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Problem

Definition
Given u and v, find the shortest path.
Now, what if you want ALL PAIRS!!!
Use as a source all the elements in V .
Clearly!!! you can fall back to the old algorithms!!!
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What can we use?

Use Dijkstra’s |V | times!!!
If all the weights are non-negative.
This has, using Fibonacci Heaps, O (V 2 log V + VE) complexity.
Which is equal O (V 3) in the case of E = O(V 2), but with a hidden large
constant c.

Use Bellman-Ford |V | times!!!
If negative weights are allowed.
Then, we have O (V 2E).
Which is equal O (V 4) in the case of E = O(V 2).
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This is not Good For Large Problems

Problems
Computer Network Systems.
Aircraft Networks (e.g. flying time, fares).
Railroad network tables of distances between all pairs of cites for a
road atlas.
Etc.
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For more on this...
Something Notable
As many things in the history of analysis of algorithms the all-pairs
shortest path has a long history.

We have more from
“Studies in the Economics of Transportation” by Beckmann, McGuire, and
Winsten (1956) where the notation that we use for the matrix multiplication alike
was first used.

In addition
G. Tarry, Le probleme des labyrinthes, Nouvelles Annales de Mathématiques (3) 14 (1895)
187–190 [English translation in: N.L. Biggs, E.K. Lloyd, R.J. Wilson, Graph Theory
1736–1936, Clarendon Press, Oxford, 1976, pp. 18–20] (For the theory behind
depth-first search techniques).
Chr. Wiener, Ueber eine Aufgabe aus der Geometria situs, Mathematische Annalen 6
(1873) 29–30, 1873.
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Assumptions Matrix Representation

Matrix Representation of a Graph
For this, we have that each weight in the matrix has the following values

wij =


0 if i = j
w(i, j) if i 6= j and (i, j) ∈ E
∞ if i 6= j and (i, j) /∈ E

Then, we have W =


w11 w22 ... w1k−1 w1n
. . .
. . .
. . .

wn1 wn2 ... wnn−1 wnn


Important

There are not negative weight cycles.

9 / 79



Assumptions Matrix Representation

Matrix Representation of a Graph
For this, we have that each weight in the matrix has the following values

wij =


0 if i = j
w(i, j) if i 6= j and (i, j) ∈ E
∞ if i 6= j and (i, j) /∈ E

Then, we have W =


w11 w22 ... w1k−1 w1n
. . .
. . .
. . .

wn1 wn2 ... wnn−1 wnn


Important

There are not negative weight cycles.

9 / 79



Outline
1 Introduction

Definition of the Problem
Assumptions
Observations

2 Structure of a Shortest Path
Introduction

3 The Solution
The Recursive Solution
The Iterative Version
Extended-Shoertest-Paths
Looking at the Algorithm as Matrix Multiplication
Example
We want something faster

4 A different dynamic-programming algorithm
The Shortest Path Structure
The Bottom-Up Solution
Floyd-Warshall Algorithm
Example

5 Other Solutions
The Johnson’s Algorithm

6 Exercises
You can try them

10 / 79



Observations

Ah!!!
The next algorithm is a dynamic programming algorithm for

I The all-pairs shortest paths problem on a directed graph G = (V ,E).

At the end of the algorithm will generate the following matrix

D =


d11 d22 ... d1k−1 d1n
. . .
. . .
. . .

dn1 dn2 ... dnn−1 dnn


Each entry dij = δ (i, j).
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Structure of a Shortest Path

Consider Lemma 24.1
Given a weighted, directed graph G = (V ,E) with p =< v1, v2, ..., vk >
be a SP from v1 to vk . Then,

pij =< vi , vi+1, ..., vj > is a Shortest Path (SP) from vi to vj , where
1 ≤ i ≤ j ≤ k.

We can do the following
Consider the shortest path p from vertex i and j, p contains at most
m edges.
Then, we can use the Corollary to make a decomposition

i p′
 k → j =⇒ δ(i, j) = δ(i, k) + wkj
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Structure of a Shortest Path

Idea of Using Matrix Multiplication
We define the following concept based in the decomposition
Corollary!!!
l(m)
ij =minimum weight of any path from i to j, it contains at most m
edges i.e.

l(m)
ij could be min

k

{
l(m−1)
ik + wkj

}
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Graphical Interpretation

Looking for the Shortest Path
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Recursive Solution

Thus, we have that for paths with ZERO edges

l(0)
ij =

{
0 if i = j
∞ if i 6= j

Recursion Our Great Friend
Consider the previous definition and decomposition. Thus

l(m)
ij = min

(
l(m−1)
ij , min

1≤k≤n

{
l(m−1)
ik + wkj

})
= min

1≤k≤n

{
l(m−1)
ik + wkj

}
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Recursive Solution

Why? A simple notation problem

l(m)
ij = l(m−1)

ij + 0 = l(m−1)
ij + wjj

18 / 79
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Transforming it to a iterative one
What is δ (i, j)?

