remarks

Something Notable

Because the comparison in line 8 takes $O(1)$

Remarks

Something Notable

Because the comparison in line 8 takes $O(1)$
Complexity of Floyd-Warshall is
Time Complexity $\Theta\left(V^{3}\right)$

Remarks

Something Notable

Because the comparison in line 8 takes $O(1)$

Complexity of Floyd-Warshall is
Time Complexity $\Theta\left(V^{3}\right)$

We do not have elaborate data structures as Binary Heap or Fibonacci Heap!!!
The hidden constant time is quite small:

Remarks

Something Notable

Because the comparison in line 8 takes $O(1)$

Complexity of Floyd-Warshall is

Time Complexity $\Theta\left(V^{3}\right)$

We do not have elaborate data structures as Binary Heap or Fibonacci Heap!!!
The hidden constant time is quite small:

- Making the Floyd-Warshall Algorithm practical even with moderate-sized graphs!!!

Outline

(1) Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster
(4) A different dynamic-programming algorithm
- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm

0 Exercises

- You can try them

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
- Could be a Bellman-Ford detector as before?

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
- Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
- Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

What we require

- A re-weighting function $\widehat{w}(u, v)$

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
- Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

What we require

- A re-weighting function $\widehat{w}(u, v)$
- A shortest path by w is a shortest path by \widehat{w}.

Johnson's Algorithm

Observations

- Used to find all pairs in a sparse graphs by using Dijkstra's algorithm.
- It uses a re-weighting function to obtain positive edges from negative edges to deal with them.
- It can deal with the negative weight cycles.

Therfore

- It uses something to deal with the negative weight cycles.
- Could be a Bellman-Ford detector as before?
- Maybe, we need to transform the weights in order to use them.

What we require

- A re-weighting function $\widehat{w}(u, v)$
- A shortest path by w is a shortest path by \widehat{w}.
- All edges are not negative using \widehat{w}.

Proving Properties of Re-Weigthing

Lemma 25.1

Given a weighted, directed graph $G=(D, V)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

Proving Properties of Re-Weigthing

Lemma 25.1

Given a weighted, directed graph $G=(D, V)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v)
$$

Proving Properties of Re-Weigthing

Lemma 25.1

Given a weighted, directed graph $G=(D, V)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v)
$$

Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be any path from vertex 0 to vertex k. Then:

Proving Properties of Re-Weigthing

Lemma 25.1

Given a weighted, directed graph $G=(D, V)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v)
$$

Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be any path from vertex 0 to vertex k. Then:
(1) p is a shortest path from 0 to k with weight function w if and only if it is a shortest path with weight function \widehat{w}. That is $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\widehat{w}(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$.

Proving Properties of Re-Weigthing

Lemma 25.1

Given a weighted, directed graph $G=(D, V)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v)
$$

Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be any path from vertex 0 to vertex k. Then:
(1) p is a shortest path from 0 to k with weight function w if and only if it is a shortest path with weight function \widehat{w}. That is $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\widehat{w}(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$.
(2) Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \widehat{w}.

Using This Lemma

Select h

Such that $w(u, v)+h(u)-h(v) \geq 0$.

Using This Lemma

Select h

Such that $w(u, v)+h(u)-h(v) \geq 0$.

Then, we build a new graph G^{\prime}

- It has the following elements

Using This Lemma

Select h

Such that $w(u, v)+h(u)-h(v) \geq 0$.

Then, we build a new graph G^{\prime}

- It has the following elements
- $V^{\prime}=V \cup\{s\}$, where \mathbf{s} is a new vertex.

Using This Lemma

Select h

Such that $w(u, v)+h(u)-h(v) \geq 0$.

Then, we build a new graph G^{\prime}

- It has the following elements
- $V^{\prime}=V \cup\{s\}$, where \mathbf{s} is a new vertex.
- $E^{\prime}=E \cup\{(s, v) \mid v \in V\}$.

Using This Lemma

Select h

Such that $w(u, v)+h(u)-h(v) \geq 0$.

Then, we build a new graph G^{\prime}

- It has the following elements
- $V^{\prime}=V \cup\{s\}$, where \mathbf{s} is a new vertex.
- $E^{\prime}=E \cup\{(s, v) \mid v \in V\}$.
- $w(s, v)=0$ for all $v \in V$, in addition to all the other weights.

