
Analysis of Algorithms
Single Source Shortest Path

Andres Mendez-Vazquez

November 21, 2018

1 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
2 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
3 / 108

Introduction

Problem description
Given a single source vertex in a weighted, directed graph.
We want to compute a shortest path for each possible destination
(Similar to BFS).

Thus
The algorithm will compute a shortest path tree (again, similar to BFS).

4 / 108

Introduction

Problem description
Given a single source vertex in a weighted, directed graph.
We want to compute a shortest path for each possible destination
(Similar to BFS).

Thus
The algorithm will compute a shortest path tree (again, similar to BFS).

4 / 108

Introduction

Problem description
Given a single source vertex in a weighted, directed graph.
We want to compute a shortest path for each possible destination
(Similar to BFS).

Thus
The algorithm will compute a shortest path tree (again, similar to BFS).

4 / 108

Similar Problems

Single destination shortest paths problem
Find a shortest path to a given destination vertex t from each vertex.

By reversing the direction of each edge in the graph, we can reduce
this problem to a single source problem.

5 / 108

Similar Problems

Single destination shortest paths problem
Find a shortest path to a given destination vertex t from each vertex.

By reversing the direction of each edge in the graph, we can reduce
this problem to a single source problem.

Reverse Directions

5 / 108

Similar Problems

Single pair shortest path problem
Find a shortest path from u to v for given vertices u and v.

If we solve the single source problem with source vertex u, we also
solve this problem.

6 / 108

Similar Problems

Single pair shortest path problem
Find a shortest path from u to v for given vertices u and v.

If we solve the single source problem with source vertex u, we also
solve this problem.

6 / 108

Similar Problems

All pairs shortest paths problem
Find a shortest path from u to v for every pair of vertices u and v.

7 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
8 / 108

Optimal Substructure Property

Lemma 24.1
Given a weighted, directed graph G = (V,E) with p =< v1, v2, ..., vk > be
a Shortest Path from v1 to vk. Then,

pij =< vi, vi+1, ..., vj > is a Shortest Path from vi to vj , where
1 ≤ i ≤ j ≤ k.

We have then
So, we have the optimal substructure property.
Bellman-Ford’s algorithm uses dynamic programming.
Dijkstra’s algorithm uses the greedy approach.

In addition, we have that
Let δ(u, v) = weight of Shortest Path from u to v.

9 / 108

Optimal Substructure Property

Lemma 24.1
Given a weighted, directed graph G = (V,E) with p =< v1, v2, ..., vk > be
a Shortest Path from v1 to vk. Then,

pij =< vi, vi+1, ..., vj > is a Shortest Path from vi to vj , where
1 ≤ i ≤ j ≤ k.

We have then
So, we have the optimal substructure property.
Bellman-Ford’s algorithm uses dynamic programming.
Dijkstra’s algorithm uses the greedy approach.

In addition, we have that
Let δ(u, v) = weight of Shortest Path from u to v.

9 / 108

Optimal Substructure Property

Lemma 24.1
Given a weighted, directed graph G = (V,E) with p =< v1, v2, ..., vk > be
a Shortest Path from v1 to vk. Then,

pij =< vi, vi+1, ..., vj > is a Shortest Path from vi to vj , where
1 ≤ i ≤ j ≤ k.

We have then
So, we have the optimal substructure property.
Bellman-Ford’s algorithm uses dynamic programming.
Dijkstra’s algorithm uses the greedy approach.

In addition, we have that
Let δ(u, v) = weight of Shortest Path from u to v.

9 / 108

Optimal Substructure Property

Lemma 24.1
Given a weighted, directed graph G = (V,E) with p =< v1, v2, ..., vk > be
a Shortest Path from v1 to vk. Then,

pij =< vi, vi+1, ..., vj > is a Shortest Path from vi to vj , where
1 ≤ i ≤ j ≤ k.

We have then
So, we have the optimal substructure property.
Bellman-Ford’s algorithm uses dynamic programming.
Dijkstra’s algorithm uses the greedy approach.

In addition, we have that
Let δ(u, v) = weight of Shortest Path from u to v.

9 / 108

Optimal Substructure Property

Lemma 24.1
Given a weighted, directed graph G = (V,E) with p =< v1, v2, ..., vk > be
a Shortest Path from v1 to vk. Then,

pij =< vi, vi+1, ..., vj > is a Shortest Path from vi to vj , where
1 ≤ i ≤ j ≤ k.

We have then
So, we have the optimal substructure property.
Bellman-Ford’s algorithm uses dynamic programming.
Dijkstra’s algorithm uses the greedy approach.

In addition, we have that
Let δ(u, v) = weight of Shortest Path from u to v.

9 / 108

Optimal Substructure Property

Lemma 24.1
Given a weighted, directed graph G = (V,E) with p =< v1, v2, ..., vk > be
a Shortest Path from v1 to vk. Then,

pij =< vi, vi+1, ..., vj > is a Shortest Path from vi to vj , where
1 ≤ i ≤ j ≤ k.

We have then
So, we have the optimal substructure property.
Bellman-Ford’s algorithm uses dynamic programming.
Dijkstra’s algorithm uses the greedy approach.

In addition, we have that
Let δ(u, v) = weight of Shortest Path from u to v.

9 / 108

Optimal Substructure Property

Corollary
Let p be a Shortest Path from s to v, where
p = s

p1 u→ v = p1 ∪ {(u, v)}. Then δ(s, v) = δ(s, u) + w(u, v).

10 / 108

The Lower Bound Between Nodes

Lemma 24.10
Let s ∈ V . For all edges (u, v) ∈ E, we have δ(s, v) ≤ δ(s, u) + w(u, v).

11 / 108

Now

Then
We have the basic concepts

Still
We need to define an important one.

The Predecessor Graph
This will facilitate the proof of several concepts

12 / 108

Now

Then
We have the basic concepts

Still
We need to define an important one.

The Predecessor Graph
This will facilitate the proof of several concepts

12 / 108

Now

Then
We have the basic concepts

Still
We need to define an important one.

The Predecessor Graph
This will facilitate the proof of several concepts

12 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
13 / 108

Predecessor Graph

Representing shortest paths
For this we use the predecessor subgraph

It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph
The predecessor is a subgraph Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V |v.π 6= NIL} ∪ {s}
Eπ = {(v.π, v)| v ∈ Vπ − {s}}

Properties
The predecessor subgraph Gπ forms a depth first forest composed of
several depth first trees.
The edges in Eπ are called tree edges.

14 / 108

Predecessor Graph

Representing shortest paths
For this we use the predecessor subgraph

It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph
The predecessor is a subgraph Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V |v.π 6= NIL} ∪ {s}
Eπ = {(v.π, v)| v ∈ Vπ − {s}}

Properties
The predecessor subgraph Gπ forms a depth first forest composed of
several depth first trees.
The edges in Eπ are called tree edges.

14 / 108

Predecessor Graph

Representing shortest paths
For this we use the predecessor subgraph

It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph
The predecessor is a subgraph Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V |v.π 6= NIL} ∪ {s}
Eπ = {(v.π, v)| v ∈ Vπ − {s}}

Properties
The predecessor subgraph Gπ forms a depth first forest composed of
several depth first trees.
The edges in Eπ are called tree edges.

14 / 108

Predecessor Graph

Representing shortest paths
For this we use the predecessor subgraph

It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph
The predecessor is a subgraph Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V |v.π 6= NIL} ∪ {s}
Eπ = {(v.π, v)| v ∈ Vπ − {s}}

Properties
The predecessor subgraph Gπ forms a depth first forest composed of
several depth first trees.
The edges in Eπ are called tree edges.

14 / 108

Predecessor Graph

Representing shortest paths
For this we use the predecessor subgraph

It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph
The predecessor is a subgraph Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V |v.π 6= NIL} ∪ {s}
Eπ = {(v.π, v)| v ∈ Vπ − {s}}

Properties
The predecessor subgraph Gπ forms a depth first forest composed of
several depth first trees.
The edges in Eπ are called tree edges.

14 / 108

Predecessor Graph

Representing shortest paths
For this we use the predecessor subgraph

It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph
The predecessor is a subgraph Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V |v.π 6= NIL} ∪ {s}
Eπ = {(v.π, v)| v ∈ Vπ − {s}}

Properties
The predecessor subgraph Gπ forms a depth first forest composed of
several depth first trees.
The edges in Eπ are called tree edges.

14 / 108

Predecessor Graph

Representing shortest paths
For this we use the predecessor subgraph

It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph
The predecessor is a subgraph Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V |v.π 6= NIL} ∪ {s}
Eπ = {(v.π, v)| v ∈ Vπ − {s}}

Properties
The predecessor subgraph Gπ forms a depth first forest composed of
several depth first trees.
The edges in Eπ are called tree edges.

14 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
15 / 108

The Relaxation Concept

We are going to use certain functions for all the algorithms
Initialize

I Here, the basic variables of the nodes in a graph will be initialized
F v.d = the distance from the source s.
F v.π = the predecessor node during the search of the shortest path.

Changing the v.d
This will be done in the Relaxation algorithm.

16 / 108

The Relaxation Concept

We are going to use certain functions for all the algorithms
Initialize

I Here, the basic variables of the nodes in a graph will be initialized
F v.d = the distance from the source s.
F v.π = the predecessor node during the search of the shortest path.

Changing the v.d
This will be done in the Relaxation algorithm.

16 / 108

The Relaxation Concept

We are going to use certain functions for all the algorithms
Initialize

I Here, the basic variables of the nodes in a graph will be initialized
F v.d = the distance from the source s.
F v.π = the predecessor node during the search of the shortest path.

Changing the v.d
This will be done in the Relaxation algorithm.