If you do not have negative-weight cycles, and δ (i, j) <∞.
Then, the shortest path from vertex i to j has at most n − 1 edges

δ (i, j) = l(n−1)
ij = l(n)

ij = l(n+1)
ij = l(n+2)

ij = ...

Back to Matrix Multiplication
We have the matrix L(m) =

(
l(m)
ij

)
.

Then, we can compute first L(1) then compute L(2) all the way to
L(n−1) which contains the actual shortest paths.

What is L(1)?
First, we have that L(1) = W , since l(1)

ij = wij .
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Algorithm

Code
Extended-Shortest-Path(L,W )

1 n = L.rows
2 let L′ =

(
l ′ij
)
be a new n × n

3 for i = 1 to n
4 for j = 1 to n
5 l ′ij =∞
6 for k = 1 to n
7 l ′ij = min

(
l ′ij , lik + wkj

)
8 return L′
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Algorithm

Complexity
If |V | == n we have that Θ

(
V 3).
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Look Alike Matrix Multiplication Operations

Mapping That Can be Thought
L =⇒ A
W =⇒ B
L′ =⇒ C
min =⇒ +
+ =⇒ ·
∞ =⇒ 0
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Look Alike Matrix Multiplication Operations

Using the previous notation, we can rewrite our previous algorithm as
Square-Matrix-Multiply(A,B)

1 n = A.rows
2 let C be a new n × n matrix
3 for i = 1 to n
4 for j = 1 to n
5 cij = 0
6 for k = 1 to n
7 cij = cij + aik · bkj
8 return C

26 / 79



Complexity

Thus
The complexity of the Extended-Shortest-Path is equal to O

(
n3)

27 / 79



Using the Analogy

Returning to the all-pairs shortest-paths problem
It is possible to compute the shortest path by extending such a path edge
by edge.

Therefore
If we denote A · B as the “product” of the Extended-Shortest-Path

28 / 79
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Using the Analogy

We have that

L(1) = L(0) ·W = W
L(2) = L(1) ·W = W 2

...
L(n−1) = L(n−2) ·W = W n−1
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The Final Algorithm

We have that
Slow-All-Pairs-Shortest-Paths(W )

1 n ←W .rows
2 L(1) ←W
3 for m = 2 to n − 1
4 L(m) ←EXTEND-SHORTEST-PATHS

(
L(m−1),W

)
5 return L(n−1)

30 / 79



With Complexity

Complexity

O
(
V 4
)

(1)
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Example
We have the following

1

2

3

45

3 4

8

2

7

1

6

-4
-5

1 2 3 4 5
1 0 2 8 ∞ -4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 ∞ ∞
4 2 ∞ -5 0 ∞
5 ∞ ∞ ∞ 6 0

L(1) = L(0)W
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Example
We have the following

1

2

3

45

3 4

8

2

7

1

6

-4
-5

1 2 3 4 5
1 0 2 8 2 -4
2 3 0 -4 1 7
3 ∞ 4 0 5 11
4 2 -1 -5 0 -2
5 8 ∞ 1 6 0

L(2) = L(1)W
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Here, we use the analogy of matrix multiplication

D1W
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Thus, the update of an element lij

Example

l(2)
14 = min


(

0 3 8 ∞ −4
)

+


∞
1
∞
0
6




= min

(
∞ 4 ∞ ∞ 2

)
= 2
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Example
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8

2

7
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2 3 0 -4 1 -1
3 7 4 0 5 11
4 2 -1 -5 0 -2
5 8 5 1 6 0
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Recall the following

We are interested only
In matrix L(n−1)

In addition
Remember, we do not have negative weight cycles!!!

Therefore, given the equation

δ (i, j) = l(n−1)
ij = l(n)

ij = l(n)
ij = ... (2)
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Thus

It implies

L(m) = L(n−1) (3)

For all

m ≥ n − 1 (4)
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Something Faster

We want something faster!!! Observation!!!