Using This Lemma

Select h

Such that $w(u, v)+h(u)-h(v) \geq 0$.

Then, we build a new graph G^{\prime}

- It has the following elements
- $V^{\prime}=V \cup\{s\}$, where \mathbf{s} is a new vertex.
- $E^{\prime}=E \cup\{(s, v) \mid v \in V\}$.
- $w(s, v)=0$ for all $v \in V$, in addition to all the other weights.

Select h

Simply select $h(v)=\delta(s, v)$.

Example

Graph G^{\prime} with original weight function w with new source s and $h(v)=\delta(s, v)$ at each vertex

Proof of Claim

Claim

$$
\begin{equation*}
w(u, v)+h(u)-h(v) \geq 0 \tag{5}
\end{equation*}
$$

Proof of Claim

Claim

$$
\begin{equation*}
w(u, v)+h(u)-h(v) \geq 0 \tag{5}
\end{equation*}
$$

By Triangle Inequality

- $\delta(s, v) \leq \delta(s, u)+w(u, v)$
- Then by the way we selected h, we have:

Proof of Claim

Claim

$$
\begin{equation*}
w(u, v)+h(u)-h(v) \geq 0 \tag{5}
\end{equation*}
$$

By Triangle Inequality

- $\delta(s, v) \leq \delta(s, u)+w(u, v)$
- Then by the way we selected h, we have:

$$
\begin{equation*}
h(v) \leq h(u)+w(u, v) \tag{6}
\end{equation*}
$$

Proof of Claim

Claim

$$
\begin{equation*}
w(u, v)+h(u)-h(v) \geq 0 \tag{5}
\end{equation*}
$$

By Triangle Inequality

- $\delta(s, v) \leq \delta(s, u)+w(u, v)$
- Then by the way we selected h, we have:

$$
\begin{equation*}
h(v) \leq h(u)+w(u, v) \tag{6}
\end{equation*}
$$

Finally

$$
\begin{equation*}
w(u, v)+h(u)-h(v) \geq 0 \tag{7}
\end{equation*}
$$

Example

The new Graph G after re-weighting G^{\prime}

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G . E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G \cdot E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$
2. If Bellman-Ford $\left(G^{\prime}, w, s\right)==F A L S E$
3.

print "Graphs contains a Neg-Weight Cycle"

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G . E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$
2. If Bellman-Ford $\left(G^{\prime}, w, s\right)==F A L S E$
3. print "Graphs contains a Neg-Weight Cycle"
4. else for each vertex $v \in G^{\prime} . V$
5.

set $h(v)=v . d$ computed by Bellman-Ford

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G \cdot E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$
2. If Bellman-Ford $\left(G^{\prime}, w, s\right)==F A L S E$
3. print "Graphs contains a Neg-Weight Cycle"
4. else for each vertex $v \in G^{\prime}$. V
5.

set $h(v)=v . d$ computed by Bellman-Ford
6.
7.
for each edge $(u, v) \in G^{\prime} . E$

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v)
$$

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G \cdot E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$
2. If Bellman-Ford $\left(G^{\prime}, w, s\right)==F A L S E$
3. print "Graphs contains a Neg-Weight Cycle"
4. else for each vertex $v \in G^{\prime}$. V
5.

set $h(v)=v . d$ computed by Bellman-Ford
6.
7.
8. Let $D=\left(d_{u v}\right)$ be a new $n \times n$ matrix

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G . E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$
2. If Bellman-Ford $\left(G^{\prime}, w, s\right)==F A L S E$
3. print "Graphs contains a Neg-Weight Cycle"
4. else for each vertex $v \in G^{\prime}$. V
5.

set $h(v)=v . d$ computed by Bellman-Ford
6.
7.
8. Let $D=\left(d_{u v}\right)$ be a new $n \times n$ matrix
9. for each vertex $u \in G . V$
10.
run Dijkstra (G, \widehat{w}, u) to compute $\widehat{\delta}(u, v)$ for all $v \in G . V$

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G \cdot E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$
2. If Bellman-Ford $\left(G^{\prime}, w, s\right)==F A L S E$
3. print "Graphs contains a Neg-Weight Cycle"
4. else for each vertex $v \in G^{\prime}$. V
5.