16 / 108

The Relaxation Concept

We are going to use certain functions for all the algorithms
Initialize

I Here, the basic variables of the nodes in a graph will be initialized
F v.d = the distance from the source s.
F v.π = the predecessor node during the search of the shortest path.

Changing the v.d
This will be done in the Relaxation algorithm.

16 / 108

The Relaxation Concept

We are going to use certain functions for all the algorithms
Initialize

I Here, the basic variables of the nodes in a graph will be initialized
F v.d = the distance from the source s.
F v.π = the predecessor node during the search of the shortest path.

Changing the v.d
This will be done in the Relaxation algorithm.

16 / 108

Initialize and Relaxation

The Algorithms keep track of v.d, v.π. It is initialized as follows
Initialize(G, s)

1 for each v ∈ V [G]
2 v.d =∞
3 v.π = NIL

4 s.d = 0

These values are changed when an edge (u, v) is relaxed.
Relax(u, v, w)

1 if v.d > u.d+ w(u, v)
2 v.d = u.d+ w(u, v)
3 v.π = u

17 / 108

Initialize and Relaxation

The Algorithms keep track of v.d, v.π. It is initialized as follows
Initialize(G, s)

1 for each v ∈ V [G]
2 v.d =∞
3 v.π = NIL

4 s.d = 0

These values are changed when an edge (u, v) is relaxed.
Relax(u, v, w)

1 if v.d > u.d+ w(u, v)
2 v.d = u.d+ w(u, v)
3 v.π = u

17 / 108

How are these functions used?

These functions are used
1 Build a predecesor graph Gπ.
2 Integrate the Shortest Path into that predecessor graph.

1 Using the field d.

18 / 108

How are these functions used?

These functions are used
1 Build a predecesor graph Gπ.
2 Integrate the Shortest Path into that predecessor graph.

1 Using the field d.

18 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
19 / 108

The Bellman-Ford Algorithm
Bellman-Ford can have negative weight edges. It will “detect”
reachable negative weight cycles.
Bellman-Ford(G, s, w)

1 Initialize(G, s)
2 for i = 1 to |V [G]| − 1
3 for each (u, v) to E [G]
4 Relax(u, v, w)
5 for each (u, v) to E [G]
6 if v.d > u.d+ w (u, v)
7 return false
8 return true

Time Complexity
O (V E)

20 / 108

The Bellman-Ford Algorithm
Bellman-Ford can have negative weight edges. It will “detect”
reachable negative weight cycles.
Bellman-Ford(G, s, w)

1 Initialize(G, s)
2 for i = 1 to |V [G]| − 1
3 for each (u, v) to E [G]
4 Relax(u, v, w)
5 for each (u, v) to E [G]
6 if v.d > u.d+ w (u, v)
7 return false
8 return true

Time Complexity
O (V E)

20 / 108

The Bellman-Ford Algorithm
Bellman-Ford can have negative weight edges. It will “detect”
reachable negative weight cycles.
Bellman-Ford(G, s, w)

1 Initialize(G, s)
2 for i = 1 to |V [G]| − 1
3 for each (u, v) to E [G]
4 Relax(u, v, w)
5 for each (u, v) to E [G]
6 if v.d > u.d+ w (u, v)
7 return false
8 return true

Time Complexity
O (V E)

20 / 108

The Bellman-Ford Algorithm
Bellman-Ford can have negative weight edges. It will “detect”
reachable negative weight cycles.
Bellman-Ford(G, s, w)

1 Initialize(G, s)
2 for i = 1 to |V [G]| − 1
3 for each (u, v) to E [G]
4 Relax(u, v, w)
5 for each (u, v) to E [G]
6 if v.d > u.d+ w (u, v)
7 return false
8 return true

Time Complexity
O (V E)

20 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
21 / 108

Properties of Relaxation

Some properties
v.d, if not ∞, is the length of some path from s to v.
v.d either stays the same or decreases with time.

Therefore
If v.d = δ(s, v) at any time, this holds thereafter.

Something nice
Note that v.d ≥ δ(s, v) always (Upper-Bound Property).
After i iterations of relaxing an all (u, v), if the shortest path to
v has i edges, then v.d = δ(s, v).
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

22 / 108

Properties of Relaxation

Some properties
v.d, if not ∞, is the length of some path from s to v.
v.d either stays the same or decreases with time.

Therefore
If v.d = δ(s, v) at any time, this holds thereafter.

Something nice
Note that v.d ≥ δ(s, v) always (Upper-Bound Property).
After i iterations of relaxing an all (u, v), if the shortest path to
v has i edges, then v.d = δ(s, v).
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

22 / 108

Properties of Relaxation

Some properties
v.d, if not ∞, is the length of some path from s to v.
v.d either stays the same or decreases with time.

Therefore
If v.d = δ(s, v) at any time, this holds thereafter.

Something nice
Note that v.d ≥ δ(s, v) always (Upper-Bound Property).
After i iterations of relaxing an all (u, v), if the shortest path to
v has i edges, then v.d = δ(s, v).
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

22 / 108

Properties of Relaxation

Some properties
v.d, if not ∞, is the length of some path from s to v.
v.d either stays the same or decreases with time.

Therefore
If v.d = δ(s, v) at any time, this holds thereafter.

Something nice
Note that v.d ≥ δ(s, v) always (Upper-Bound Property).
After i iterations of relaxing an all (u, v), if the shortest path to
v has i edges, then v.d = δ(s, v).
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

22 / 108

Properties of Relaxation

Some properties
v.d, if not ∞, is the length of some path from s to v.
v.d either stays the same or decreases with time.

Therefore
If v.d = δ(s, v) at any time, this holds thereafter.

Something nice
Note that v.d ≥ δ(s, v) always (Upper-Bound Property).
After i iterations of relaxing an all (u, v), if the shortest path to
v has i edges, then v.d = δ(s, v).
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

22 / 108

Properties of Relaxation

Some properties
v.d, if not ∞, is the length of some path from s to v.
v.d either stays the same or decreases with time.

Therefore
If v.d = δ(s, v) at any time, this holds thereafter.

Something nice
Note that v.d ≥ δ(s, v) always (Upper-Bound Property).
After i iterations of relaxing an all (u, v), if the shortest path to
v has i edges, then v.d = δ(s, v).
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

22 / 108

Properties of Relaxation

Lemma 24.10 (Triangle inequality)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R and source vertex s. Then, for all edges (u, v) ∈ E, we have:

δ (s, v) ≤ δ (s, u) + w (u, v) (1)

Proof
1 Suppose that p is a shortest path from source s to vertex v.
2 Then, p has no more weight than any other path from s to vertex v.
3 Not only p has no more weiht tha a particular shortest path that goes

from s to u and then takes edge (u, v).

23 / 108

Properties of Relaxation

Lemma 24.10 (Triangle inequality)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R and source vertex s. Then, for all edges (u, v) ∈ E, we have:

δ (s, v) ≤ δ (s, u) + w (u, v) (1)

Proof
1 Suppose that p is a shortest path from source s to vertex v.
2 Then, p has no more weight than any other path from s to vertex v.
3 Not only p has no more weiht tha a particular shortest path that goes

from s to u and then takes edge (u, v).

23 / 108

Properties of Relaxation

Lemma 24.10 (Triangle inequality)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R and source vertex s. Then, for all edges (u, v) ∈ E, we have:

δ (s, v) ≤ δ (s, u) + w (u, v) (1)

Proof
1 Suppose that p is a shortest path from source s to vertex v.
2 Then, p has no more weight than any other path from s to vertex v.
3 Not only p has no more weiht tha a particular shortest path that goes

from s to u and then takes edge (u, v).

23 / 108

Properties of Relaxation

Lemma 24.10 (Triangle inequality)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R and source vertex s. Then, for all edges (u, v) ∈ E, we have:

δ (s, v) ≤ δ (s, u) + w (u, v) (1)

Proof
1 Suppose that p is a shortest path from source s to vertex v.
2 Then, p has no more weight than any other path from s to vertex v.
3 Not only p has no more weiht tha a particular shortest path that goes

from s to u and then takes edge (u, v).

23 / 108

Properties of Relaxation

Lemma 24.10 (Triangle inequality)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R and source vertex s. Then, for all edges (u, v) ∈ E, we have:

δ (s, v) ≤ δ (s, u) + w (u, v) (1)

Proof
1 Suppose that p is a shortest path from source s to vertex v.
2 Then, p has no more weight than any other path from s to vertex v.
3 Not only p has no more weiht tha a particular shortest path that goes

from s to u and then takes edge (u, v).

23 / 108

Properties of Relaxation

Lemma 24.11 (Upper Bound Property)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R. Consider any algorithm in which v.d, and v.π are first
initialized by calling Initialize(G, s) (s is the source), and are only
changed by calling Relax.
Then, we have that v.d ≥ δ(s, v) ∀v ∈ V [G] , and this invariant is
maintained over any sequence of relaxation steps on the edges of G.
Moreover, once v.d = δ(s, v), it never changes.

24 / 108

Properties of Relaxation

Lemma 24.11 (Upper Bound Property)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R. Consider any algorithm in which v.d, and v.π are first
initialized by calling Initialize(G, s) (s is the source), and are only
changed by calling Relax.
Then, we have that v.d ≥ δ(s, v) ∀v ∈ V [G] , and this invariant is
maintained over any sequence of relaxation steps on the edges of G.
Moreover, once v.d = δ(s, v), it never changes.

24 / 108

Properties of Relaxation

Lemma 24.11 (Upper Bound Property)
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R. Consider any algorithm in which v.d, and v.π are first
initialized by calling Initialize(G, s) (s is the source), and are only
changed by calling Relax.
Then, we have that v.d ≥ δ(s, v) ∀v ∈ V [G] , and this invariant is
maintained over any sequence of relaxation steps on the edges of G.
Moreover, once v.d = δ(s, v), it never changes.

