Analysis of Algorithms Single Source Shortest Path

Andres Mendez-Vazquez

November 21, 2018

<ロ > < 回 > < 目 > < 目 > < 目 > こ > < 目 > 目 の へ () 1/108

- Introduction
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Problem description

• Given a single source vertex in a weighted, directed graph.

 We want to compute a shortest path for each possible destination (Similar to BFS).

Problem description

- Given a single source vertex in a weighted, directed graph.
- We want to compute a shortest path for each possible destination (Similar to BFS).

4/108

イロト イヨト イヨト イヨト

Problem description

- Given a single source vertex in a weighted, directed graph.
- We want to compute a shortest path for each possible destination (Similar to BFS).

Thus

The algorithm will compute a shortest path tree (again, similar to BFS).

Single destination shortest paths problem

Find a shortest path to a given destination vertex t from each vertex.

 By reversing the direction of each edge in the graph, we can reduce this problem to a single source problem.

Single destination shortest paths problem

Find a shortest path to a given destination vertex t from each vertex.

• By reversing the direction of each edge in the graph, we can reduce this problem to a single source problem.

< ロ > < 同 > < 回 > < 回 >

Single pair shortest path problem

Find a shortest path from u to v for given vertices u and v.

 If we solve the single source problem with source vertex u, we also solve this problem.

Single pair shortest path problem

Find a shortest path from \boldsymbol{u} to \boldsymbol{v} for given vertices \boldsymbol{u} and $\boldsymbol{v}.$

• If we solve the single source problem with source vertex u, we also solve this problem.

All pairs shortest paths problem

Find a shortest path from u to v for every pair of vertices u and v.

7/108

イロト イヨト イヨト イヨト

Outline

- Introducti
- Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a **Shortest Path** from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a **Shortest Path** from v_i to v_j , where 1 < i < j < k.

- So, we have the optimal substructure property.
- Bellman-Ford's algorithm uses dynamic programming.
- Dijkstra's algorithm uses the greedy approach.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 今 Q (0)
9 / 108

Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a **Shortest Path** from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a **Shortest Path** from v_i to v_j , where $1 \le i \le j \le k$.

• So, we have the optimal substructure property.

- Bellman-Ford's algorithm uses dynamic programming.
- Dijkstra's algorithm uses the greedy approach.

Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a **Shortest Path** from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a **Shortest Path** from v_i to v_j , where $1 \le i \le j \le k$.

We have then

• So, we have the optimal substructure property.

Bellman-Ford's algorithm uses dynamic programming

Dijkstra's algorithm uses the greedy approach.

In addition, we have that

Let $\delta(u,v)=weight$ of Shortest Path from u to v.

cinvestav

9/108

・ロト ・四ト ・ヨト ・ヨト

Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a **Shortest Path** from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a **Shortest Path** from v_i to v_j , where $1 \le i \le j \le k$.

We have then

- So, we have the optimal substructure property.
- Bellman-Ford's algorithm uses dynamic programming.
 - Dijkstra's algorithm uses the greedy approach.

In addition, we have that Let $\delta(u,v) = weight$ of Shortest Path from u to v.

イロン イロン イヨン イヨン

9/108

Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a **Shortest Path** from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a **Shortest Path** from v_i to v_j , where $1 \le i \le j \le k$.

We have then

- So, we have the optimal substructure property.
- Bellman-Ford's algorithm uses dynamic programming.
- Dijkstra's algorithm uses the greedy approach.

In addition, we have that Let $\delta(u,v)=weight$ of Shortest Path from u to v.

9/108

Lemma 24.1

Given a weighted, directed graph G = (V, E) with $p = \langle v_1, v_2, ..., v_k \rangle$ be a **Shortest Path** from v_1 to v_k . Then,

• $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a **Shortest Path** from v_i to v_j , where $1 \le i \le j \le k$.

We have then

- So, we have the optimal substructure property.
- Bellman-Ford's algorithm uses dynamic programming.
- Dijkstra's algorithm uses the greedy approach.

In addition, we have that

Let $\delta(u, v) = weight$ of **Shortest Path** from u to v.

cinvestav

9/108

Corollary

Let p be a Shortest Path from s to v, where $p = s \stackrel{p_1}{\leadsto} u \rightarrow v = p_1 \cup \{(u, v)\}.$ Then $\delta(s, v) = \delta(s, u) + w(u, v).$

The Lower Bound Between Nodes

Lemma 24.10

Let $s \in V$. For all edges $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Now

Then

We have the basic concepts

Still

We need to define an important one.

The Predecessor Graph

This will facilitate the proof of several concepts

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Now

Then

We have the basic concepts

Still

We need to define an important one.

The Predecessor Graph

This will facilitate the proof of several concepts

Now

Then

We have the basic concepts

Still

We need to define an important one.

The Predecessor Graph

This will facilitate the proof of several concepts

12/108

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

- Introduct
- Introduction and Similar Problems

General Results

• Optimal Substructure Properties

Predecessor Graph

- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Representing shortest paths

For this we use the predecessor subgraph

Representing shortest paths

For this we use the **predecessor subgraph**

• It is defined slightly differently from that on Breadth-First-Search

Representing shortest paths

For this we use the **predecessor subgraph**

• It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ where

Properties

 The predecessor subgraph G_π forms a depth first forest composed of several depth first trees.

• The edges in E_{π} are called tree edges.

Representing shortest paths

For this we use the predecessor subgraph

• It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ where

•
$$V_{\pi} = \{v \in V | v.\pi \neq NIL\} \cup \{s\}$$

Properties

 The predecessor subgraph G_π forms a depth first forest composed of several depth first trees.

• The edges in E_{π} are called tree edges.

Representing shortest paths

For this we use the predecessor subgraph

• It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ where

•
$$V_{\pi} = \{v \in V | v.\pi \neq NIL\} \cup \{s\}$$

•
$$E_{\pi} = \{ (v.\pi, v) | v \in V_{\pi} - \{s\} \}$$

Properties

The predecessor subgraph G_{π} forms a depth first forest composed of several depth first trees.

• The edges in E_{π} are called tree edges.

Representing shortest paths

For this we use the predecessor subgraph

• It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ where

•
$$V_{\pi} = \{v \in V | v.\pi \neq NIL\} \cup \{s\}$$

•
$$E_{\pi} = \{ (v.\pi, v) | v \in V_{\pi} - \{s\} \}$$

Properties

• The predecessor subgraph G_{π} forms a depth first forest composed of several depth first trees.

14/108

Representing shortest paths

For this we use the predecessor subgraph

• It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ where

•
$$V_{\pi} = \{v \in V | v.\pi \neq NIL\} \cup \{s\}$$

•
$$E_{\pi} = \{ (v.\pi, v) | v \in V_{\pi} - \{s\} \}$$

Properties

- The predecessor subgraph G_{π} forms a depth first forest composed of several depth first trees.
- The edges in E_{π} are called tree edges.

Outline

- Introducti
- Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph

The Relaxation Concept

- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

We are going to use certain functions for all the algorithms • Initialize

Here, the basic variables of the nodes in a graph will be initialized

 $v_{\cdot}v.d=$ the distance from the source s_{\cdot}

 $* \, v.\pi =$ the predecessor node during the search of the shortest path

We are going to use certain functions for all the algorithms

Initialize

- ► Here, the basic variables of the nodes in a graph will be initialized
 - v.d = the distance from the source s.
 - $\star~v.\pi=$ the predecessor node during the search of the shortest path

Changing the v.d

This will be done in the Relaxation algorithm.

We are going to use certain functions for all the algorithms

Initialize

- Here, the basic variables of the nodes in a graph will be initialized
 - ★ v.d = the distance from the source s.
 - $v.\pi =$ the predecessor node during the search of the shortest path

changing the *v.d* This will be done in the Relaxation algorithm.

We are going to use certain functions for all the algorithms

Initialize

- Here, the basic variables of the nodes in a graph will be initialized
 - * v.d = the distance from the source s.
 - $\star~v.\pi=$ the predecessor node during the search of the shortest path.