L(1) = W
L(2) = W ·W = W 2

L(4) = W 2 ·W 2 = W 4

L(8) = W 4 ·W 4 = W 8

...
L(2dlog(n−1)e) = W d2dlog(n−1)e−1e ·W 2dlog(n−1)e−1 = W 2dlog(n−1)e

Because

2dlg(n−1)e ≥ n − 1 =⇒ L(2dlg(n−1)e) = L(n−1)
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The Faster Algorithm

Complexity of the Previous Algorithm
Slow-All-Pairs-Shortest-Paths(W )

1 n ←W .rows
2 L(1) ←W
3 m ← 1
4 while m < n − 1
5 L(2m) ←EXTEND-SHORTEST-PATHS

(
L(m),L(m)

)
6 m ← 2m
7 return L(m)

Complexity
If n = |V | we have that O

(
V 3 lg V

)
.
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The Shortest Path Structure

Intermediate Vertex
For a path p = 〈v1, v2, ..., vl〉, an intermediate vertex is any vertex of p
other than v1 or vl .

Define
d(k)

ij =weight of a shortest path between i and j with all intermediate
vertices are in the set {1, 2, ..., k}.
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The Recursive Idea
Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to
j with all intermediate vertices {1, ..., k − 1} is a shortest path from i
to j with intermediate vertices {1, ..., k}.

=⇒ d(k)
ij = d(k−1)

ij

Case II if k is an intermediate vertice. Then, i p1 k p2 j and we can
make the following statements using Lemma 24.1:

I p1 is a shortest path from i to k with all intermediate vertices in the
set {1, ..., k − 1}.

I p2 is a shortest path from k to j with all intermediate vertices in the
set {1, ..., k − 1}.

=⇒ d(k)
ij = d(k−1)

ik + d(k−1)
kj

46 / 79



The Recursive Idea
Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to
j with all intermediate vertices {1, ..., k − 1} is a shortest path from i
to j with intermediate vertices {1, ..., k}.

=⇒ d(k)
ij = d(k−1)

ij

Case II if k is an intermediate vertice. Then, i p1 k p2 j and we can
make the following statements using Lemma 24.1:

I p1 is a shortest path from i to k with all intermediate vertices in the
set {1, ..., k − 1}.

I p2 is a shortest path from k to j with all intermediate vertices in the
set {1, ..., k − 1}.

=⇒ d(k)
ij = d(k−1)

ik + d(k−1)
kj

46 / 79



The Recursive Idea
Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to
j with all intermediate vertices {1, ..., k − 1} is a shortest path from i
to j with intermediate vertices {1, ..., k}.

=⇒ d(k)
ij = d(k−1)

ij

Case II if k is an intermediate vertice. Then, i p1 k p2 j and we can
make the following statements using Lemma 24.1:

I p1 is a shortest path from i to k with all intermediate vertices in the
set {1, ..., k − 1}.

I p2 is a shortest path from k to j with all intermediate vertices in the
set {1, ..., k − 1}.

=⇒ d(k)
ij = d(k−1)

ik + d(k−1)
kj

46 / 79



The Recursive Idea
Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to
j with all intermediate vertices {1, ..., k − 1} is a shortest path from i
to j with intermediate vertices {1, ..., k}.

=⇒ d(k)
ij = d(k−1)

ij

Case II if k is an intermediate vertice. Then, i p1 k p2 j and we can
make the following statements using Lemma 24.1:

I p1 is a shortest path from i to k with all intermediate vertices in the
set {1, ..., k − 1}.

I p2 is a shortest path from k to j with all intermediate vertices in the
set {1, ..., k − 1}.

=⇒ d(k)
ij = d(k−1)

ik + d(k−1)
kj

46 / 79



The Recursive Idea
Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to
j with all intermediate vertices {1, ..., k − 1} is a shortest path from i
to j with intermediate vertices {1, ..., k}.

=⇒ d(k)
ij = d(k−1)

ij

Case II if k is an intermediate vertice. Then, i p1 k p2 j and we can
make the following statements using Lemma 24.1:

I p1 is a shortest path from i to k with all intermediate vertices in the
set {1, ..., k − 1}.

I p2 is a shortest path from k to j with all intermediate vertices in the
set {1, ..., k − 1}.

=⇒ d(k)
ij = d(k−1)

ik + d(k−1)
kj

46 / 79



The Recursive Idea
Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to
j with all intermediate vertices {1, ..., k − 1} is a shortest path from i
to j with intermediate vertices {1, ..., k}.