24 / 108

Proof of Lemma

Loop Invariance
The Proof can be done by induction over the number of relaxation steps
and the loop invariance:

v.d ≥ δ (s, v) for all v ∈ V

For the Basis
v.d ≥ δ (s, v) is true after initialization, since:

v.d =∞ making v.d ≥ δ (s, v) for all v ∈ V − {s}.
For s, s.d = 0 ≥ δ (s, s).

For the inductive step, consider the relaxation of an edge (u, v)
By the inductive hypothesis, we have that x.d ≥ δ (s, x) for all x ∈ V prior
to relaxation.

25 / 108

Proof of Lemma

Loop Invariance
The Proof can be done by induction over the number of relaxation steps
and the loop invariance:

v.d ≥ δ (s, v) for all v ∈ V

For the Basis
v.d ≥ δ (s, v) is true after initialization, since:

v.d =∞ making v.d ≥ δ (s, v) for all v ∈ V − {s}.
For s, s.d = 0 ≥ δ (s, s).

For the inductive step, consider the relaxation of an edge (u, v)
By the inductive hypothesis, we have that x.d ≥ δ (s, x) for all x ∈ V prior
to relaxation.

25 / 108

Proof of Lemma

Loop Invariance
The Proof can be done by induction over the number of relaxation steps
and the loop invariance:

v.d ≥ δ (s, v) for all v ∈ V

For the Basis
v.d ≥ δ (s, v) is true after initialization, since:

v.d =∞ making v.d ≥ δ (s, v) for all v ∈ V − {s}.
For s, s.d = 0 ≥ δ (s, s).

For the inductive step, consider the relaxation of an edge (u, v)
By the inductive hypothesis, we have that x.d ≥ δ (s, x) for all x ∈ V prior
to relaxation.

25 / 108

Proof of Lemma

Loop Invariance
The Proof can be done by induction over the number of relaxation steps
and the loop invariance:

v.d ≥ δ (s, v) for all v ∈ V

For the Basis
v.d ≥ δ (s, v) is true after initialization, since:

v.d =∞ making v.d ≥ δ (s, v) for all v ∈ V − {s}.
For s, s.d = 0 ≥ δ (s, s).

For the inductive step, consider the relaxation of an edge (u, v)
By the inductive hypothesis, we have that x.d ≥ δ (s, x) for all x ∈ V prior
to relaxation.

25 / 108

Proof of Lemma

Loop Invariance
The Proof can be done by induction over the number of relaxation steps
and the loop invariance:

v.d ≥ δ (s, v) for all v ∈ V

For the Basis
v.d ≥ δ (s, v) is true after initialization, since:

v.d =∞ making v.d ≥ δ (s, v) for all v ∈ V − {s}.
For s, s.d = 0 ≥ δ (s, s).

For the inductive step, consider the relaxation of an edge (u, v)
By the inductive hypothesis, we have that x.d ≥ δ (s, x) for all x ∈ V prior
to relaxation.

25 / 108

Thus

If you call Relax(u, v, w), it may change v.d

v.d = u.d+ w(u, v)
≥ δ(s, u) + w(u, v) by inductive hypothesis
≥ δ (s, v) by the triangle inequality

Thus, the invariant is maintained.

26 / 108

Thus

If you call Relax(u, v, w), it may change v.d

v.d = u.d+ w(u, v)
≥ δ(s, u) + w(u, v) by inductive hypothesis
≥ δ (s, v) by the triangle inequality

Thus, the invariant is maintained.

26 / 108

Thus

If you call Relax(u, v, w), it may change v.d

v.d = u.d+ w(u, v)
≥ δ(s, u) + w(u, v) by inductive hypothesis
≥ δ (s, v) by the triangle inequality

Thus, the invariant is maintained.

26 / 108

Thus

If you call Relax(u, v, w), it may change v.d

v.d = u.d+ w(u, v)
≥ δ(s, u) + w(u, v) by inductive hypothesis
≥ δ (s, v) by the triangle inequality

Thus, the invariant is maintained.

26 / 108

Properties of Relaxation

Proof of lemma 24.11 cont...
To proof that the value v.d never changes once v.d = δ (s, v):

I Note the following: Once v.d = δ (s, v), it cannot decrease because
v.d ≥ δ (s, v) and Relaxation never increases d.

27 / 108

Properties of Relaxation

Proof of lemma 24.11 cont...
To proof that the value v.d never changes once v.d = δ (s, v):

I Note the following: Once v.d = δ (s, v), it cannot decrease because
v.d ≥ δ (s, v) and Relaxation never increases d.

27 / 108

Next, we have

Corollary 24.12 (No-path property)
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

Proof
By the upper-bound property, we always have ∞ = δ (s, v) ≤ v.d. Then,
v.d =∞.

28 / 108

Next, we have

Corollary 24.12 (No-path property)
If there is no path from s to v, then v.d = δ(s, v) =∞ is an invariant.

Proof
By the upper-bound property, we always have ∞ = δ (s, v) ≤ v.d. Then,
v.d =∞.

28 / 108

More Lemmas

Lemma 24.13
Let G = (V,E) be a weighted, directed graph with weight function
w : E → R. Then, immediately after relaxing edge (u, v) by calling
Relax(u, v, w) we have v.d ≤ u.d+ w(u, v).

29 / 108

Proof

First
If, just prior to relaxing edge (u, v),

Case 1: if we have that v.d > u.d+ w (u, v)
I Then, v.d = u.d+ w (u, v) after relaxation.

Now, Case 2
If v.d ≤ u.d+ w (u, v) just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards
v.d ≤ u.d+ w (u, v)

30 / 108

Proof

First
If, just prior to relaxing edge (u, v),

Case 1: if we have that v.d > u.d+ w (u, v)
I Then, v.d = u.d+ w (u, v) after relaxation.

Now, Case 2
If v.d ≤ u.d+ w (u, v) just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards
v.d ≤ u.d+ w (u, v)

30 / 108

Proof

First
If, just prior to relaxing edge (u, v),

Case 1: if we have that v.d > u.d+ w (u, v)
I Then, v.d = u.d+ w (u, v) after relaxation.

Now, Case 2
If v.d ≤ u.d+ w (u, v) just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards
v.d ≤ u.d+ w (u, v)

30 / 108

Proof

First
If, just prior to relaxing edge (u, v),

Case 1: if we have that v.d > u.d+ w (u, v)
I Then, v.d = u.d+ w (u, v) after relaxation.

Now, Case 2
If v.d ≤ u.d+ w (u, v) just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards
v.d ≤ u.d+ w (u, v)

30 / 108

Proof

First
If, just prior to relaxing edge (u, v),

Case 1: if we have that v.d > u.d+ w (u, v)
I Then, v.d = u.d+ w (u, v) after relaxation.

Now, Case 2
If v.d ≤ u.d+ w (u, v) just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards
v.d ≤ u.d+ w (u, v)

30 / 108

Proof

First
If, just prior to relaxing edge (u, v),

Case 1: if we have that v.d > u.d+ w (u, v)
I Then, v.d = u.d+ w (u, v) after relaxation.

Now, Case 2
If v.d ≤ u.d+ w (u, v) just before relaxation, then:

neither u.d nor v.d changes

Thus, afterwards
v.d ≤ u.d+ w (u, v)

30 / 108

More Lemmas

Lemma 24.14 (Convergence property)
Let p be a shortest path from s to v, where
p = p1

s u→ v = p1 ∪ {(u, v)}.
If u.d = δ(s, u) holds at any time prior to calling Relax(u, v, w), then
v.d = δ(s, v) holds at all times after the call.

Proof:
By the upper-bound property, if u.d = δ (s, u) at some moment before
relaxing edge (u, v), holding afterwards.

31 / 108

More Lemmas

Lemma 24.14 (Convergence property)
Let p be a shortest path from s to v, where
p = p1

s u→ v = p1 ∪ {(u, v)}.
If u.d = δ(s, u) holds at any time prior to calling Relax(u, v, w), then
v.d = δ(s, v) holds at all times after the call.

Proof:
By the upper-bound property, if u.d = δ (s, u) at some moment before
relaxing edge (u, v), holding afterwards.

31 / 108

More Lemmas

Lemma 24.14 (Convergence property)
Let p be a shortest path from s to v, where
p = p1

s u→ v = p1 ∪ {(u, v)}.
If u.d = δ(s, u) holds at any time prior to calling Relax(u, v, w), then
v.d = δ(s, v) holds at all times after the call.

Proof:
By the upper-bound property, if u.d = δ (s, u) at some moment before
relaxing edge (u, v), holding afterwards.

31 / 108

Proof

Thus , after relaxing (u, v)

v.d ≤ u.d+ w(u, v) by lemma 24.13
= δ (s, u) + w (u, v)
= δ (s, v) by corollary of lemma 24.1

Now
By lemma 24.11, v.d ≥ δ(s, v), so v.d = δ(s, v).

32 / 108

Proof

Thus , after relaxing (u, v)

v.d ≤ u.d+ w(u, v) by lemma 24.13
= δ (s, u) + w (u, v)
= δ (s, v) by corollary of lemma 24.1

Now
By lemma 24.11, v.d ≥ δ(s, v), so v.d = δ(s, v).

32 / 108

Proof

Thus , after relaxing (u, v)

v.d ≤ u.d+ w(u, v) by lemma 24.13
= δ (s, u) + w (u, v)
= δ (s, v) by corollary of lemma 24.1

Now
By lemma 24.11, v.d ≥ δ(s, v), so v.d = δ(s, v).