This will be done in the Relavation alm

The Relaxation Concept

We are going to use certain functions for all the algorithms

Initialize

- Here, the basic variables of the nodes in a graph will be initialized
 - * v.d = the distance from the source s.
 - * $v.\pi =$ the predecessor node during the search of the shortest path.

Changing the v.d

This will be done in the Relaxation algorithm.

16/108

イロト イヨト イヨト

Initialize and Relaxation

The Algorithms keep track of v.d, $v.\pi$. It is initialized as follows Initialize(G, s)

- for each $v \in V[G]$
- $2 v.d = \infty$
- $0 v.\pi = NIL$
- $\bullet \ s.d = 0$

These values are changed when an edge (u,v) is relaxed.

 $\mathsf{Relax}(u, v, w)$

- $\bullet \quad \text{if } v.d > u.d + w(u,v)$
- $\bigcirc \qquad v.d = u.d + w(u,v)$

$$v.\pi = u$$

Initialize and Relaxation

The Algorithms keep track of v.d, $v.\pi$. It is initialized as follows

Initialize(G, s)

- for each $v \in V[G]$
- 2 $v.d = \infty$
- $0 v.\pi = NIL$
- $\bullet \ s.d = 0$

These values are changed when an edge (u, v) is relaxed.

 $\mathsf{Relax}(u,v,w)$

3

• if
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u,v)$$

 $v.\pi = u$

17/108

イロト 不得 とくき とくきとう

How are these functions used?

These functions are used

- **1** Build a predecesor graph G_{π} .
 - Integrate the Shortest Path into that predecessor graph.
 - Using the field d.

How are these functions used?

These functions are used

- **1** Build a predecesor graph G_{π} .
- ② Integrate the Shortest Path into that predecessor graph.
 - Using the field d.

Outline

- Introducti
- Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept

• The Bellman-Ford Algorithm

Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.

 $\mathsf{Bellman}\operatorname{\mathsf{-Ford}}(G,s,w)$

- Initialize(G, s)
- for each (u,v) to E[G]
- In for each (u,v) to $E\left[G
 ight]$
- $\qquad \qquad \text{if } v.d > u.d + w \left(u, v \right) \\$
- return false
- Interview of the second sec

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.

 $\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,s,w)$

- Initialize(G, s)
- 2 for i = 1 to |V[G]| 1
- for each (u, v) to E[G]Relax(u, v, w)
- I for each (u, v) to E[G]
 - if v.d > u.d + w(u,v)
 -) return false

Interview of the second sec

Time Complexity

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.

 $\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,s,w)$

🕽 return tru

Time Complexity *O* (V*E*)

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.

Bellman-Ford(G, s, w)

- Initialize(G, s)
- 2 for i = 1 to |V[G]| 1
- Relax(u, v, w)
- $\ \, {\rm Som} \ \, {\rm for \ \, each} \ \, (u,v) \ \, {\rm to} \ \, E\left[G\right]$
- return false

Interpretation of the second secon

Time Complexity

 $O\left(VE\right)$

Outline

- Introducti
- Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm

Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Some properties

• v.d, if not ∞ , is the length of some path from s to v.

Some properties

- v.d, if not ∞ , is the length of some path from s to v.
- $\bullet \ v.d$ either stays the same or decreases with time.

• If $v.d=\delta(s,v)$ at any time, this holds thereafter

Some properties

- v.d, if not ∞ , is the length of some path from s to v.
- v.d either stays the same or decreases with time.

Therefore

• If $v.d = \delta(s, v)$ at any time, this holds thereafter.

• Note that $v.d \geq \delta(s,v)$ always (Upper-Bound Property)

- After i iterations of relaxing an all (u, v), if the shortest path to v has i edges, then v.d = δ(s, v).
- If there is no path from s to v, then $v.d=\delta(s,v)=\infty$ is an invariant.

cinvestav

Some properties

- v.d, if not ∞ , is the length of some path from s to v.
- v.d either stays the same or decreases with time.

Therefore

• If $v.d = \delta(s, v)$ at any time, this holds thereafter.

Something nice

• Note that $v.d \ge \delta(s, v)$ always (Upper-Bound Property).

Some properties

- v.d, if not ∞ , is the length of some path from s to v.
- v.d either stays the same or decreases with time.

Therefore

• If $v.d = \delta(s, v)$ at any time, this holds thereafter.

Something nice

- Note that $v.d \ge \delta(s, v)$ always (Upper-Bound Property).
- After *i* iterations of relaxing an all (u, v), if the shortest path to v has *i* edges, then $v.d = \delta(s, v)$.

イロト イヨト イヨト

Some properties

- v.d, if not ∞ , is the length of some path from s to v.
- v.d either stays the same or decreases with time.

Therefore

• If $v.d = \delta(s, v)$ at any time, this holds thereafter.

Something nice

- Note that $v.d \ge \delta(s, v)$ always (Upper-Bound Property).
- After i iterations of relaxing an all (u,v), if the shortest path to v has i edges, then $v.d = \delta(s,v).$
- If there is no path from s to v, then $v.d = \delta(s, v) = \infty$ is an invariant.

Lemma 24.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$(s,v) \leq \delta(s,u) + w(u,v)$

Lemma 24.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$\delta(s,v) \le \delta(s,u) + w(u,v) \tag{1}$$

() Suppose that p is a shortest path from source s to vertex v.

- \blacksquare Then, p has no more weight than any other path from s to vertex v.
- Not only p has no more weiht that a particular shortest path that goes from s to u and then takes edge (u, v).

Lemma 24.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$\delta(s, v) \le \delta(s, u) + w(u, v) \tag{1}$$

Proof

() Suppose that p is a shortest path from source s to vertex v.

Lemma 24.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$\delta(s, v) \le \delta(s, u) + w(u, v) \tag{1}$$

Proof

- **(**) Suppose that p is a shortest path from source s to vertex v.
- **②** Then, p has no more weight than any other path from s to vertex v.

Lemma 24.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$\delta(s,v) \le \delta(s,u) + w(u,v) \tag{1}$$

Proof

- **(**) Suppose that p is a shortest path from source s to vertex v.
- **②** Then, p has no more weight than any other path from s to vertex v.
- Not only p has no more weiht tha a particular shortest path that goes from s to u and then takes edge (u, v).

Lemma 24.11 (Upper Bound Property)

- Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$. Consider any algorithm in which v.d, and $v.\pi$ are first initialized by calling Initialize(G, s) (s is the source), and are only changed by calling Relax.
- I hen, we have that $v.d \ge \delta(s, v) \,\,\forall v \in V \,[G]$, and this invariant is maintained over any sequence of relaxation steps on the edges of G.
- Moreover, once $v.d = \delta(s,v)$, it never changes.

24/108

< ロト < 同ト < ヨト < ヨ)

Lemma 24.11 (Upper Bound Property)

- Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$. Consider any algorithm in which v.d, and $v.\pi$ are first initialized by calling Initialize(G, s) (s is the source), and are only changed by calling Relax.
- Then, we have that $v.d \ge \delta(s, v) \ \forall v \in V[G]$, and this invariant is maintained over any sequence of relaxation steps on the edges of G.

ullet Moreover, once $v.d=\delta(s,v)$, it never changes.

24/108

< ロ > < 同 > < 回 > < 回 >

Lemma 24.11 (Upper Bound Property)

- Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$. Consider any algorithm in which v.d, and $v.\pi$ are first initialized by calling Initialize(G, s) (s is the source), and are only changed by calling Relax.
- Then, we have that $v.d \ge \delta(s, v) \ \forall v \in V[G]$, and this invariant is maintained over any sequence of relaxation steps on the edges of G.
- Moreover, once $v.d = \delta(s, v)$, it never changes.

24/108

イロト イヨト イヨト

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

• $v.d \ge \delta(s, v)$ for all $v \in V$

25 / 108

イロト イヨト イヨト イヨト

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

イロト 不得 トイヨト イヨト

25 / 108

• $v.d \ge \delta(s, v)$ for all $v \in V$

For the Basis

 $v.d \geq \delta(s, v)$ is true after initialization, since:

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

• $v.d \ge \delta(s, v)$ for all $v \in V$

For the Basis

 $v.d \geq \delta(s, v)$ is true after initialization, since:

• $v.d = \infty$ making $v.d \ge \delta(s, v)$ for all $v \in V - \{s\}$.