=⇒ d(k)
ij = d(k−1)

ij

Case II if k is an intermediate vertice. Then, i p1 k p2 j and we can
make the following statements using Lemma 24.1:

I p1 is a shortest path from i to k with all intermediate vertices in the
set {1, ..., k − 1}.

I p2 is a shortest path from k to j with all intermediate vertices in the
set {1, ..., k − 1}.

=⇒ d(k)
ij = d(k−1)

ik + d(k−1)
kj

46 / 79



The Graphical Idea

Consider
All possible intermediate vertices in {1, 2, ..., k}

Figure: The Recursive Idea
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The Recursive Solution

The Recursion

d(k)
ij =

wij if k = 0
min

(
d(k−1)

ij , d(k−1)
ik + d(k−1)

kj

)
if k ≥ 1

Final answer when k = n
We recursively calculate D(n) =

(
d(n)

ij

)
or d(n)

ij = δ (i, j) for all i, j ∈ V .
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Thus, we have the following

Recursive Version
Recursive-Floyd-Warshall(W )

1 D(n) the n × n matrix
2 for i = 1 to n
3 for j = 1 to n
4 D(n) [i, j] =Recursive-Part(i, j, n,W )
5 return D(n)
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Thus, we have the following

The Recursive-Part
Recursive-Part(i, j, k,W )

1 if k = 0
2 return W [i, j]
3 if k ≥ 1
4 t1 =Recursive-Part(i, j, k − 1,W )
5 t2 =Recursive-Part(i, k, k − 1,W )+...
6 Recursive-Part(k, j, k − 1,W )
7 if t1 ≤ t2
8 return t1
9 else
10 return t2
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Now

We want to use a storage to eliminate the recursion
For this, we are going to use two matrices

1 D(k−1) the previous matrix.
2 D(k) the new matrix based in the previous matrix

Something Notable
With D(0) = W or all weights in the edges that exist.
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In addition, we want to rebuild the answer

For this, we have the predecessor matrix Π
Actually, we want to compute a sequence of matrices

Π(0),Π(1), ...,Π(n)

Where

Π = Π(n)
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What are the elements in Π(k)

Each element in the matrix is as follow
π

(k)
ij = the predecessor of vertex j on a shortest path from vertex i with all

intermediate vertices in the set {1, 2, ..., k}

Thus, we have that

π
(0)
ij =

NULL if i = j or wij =∞
i if i 6= j and wij <∞
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Then

We have the following
For k ≥ 1, if we take the path i  k  j where k 6= j.

Then, if d(k−1)
ij > d(k−1)

ik + d(k−1)
kj

For the predecessor of j, we chose k on a shortest path from k with all
intermediate vertices in the set {1, 2, ..., k − 1}

Otherwise, if d(k−1)
ij ≤ d(k−1)

ik + d(k−1)
kj

We choose the same predecessor of j that we chose on a shortest path
from i with all all intermediate vertices in the set {1, 2, ..., k − 1}.
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Formally

We have then

π
(k)
ij =

π
(k−1)
ij if d(k−1)

ij ≤ d(k−1)
ik + d(k−1)

kj

π
(k−1)
kj if d(k−1)

ij > d(k−1)
ik + d(k−1)

kj
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Final Iterative Version of Floyd-Warshall (Correction by Diego - Class Tec 2015)

Floyd-Warshall(W )

1. n = W .rows

2. D(0) = W
3. for k = 1 to n − 1

4. let D(k) =
(

d(k)
ij

)
be a new
n × n matrix

5. let Π(k) be a new
predecessor

n × n matrix

. Given each k, we update using D(k−1)

6. for i = 1 to n
7. for j = 1 to n

8. if d(k−1)
ij ≤ d(k−1)

ik + d(k−1)
kj

9. d(k)
ij = d(k−1)

ij

10. π
(k)
ij = π

(k−1)
ij

11. else
12. d(k)

ij = d(k−1)
ik + d(k−1)

kj

13. π
(k)
ij = π

(k−1)
kj

14. return D(n) and Π(n)
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Explanation

Lines 1 and 2
Initialization of variables n and D(0)

Line 3
In the loop, we solve the smaller problems first with k = 1 to k = n − 1

Remember the largest number of edges in any shortest path

Line 4 and 5
Instantiation of the new matrices D(k) and

∏(k) to generate the shortest
pats with at least k edges.
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Explanation

Line 6 and 7
This is done to go through all the possible combinations of i’s and j’s