32 / 108

Proof

Thus , after relaxing (u, v)

v.d ≤ u.d+ w(u, v) by lemma 24.13
= δ (s, u) + w (u, v)
= δ (s, v) by corollary of lemma 24.1

Now
By lemma 24.11, v.d ≥ δ(s, v), so v.d = δ(s, v).

32 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
33 / 108

Predecessor Subgraph for Bellman

Lemma 24.16
Assume a given graph G that has no negative weight cycles reachable
from s. Then, after the initialization, the predecessor subgraph Gπ is
always a tree with root s, and any sequence of relaxations steps on edges
of G maintains this property as an invariant.

Proof
It is necessary to prove two things in order to get a tree:

1 Gπ is acyclic.
2 There exists a unique path from source s to each vertex Vπ.

34 / 108

Predecessor Subgraph for Bellman

Lemma 24.16
Assume a given graph G that has no negative weight cycles reachable
from s. Then, after the initialization, the predecessor subgraph Gπ is
always a tree with root s, and any sequence of relaxations steps on edges
of G maintains this property as an invariant.

Proof
It is necessary to prove two things in order to get a tree:

1 Gπ is acyclic.
2 There exists a unique path from source s to each vertex Vπ.

34 / 108

Predecessor Subgraph for Bellman

Lemma 24.16
Assume a given graph G that has no negative weight cycles reachable
from s. Then, after the initialization, the predecessor subgraph Gπ is
always a tree with root s, and any sequence of relaxations steps on edges
of G maintains this property as an invariant.

Proof
It is necessary to prove two things in order to get a tree:

1 Gπ is acyclic.
2 There exists a unique path from source s to each vertex Vπ.

34 / 108

Predecessor Subgraph for Bellman

Lemma 24.16
Assume a given graph G that has no negative weight cycles reachable
from s. Then, after the initialization, the predecessor subgraph Gπ is
always a tree with root s, and any sequence of relaxations steps on edges
of G maintains this property as an invariant.

Proof
It is necessary to prove two things in order to get a tree:

1 Gπ is acyclic.
2 There exists a unique path from source s to each vertex Vπ.

34 / 108

Proof of Gπ is acyclic

First
Suppose there exist a cycle c =< v0, v1, ..., vk >, where v0 = vk. We have
vi.π = vi−1 for i = 1, 2, ..., k.

Second
Assume relaxation of (vk−1, vk) created the cycle. We are going to show
that the cycle has a negative weight.

We claim that
The cycle must be reachable from s (Why?)

35 / 108

Proof of Gπ is acyclic

First
Suppose there exist a cycle c =< v0, v1, ..., vk >, where v0 = vk. We have
vi.π = vi−1 for i = 1, 2, ..., k.

Second
Assume relaxation of (vk−1, vk) created the cycle. We are going to show
that the cycle has a negative weight.

We claim that
The cycle must be reachable from s (Why?)

35 / 108

Proof of Gπ is acyclic

First
Suppose there exist a cycle c =< v0, v1, ..., vk >, where v0 = vk. We have
vi.π = vi−1 for i = 1, 2, ..., k.

Second
Assume relaxation of (vk−1, vk) created the cycle. We are going to show
that the cycle has a negative weight.

We claim that
The cycle must be reachable from s (Why?)

35 / 108

Proof

First
Each vertex on the cycle has a non-NIL predecessor, and so each vertex on
it was assigned a finite shortest-path estimate when it was assigned its
non-NIL value.

Then
By the upper-bound property, each vertex on the cycle has a finite
shortest-path weight,

Thus
Making the cycle reachable from s.

36 / 108

Proof

First
Each vertex on the cycle has a non-NIL predecessor, and so each vertex on
it was assigned a finite shortest-path estimate when it was assigned its
non-NIL value.

Then
By the upper-bound property, each vertex on the cycle has a finite
shortest-path weight,

Thus
Making the cycle reachable from s.

36 / 108

Proof

First
Each vertex on the cycle has a non-NIL predecessor, and so each vertex on
it was assigned a finite shortest-path estimate when it was assigned its
non-NIL value.

Then
By the upper-bound property, each vertex on the cycle has a finite
shortest-path weight,

Thus
Making the cycle reachable from s.

36 / 108

Proof
Before call to Relax(vk−1, vk, w):

vi.π = vi−1 for i = 1, ..., k − 1. (2)

Thus
This Implies vi.d was last updated by

vi.d = vi−1.d+ w(vi−1, vi) (3)

for i = 1, ..., k − 1 (Because Relax updates π).

This implies
This implies

vi.d ≥ vi−1.d+ w(vi−1, vi) (4)

for i = 1, ..., k − 1 (Before Relaxation in Lemma 24.13).
37 / 108

Proof
Before call to Relax(vk−1, vk, w):

vi.π = vi−1 for i = 1, ..., k − 1. (2)

Thus
This Implies vi.d was last updated by

vi.d = vi−1.d+ w(vi−1, vi) (3)

for i = 1, ..., k − 1 (Because Relax updates π).

This implies
This implies

vi.d ≥ vi−1.d+ w(vi−1, vi) (4)

for i = 1, ..., k − 1 (Before Relaxation in Lemma 24.13).
37 / 108

Proof
Before call to Relax(vk−1, vk, w):

vi.π = vi−1 for i = 1, ..., k − 1. (2)

Thus
This Implies vi.d was last updated by

vi.d = vi−1.d+ w(vi−1, vi) (3)

for i = 1, ..., k − 1 (Because Relax updates π).

This implies
This implies

vi.d ≥ vi−1.d+ w(vi−1, vi) (4)

for i = 1, ..., k − 1 (Before Relaxation in Lemma 24.13).
37 / 108

Proof

Thus
Because vk.π is changed by call Relax (Immediately before),
vk.d > vk−1.d+ w(vk−1, vk), we have that:

k∑
i=1

vi.d >
k∑
i=1

(vi−1.d+ w (vi−1, vi))

=
k∑
i=1

vi−1.d+
k∑
i=1

w (vi−1, vi)

We have finally that

Because
k∑
i=1

vi.d =
k∑
i=1

vi−1.d, we have that
k∑
i=1

w(vi−1, vi) < 0, i.e., a
negative weight cycle!!!

38 / 108

Proof

Thus
Because vk.π is changed by call Relax (Immediately before),
vk.d > vk−1.d+ w(vk−1, vk), we have that:

k∑
i=1

vi.d >
k∑
i=1

(vi−1.d+ w (vi−1, vi))

=
k∑
i=1

vi−1.d+
k∑
i=1

w (vi−1, vi)

We have finally that

Because
k∑
i=1

vi.d =
k∑
i=1

vi−1.d, we have that
k∑
i=1

w(vi−1, vi) < 0, i.e., a
negative weight cycle!!!

38 / 108

Proof

Thus
Because vk.π is changed by call Relax (Immediately before),
vk.d > vk−1.d+ w(vk−1, vk), we have that:

k∑
i=1

vi.d >
k∑
i=1

(vi−1.d+ w (vi−1, vi))

=
k∑
i=1

vi−1.d+
k∑
i=1

w (vi−1, vi)

We have finally that

Because
k∑
i=1

vi.d =
k∑
i=1

vi−1.d, we have that
k∑
i=1

w(vi−1, vi) < 0, i.e., a
negative weight cycle!!!

38 / 108

Proof

Thus
Because vk.π is changed by call Relax (Immediately before),
vk.d > vk−1.d+ w(vk−1, vk), we have that:

k∑
i=1

vi.d >
k∑
i=1

(vi−1.d+ w (vi−1, vi))

=
k∑
i=1

vi−1.d+
k∑
i=1

w (vi−1, vi)

We have finally that

Because
k∑
i=1

vi.d =
k∑
i=1

vi−1.d, we have that
k∑
i=1

w(vi−1, vi) < 0, i.e., a
negative weight cycle!!!

38 / 108

Some comments

Comments
vi.d ≥ vi−1.d+ w(vi−1, vi) for i = 1, ..., k − 1 because when
Relax(vi−1, vi, w) was called, there was an equality, and vi−1.d may
have gotten smaller by further calls to Relax.
vk.d > vk−1.d+ w(vk−1, vk) before the last call to Relax because
that last call changed vk.d.

39 / 108

Some comments

Comments
vi.d ≥ vi−1.d+ w(vi−1, vi) for i = 1, ..., k − 1 because when
Relax(vi−1, vi, w) was called, there was an equality, and vi−1.d may
have gotten smaller by further calls to Relax.
vk.d > vk−1.d+ w(vk−1, vk) before the last call to Relax because
that last call changed vk.d.

39 / 108

Proof of existence of a unique path from source s

Let Gπ be the predecessor subgraph.
So, for any v in Vπ, the graph Gπ contains at least one path from s
to v.
Assume now that you have two paths:

This can only be possible if for two nodes x and y ⇒ x 6= y, but
z.π = x = y!!!
Contradiction!!! Therefore, we have only one path and Gπ is a tree.

40 / 108

Proof of existence of a unique path from source s

Let Gπ be the predecessor subgraph.
So, for any v in Vπ, the graph Gπ contains at least one path from s
to v.
Assume now that you have two paths:

This can only be possible if for two nodes x and y ⇒ x 6= y, but
z.π = x = y!!!
Contradiction!!! Therefore, we have only one path and Gπ is a tree.

40 / 108

Proof of existence of a unique path from source s

Let Gπ be the predecessor subgraph.
So, for any v in Vπ, the graph Gπ contains at least one path from s
to v.
Assume now that you have two paths:

 s u

x

y

z v

Impossible!

This can only be possible if for two nodes x and y ⇒ x 6= y, but
z.π = x = y!!!
Contradiction!!! Therefore, we have only one path and Gπ is a tree.

40 / 108

Proof of existence of a unique path from source s

Let Gπ be the predecessor subgraph.
So, for any v in Vπ, the graph Gπ contains at least one path from s
to v.
Assume now that you have two paths:

 s u

x

y

z v

Impossible!

