Analysis of Algorithms
 Single Source Shortest Path

Andres Mendez-Vazquez

November 21, 2018

Outline

(1) Introduction

- Introduction and Similar Problems
(2) General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm
(6) Exercises

Outline

(1) Introduction

- Introduction and Similar Problems

2 General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Introduction

Problem description

- Given a single source vertex in a weighted, directed graph.

Introduction

Problem description

- Given a single source vertex in a weighted, directed graph.
- We want to compute a shortest path for each possible destination (Similar to BFS).

Introduction

Problem description

- Given a single source vertex in a weighted, directed graph.
- We want to compute a shortest path for each possible destination (Similar to BFS).

Thus

The algorithm will compute a shortest path tree (again, similar to BFS).

Similar Problems

Single destination shortest paths problem

Find a shortest path to a given destination vertex t from each vertex.

Similar Problems

Single destination shortest paths problem

Find a shortest path to a given destination vertex t from each vertex.

- By reversing the direction of each edge in the graph, we can reduce this problem to a single source problem.

Similar Problems

Single pair shortest path problem

Find a shortest path from u to v for given vertices u and v.

Similar Problems

Single pair shortest path problem

Find a shortest path from u to v for given vertices u and v.

- If we solve the single source problem with source vertex u, we also solve this problem.

Similar Problems

All pairs shortest paths problem

Find a shortest path from u to v for every pair of vertices u and v.

Outline

Introduction
－Introduction and Similar Problems
（2）General Results
－Optimal Substructure Properties
－Predecessor Graph
－The Relaxation Concept
－The Bellman－Ford Algorithm
－Properties of Relaxation
（3）Bellman－Ford Algorithm
－Predecessor Subgraph for Bellman
－Shortest Path for Bellman
－Example
－Bellman－Ford finds the Shortest Path
－Correctness of Bellman－Ford
（4）Directed Acyclic Graphs（DAG）
－Relaxing Edges
－Example
（5）Dijkstra＇s Algorithm
－Dijkstra＇s Algorithrn：A Greedy Method
－Example
－Correctness Dijkstra＇s algorithm
－Complexity of Dijkstra＇s Algorithm

Optimal Substructure Property

Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a Shortest Path from v_{1} to v_{k}. Then,

Optimal Substructure Property

Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a Shortest Path from v_{1} to v_{k}. Then,

- $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ is a Shortest Path from v_{i} to v_{j}, where $1 \leq i \leq j \leq k$.

Optimal Substructure Property

Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a Shortest Path from v_{1} to v_{k}. Then,

- $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ is a Shortest Path from v_{i} to v_{j}, where $1 \leq i \leq j \leq k$.

We have then

- So, we have the optimal substructure property.

Optimal Substructure Property

Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a Shortest Path from v_{1} to v_{k}. Then,

- $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ is a Shortest Path from v_{i} to v_{j}, where $1 \leq i \leq j \leq k$.

We have then

- So, we have the optimal substructure property.
- Bellman-Ford's algorithm uses dynamic programming.

Optimal Substructure Property

Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a Shortest Path from v_{1} to v_{k}. Then,

- $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ is a Shortest Path from v_{i} to v_{j}, where $1 \leq i \leq j \leq k$.

We have then

- So, we have the optimal substructure property.
- Bellman-Ford's algorithm uses dynamic programming.
- Dijkstra's algorithm uses the greedy approach.

Optimal Substructure Property

Lemma 24.1

Given a weighted, directed graph $G=(V, E)$ with $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a Shortest Path from v_{1} to v_{k}. Then,

- $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ is a Shortest Path from v_{i} to v_{j}, where $1 \leq i \leq j \leq k$.

We have then

- So, we have the optimal substructure property.
- Bellman-Ford's algorithm uses dynamic programming.
- Dijkstra's algorithm uses the greedy approach.

In addition, we have that
Let $\delta(u, v)=$ weight of Shortest Path from u to v.

Optimal Substructure Property

Corollary

Let p be a Shortest Path from s to v, where
$p=s \stackrel{p_{1}}{\rightsquigarrow} u \rightarrow v=p_{1} \cup\{(u, v)\}$. Then $\delta(s, v)=\delta(s, u)+w(u, v)$.

The Lower Bound Between Nodes

Lemma 24.10
Let $s \in V$. For all edges $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u)+w(u, v)$.

Now

Then
We have the basic concepts

Now

We have the basic concepts

Still

We need to define an important one.

Now

Then

We have the basic concepts

Still

We need to define an important one.