Line 8
Deciding if d(k−1)

ij ≤ d(k−1)
ik + d(k−1)

kj
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ik + d(k−1)

kj
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Example

Graph

1

2

3

45

3 4

8

2

7

1

6

-4
-5
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Example

D(0) and Π(0)

1

2

3

45

3 4

8

2

7

1

6

-4
-5

D(0) =


0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

 Π(0) =


NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL

4 NIL 4 NIL NIL
NIL NIL NIL 5 NIL
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Example

D(1) and Π(1)

1

2

3

45

3 4

8

2

7

1

6

-4
-5

D(1) =


0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

 Π(1) =


NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL

4 1 4 NIL 1
NIL NIL NIL 5 NIL
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Example

D(2) and Π(2)

1

2

3

45

3 4

8

2

7

1

6

-4
-5

D(2) =


0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

 Π(2) =


NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2

4 1 4 NIL 1
NIL NIL NIL 5 NIL
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Example

D(3) and Π(3)

1

2

3

45

3 4

8

2

7

1

6

-4
-5

D(3) =


0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0

 Π(3) =


NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2

4 3 4 NIL 1
NIL NIL NIL 5 NIL



65 / 79



Example

D(4) and Π(4)

1

2

3

45

3 4

8

2

7

1

6

-4
-5

D(4) =


0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

 Π(4) =


NIL 1 4 2 1

4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL
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Example

D(5) and Π(5)

1

2

3

45

3 4

8

2

7

1

6

-4
-5

D(5) =


0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

 Π(5) =


NIL 3 4 5 1

4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL
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Remarks

Something Notable
Because the comparison in line 8 takes O (1)

Complexity of Floyd-Warshall is
Time Complexity Θ

(
V 3)

We do not have elaborate data structures as Binary Heap or
Fibonacci Heap!!!
The hidden constant time is quite small:

Making the Floyd-Warshall Algorithm practical even with
moderate-sized graphs!!!
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Outline
1 Introduction

Definition of the Problem
Assumptions
Observations

2 Structure of a Shortest Path
Introduction

3 The Solution
The Recursive Solution
The Iterative Version
Extended-Shoertest-Paths
Looking at the Algorithm as Matrix Multiplication
Example
We want something faster

4 A different dynamic-programming algorithm
The Shortest Path Structure
The Bottom-Up Solution
Floyd-Warshall Algorithm
Example

5 Other Solutions
The Johnson’s Algorithm

6 Exercises
You can try them
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Johnson’s Algorithm
Observations

Used to find all pairs in a sparse graphs by using Dijkstra’s algorithm.
It uses a re-weighting function to obtain positive edges from negative
edges to deal with them.
It can deal with the negative weight cycles.

Therfore
It uses something to deal with the negative weight cycles.

I Could be a Bellman-Ford detector as before?

Maybe, we need to transform the weights in order to use them.

What we require
A re-weighting function ŵ (u, v)

I A shortest path by w is a shortest path by ŵ.
I All edges are not negative using ŵ.
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70 / 79



Johnson’s Algorithm
Observations

Used to find all pairs in a sparse graphs by using Dijkstra’s algorithm.
It uses a re-weighting function to obtain positive edges from negative
edges to deal with them.
It can deal with the negative weight cycles.

Therfore
It uses something to deal with the negative weight cycles.

I Could be a Bellman-Ford detector as before?

Maybe, we need to transform the weights in order to use them.

What we require
A re-weighting function ŵ (u, v)
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I All edges are not negative using ŵ.
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I All edges are not negative using ŵ.
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Proving Properties of Re-Weigthing

Lemma 25.1
Given a weighted, directed graph G = (D,V ) with weight function
w : E → R, let h : V → R be any function mapping vertices to real
numbers. For each edge (u, v) ∈ E , define

ŵ (u, v) = w (u, v) + h (u)− h (v)

Let p = 〈v0, v1, ..., vk〉 be any path from vertex 0 to vertex k. Then:
1 p is a shortest path from 0 to k with weight function w if and only if

it is a shortest path with weight function ŵ. That is w(p) = δ (v0, vk)
if and only if ŵ(p) = δ̂ (v0, vk).

2 Furthermore, G has a negative-weight cycle using weight function w
if and only if G has a negative-weight cycle using weight function ŵ.
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ŵ (u, v) = w (u, v) + h (u)− h (v)

Let p = 〈v0, v1, ..., vk〉 be any path from vertex 0 to vertex k. Then:
1 p is a shortest path from 0 to k with weight function w if and only if

it is a shortest path with weight function ŵ. That is w(p) = δ (v0, vk)
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Using This Lemma

Select h
Such that w (u, v) + h (u)− h (v) ≥ 0.