For the inductive step, consider the relaxation of an edge (u, v)By the inductive hypothesis, we have that $x.d \geq \delta(s, x)$ for all $x \in V$ prior to relaxation.

anvestav

25 / 108

< ロ > < 同 > < 回 > < 回 >

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

• $v.d \ge \delta(s, v)$ for all $v \in V$

For the Basis

 $v.d \geq \delta\left(s,v\right)$ is true after initialization, since:

- $v.d = \infty$ making $v.d \ge \delta(s, v)$ for all $v \in V \{s\}$.
- For $s, s.d = 0 \ge \delta(s, s)$.

For the inductive step, consider the relaxation of an edge (u, v)By the inductive hypothesis, we have that $x.d \ge \delta(s, x)$ for all $x \in V$ prior to relaxation.

> <ロト < 団ト < 臣ト < 臣ト ミ の < @ 25 / 108

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

• $v.d \ge \delta(s, v)$ for all $v \in V$

For the Basis

 $v.d \geq \delta\left(s,v\right)$ is true after initialization, since:

- $v.d = \infty$ making $v.d \ge \delta(s, v)$ for all $v \in V \{s\}$.
- For $s, s.d = 0 \ge \delta(s, s)$.

For the inductive step, consider the relaxation of an edge (u, v)

By the inductive hypothesis, we have that $x.d \ge \delta(s, x)$ for all $x \in V$ prior to relaxation.

cinvesta

25 / 108

イロト 不得 トイヨト イヨト

If you call Relax(u, v, w), it may change v.d

v.d = u.d + w(u, v)

 $\geq \delta(s,u) + w(u,v) \text{ by inductive hypothesis} \\ \geq \delta(s,v) \text{ by the triangle inequality}$

Thus, the invariant is maintained.

<ロト < 部ト < 国ト < 国ト = うへで 26/108

If you call Relax(u,v,w), it may change v.d

$$v.d = u.d + w(u, v)$$

 $\geq \delta(s, u) + w(u, v)$ by inductive hypothesis

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Thus

If you call Relax(u, v, w), it may change v.d

$$\begin{split} v.d &= u.d + w(u,v) \\ &\geq \delta(s,u) + w(u,v) \text{ by inductive hypothesis} \\ &\geq \delta\left(s,v\right) \text{ by the triangle inequality} \end{split}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Thus

If you call $\overline{Relax(u,v,w)}$, it may change v.d

$$\begin{split} v.d &= u.d + w(u,v) \\ &\geq \delta(s,u) + w(u,v) \text{ by inductive hypothesis} \\ &\geq \delta\left(s,v\right) \text{ by the triangle inequality} \end{split}$$

Thus, the invariant is maintained.

∃ ∽ Q ⊂ 26 / 108

ヘロト ヘロト ヘヨト ヘヨト

Proof of lemma 24.11 cont...

• To proof that the value v.d never changes once $v.d = \delta(s, v)$:

▶ Note the following: Once $v.d = \delta(s, v)$, it cannot decrease because $v.d \ge \delta(s, v)$ and Relaxation never increases d.

Proof of lemma 24.11 cont...

- To proof that the value v.d never changes once $v.d = \delta(s, v)$:
 - ▶ Note the following: Once $v.d = \delta(s, v)$, it cannot decrease because $v.d \ge \delta(s, v)$ and Relaxation never increases d.

イロト イヨト イヨト イヨト
Corollary 24.12 (No-path property)

If there is no path from s to v, then $v.d=\delta(s,v)=\infty$ is an invariant.

Proof

By the upper-bound property, we always have $\infty = \delta\left(s,v
ight) \leq v.d.$ Then, $v.d = \infty.$

28/108

< ロ > < 回 > < 回 > < 回 > < 回 >

Corollary 24.12 (No-path property)

If there is no path from s to v, then $v.d = \delta(s, v) = \infty$ is an invariant.

Proof

By the upper-bound property, we always have $\infty=\delta\left(s,v\right)\leq v.d.$ Then, $v.d=\infty.$

Lemma 24.13

Let G=(V,E) be a weighted, directed graph with weight function $w:E\to\mathbb{R}.$ Then, immediately after relaxing edge (u,v) by calling Relax(u,v,w) we have $v.d\leq u.d+w(u,v).$

First

If, just prior to relaxing edge (u, v),

• Case 1: if we have that v.d > u.d + w(u, v)

• Then, $v.d = u.d + w\left(u,v
ight)$ after relaxation.

First

If, just prior to relaxing edge (u, v),

• Case 1: if we have that v.d > u.d + w(u, v)

• Then, $v.d = u.d + w\left(u,v
ight)$ after relaxation.

Case z

If $v.d \leq u.d + w\left(u,v
ight)$ just before relaxation, then:

neither u.d nor v.d changes

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that v.d > u.d + w(u, v)
 - Then, v.d = u.d + w(u, v) after relaxation.

If $v.d \leq u.d + w\left(u,v
ight)$ just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards

$v.d \le u.d + w\left(u, v\right)$

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that v.d > u.d + w(u, v)
 - ▶ Then, v.d = u.d + w(u, v) after relaxation.

Now, Case 2

If $v.d \leq u.d + w(u, v)$ just before relaxation, then:

$v.d \le u.d + w\left(u, v\right)$

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that v.d > u.d + w(u, v)
 - Then, v.d = u.d + w(u, v) after relaxation.

Now, Case 2

If $v.d \leq u.d + w(u, v)$ just before relaxation, then:

neither u.d nor v.d changes

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that v.d > u.d + w(u, v)
 - Then, v.d = u.d + w(u, v) after relaxation.

Now, Case 2

If $v.d \leq u.d + w(u, v)$ just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards

$$v.d \le u.d + w\left(u, v\right)$$

Lemma 24.14 (Convergence property)

• Let p be a shortest path from s to v, where $p = s \xrightarrow{p_1} u \to v = p_1 \cup \{(u, v)\}.$

 $y.d = \delta(s, v)$ holds at all times after the call.

Lemma 24.14 (Convergence property)

- Let p be a shortest path from s to v, where $p = s \xrightarrow{p_1} u \to v = p_1 \cup \{(u, v)\}.$
- If $u.d = \delta(s, u)$ holds at any time prior to calling Relax(u, v, w), then $v.d = \delta(s, v)$ holds at all times after the call.

By the upper-bound property, if $u.d = \delta(s, u)$ at some moment before relaxing edge (u, v), holding afterwards.

Lemma 24.14 (Convergence property)

- Let p be a shortest path from s to v, where $p = s \xrightarrow{p_1} u \rightarrow v = p_1 \cup \{(u, v)\}.$
- If $u.d = \delta(s, u)$ holds at any time prior to calling Relax(u, v, w), then $v.d = \delta(s, v)$ holds at all times after the call.

Proof:

By the upper-bound property, if $u.d = \delta(s, u)$ at some moment before relaxing edge (u, v), holding afterwards.

イロト 不得 トイヨト イヨト 二日

Thus , after relaxing (u, v)

$$v.d \leq u.d + w(u,v)$$
 by lemma 24.13

$\delta\left(s,v ight)$ by corollary of lemma 24.1

<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > 32 / 108

Thus , after relaxing (u,v)

$$v.d \le u.d + w(u,v)$$
 by lemma 24.13
= $\delta(s,u) + w(u,v)$

By lemma 24.11, $v.d \geq \delta(s,v)$, so $v.d = \delta(s,v)$

Thus , after relaxing (u,v)

$$egin{aligned} & v.d \leq u.d + w(u,v) ext{ by lemma 24.13} \ & = \delta\left(s,u
ight) + w\left(u,v
ight) \ & = \delta\left(s,v
ight) ext{ by corollary of lemma 24.1} \end{aligned}$$

Now

By lemma 24.11, $v.d \geq \delta(s,v)$, so $v.d = \delta(s,v)$.