This can only be possible if for two nodes x and y ⇒ x 6= y, but
z.π = x = y!!!
Contradiction!!! Therefore, we have only one path and Gπ is a tree.

40 / 108

Proof of existence of a unique path from source s

Let Gπ be the predecessor subgraph.
So, for any v in Vπ, the graph Gπ contains at least one path from s
to v.
Assume now that you have two paths:

 s u

x

y

z v

Impossible!

This can only be possible if for two nodes x and y ⇒ x 6= y, but
z.π = x = y!!!
Contradiction!!! Therefore, we have only one path and Gπ is a tree.

40 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
41 / 108

Lemma 24.17

Lemma 24.17
Same conditions as before. It calls Initialize and repeatedly calls Relax until
v.d = δ(s, v) for all v in V . Then Gπ is a shortest path tree rooted at s.

Proof
For all v in V , there is a unique simple path p from s to v in Gπ
(Lemma 24.16).
We want to prove that it is a shortest path from s to v in G.

42 / 108

Lemma 24.17

Lemma 24.17
Same conditions as before. It calls Initialize and repeatedly calls Relax until
v.d = δ(s, v) for all v in V . Then Gπ is a shortest path tree rooted at s.

Proof
For all v in V , there is a unique simple path p from s to v in Gπ
(Lemma 24.16).
We want to prove that it is a shortest path from s to v in G.

42 / 108

Lemma 24.17

Lemma 24.17
Same conditions as before. It calls Initialize and repeatedly calls Relax until
v.d = δ(s, v) for all v in V . Then Gπ is a shortest path tree rooted at s.

Proof
For all v in V , there is a unique simple path p from s to v in Gπ
(Lemma 24.16).
We want to prove that it is a shortest path from s to v in G.

42 / 108

Proof

Then
Let p =< v0, v1, ..., vk >, where v0 = s and vk = v. Thus, we have
vi.d = δ(s, vi).

And reasoning as before

vi.d ≥ vi−1.d+ w(vi−1, vi) (5)

This implies that

w(vi−1, vi) ≤ δ(s, vi)− δ(s, vi−1) (6)

43 / 108

Proof

Then
Let p =< v0, v1, ..., vk >, where v0 = s and vk = v. Thus, we have
vi.d = δ(s, vi).

And reasoning as before

vi.d ≥ vi−1.d+ w(vi−1, vi) (5)

This implies that

w(vi−1, vi) ≤ δ(s, vi)− δ(s, vi−1) (6)

43 / 108

Proof

Then
Let p =< v0, v1, ..., vk >, where v0 = s and vk = v. Thus, we have
vi.d = δ(s, vi).

And reasoning as before

vi.d ≥ vi−1.d+ w(vi−1, vi) (5)

This implies that

w(vi−1, vi) ≤ δ(s, vi)− δ(s, vi−1) (6)

43 / 108

Proof

Then, we sum over all weights

w (p) =
k∑
i=1

w (vi−1, vi)

≤
k∑
i=1

(δ (s, vi)− δ(s, vi−1))

= δ(s, vk)− δ(s, v0)
= δ(s, vk)

Finally
So, equality holds and p is a shortest path because δ (s, vk) ≤ w (p).

44 / 108

Proof

Then, we sum over all weights

w (p) =
k∑
i=1

w (vi−1, vi)

≤
k∑
i=1

(δ (s, vi)− δ(s, vi−1))

= δ(s, vk)− δ(s, v0)
= δ(s, vk)

Finally
So, equality holds and p is a shortest path because δ (s, vk) ≤ w (p).

44 / 108

Proof

Then, we sum over all weights

w (p) =
k∑
i=1

w (vi−1, vi)

≤
k∑
i=1

(δ (s, vi)− δ(s, vi−1))

= δ(s, vk)− δ(s, v0)
= δ(s, vk)

Finally
So, equality holds and p is a shortest path because δ (s, vk) ≤ w (p).

44 / 108

Proof

Then, we sum over all weights

w (p) =
k∑
i=1

w (vi−1, vi)

≤
k∑
i=1

(δ (s, vi)− δ(s, vi−1))

= δ(s, vk)− δ(s, v0)
= δ(s, vk)

Finally
So, equality holds and p is a shortest path because δ (s, vk) ≤ w (p).

44 / 108

Proof

Then, we sum over all weights

w (p) =
k∑
i=1

w (vi−1, vi)

≤
k∑
i=1

(δ (s, vi)− δ(s, vi−1))

= δ(s, vk)− δ(s, v0)
= δ(s, vk)

Finally
So, equality holds and p is a shortest path because δ (s, vk) ≤ w (p).

44 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
45 / 108

Again the Bellman-Ford Algorithm
Bellman-Ford can have negative weight edges. It will “detect”
reachable negative weight cycles.
Bellman-Ford(G, s, w)

1 Initialize(G, s)
2 for i = 1 to |V [G]| − 1
3 for each (u, v) to E [G]
4 Relax(u, v, w)/ The Decision Part of the Dynamic Programming for u.d

and u.π.
5 for each (u, v) to E [G]
6 if v.d > u.d+ w (u, v)
7 return false
8 return true

Observation
If Bellman-Ford has not converged after V (G)− 1 iterations, then there cannot be
a shortest path tree, so there must be a negative weight cycle.

46 / 108

Again the Bellman-Ford Algorithm
Bellman-Ford can have negative weight edges. It will “detect”
reachable negative weight cycles.
Bellman-Ford(G, s, w)

1 Initialize(G, s)
2 for i = 1 to |V [G]| − 1
3 for each (u, v) to E [G]
4 Relax(u, v, w)/ The Decision Part of the Dynamic Programming for u.d

and u.π.
5 for each (u, v) to E [G]
6 if v.d > u.d+ w (u, v)
7 return false
8 return true

Observation
If Bellman-Ford has not converged after V (G)− 1 iterations, then there cannot be
a shortest path tree, so there must be a negative weight cycle.

46 / 108

Example

Red Arrows are the representation of v.π
s b

d

a

c

e h

g

f5

-4

5

3

3

6

-2

1

5

-2

2

7

-2

10

3

47 / 108

Example

Here, whenever we have v.d =∞ and v.u =∞ no change is done
s b

d

a

c

e h

g

f5

-4

5

3

3

6

-2

1

5

-2

2

7

-2

106

5

5 2

48 / 108

Example

Here, we keep updating in the second iteration
s b

d

a

c

e h

g

f5

-4

5

3

3

6

-2

1

5

-2

2

7

-2

106

5

5

1

3

16

2

49 / 108

Example

Here, during it. we notice that e can be updated for a better value
s b

d

a

c

e h

g

f5

-4

5

3

3

6

-2

1

5

-2

2

7

-2

106

5

4

1

3

16

2

50 / 108

Example

Here, we keep updating in third iteration and d and g also is updated
s b

d

a

c

e h

g

f5

-4

5

3

3

6

-2

1

5

-2

2

7

-2

106

5

4

1

2

16

44

2

51 / 108

Example

Here, we keep updating in fourth iteration
s b

d

a

c

e h

g

f5

-4

5

3

3

6

-2

1

5

-2

2

7

-2

102

5

4

1

2

14

44

2

52 / 108

Example

Here, f is updated during this iteration
s b

d

a

c

e h

g

f5

-4

5

3

3

6

-2

1

5

-2

2

7

-2

102

5

4

1

2

12

40

2

53 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
54 / 108

v.d == δ(s, v) upon termination

Lemma 24.2
Assuming no negative weight cycles reachable from s, v.d == δ(s, v)
holds upon termination for all vertices v reachable from s.

Proof
Consider a shortest path p, where p =< v0, v1, ..., vk >, where v0 = s and
vk = v.

We know the following
Shortest paths are simple, p has at most |V | − 1, thus we have that
k ≤ |V | − 1.

55 / 108

v.d == δ(s, v) upon termination

Lemma 24.2
Assuming no negative weight cycles reachable from s, v.d == δ(s, v)
holds upon termination for all vertices v reachable from s.

Proof
Consider a shortest path p, where p =< v0, v1, ..., vk >, where v0 = s and
vk = v.

We know the following
Shortest paths are simple, p has at most |V | − 1, thus we have that
k ≤ |V | − 1.

55 / 108

v.d == δ(s, v) upon termination

Lemma 24.2
Assuming no negative weight cycles reachable from s, v.d == δ(s, v)
holds upon termination for all vertices v reachable from s.

Proof
Consider a shortest path p, where p =< v0, v1, ..., vk >, where v0 = s and
vk = v.

We know the following
Shortest paths are simple, p has at most |V | − 1, thus we have that
k ≤ |V | − 1.

55 / 108

Proof

Something Notable
Claim: vi.d = δ(s, vi) holds after the ith pass over edges.

In the algorithm
Each of the |V | − 1 iterations of the for loop (Lines 2-4) relaxes all edges
in E.

Proof follows by induction on i
The edges relaxed in the i th iteration, for i = 1, 2, ..., k, is (vi−1, vi).
By lemma 24.11, once vi.d = δ(s, vi) holds, it continues to hold.

56 / 108

Proof

Something Notable
Claim: vi.d = δ(s, vi) holds after the ith pass over edges.

In the algorithm
Each of the |V | − 1 iterations of the for loop (Lines 2-4) relaxes all edges
in E.

Proof follows by induction on i
The edges relaxed in the i th iteration, for i = 1, 2, ..., k, is (vi−1, vi).
By lemma 24.11, once vi.d = δ(s, vi) holds, it continues to hold.

56 / 108

Proof

Something Notable
Claim: vi.d = δ(s, vi) holds after the ith pass over edges.