Then, we build a new graph G ′

It has the following elements
I V ′ = V ∪ {s}, where s is a new vertex.
I E ′ = E ∪ {(s, v) |v ∈ V }.
I w(s, v) = 0 for all v ∈ V , in addition to all the other weights.

Select h
Simply select h(v) = δ(s, v).
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Example

Graph G ′ with original weight function w with new source s and
h(v) = δ(s, v) at each vertex

0

0 0

0

0

0

0

-1

1

2

3

4

5

-4

7

3
4

8

2

1

6

s -5

-5

-4 0
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Proof of Claim

Claim

w (u, v) + h (u)− h (v) ≥ 0 (5)

By Triangle Inequality
δ (s, v) ≤ δ(s, u) + w(u, v)
Then by the way we selected h, we have:

h(v) ≤ h(u) + w (u, v) (6)

Finally

w (u, v) + h (u)− h (v) ≥ 0 (7)
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Example

The new Graph G after re-weighting G ′

0

5 1

0

4

0

0

-1

1

2

3

4

5

0

10

4
0

13

2

0

2

s 0

-5

-4 0
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Final Algorithm

Pseudo-Code
1. Compute G′, where: G′.V = G.E ∪ {(s, v) |v ∈ G.V} andw (s, v) = 0 for all

v ∈ G.V
2. If Bellman-Ford(G′,w, s) == FALSE
3. print “Graphs contains a Neg-Weight Cycle”
4. else for each vertex v ∈ G′.V
5. set h (v) = v.d computed by Bellman-Ford
6. for each edge (u, v) ∈ G′.E
7. ŵ (u, v) = w (u, v) + h (u)− h (v)
8. Let D = (duv) be a new n × n matrix
9. for each vertex u ∈ G.V
10. run Dijkstra(G, ŵ, u) to compute δ̂ (u, v) for all v ∈ G.V
11. for each vertex v ∈ G.V
12. duv = δ̂ (u, v) + h (v)− h (u)
13. return D

76 / 79



Final Algorithm

Pseudo-Code
1. Compute G′, where: G′.V = G.E ∪ {(s, v) |v ∈ G.V} andw (s, v) = 0 for all

v ∈ G.V
2. If Bellman-Ford(G′,w, s) == FALSE
3. print “Graphs contains a Neg-Weight Cycle”
4. else for each vertex v ∈ G′.V
5. set h (v) = v.d computed by Bellman-Ford
6. for each edge (u, v) ∈ G′.E
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10. run Dijkstra(G, ŵ, u) to compute δ̂ (u, v) for all v ∈ G.V
11. for each vertex v ∈ G.V
12. duv = δ̂ (u, v) + h (v)− h (u)
13. return D

76 / 79



Final Algorithm

Pseudo-Code
1. Compute G′, where: G′.V = G.E ∪ {(s, v) |v ∈ G.V} andw (s, v) = 0 for all

v ∈ G.V
2. If Bellman-Ford(G′,w, s) == FALSE
3. print “Graphs contains a Neg-Weight Cycle”
4. else for each vertex v ∈ G′.V
5. set h (v) = v.d computed by Bellman-Ford
6. for each edge (u, v) ∈ G′.E
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10. run Dijkstra(G, ŵ, u) to compute δ̂ (u, v) for all v ∈ G.V
11. for each vertex v ∈ G.V
12. duv = δ̂ (u, v) + h (v)− h (u)
13. return D

76 / 79



Final Algorithm

Pseudo-Code
1. Compute G′, where: G′.V = G.E ∪ {(s, v) |v ∈ G.V} andw (s, v) = 0 for all

v ∈ G.V
2. If Bellman-Ford(G′,w, s) == FALSE
3. print “Graphs contains a Neg-Weight Cycle”
4. else for each vertex v ∈ G′.V
5. set h (v) = v.d computed by Bellman-Ford
6. for each edge (u, v) ∈ G′.E
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Complexity

The Final Complexity
Times:

I Θ(V + E) to compute G′
I O(VE) to run Bellman-Ford
I Θ(E) to compute ŵ
I O (V 2 lg V + VE) to run Dijkstra’s algorithm |V | time using

Fibonacci Heaps
I O (V 2) to compute D matrix

Total : O(V 2 lg V + VE)
If E = O

(
V 2) =⇒ O

(
V 3)
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