Thus , after relaxing (u,v)

$$egin{aligned} & v.d \leq u.d + w(u,v) \ ext{by lemma 24.13} \ & = \delta\left(s,u
ight) + w\left(u,v
ight) \ & = \delta\left(s,v
ight) \ ext{by corollary of lemma 24.1} \end{aligned}$$

Now

By lemma 24.11, $v.d \geq \delta(s, v)$, so $v.d = \delta(s, v)$.

∃ ∽ Q ⊂ 32 / 108

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Outline

- Introducti
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

Predecessor Subgraph for Bellman

- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Proof

It is necessary to prove two things in order to get a tree:

There exists a unique path from source s to each vertex V_{π}

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Proof

It is necessary to prove two things in order to get a tree:

• G_{π} is acyclic.

There exists a unique path from source s to each vertex V_i

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Proof

It is necessary to prove two things in order to get a tree:

- G_{π} is acyclic.
- **2** There exists a unique path from source s to each vertex V_{π} .

Proof of G_{π} is acyclic

First

Suppose there exist a cycle $c = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = v_k$. We have $v_i.\pi = v_{i-1}$ for i = 1, 2, ..., k.

Second

Assume relaxation of (v_{k-1},v_k) created the cycle. We are going to show that the cycle has a negative weight.

We claim that

The cycle must be reachable from s (Why?)

35 / 108

イロト イヨト イヨト イヨト

Proof of G_{π} is acyclic

First

Suppose there exist a cycle $c = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = v_k$. We have $v_i.\pi = v_{i-1}$ for i = 1, 2, ..., k.

Second

Assume relaxation of (v_{k-1},v_k) created the cycle. We are going to show that the cycle has a negative weight.

We claim that

The cycle must be reachable from s (Why?)

35 / 108

イロト イヨト イヨト

Proof of G_{π} is acyclic

First

Suppose there exist a cycle $c = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = v_k$. We have $v_i.\pi = v_{i-1}$ for i = 1, 2, ..., k.

Second

Assume relaxation of (v_{k-1}, v_k) created the cycle. We are going to show that the cycle has a negative weight.

We claim that

The cycle must be reachable from s (Why?)

35 / 108

イロト イヨト イヨト

First

Each vertex on the cycle has a non-NIL predecessor, and so each vertex on it was assigned a finite shortest-path estimate when it was assigned its non-NIL value.

Then

By the upper-bound property, each vertex on the cycle has a finite shortest-path weight,

Thus

Making the cycle reachable from s.

First

Each vertex on the cycle has a non-NIL predecessor, and so each vertex on it was assigned a finite shortest-path estimate when it was assigned its non-NIL value.

Then

By the upper-bound property, each vertex on the cycle has a finite shortest-path weight,

Making the cycle reachable from s.

First

Each vertex on the cycle has a non-NIL predecessor, and so each vertex on it was assigned a finite shortest-path estimate when it was assigned its non-NIL value.

Then

By the upper-bound property, each vertex on the cycle has a finite shortest-path weight,

Thus

Making the cycle reachable from s.

Before call to $Relax(v_{k-1}, v_k, w)$:

$$v_{i}.\pi = v_{i-1}$$
 for $i = 1, ..., k - 1.$ (2)

Thus

This Implies $v_i.d$ was last updated by

 $v_i.d = v_{i-1}.d + w(v_{i-1}, v_i)$

for i = 1, ..., k - 1 (Because Relax updates π).

This implies

This implies

for i = 1, ..., k - 1 (Before Relaxation in Lemma 24.13).

Before call to $Relax(v_{k-1}, v_k, w)$:

$$v_{i}.\pi = v_{i-1}$$
 for $i = 1, ..., k - 1.$ (2)

Thus

This Implies $v_i.d$ was last updated by

$$v_i.d = v_{i-1}.d + w(v_{i-1}, v_i)$$

for i = 1, ..., k - 1 (Because Relax updates π).

This implies

This implies

$$v_{i.d} \ge v_{i-1.d} + w(v_{i-1}, v_i)$$

for i = 1, ..., k - 1 (Before Relaxation in Lemma 24.13).

(3)

Before call to $Relax(v_{k-1}, v_k, w)$:

$$v_{i}.\pi = v_{i-1}$$
 for $i = 1, ..., k - 1.$ (2)

Thus

This Implies $v_i.d$ was last updated by

$$v_i.d = v_{i-1}.d + w(v_{i-1}, v_i)$$

for i = 1, ..., k - 1 (Because Relax updates π).

This implies

This implies

$$v_{i.d} \ge v_{i-1.d} + w(v_{i-1}, v_i)$$
 (4)

for i = 1, ..., k - 1 (Before Relaxation in Lemma 24.13).

(3)

Thus

Because $v_k.\pi$ is changed by call Relax (Immediately before), $v_k.d > v_{k-1}.d + w(v_{k-1},v_k)$, we have that:

Thus

Because $v_k.\pi$ is changed by call Relax (Immediately before), $v_k.d > v_{k-1}.d + w(v_{k-1}, v_k)$, we have that: $\sum_{i=1}^k v_i.d > \sum_{i=1}^k (v_{i-1}.d + w(v_{i-1}, v_i))$

We have finally that Because $\sum_{i=1}^{k} v_i d = \sum_{i=1}^{k} v_{i-1} d$, we have that $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$, i.e., a negative weight cycle!!!

Thus

Because $v_k.\pi$ is changed by call Relax (Immediately before), $v_k.d > v_{k-1}.d + w(v_{k-1},v_k)$, we have that:

$$\sum_{i=1}^{k} v_i d > \sum_{i=1}^{k} (v_{i-1} d + w (v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} v_{i-1} d + \sum_{i=1}^{k} w (v_{i-1}, v_i)$$

We have finally that

Because $\sum_{i=1}^{m} v_i.d = \sum_{i=1}^{n} v_{i-1}.d$, we have that $\sum_{i=1}^{n} w(v_{i-1},v_i) < 0$, i.e., a negative weight cycle!!!

Thus

Because $v_k.\pi$ is changed by call Relax (Immediately before), $v_k.d > v_{k-1}.d + w(v_{k-1},v_k)$, we have that:

$$\sum_{i=1}^{k} v_i d > \sum_{i=1}^{k} (v_{i-1} d + w (v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} v_{i-1} d + \sum_{i=1}^{k} w (v_{i-1}, v_i)$$

We have finally that

Because
$$\sum_{i=1}^{k} v_i d = \sum_{i=1}^{k} v_{i-1} d$$
, we have that $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$, i.e., a negative weight cycle!!!

・ロ ・ ・ 一 ・ ・ 言 ・ く 言 ・ 「 言 の へ で
38 / 108

Some comments

Comments

• $v_i.d \ge v_{i-1}.d + w(v_{i-1}, v_i)$ for i = 1, ..., k-1 because when $Relax(v_{i-1}, v_i, w)$ was called, there was an equality, and $v_{i-1}.d$ may have gotten smaller by further calls to Relax.

 $v_{k}.d > v_{k-1}.d + w(v_{k-1}, v_k)$ before the last call to Relax because that last call changed $v_k.d$.

39/108

イロン イロン イヨン イヨン

Some comments

Comments

- $v_i.d \ge v_{i-1}.d + w(v_{i-1}, v_i)$ for i = 1, ..., k 1 because when $Relax(v_{i-1}, v_i, w)$ was called, there was an equality, and $v_{i-1}.d$ may have gotten smaller by further calls to Relax.
- $v_k.d > v_{k-1}.d + w(v_{k-1}, v_k)$ before the last call to Relax because that last call changed $v_k.d$.

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π} , the graph G_{π} contains at least one path from s to v.
 - Assume now that you have two paths:

- This can only be possible if for two nodes x and $y \Rightarrow x \neq y$, but $z.\pi = x = y!!!$
- Contradiction!!! Therefore, we have only one path and G_{π} is a tree.

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π} , the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

- This can only be possible if for two nodes x and $y \Rightarrow x \neq y$, but $z.\pi = x = y!!!$
- Contradiction!!! Therefore, we have only one path and G_{π} is a tree.