In the algorithm
Each of the |V | − 1 iterations of the for loop (Lines 2-4) relaxes all edges
in E.

Proof follows by induction on i
The edges relaxed in the i th iteration, for i = 1, 2, ..., k, is (vi−1, vi).
By lemma 24.11, once vi.d = δ(s, vi) holds, it continues to hold.

56 / 108

Proof

Something Notable
Claim: vi.d = δ(s, vi) holds after the ith pass over edges.

In the algorithm
Each of the |V | − 1 iterations of the for loop (Lines 2-4) relaxes all edges
in E.

Proof follows by induction on i
The edges relaxed in the i th iteration, for i = 1, 2, ..., k, is (vi−1, vi).
By lemma 24.11, once vi.d = δ(s, vi) holds, it continues to hold.

56 / 108

Finding a path between s and v

Corollary 24.3
Let G = (V,E) be a weighted, directed graph with source vertex s and
weight function w : E → R, and assume that G contains no
negative-weight cycles that are reachable from s. Then, for each vertex
v ∈ V , there is a path from s to v if and only if Bellman-Ford terminates
with v.d <∞ when it is run on G

Proof
Left to you...

57 / 108

Finding a path between s and v

Corollary 24.3
Let G = (V,E) be a weighted, directed graph with source vertex s and
weight function w : E → R, and assume that G contains no
negative-weight cycles that are reachable from s. Then, for each vertex
v ∈ V , there is a path from s to v if and only if Bellman-Ford terminates
with v.d <∞ when it is run on G

Proof
Left to you...

57 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
58 / 108

Correctness of Bellman-Ford

Claim: The Algorithm returns the correct value
Part of Theorem 24.4. Other parts of the theorem follow easily from
earlier results.

Case 1: There is no reachable negative weight cycle.
Upon termination, we have for all (u, v):

v.d = δ(s, v)

by lemma 24.2 (last slide) if v is reachable or v.d = δ(s, v) =∞ otherwise.

59 / 108

Correctness of Bellman-Ford

Claim: The Algorithm returns the correct value
Part of Theorem 24.4. Other parts of the theorem follow easily from
earlier results.

Case 1: There is no reachable negative weight cycle.
Upon termination, we have for all (u, v):

v.d = δ(s, v)

by lemma 24.2 (last slide) if v is reachable or v.d = δ(s, v) =∞ otherwise.

59 / 108

Correctness of Bellman-Ford

Claim: The Algorithm returns the correct value
Part of Theorem 24.4. Other parts of the theorem follow easily from
earlier results.

Case 1: There is no reachable negative weight cycle.
Upon termination, we have for all (u, v):

v.d = δ(s, v)

by lemma 24.2 (last slide) if v is reachable or v.d = δ(s, v) =∞ otherwise.

59 / 108

Correctness of Bellman-Ford

Then, we have that
v.d = δ(s, v)
≤ δ(s, u) + w(u, v)
≤ u.d+ w (u, v)

Remember:

5. for each (u, v) to E [G]
6. if v.d > u.d+ w (u, v)
7. return false

Thus
So algorithm returns true.

60 / 108

Correctness of Bellman-Ford

Then, we have that
v.d = δ(s, v)
≤ δ(s, u) + w(u, v)
≤ u.d+ w (u, v)

Remember:

5. for each (u, v) to E [G]
6. if v.d > u.d+ w (u, v)
7. return false

Thus
So algorithm returns true.

60 / 108

Correctness of Bellman-Ford

Then, we have that
v.d = δ(s, v)
≤ δ(s, u) + w(u, v)
≤ u.d+ w (u, v)

Remember:

5. for each (u, v) to E [G]
6. if v.d > u.d+ w (u, v)
7. return false

Thus
So algorithm returns true.

60 / 108

Correctness of Bellman-Ford

Then, we have that
v.d = δ(s, v)
≤ δ(s, u) + w(u, v)
≤ u.d+ w (u, v)

Remember:

5. for each (u, v) to E [G]
6. if v.d > u.d+ w (u, v)
7. return false

Thus
So algorithm returns true.

60 / 108

Correctness of Bellman-Ford

Then, we have that
v.d = δ(s, v)
≤ δ(s, u) + w(u, v)
≤ u.d+ w (u, v)

Remember:

5. for each (u, v) to E [G]
6. if v.d > u.d+ w (u, v)
7. return false

Thus
So algorithm returns true.

60 / 108

Correctness of Bellman-Ford

Case 2: There exists a reachable negative weight cycle
c =< v0, v1, ..., vk >, where v0 = vk.
Then, we have:

k∑
i=1

w(vi−1, vi) < 0. (7)

Suppose algorithm returns true
Then vi.d ≤ vi−1.d+ w(vi−1, vi) for i = 1, ..., k because Relax did not
change any vi.d.

61 / 108

Correctness of Bellman-Ford

Case 2: There exists a reachable negative weight cycle
c =< v0, v1, ..., vk >, where v0 = vk.
Then, we have:

k∑
i=1

w(vi−1, vi) < 0. (7)

Suppose algorithm returns true
Then vi.d ≤ vi−1.d+ w(vi−1, vi) for i = 1, ..., k because Relax did not
change any vi.d.

61 / 108

Correctness of Bellman-Ford
Thus

k∑
i=1

vi.d ≤
k∑
i=1

(vi−1.d+ w(vi−1, vi))

=
k∑
i=1

vi−1.d+
k∑
i=1

w(vi−1, vi)

Since v0 = vk

Each vertex in c appears exactly once in each of the summations,
k∑
i=1

vi.d

and
k∑
i=1

vi−1.d, thus

k∑
i=1

vi.d =
k∑
i=1

vi−1.d (8)

62 / 108

Correctness of Bellman-Ford
Thus

k∑
i=1

vi.d ≤
k∑
i=1

(vi−1.d+ w(vi−1, vi))

=
k∑
i=1

vi−1.d+
k∑
i=1

w(vi−1, vi)

Since v0 = vk

Each vertex in c appears exactly once in each of the summations,
k∑
i=1

vi.d

and
k∑
i=1

vi−1.d, thus

k∑
i=1

vi.d =
k∑
i=1

vi−1.d (8)

62 / 108

Correctness of Bellman-Ford

By Corollary 24.3
vi.d is finite for i = 1, 2, ..., k, thus

0 ≤
k∑
i=1

w(vi−1, vi).

Hence
This contradicts (Eq. 7). Thus, algorithm returns false.

63 / 108

Correctness of Bellman-Ford

By Corollary 24.3
vi.d is finite for i = 1, 2, ..., k, thus

0 ≤
k∑
i=1

w(vi−1, vi).

Hence
This contradicts (Eq. 7). Thus, algorithm returns false.

63 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
64 / 108

Another Example

Something Notable
By relaxing the edges of a weighted DAG G = (V,E) according to a
topological sort of its vertices, we can compute shortest paths from a
single source in time.

Why?
Shortest paths are always well defined in a DAG, since even if there are
negative-weight edges, no negative-weight cycles can exist.

65 / 108

Another Example

Something Notable
By relaxing the edges of a weighted DAG G = (V,E) according to a
topological sort of its vertices, we can compute shortest paths from a
single source in time.

Why?
Shortest paths are always well defined in a DAG, since even if there are
negative-weight edges, no negative-weight cycles can exist.

65 / 108

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity Θ (V + E))
DAG -SHORTEST-PATHS(G,w, s)

1 Topological sort vertices in G
2 Initialize(G, s)
3 for each u in V [G] in topological sorted order
4 for each v to Adj [u]
5 Relax(u, v, w)

66 / 108

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity Θ (V + E))
DAG -SHORTEST-PATHS(G,w, s)

1 Topological sort vertices in G
2 Initialize(G, s)
3 for each u in V [G] in topological sorted order
4 for each v to Adj [u]
5 Relax(u, v, w)

66 / 108

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity Θ (V + E))
DAG -SHORTEST-PATHS(G,w, s)

1 Topological sort vertices in G
2 Initialize(G, s)
3 for each u in V [G] in topological sorted order
4 for each v to Adj [u]
5 Relax(u, v, w)

66 / 108

It is based in the following theorem

Theorem 24.5
If a weighted, directed graph G = (V,E) has source vertex s and no
cycles, then at the termination of the DAG-SHORTEST-PATHS
procedure, v.d = δ (s, v) for all vertices v ∈ V , and the predecessor
subgraph Gπ is a shortest path.

Proof
Left to you...

67 / 108

It is based in the following theorem

Theorem 24.5
If a weighted, directed graph G = (V,E) has source vertex s and no
cycles, then at the termination of the DAG-SHORTEST-PATHS
procedure, v.d = δ (s, v) for all vertices v ∈ V , and the predecessor
subgraph Gπ is a shortest path.

Proof
Left to you...

67 / 108

Complexity

We have that
1 Line 1 takes Θ (V + E).
2 Line 2 takes Θ (V).
3 Lines 3-5 makes an iteration per vertex:

1 In addition, the for loop in lines 4-5 relaxes each edge exactly once
(Remember the sorting).

2 Making each iteration of the inner loop Θ (1)

Therefore
The total running time is equal to Θ (V + E).

68 / 108

Complexity

We have that
1 Line 1 takes Θ (V + E).
2 Line 2 takes Θ (V).
3 Lines 3-5 makes an iteration per vertex:

1 In addition, the for loop in lines 4-5 relaxes each edge exactly once
(Remember the sorting).

2 Making each iteration of the inner loop Θ (1)

Therefore
The total running time is equal to Θ (V + E).

68 / 108

Complexity

We have that
1 Line 1 takes Θ (V + E).
2 Line 2 takes Θ (V).
3 Lines 3-5 makes an iteration per vertex:

1 In addition, the for loop in lines 4-5 relaxes each edge exactly once
(Remember the sorting).

2 Making each iteration of the inner loop Θ (1)

Therefore
The total running time is equal to Θ (V + E).