set $h(v)=v . d$ computed by Bellman-Ford
7.
8. Let $D=\left(d_{u v}\right)$ be a new $n \times n$ matrix
9. for each vertex $u \in G$.V
10.
11.
12.
run Dijkstra (G, \widehat{w}, u) to compute $\widehat{\delta}(u, v)$ for all $v \in G . V$
for each vertex $v \in G . V$

$$
d_{u v}=\widehat{\delta}(u, v)+h(v)-h(u)
$$

Final Algorithm

Pseudo-Code

1. Compute G^{\prime}, where: $G^{\prime} . V=G \cdot E \cup\{(s, v) \mid v \in G . V\}$ and $w(s, v)=0$ for all $v \in G . V$
2. If Bellman-Ford $\left(G^{\prime}, w, s\right)==F A L S E$
3. print "Graphs contains a Neg-Weight Cycle"
4. else for each vertex $v \in G^{\prime}$. V
5.

set $h(v)=v . d$ computed by Bellman-Ford
7.

$$
\begin{equation*}
8 . \tag{9.}
\end{equation*}
$$

10.
11.
12.
13.

return D

Complexity

The Final Complexity

- Times:

Complexity

The Final Complexity

- Times:
- $\Theta(V+E)$ to compute G^{\prime}

Complexity

The Final Complexity

- Times:
- $\Theta(V+E)$ to compute G^{\prime}
- $O(V E)$ to run Bellman-Ford

Complexity

The Final Complexity

- Times:
- $\Theta(V+E)$ to compute G^{\prime}
- $O(V E)$ to run Bellman-Ford
- $\Theta(E)$ to compute \widehat{w}

Complexity

The Final Complexity

- Times:
- $\Theta(V+E)$ to compute G^{\prime}
- $O(V E)$ to run Bellman-Ford
- $\Theta(E)$ to compute \widehat{w}
- $O\left(V^{2} \lg V+V E\right)$ to run Dijkstra's algorithm $|V|$ time using Fibonacci Heaps

Complexity

The Final Complexity

- Times:
- $\Theta(V+E)$ to compute G^{\prime}
- $O(V E)$ to run Bellman-Ford
- $\Theta(E)$ to compute \widehat{w}
- $O\left(V^{2} \lg V+V E\right)$ to run Dijkstra's algorithm $|V|$ time using Fibonacci Heaps
- $O\left(V^{2}\right)$ to compute D matrix

Complexity

The Final Complexity

- Times:
- $\Theta(V+E)$ to compute G^{\prime}
- $O(V E)$ to run Bellman-Ford
- $\Theta(E)$ to compute \widehat{w}
- $O\left(V^{2} \lg V+V E\right)$ to run Dijkstra's algorithm $|V|$ time using Fibonacci Heaps
- $O\left(V^{2}\right)$ to compute D matrix
- Total : $O\left(V^{2} \lg V+V E\right)$

Complexity

The Final Complexity

- Times:
- $\Theta(V+E)$ to compute G^{\prime}
- $O(V E)$ to run Bellman-Ford
- $\Theta(E)$ to compute \widehat{w}
- $O\left(V^{2} \lg V+V E\right)$ to run Dijkstra's algorithm $|V|$ time using Fibonacci Heaps
- $O\left(V^{2}\right)$ to compute D matrix
- Total : $O\left(V^{2} \lg V+V E\right)$
- If $E=O\left(V^{2}\right) \Longrightarrow O\left(V^{3}\right)$

Outline

Introduction

- Definition of the Problem
- Assumptions
- Observations
(2) Structure of a Shortest Path
- Introduction
(3) The Solution
- The Recursive Solution
- The Iterative Version
- Extended-Shoertest-Paths
- Looking at the Algorithm as Matrix Multiplication
- Example
- We want something faster

4 A different dynamic-programming algorithm

- The Shortest Path Structure
- The Bottom-Up Solution
- Floyd-Warshall Algorithm
- Example
(5) Other Solutions
- The Johnson's Algorithm
(6) Exercises
- You can try them

Excercises

- 25.1-4
- 25.1-8
- 25.1-9
- 25.2-4
- 25.2-6
- 25.2-9
- 25.3-3