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π} , the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

 This can only be possible if for two nodes x and y ⇒ x ≠ y, but z.π = x = y!!!

• Contradiction!!! Therefore, we have only one path and G_{π} is a tree.

< ロ > < 同 > < 回 > < 回 >

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π} , the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

• This can only be possible if for two nodes x and $y \Rightarrow x \neq y$, but $z.\pi = x = y!!!$

• Contradiction!!! Therefore, we have only one path and G_{π} is a tree.

∽ Q (40 / 108

イロト イヨト イヨト

Let G_{π} be the predecessor subgraph.

- So, for any v in $V_{\pi},$ the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

• This can only be possible if for two nodes x and $y \Rightarrow x \neq y$, but $z.\pi = x = y!!!$

• Contradiction!!! Therefore, we have only one path and G_{π} is a tree.

イロト イヨト イヨト

Outline

- Introducti
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

Predecessor Subgraph for Bellman

Shortest Path for Bellman

- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Lemma 24.17

Lemma 24.17

Same conditions as before. It calls Initialize and repeatedly calls Relax until $v.d = \delta(s, v)$ for all v in V. Then G_{π} is a shortest path tree rooted at s.

42 / 108

Lemma 24.17

Lemma 24.17

Same conditions as before. It calls Initialize and repeatedly calls Relax until $v.d = \delta(s, v)$ for all v in V. Then G_{π} is a shortest path tree rooted at s.

Proof

• For all v in V, there is a unique simple path p from s to v in G_{π} (Lemma 24.16).

We want to prove that it is a shortest path from s to v in G.

Lemma 24.17

Lemma 24.17

Same conditions as before. It calls Initialize and repeatedly calls Relax until $v.d = \delta(s, v)$ for all v in V. Then G_{π} is a shortest path tree rooted at s.

Proof

- For all v in V, there is a unique simple path p from s to v in G_{π} (Lemma 24.16).
- We want to prove that it is a shortest path from s to v in G.

42 / 108

イロト イヨト イヨト

Then

Let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$. Thus, we have $v_i.d = \delta(s, v_i)$.

And reasoning as before

$$v_i.d \ge v_{i-1}.d + w(v_{i-1},v_i)$$

This implies that

$$w(v_{i-1}, v_i) \le \delta(s, v_i) - \delta(s, v_{i-1})$$

Then

Let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$. Thus, we have $v_i.d = \delta(s, v_i)$.

And reasoning as before

$$v_i.d \ge v_{i-1}.d + w(v_{i-1}, v_i)$$

This implies that

(5

Then

Let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$. Thus, we have $v_i.d = \delta(s, v_i)$.

And reasoning as before

$$v_{i}.d \ge v_{i-1}.d + w(v_{i-1}, v_{i})$$
(5)

This implies that

$$w(v_{i-1}, v_i) \le \delta(s, v_i) - \delta(s, v_{i-1})$$
(6)

Then, we sum over all weights

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\leq \sum_{i=1}^{k} (\delta(s, m_i) - \delta(s, m_i))$$

$$= \delta(s, m_i) - \delta(s, m_i)$$

Then, we sum over all weights

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
$$\leq \sum_{i=1}^{k} (\delta(s, v_i) - \delta(s, v_{i-1}))$$

So, equality holds and p is a shortest path because $\delta\left(s,v_{k}
ight)\leq w\left(p
ight)$

Then, we sum over all weights

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\leq \sum_{i=1}^{k} (\delta(s, v_i) - \delta(s, v_{i-1}))$$

$$= \delta(s, v_k) - \delta(s, v_0)$$

So, equality holds and p is a shortest path because $\delta\left(s,v_{k}
ight)\leq w\left(p
ight)$

Then, we sum over all weights

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\leq \sum_{i=1}^{k} (\delta(s, v_i) - \delta(s, v_{i-1}))$$

$$= \delta(s, v_k) - \delta(s, v_0)$$

$$= \delta(s, v_k)$$

Then, we sum over all weights

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\leq \sum_{i=1}^{k} (\delta(s, v_i) - \delta(s, v_{i-1}))$$

$$= \delta(s, v_k) - \delta(s, v_0)$$

$$= \delta(s, v_k)$$

Finally

So, equality holds and p is a shortest path because $\delta(s, v_k) \leq w(p)$.

Outline

- Introductio
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman

Example

- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Again the Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.

 $\mathsf{Bellman-Ford}(G, s, w)$

Observation

If Bellman-Ford has not converged after V(G)-1 iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

Again the Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.

Bellman-Ford(G, s, w)

Observation

If Bellman-Ford has not converged after V(G) - 1 iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

Red Arrows are the representation of $v.\pi$

Here, whenever we have $v.d = \infty$ and $v.u = \infty$ no change is done

Here, we keep updating in the second iteration

Here, during it. we notice that e can be updated for a better value

Here, we keep updating in fourth iteration

Outline

- Introductio
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example

Bellman-Ford finds the Shortest Path

• Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

$v.d == \delta(s, v)$ upon termination

Lemma 24.2

Assuming no negative weight cycles reachable from s, $v.d == \delta(s, v)$ holds upon termination for all vertices v reachable from s.

Proof

Consider a shortest path p, where $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$.

We know the following

Shortest paths are simple, p has at most |V| - 1, thus we have that $k \leq |V| - 1$.

$v.d == \delta(s, v)$ upon termination

Lemma 24.2

Assuming no negative weight cycles reachable from s, $v.d == \delta(s, v)$ holds upon termination for all vertices v reachable from s.

Proof

Consider a shortest path p, where $p = < v_0, v_1, ..., v_k >,$ where $v_0 = s$ and $v_k = v.$

We know the following

Shortest paths are simple, p has at most |V| - 1, thus we have that $k \leq |V| - 1$.

$v.d == \delta(s, v)$ upon termination

Lemma 24.2

Assuming no negative weight cycles reachable from s, $v.d == \delta(s, v)$ holds upon termination for all vertices v reachable from s.

Proof

Consider a shortest path p, where $p = < v_0, v_1, ..., v_k >,$ where $v_0 = s$ and $v_k = v.$

We know the following

Shortest paths are simple, p has at most |V|-1, thus we have that $k \leq |V|-1.$

Something Notable

Claim: $v_i.d = \delta(s, v_i)$ holds after the *i*th pass over edges.

Something Notable

Claim: $v_i.d = \delta(s, v_i)$ holds after the *i*th pass over edges.

In the algorithm

Each of the |V| - 1 iterations of the for loop (Lines 2-4) relaxes all edges in E.

56 / 108

э

ヘロト ヘロト ヘヨト ヘヨト

Something Notable

Claim: $v_i.d = \delta(s, v_i)$ holds after the *i*th pass over edges.

In the algorithm

Each of the |V| - 1 iterations of the **for** loop (Lines 2-4) relaxes all edges in E.

Proof follows by induction on i

• The edges relaxed in the *i* th iteration, for i = 1, 2, ..., k, is (v_{i-1}, v_i) .

By lemma 24.11, once $v_i.d=\delta(s,v_i)$ holds, it continues to hold

56 / 108

Something Notable

Claim: $v_i.d = \delta(s, v_i)$ holds after the *i*th pass over edges.

In the algorithm

Each of the |V| - 1 iterations of the **for** loop (Lines 2-4) relaxes all edges in E.

Proof follows by induction on i

- The edges relaxed in the *i* th iteration, for i = 1, 2, ..., k, is (v_{i-1}, v_i) .
- By lemma 24.11, once $v_i d = \delta(s, v_i)$ holds, it continues to hold.

56 / 108

Finding a path between \boldsymbol{s} and \boldsymbol{v}

Corollary 24.3

Let G=(V,E) be a weighted, directed graph with source vertex s and weight function $w:E\to\mathbb{R},$ and assume that G contains no negative-weight cycles that are reachable from s. Then, for each vertex $v\in V$, there is a path from s to v if and only if Bellman-Ford terminates with $v.d<\infty$ when it is run on G

Proot

Left to you...