68 / 108

Complexity

We have that
1 Line 1 takes Θ (V + E).
2 Line 2 takes Θ (V).
3 Lines 3-5 makes an iteration per vertex:

1 In addition, the for loop in lines 4-5 relaxes each edge exactly once
(Remember the sorting).

2 Making each iteration of the inner loop Θ (1)

Therefore
The total running time is equal to Θ (V + E).

68 / 108

Complexity

We have that
1 Line 1 takes Θ (V + E).
2 Line 2 takes Θ (V).
3 Lines 3-5 makes an iteration per vertex:

1 In addition, the for loop in lines 4-5 relaxes each edge exactly once
(Remember the sorting).

2 Making each iteration of the inner loop Θ (1)

Therefore
The total running time is equal to Θ (V + E).

68 / 108

Complexity

We have that
1 Line 1 takes Θ (V + E).
2 Line 2 takes Θ (V).
3 Lines 3-5 makes an iteration per vertex:

1 In addition, the for loop in lines 4-5 relaxes each edge exactly once
(Remember the sorting).

2 Making each iteration of the inner loop Θ (1)

Therefore
The total running time is equal to Θ (V + E).

68 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
69 / 108

Example

After Initialization, we have b is the source

a b c d e f
5 2

3

7

4
2

-1 -2

6 1

70 / 108

Example

a is the first in the topological sort, but no update is done

a b c d e f
5 2

3

7

4
2

-1 -2

6 1

71 / 108

Example

b is the next one

a b c d e f
5 2

3

7

4
2

-1 -2

6 1

72 / 108

Example

c is the next one

a b c d e f
5 2

3

7

4
2

-1 -2

6 1

73 / 108

Example

d is the next one

a b c d e f
5 2

3

7

4
2

-1 -2

6 1

74 / 108

Example

e is the next one

a b c d e f
5 2

3

7

4
2

-1 -2

6 1

75 / 108

Example

Finally, w is the next one

a b c d e f
5 2

3

7

4
2

-1 -2

6 1

76 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
77 / 108

Dijkstra’s Algorithm

It is a greedy based method
Ideas?

Yes
We need to keep track of the greedy choice!!!

78 / 108

Dijkstra’s Algorithm

It is a greedy based method
Ideas?

Yes
We need to keep track of the greedy choice!!!

78 / 108

Dijkstra’s Algorithm

Assume no negative weight edges
1 Dijkstra’s algorithm maintains a set S of vertices whose
shortest path from s has been determined.

2 It repeatedly selects u in V − S with minimum shortest path estimate
(greedy choice).

3 It store V − S in priority queue Q.

79 / 108

Dijkstra’s Algorithm

Assume no negative weight edges
1 Dijkstra’s algorithm maintains a set S of vertices whose
shortest path from s has been determined.

2 It repeatedly selects u in V − S with minimum shortest path estimate
(greedy choice).

3 It store V − S in priority queue Q.

79 / 108

Dijkstra’s Algorithm

Assume no negative weight edges
1 Dijkstra’s algorithm maintains a set S of vertices whose
shortest path from s has been determined.

2 It repeatedly selects u in V − S with minimum shortest path estimate
(greedy choice).

3 It store V − S in priority queue Q.

79 / 108

Dijkstra’s algorithm

DIJKSTRA(G,w, s)
1 INITIALIZE(G, s)
2 S = ∅
3 Q = V [G]
4 while Q 6= ∅
5 u =Extract-Min(Q)
6 S = S ∪ {u}
7 for each vertex v ∈ Adj [u]
8 Relax(u,v,w)

80 / 108

Dijkstra’s algorithm

DIJKSTRA(G,w, s)
1 INITIALIZE(G, s)
2 S = ∅
3 Q = V [G]
4 while Q 6= ∅
5 u =Extract-Min(Q)
6 S = S ∪ {u}
7 for each vertex v ∈ Adj [u]
8 Relax(u,v,w)

80 / 108

Dijkstra’s algorithm

DIJKSTRA(G,w, s)
1 INITIALIZE(G, s)
2 S = ∅
3 Q = V [G]
4 while Q 6= ∅
5 u =Extract-Min(Q)
6 S = S ∪ {u}
7 for each vertex v ∈ Adj [u]
8 Relax(u,v,w)

80 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
81 / 108

Example

The Graph After Initialization
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

82 / 108

Example

We use red edges to represent v.π and color black to represent the
set S

s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

83 / 108

Example

s←Extract-Min(Q) and update the elements adjacent to s
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

84 / 108

Example

a←Extract-Min(Q) and update the elements adjacent to a
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

85 / 108

Example

e←Extract-Min(Q) and update the elements adjacent to e
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

7

86 / 108

Example

b←Extract-Min(Q) and update the elements adjacent to b
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

7

16

87 / 108

Example

h←Extract-Min(Q) and update the elements adjacent to h
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

7

16

9 10

88 / 108

Example

c←Extract-Min(Q) and no-update
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

7

16

9 10

89 / 108

Example

d←Extract-Min(Q) and no-update
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

7

16

9 10

90 / 108

Example

g←Extract-Min(Q) and no-update
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

7

16

9 10

91 / 108

Example

f←Extract-Min(Q) and no-update
s b

d

a

c

e h

g

f5

4

5

3

3

6

2

1

5

2

2

7

2

10

3

0

5

5

6

9

7

16

9 10

92 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
93 / 108

Correctness Dijkstra’s algorithm

Theorem 24.6
Upon termination, u.d = δ(s, u) for all u in V (assuming non negative
weights).

Proof
By lemma 24.11, once u.d = δ(s, u) holds, it continues to hold.

We are going to use the following loop Invariance
At the start of each iteration of the while loop of lines 4–8,
v.d = δ (s, v) for each vertex v ∈ S.

94 / 108

Correctness Dijkstra’s algorithm

Theorem 24.6
Upon termination, u.d = δ(s, u) for all u in V (assuming non negative
weights).

Proof
By lemma 24.11, once u.d = δ(s, u) holds, it continues to hold.

We are going to use the following loop Invariance
At the start of each iteration of the while loop of lines 4–8,
v.d = δ (s, v) for each vertex v ∈ S.

94 / 108

Correctness Dijkstra’s algorithm

Theorem 24.6
Upon termination, u.d = δ(s, u) for all u in V (assuming non negative
weights).

Proof
By lemma 24.11, once u.d = δ(s, u) holds, it continues to hold.

We are going to use the following loop Invariance
At the start of each iteration of the while loop of lines 4–8,
v.d = δ (s, v) for each vertex v ∈ S.

94 / 108

Proof

Thus
We are going to prove for each u in V , u.d = δ(s, u) when u is inserted in
S.

Initialization
Initially S = ∅, thus the invariant is true.

Maintenance
We want to show that in each iteration u.d = δ (s, u) for the vertex added
to set S.

For this, note the following
Note that s.d = δ(s, s) = 0 when s is inserted, so u 6= s.
In addition, we have that S 6= ∅ before u is added.

95 / 108

Proof

Thus
We are going to prove for each u in V , u.d = δ(s, u) when u is inserted in
S.

Initialization
Initially S = ∅, thus the invariant is true.

Maintenance
We want to show that in each iteration u.d = δ (s, u) for the vertex added
to set S.

For this, note the following
Note that s.d = δ(s, s) = 0 when s is inserted, so u 6= s.
In addition, we have that S 6= ∅ before u is added.

95 / 108

Proof

Thus
We are going to prove for each u in V , u.d = δ(s, u) when u is inserted in
S.

Initialization
Initially S = ∅, thus the invariant is true.

Maintenance
We want to show that in each iteration u.d = δ (s, u) for the vertex added
to set S.

For this, note the following
Note that s.d = δ(s, s) = 0 when s is inserted, so u 6= s.
In addition, we have that S 6= ∅ before u is added.

95 / 108

Proof

Thus
We are going to prove for each u in V , u.d = δ(s, u) when u is inserted in
S.

Initialization
Initially S = ∅, thus the invariant is true.

Maintenance
We want to show that in each iteration u.d = δ (s, u) for the vertex added
to set S.

For this, note the following
Note that s.d = δ(s, s) = 0 when s is inserted, so u 6= s.
In addition, we have that S 6= ∅ before u is added.

95 / 108

Proof

Thus
We are going to prove for each u in V , u.d = δ(s, u) when u is inserted in
S.

Initialization
Initially S = ∅, thus the invariant is true.

Maintenance
We want to show that in each iteration u.d = δ (s, u) for the vertex added
to set S.

For this, note the following
Note that s.d = δ(s, s) = 0 when s is inserted, so u 6= s.
In addition, we have that S 6= ∅ before u is added.

95 / 108

Proof

Use contradiction
Now, suppose not. Let u be the first vertex such that u.d 6= δ (s,u) when
inserted in S.

Note the following
Note that s.d = δ(s, s) = 0 when s is inserted, so u 6= s; thus S 6= ∅ just
before u is inserted (in fact s ∈ S).

96 / 108

Proof

Use contradiction
Now, suppose not. Let u be the first vertex such that u.d 6= δ (s,u) when
inserted in S.

Note the following
Note that s.d = δ(s, s) = 0 when s is inserted, so u 6= s; thus S 6= ∅ just
before u is inserted (in fact s ∈ S).

96 / 108

Proof

Now
Note that there exist a path from s to u, for otherwise u.d = δ(s, u) =∞
by corollary 24.12.

“If there is no path from s to v, then v.d = δ(s, v) =∞ is an
invariant.”

Thus exist a shortest path p
Between s and u.

Observation
Prior to adding u to S, path p connects a vertex in S, namely s, to a
vertex in V − S, namely u.