Finding a path between \boldsymbol{s} and \boldsymbol{v}

Corollary 24.3

Let G = (V, E) be a weighted, directed graph with source vertex s and weight function $w : E \to \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then, for each vertex $v \in V$, there is a path from s to v if and only if Bellman-Ford terminates with $v.d < \infty$ when it is run on G

Proof

Left to you...

Outline

- Introductio
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Claim: The Algorithm returns the correct value

Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.

Claim: The Algorithm returns the correct value

Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.

Case 1: There is no reachable negative weight cycle.

Upon termination, we have for all (u, v):

$$v.d = \delta(s, v)$$

59/108

< ロ > < 同 > < 回 > < 回 >

Claim: The Algorithm returns the correct value

Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.

Case 1: There is no reachable negative weight cycle.

Upon termination, we have for all (u, v):

$$v.d = \delta(s, v)$$

by lemma 24.2 (last slide) if v is reachable or $v.d = \delta(s, v) = \infty$ otherwise.

Then, we have that

 $v.d = \delta(s, v)$ $\leq \delta(s, u) + w(u, v)$

Remember:

- 5. for each (u,v) to $E\left[G
 ight]$
- 6. if v.d > u.d + w(u, v)
- 7. return false

Fhus

So algorithm returns *true*.

Then, we have that

 $\begin{aligned} v.d &= \delta(s, v) \\ &\leq \delta(s, u) + w(u, v) \\ &\leq u.d + w(u, v) \end{aligned}$

Remember:

- 5. for each (u,v) to $E\left[G
 ight]$
- 6. if v.d > u.d + w(u, v)
- 7. return false

hus l

So algorithm returns *true*.

U

Then, we have that

$$\begin{aligned} \psi.d &= \delta(s, v) \\ &\leq \delta(s, u) + w(u, v) \\ &\leq u.d + w(u, v) \end{aligned}$$

イロト 不得 トイヨト イヨト

60/108

Remember:

- 5. for each (u, v) to E[G]
- 6. if v.d > u.d + w(u, v)
- 7. return false

Thus

So algorithm returns *true*

v

Then, we have that

$$\begin{aligned} \psi.d &= \delta(s, v) \\ &\leq \delta(s, u) + w(u, v) \\ &\leq u.d + w(u, v) \end{aligned}$$

Remember:

- 5. for each (u, v) to E[G]
- 6. if v.d > u.d + w(u, v)
- 7. return false

Thus

So algorithm returns *true*.

Case 2: There exists a reachable negative weight cycle $c = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = v_k$.

Then, we have:

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$$

(7)

Suppose algorithm returns *true*

Then $v_i.d \leq v_{i-1}.d + w(v_{i-1},v_i)$ for i=1,...,k because Relax did not change any $v_i.d.$

Case 2: There exists a reachable negative weight cycle $c = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = v_k$.

Then, we have:

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$$

Suppose algorithm returns true

Then $v_i.d \leq v_{i-1}.d + w(v_{i-1}, v_i)$ for i = 1, ..., k because Relax did not change any $v_i.d$.

Thus

$$\sum_{i=1}^{k} v_i \cdot d \le \sum_{i=1}^{k} (v_{i-1} \cdot d + w(v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} v_{i-1} \cdot d + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Since $v_0 = v_k$

Each vertex in c appears exactly once in each of the summations, $\sum\limits_{i=1}^n v_i.d$ and $\sum\limits_{i=1}^k v_{i-1}.d$, thus

$$\sum_{i=1}^{k} v_i d = \sum_{i=1}^{k} v_{i-1} d$$

Thus

$$\sum_{i=1}^{k} v_i d \le \sum_{i=1}^{k} (v_{i-1} d + w(v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} v_{i-1} d + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Since $v_0 = v_k$

Each vertex in c appears exactly once in each of the summations, $\sum_{i=1}^{k} v_{i}.d$ and $\sum_{i=1}^{k} v_{i-1}.d$, thus $\sum_{i=1}^{k} v_{i}.d = \sum_{i=1}^{k} v_{i-1}.d$ (8)

By Corollary 24.3

 $v_i.d$ is finite for i = 1, 2, ..., k, thus

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

Hence

This contradicts (Eq. 7). Thus, algorithm returns *false*

By Corollary 24.3

 $v_i.d$ is finite for i = 1, 2, ..., k, thus

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

Hence

This contradicts (Eq. 7). Thus, algorithm returns false.

Outline

- Introducti
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

Directed Acyclic Graphs (DAG)

Relaxing Edges

- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

Another Example

Something Notable

By relaxing the edges of a weighted DAG G = (V, E) according to a topological sort of its vertices, we can compute shortest paths from a single source in time.

Shortest paths are always well defined in a DAG, since even if there are negative-weight edges, no negative-weight cycles can exist.

Another Example

Something Notable

By relaxing the edges of a weighted DAG G = (V, E) according to a topological sort of its vertices, we can compute shortest paths from a single source in time.

Why?

Shortest paths are always well defined in a DAG, since even if there are negative-weight edges, no negative-weight cycles can exist.

< ロ > < 同 > < 回 > < 回 >

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity $\Theta\left(V+E\right)$)

 $\mathsf{DAG}\ \mathsf{-SHORTEST}\ \mathsf{PATHS}(G,w,s)$

- Topological sort vertices in G
- $\ensuremath{ 2 \ } \ensuremath{ {\rm Initialize}}(G,s) \\$

 $igodoldsymbol{0}$ for each u in V[G] in topological sorted order

for each v to $\mathit{Adj}\left[u
ight.$

 $\mathsf{Relax}(u, v, w)$

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity $\Theta(V+E)$)

 $\mathsf{DAG}\ \mathsf{-}\mathsf{SHORTEST}\text{-}\mathsf{PATHS}(G,w,s)$

- Topological sort vertices in G

 $\mathsf{Relax}(u, v, w)$

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity $\Theta(V+E)$)

 $\mathsf{DAG}\ \mathsf{-SHORTEST}\ \mathsf{PATHS}(G,w,s)$

- Topological sort vertices in G
- **③ for** each u in V[G] in topological sorted order
- for each v to Adj [u]

S Relax(u, v, w)

66 / 108

< ロ > < 同 > < 回 > < 回 >

It is based in the following theorem

Theorem 24.5

If a weighted, directed graph G=(V,E) has source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $v.d=\delta\,(s,v)$ for all vertices $v\in V$, and the predecessor subgraph G_{π} is a shortest path.

Proof

Left to you...

It is based in the following theorem

Theorem 24.5

If a weighted, directed graph G=(V,E) has source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $v.d=\delta\,(s,v)$ for all vertices $v\in V$, and the predecessor subgraph G_{π} is a shortest path.

Proof

Left to you...

< ロ > < 同 > < 回 > < 回 >

We have that

- Line 1 takes $\Theta(V+E)$.
- \bigcirc Line 2 takes $\Theta(V)$
- Lines 3-5 makes an iteration per vertex:
 - In addition, the for loop in lines 4–5 relaxes each edge exactly once (Remember the sorting).

We have that

- Line 1 takes $\Theta(V+E)$.
- $\label{eq:line 2 takes } \Theta\left(V\right).$
 - Lines 3-5 makes an iteration per vertex:
 - In addition, the for loop in lines 4–5 relaxes each edge exactly once (Remember the sorting).
 - Making each iteration of the inner loop $\Theta\left(1
 ight)$

Therefore

The total running time is equal to $\Theta\left(V+E
ight).$

We have that

- Line 1 takes $\Theta(V+E)$.
- Icines 3-5 makes an iteration per vertex:
 - In addition, the for loop in lines 4-5 relaxes each edge exactly once (Remember the sorting).
 - ullet Making each iteration of the inner loop $\Theta\left(1
 ight)$

I herefore

The total running time is equal to $\Theta\left(V+E
ight).$

We have that

- Line 1 takes $\Theta(V+E)$.
- $\label{eq:line 2 takes } \Theta\left(V\right).$
- Lines 3-5 makes an iteration per vertex:
 - In addition, the for loop in lines 4-5 relaxes each edge exactly once (Remember the sorting).
 -) Making each iteration of the inner loop $\Theta\left(1
 ight)$

Therefore

The total running time is equal to $\Theta\left(V+E
ight).$

We have that

- Line 1 takes $\Theta(V+E)$.
- 2 Line 2 takes $\Theta(V)$.
- Lines 3-5 makes an iteration per vertex:
 - In addition, the for loop in lines 4-5 relaxes each edge exactly once (Remember the sorting).
 - **②** Making each iteration of the inner loop $\Theta(1)$

The total running time is equal to $\Theta\left(V+E ight)$

We have that

- Line 1 takes $\Theta(V+E)$.
- 2 Line 2 takes $\Theta(V)$.
- Lines 3-5 makes an iteration per vertex:
 - In addition, the for loop in lines 4-5 relaxes each edge exactly once (Remember the sorting).
 - **2** Making each iteration of the inner loop $\Theta(1)$

Therefore

The total running time is equal to $\Theta(V+E)$.

68 / 108

イロト イボト イヨト イヨト

Outline

- Introducti
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
- 5 Dijkstra's Algorithm
 - Dijkstra's Algorithm: A Greedy Method
 - Example
 - Correctness Dijkstra's algorithm
 - Complexity of Dijkstra's Algorithm

After Initialization, we have **b** is the source

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

a is the first in the topological sort, but no update is done

b is the next one

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

c is the next one

d is the next one

e is the next one

≣ • つ Q (? 75 / 108

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Finally, w is the next one

Outline

- Introductio
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example

5 Dijkstra's Algorithm

Dijkstra's Algorithm: A Greedy Method

- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

It is a greedy based method

Ideas?

Yes

We need to keep track of the greedy choice!!!

It is a greedy based method

Ideas?

Yes

We need to keep track of the greedy choice!!!

Assume no negative weight edges

- Dijkstra's algorithm maintains a set S of vertices whose shortest path from s has been determined.
- It repeatedly selects u in V S with minimum shortest path estimate (greedy choice).
- It store V S in priority queue Q.

Assume no negative weight edges

- Dijkstra's algorithm maintains a set S of vertices whose shortest path from s has been determined.
- **②** It repeatedly selects u in V S with minimum shortest path estimate (greedy choice).

It store V - S in priority queue Q.

79/108

Assume no negative weight edges

- Dijkstra's algorithm maintains a set S of vertices whose shortest path from s has been determined.
- **2** It repeatedly selects u in V S with minimum shortest path estimate (greedy choice).
- It store V S in priority queue Q.

$\mathsf{DIJKSTR}\overline{\mathsf{A}(G,w,s)}$

- INITIALIZE(G, s)
- ${\bf 0} \ S=\emptyset$
- Q = V [G]
- $\bigcirc \ \ \, {\rm while} \ \ \, Q \neq \emptyset$
- $u = \mathsf{Extract-Min}(Q)$
- $\bigcirc \qquad S = S \cup \{u\}$
- If or each vertex $v \in Adj [u]$
 - Relax(u,v,w)

$\mathsf{DIJKSTR}\overline{\mathsf{A}(G,w,s)}$

- INITIALIZE(G, s)
- ${\bf 2} \ S=\emptyset$
- Q = V [G]
- $u = \mathsf{Extract-Min}(Q)$

```
for each vertex v \in Adj \ [u]
```

Relax(u,v,w)

$\mathsf{DIJKSTR}\overline{\mathsf{A}(G,w,s)}$

- INITIALIZE(G, s)
- $2 S = \emptyset$
- Q = V[G]
- $\textcircled{ \bullet } \quad \text{while } Q \neq \emptyset$
- $u = \mathsf{Extract-Min}(Q)$
- for each vertex $v \in Adj [u]$

8 Relax(u,v,w)

Outline

- Introductio
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example

Dijkstra's Algorithm

- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

The Graph After Initialization

We use red edges to represent $v.\pi$ and color black to represent the set S

$s \leftarrow \mathsf{Extract-Min}(Q)$ and update the elements adjacent to s

$a \leftarrow Extract-Min(Q)$ and update the elements adjacent to a

$e \leftarrow Extract-Min(Q)$ and update the elements adjacent to e

$b \leftarrow Extract-Min(Q)$ and update the elements adjacent to b

$h \leftarrow Extract-Min(Q)$ and update the elements adjacent to h

Outline

- Introductio
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example

Dijkstra's Algorithm

- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Correctness Dijkstra's algorithm

Theorem 24.6

Upon termination, $u.d=\delta(s,u)$ for all u in V (assuming non negative weights).

Proof

By lemma 24.11, once $u.d = \delta(s, u)$ holds, it continues to hold.

We are going to use the following loop Invariance

At the start of each iteration of the while loop of lines 4–8, $v.d = \delta(s, v)$ for each vertex $v \in S$.

94/108

< ロ > < 同 > < 回 > < 回 >

Correctness Dijkstra's algorithm

Theorem 24.6

Upon termination, $u.d = \delta(s, u)$ for all u in V (assuming non negative weights).

Proof

By lemma 24.11, once $u.d = \delta(s, u)$ holds, it continues to hold.

We are going to use the following loop Invariance

At the start of each iteration of the while loop of lines 4–8, $v.d = \delta(s, v)$ for each vertex $v \in S$.

Correctness Dijkstra's algorithm

Theorem 24.6

Upon termination, $u.d = \delta(s, u)$ for all u in V (assuming non negative weights).

Proof

By lemma 24.11, once $u.d = \delta(s, u)$ holds, it continues to hold.

We are going to use the following loop Invariance

At the start of each iteration of the while loop of lines 4–8, $v.d = \delta(s, v)$ for each vertex $v \in S$.

Thus

We are going to prove for each u in $V, \, u.d = \delta(s, u)$ when u is inserted in S.

Thus

We are going to prove for each u in $V, \, u.d = \delta(s, u)$ when u is inserted in S.

Initialization

Initially $S = \emptyset$, thus the invariant is true.

Thus

We are going to prove for each u in V, $u.d=\delta(s,u)$ when u is inserted in S.

Initialization

Initially $S = \emptyset$, thus the invariant is true.

Maintenance

We want to show that in each iteration $u.d=\delta\left(s,u\right)$ for the vertex added to set S.

Thus

We are going to prove for each u in V, $u.d=\delta(s,u)$ when u is inserted in S.

Initialization

Initially $S = \emptyset$, thus the invariant is true.

Maintenance

We want to show that in each iteration $u.d = \delta(s, u)$ for the vertex added to set S.

For this, note the following

• Note that $s.d = \delta(s, s) = 0$ when s is inserted, so $u \neq s$.

In addition, we have that $S
eq \emptyset$ before u is added.

Thus

We are going to prove for each u in V, $u.d=\delta(s,u)$ when u is inserted in S.

Initialization

Initially $S = \emptyset$, thus the invariant is true.

Maintenance

We want to show that in each iteration $u.d = \delta(s, u)$ for the vertex added to set S.

For this, note the following

- Note that $s.d = \delta(s, s) = 0$ when s is inserted, so $u \neq s$.
- In addition, we have that $S \neq \emptyset$ before u is added.

Use contradiction

Now, suppose not. Let u be the first vertex such that $u.d \neq \delta$ (s,u) when inserted in S.

Note the following

Note that $s.d = \delta(s, s) = 0$ when s is inserted, so $u \neq s$; thus $S \neq \emptyset$ just before u is inserted (in fact $s \in S$).

Use contradiction

Now, suppose not. Let u be the first vertex such that $u.d \neq \delta$ (s,u) when inserted in S.

Note the following

Note that $s.d = \delta(s, s) = 0$ when s is inserted, so $u \neq s$; thus $S \neq \emptyset$ just before u is inserted (in fact $s \in S$).

Now

Note that there exist a path from s to u, for otherwise $u.d=\delta(s,u)=\infty$ by corollary 24.12.

• "If there is no path from s to v, then $v.d=\delta(s,v)=\infty$ is an invariant."

Thus exist a shortest path η

Between s and u.

Observation

Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in V-S, namely u.