97 / 108

Proof

Now
Note that there exist a path from s to u, for otherwise u.d = δ(s, u) =∞
by corollary 24.12.

“If there is no path from s to v, then v.d = δ(s, v) =∞ is an
invariant.”

Thus exist a shortest path p
Between s and u.

Observation
Prior to adding u to S, path p connects a vertex in S, namely s, to a
vertex in V − S, namely u.

97 / 108

Proof

Now
Note that there exist a path from s to u, for otherwise u.d = δ(s, u) =∞
by corollary 24.12.

“If there is no path from s to v, then v.d = δ(s, v) =∞ is an
invariant.”

Thus exist a shortest path p
Between s and u.

Observation
Prior to adding u to S, path p connects a vertex in S, namely s, to a
vertex in V − S, namely u.

97 / 108

Proof

Consider the following
The first y along p from s to u such that y ∈ V − S.
And let x ∈ S be y’s predecessor along p.

98 / 108

Proof
Proof (continuation)
Then, shortest path from s to u: s p1 x→ y

p2 u looks like...

S

s

x

y

u

Remark: Either of paths p1 or p2 may have no edges.

99 / 108

Proof

We claim
y.d = δ(s, y) when u is added into S.

Proof of the claim
1 Observe that x ∈ S.
2 In addition, we know that u is the first vertex for which u.d 6= δ (s, u)

when it id added to S

100 / 108

Proof

We claim
y.d = δ(s, y) when u is added into S.

Proof of the claim
1 Observe that x ∈ S.
2 In addition, we know that u is the first vertex for which u.d 6= δ (s, u)

when it id added to S

100 / 108

Proof

Then
In addition, we had that x.d = δ(s, x) when x was inserted into S.

Then, we relaxed the edge between x and y
Edge (x, y) was relaxed at that time!

101 / 108

Proof

Then
In addition, we had that x.d = δ(s, x) when x was inserted into S.

Then, we relaxed the edge between x and y
Edge (x, y) was relaxed at that time!

101 / 108

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where p = p1
s u→ v. If

u.d = δ(s, u) holds at any time prior to calling Relax(u, v, w), then
v.d = δ(s, v) holds at all times after the call.

Then
Then, using this convergence property.

y.d = δ(s, y) = δ(s, x) + w(x, y) (9)

The claim is implied!!!

102 / 108

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where p = p1
s u→ v. If

u.d = δ(s, u) holds at any time prior to calling Relax(u, v, w), then
v.d = δ(s, v) holds at all times after the call.

Then
Then, using this convergence property.

y.d = δ(s, y) = δ(s, x) + w(x, y) (9)

The claim is implied!!!

102 / 108

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where p = p1
s u→ v. If

u.d = δ(s, u) holds at any time prior to calling Relax(u, v, w), then
v.d = δ(s, v) holds at all times after the call.

Then
Then, using this convergence property.

y.d = δ(s, y) = δ(s, x) + w(x, y) (9)

The claim is implied!!!

102 / 108

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where p = p1
s u→ v. If

u.d = δ(s, u) holds at any time prior to calling Relax(u, v, w), then
v.d = δ(s, v) holds at all times after the call.

Then
Then, using this convergence property.

y.d = δ(s, y) = δ(s, x) + w(x, y) (9)

The claim is implied!!!

102 / 108

Proof

Now
1 We obtain a contradiction to prove that u.d = δ (s, u).
2 y appears before u in a shortest path on a shortest path from s to u.
3 In addition, all edges have positive weights.
4 Then, δ(s, y) ≤ δ(s, u), thus

y.d = δ (s, y)
≤ δ (s, u)
≤ u.d

I The last inequality is due to the Upper-Bound Property (Lemma
24.11).

103 / 108

Proof

Now
1 We obtain a contradiction to prove that u.d = δ (s, u).
2 y appears before u in a shortest path on a shortest path from s to u.
3 In addition, all edges have positive weights.
4 Then, δ(s, y) ≤ δ(s, u), thus

y.d = δ (s, y)
≤ δ (s, u)
≤ u.d

I The last inequality is due to the Upper-Bound Property (Lemma
24.11).

103 / 108

Proof

Now
1 We obtain a contradiction to prove that u.d = δ (s, u).
2 y appears before u in a shortest path on a shortest path from s to u.
3 In addition, all edges have positive weights.
4 Then, δ(s, y) ≤ δ(s, u), thus

y.d = δ (s, y)
≤ δ (s, u)
≤ u.d

I The last inequality is due to the Upper-Bound Property (Lemma
24.11).

103 / 108

Proof

Now
1 We obtain a contradiction to prove that u.d = δ (s, u).
2 y appears before u in a shortest path on a shortest path from s to u.
3 In addition, all edges have positive weights.
4 Then, δ(s, y) ≤ δ(s, u), thus

y.d = δ (s, y)
≤ δ (s, u)
≤ u.d

I The last inequality is due to the Upper-Bound Property (Lemma
24.11).

103 / 108

Proof

Now
1 We obtain a contradiction to prove that u.d = δ (s, u).
2 y appears before u in a shortest path on a shortest path from s to u.
3 In addition, all edges have positive weights.
4 Then, δ(s, y) ≤ δ(s, u), thus

y.d = δ (s, y)
≤ δ (s, u)
≤ u.d

I The last inequality is due to the Upper-Bound Property (Lemma
24.11).

103 / 108

Proof

Now
1 We obtain a contradiction to prove that u.d = δ (s, u).
2 y appears before u in a shortest path on a shortest path from s to u.
3 In addition, all edges have positive weights.
4 Then, δ(s, y) ≤ δ(s, u), thus

y.d = δ (s, y)
≤ δ (s, u)
≤ u.d

I The last inequality is due to the Upper-Bound Property (Lemma
24.11).

103 / 108

Proof

Now
1 We obtain a contradiction to prove that u.d = δ (s, u).
2 y appears before u in a shortest path on a shortest path from s to u.
3 In addition, all edges have positive weights.
4 Then, δ(s, y) ≤ δ(s, u), thus

y.d = δ (s, y)
≤ δ (s, u)
≤ u.d

I The last inequality is due to the Upper-Bound Property (Lemma
24.11).

103 / 108

Proof

Then
But because both vertices u and y where in V − S when u was chosen in
line 5 ⇒ u.d ≤ y.d.

Thus

y.d = δ(s, y) = δ(s, u) = u.d

Consequently
We have that u.d = δ (s, u), which contradicts our choice of u.
Conclusion: u.d = δ (s, u) when u is added to S and the equality is
maintained afterwards.

104 / 108

Proof

Then
But because both vertices u and y where in V − S when u was chosen in
line 5 ⇒ u.d ≤ y.d.

Thus

y.d = δ(s, y) = δ(s, u) = u.d

Consequently
We have that u.d = δ (s, u), which contradicts our choice of u.
Conclusion: u.d = δ (s, u) when u is added to S and the equality is
maintained afterwards.

104 / 108

Proof

Then
But because both vertices u and y where in V − S when u was chosen in
line 5 ⇒ u.d ≤ y.d.

Thus

y.d = δ(s, y) = δ(s, u) = u.d

Consequently
We have that u.d = δ (s, u), which contradicts our choice of u.
Conclusion: u.d = δ (s, u) when u is added to S and the equality is
maintained afterwards.

104 / 108

Proof

Then
But because both vertices u and y where in V − S when u was chosen in
line 5 ⇒ u.d ≤ y.d.

Thus

y.d = δ(s, y) = δ(s, u) = u.d

Consequently
We have that u.d = δ (s, u), which contradicts our choice of u.
Conclusion: u.d = δ (s, u) when u is added to S and the equality is
maintained afterwards.

104 / 108

Finally

Termination
At termination Q = ∅
Thus, V − S = ∅ or equivalent S = V

Thus
u.d = δ (s, u) for all vertices u ∈ V !!!

105 / 108

Finally

Termination
At termination Q = ∅
Thus, V − S = ∅ or equivalent S = V

Thus
u.d = δ (s, u) for all vertices u ∈ V !!!

105 / 108

Outline
1 Introduction

Introduction and Similar Problems
2 General Results

Optimal Substructure Properties
Predecessor Graph
The Relaxation Concept
The Bellman-Ford Algorithm
Properties of Relaxation

3 Bellman-Ford Algorithm
Predecessor Subgraph for Bellman
Shortest Path for Bellman
Example
Bellman-Ford finds the Shortest Path
Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)
Relaxing Edges
Example

5 Dijkstra’s Algorithm
Dijkstra’s Algorithm: A Greedy Method
Example
Correctness Dijkstra’s algorithm
Complexity of Dijkstra’s Algorithm

6 Exercises
106 / 108

Complexity

Running time is
O(V 2) using linear array for priority queue.
O((V + E) log V) using binary heap.
O(V log V + E) using Fibonacci heap.

107 / 108

Exercises

From Cormen’s book solve
24.1-1
24.1-3
24.1-4
23.3-1
23.3-3
23.3-4
23.3-6
23.3-7
23.3-8
23.3-10

108 / 108

	Introduction
	Introduction and Similar Problems

	General Results
	Optimal Substructure Properties
	Predecessor Graph
	The Relaxation Concept
	The Bellman-Ford Algorithm
	Properties of Relaxation

	Bellman-Ford Algorithm
	Predecessor Subgraph for Bellman
	Shortest Path for Bellman
	Example
	Bellman-Ford finds the Shortest Path
	Correctness of Bellman-Ford

	Directed Acyclic Graphs (DAG)
	Relaxing Edges
	Example

	Dijkstra's Algorithm
	Dijkstra's Algorithm: A Greedy Method
	Example
	Correctness Dijkstra's algorithm
	Complexity of Dijkstra's Algorithm

	Exercises