Now

Note that there exist a path from s to u, for otherwise $u.d=\delta(s,u)=\infty$ by corollary 24.12.

• "If there is no path from s to v, then $v.d=\delta(s,v)=\infty$ is an invariant."

Thus exist a shortest path p

Between s and u.

Observation

Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in V-S, namely u.

Now

Note that there exist a path from s to u, for otherwise $u.d=\delta(s,u)=\infty$ by corollary 24.12.

• "If there is no path from s to v, then $v.d=\delta(s,v)=\infty$ is an invariant."

Thus exist a shortest path p

Between s and u.

Observation

Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in V - S, namely u.

Consider the following

- The first y along p from s to u such that $y \in V S$.
- And let $x \in S$ be y's predecessor along p.

Proof (continuation)

Then, shortest path from s to $u:\ s \stackrel{p_1}{\leadsto} x \to y \stackrel{p_2}{\leadsto} u$ looks like...

Remark: Either of paths p_1 or p_2 may have no edges.

We claim

 $y.d = \delta(s, y)$ when u is added into S.

Proof of the claim

• Observe that $x \in S$.

We claim

 $y.d = \delta(s, y)$ when u is added into S.

Proof of the claim

- **0** Observe that $x \in S$.
- ${\bf @}$ In addition, we know that u is the first vertex for which $u.d\neq\delta\left(s,u\right)$ when it id added to S

< ロ > < 回 > < 回 > < 回 > < 回 >

Then

In addition, we had that $x.d = \delta(s, x)$ when x was inserted into S.

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q (C 101 / 108

Then

In addition, we had that $x.d = \delta(s, x)$ when x was inserted into S.

Then, we relaxed the edge between x and y

Edge (x, y) was relaxed at that time!

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p = s \xrightarrow{p_1} u \to v$. If $u.d = \delta(s, u)$ holds at any time prior to calling Relax(u, v, w), then $v.d = \delta(s, v)$ holds at all times after the call.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p = s \xrightarrow{p_1} u \to v$. If $u.d = \delta(s, u)$ holds at any time prior to calling Relax(u, v, w), then $v.d = \delta(s, v)$ holds at all times after the call.

Then • Then, using this convergence property. pad = 0(s, p) = 0(s, p) + m(s, p) • The claim is implied!!

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p = s \xrightarrow{p_1} u \to v$. If $u.d = \delta(s, u)$ holds at any time prior to calling Relax(u, v, w), then $v.d = \delta(s, v)$ holds at all times after the call.

Then

• Then, using this convergence property.

$$y.d = \delta(s, y) = \delta(s, x) + w(x, y)$$
(9)

イロト 不得 トイヨト イヨト

The claim is implied!!!

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p = s \xrightarrow{p_1} u \to v$. If $u.d = \delta(s, u)$ holds at any time prior to calling Relax(u, v, w), then $v.d = \delta(s, v)$ holds at all times after the call.

Then

• Then, using this convergence property.

$$y.d = \delta(s, y) = \delta(s, x) + w(x, y)$$
(9)

イロト 不得 トイヨト イヨト

• The claim is implied!!!

Now

• We obtain a contradiction to prove that $u.d = \delta(s, u)$.

- y appears before u in a shortest path on a shortest path from s to u.
 In addition, all edges have positive weights.
- Then, $\delta(s,y) \leq \delta(s,u)$, thus

$$y.d = \delta(s, y)$$
$$\leq \delta(s, u)$$
$$\leq u.d$$

Now

- We obtain a contradiction to prove that $u.d = \delta(s, u)$.
- 2 y appears before u in a shortest path on a shortest path from s to u.
 - In addition, all edges have positive weights
- Then, $\delta(s,y) \leq \delta(s,u)$, thus

$$y.d = \delta(s, y)$$
$$\leq \delta(s, u)$$
$$\leq u.d$$

Now

- $\textbf{ We obtain a contradiction to prove that } u.d = \delta (s, u).$
- **2** y appears before u in a shortest path on a shortest path from s to u.
- In addition, all edges have positive weights.

```
\begin{aligned} y.d &= \delta\left(s,y\right) \\ &\leq \delta\left(s,u\right) \\ &\leq u.d \end{aligned}
```


Now

- $\textbf{ We obtain a contradiction to prove that } u.d = \delta (s, u).$
- **2** y appears before u in a shortest path on a shortest path from s to u.
- In addition, all edges have positive weights.
- $\textcircled{ \ \ 0 \ \ } \quad \text{Then, } \delta(s,y) \leq \delta(s,u) \text{, thus }$

$$y.d = \delta(s, y)$$
$$\leq \delta(s, u)$$
$$\leq u.d$$

Now

- $\textbf{ We obtain a contradiction to prove that } u.d = \delta (s, u).$
- **2** y appears before u in a shortest path on a shortest path from s to u.
- In addition, all edges have positive weights.
- $\textcircled{ \ \ 0 \ \ } \quad \text{Then, } \delta(s,y) \leq \delta(s,u) \text{, thus }$

$$y.d = \delta\left(s, y\right)$$

$$\leq u.d$$

Now

- $\textbf{ We obtain a contradiction to prove that } u.d = \delta (s, u).$
- **2** y appears before u in a shortest path on a shortest path from s to u.
- In addition, all edges have positive weights.
- $\textcircled{ \ \ \, } \quad \textbf{Then,} \ \delta(s,y) \leq \delta(s,u) \textbf{, thus}$

$$y.d = \delta(s, y)$$
$$\leq \delta(s, u)$$

Now

- **(**) We obtain a contradiction to prove that $u.d = \delta(s, u)$.
- **2** y appears before u in a shortest path on a shortest path from s to u.
- In addition, all edges have positive weights.

$$y.d = \delta(s, y)$$
$$\leq \delta(s, u)$$
$$\leq u.d$$

► The last inequality is due to the Upper-Bound Property (Lemma 24.11).

イロト イボト イヨト イヨト

Then

But because both vertices u and y where in V-S when u was chosen in line 5 $\Rightarrow u.d \leq y.d.$

イロン イ団 とくほとう ほんし

E ∽ Q C 104 / 108

Then

But because both vertices u and y where in V-S when u was chosen in line 5 $\Rightarrow u.d \leq y.d.$

Thus

$$y.d = \delta(s,y) = \delta(s,u) = u.d$$

イロン イ団 とくほとう ほんし

E ∽ Q C 104 / 108

Then

But because both vertices u and y where in V-S when u was chosen in line 5 $\Rightarrow u.d \leq y.d.$

Thus

$$y.d=\delta(s,y)=\delta(s,u)=u.d$$

Consequently

 $\bullet \,$ We have that $u.d=\delta \, (s,u),$ which contradicts our choice of u.

104 / 108

イロト イロト イヨト イヨト

Then

But because both vertices u and y where in V - S when u was chosen in line $5 \Rightarrow u.d \leq y.d$.

Thus

$$y.d=\delta(s,y)=\delta(s,u)=u.d$$

Consequently

- We have that $u.d = \delta(s, u)$, which contradicts our choice of u.
- Conclusion: $u.d = \delta(s, u)$ when u is added to S and the equality is maintained afterwards.

Finally

Termination

- At termination $Q=\emptyset$
- Thus, $V-S=\emptyset$ or equivalent S=V

$u.d = \delta\left(s,u ight)$ for all vertices $u \in V!!$

Finally

Termination

- At termination $Q=\emptyset$
- Thus, $V-S=\emptyset$ or equivalent S=V

Thus

 $u.d = \delta(s, u)$ for all vertices $u \in V!!!$

Outline

- Introducti
 - Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation

Bellman-Ford Algorithm

- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example

Dijkstra's Algorithm

- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Complexity

Running time is

 $O(V^2)$ using linear array for priority queue. $O((V + E) \log V)$ using binary heap. $O(V \log V + E)$ using Fibonacci heap.

Exercises

From Cormen's book solve

- 24.1-1
- 24.1-3
- 24.1-4
- 23.3-1
- 23.3-3
- 23.3-4
- 23.3-6
- 23.3-7
- 23.3-8
- 23.3-10