The Predecessor Graph

This will facilitate the proof of several concepts

Outline

Introduction

- Introduction and Similar Problems
(2) General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Predecessor Graph

Representing shortest paths

For this we use the predecessor subgraph

Predecessor Graph

Representing shortest paths

For this we use the predecessor subgraph

- It is defined slightly differently from that on Breadth-First-Search

Predecessor Graph

Representing shortest paths

For this we use the predecessor subgraph

- It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where

Predecessor Graph

Representing shortest paths

For this we use the predecessor subgraph

- It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where

- $V_{\pi}=\{v \in V \mid v . \pi \neq N I L\} \cup\{s\}$

Predecessor Graph

Representing shortest paths

For this we use the predecessor subgraph

- It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where

- $V_{\pi}=\{v \in V \mid v . \pi \neq N I L\} \cup\{s\}$
- $E_{\pi}=\left\{(v . \pi, v) \mid v \in V_{\pi}-\{s\}\right\}$

Predecessor Graph

Representing shortest paths

For this we use the predecessor subgraph

- It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where

- $V_{\pi}=\{v \in V \mid v . \pi \neq N I L\} \cup\{s\}$
- $E_{\pi}=\left\{(v . \pi, v) \mid v \in V_{\pi}-\{s\}\right\}$

Properties

- The predecessor subgraph G_{π} forms a depth first forest composed of several depth first trees.

Predecessor Graph

Representing shortest paths

For this we use the predecessor subgraph

- It is defined slightly differently from that on Breadth-First-Search

Definition of a Predecessor Subgraph

The predecessor is a subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where

- $V_{\pi}=\{v \in V \mid v . \pi \neq N I L\} \cup\{s\}$
- $E_{\pi}=\left\{(v . \pi, v) \mid v \in V_{\pi}-\{s\}\right\}$

Properties

- The predecessor subgraph G_{π} forms a depth first forest composed of several depth first trees.
- The edges in E_{π} are called tree edges.

Outline

Introduction

- Introduction and Similar Problems
(2) General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

The Relaxation Concept

We are going to use certain functions for all the algorithms

- Initialize

The Relaxation Concept

We are going to use certain functions for all the algorithms

- Initialize
- Here, the basic variables of the nodes in a graph will be initialized

The Relaxation Concept

We are going to use certain functions for all the algorithms

- Initialize
- Here, the basic variables of the nodes in a graph will be initialized
$\star v . d=$ the distance from the source s.

The Relaxation Concept

We are going to use certain functions for all the algorithms

- Initialize
- Here, the basic variables of the nodes in a graph will be initialized
$\star v . d=$ the distance from the source s.
$\star v . \pi=$ the predecessor node during the search of the shortest path.

The Relaxation Concept

We are going to use certain functions for all the algorithms

- Initialize
- Here, the basic variables of the nodes in a graph will be initialized
$\star \quad v . d=$ the distance from the source s.
$\star v . \pi=$ the predecessor node during the search of the shortest path.

Changing the $v . d$

This will be done in the Relaxation algorithm.

Initialize and Relaxation

The Algorithms keep track of $v . d, v . \pi$. It is initialized as follows
Initialize (G, s)
(1) for each $v \in V[G]$
(2) $\quad v . d=\infty$
(3) $v . \pi=N I L$
(9) $s . d=0$

Initialize and Relaxation

The Algorithms keep track of $v . d, v . \pi$. It is initialized as follows

Initialize (G, s)
(1) for each $v \in V[G]$
(2) $\quad v . d=\infty$
(3) $v . \pi=N I L$
(4) $s . d=0$

These values are changed when an edge (u, v) is relaxed.
$\operatorname{Relax}(u, v, w)$
(1) if $v . d>u . d+w(u, v)$
(2)

$$
\begin{aligned}
& v \cdot d=u \cdot d+w(u, v) \\
& v \cdot \pi=u
\end{aligned}
$$

How are these functions used?

These functions are used
(1) Build a predecesor graph G_{π}.

How are these functions used?

These functions are used
(1) Build a predecesor graph G_{π}.
(2) Integrate the Shortest Path into that predecessor graph.
(1) Using the field d.

Outline

Introduction

- Introduction and Similar Problems
(2) General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

The Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.
Bellman-Ford (G, s, w)
(1) Initialize (G, s)

The Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.
Bellman-Ford (G, s, w)
(1) Initialize (G, s)
(2) for $i=1$ to $|V[G]|-1$
(3) for each (u, v) to $E[G]$
(9) $\operatorname{Relax}(u, v, w)$

The Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.
Bellman-Ford (G, s, w)
(1) Initialize (G, s)
(2) for $i=1$ to $|V[G]|-1$
(3) for each (u, v) to $E[G]$
(9) $\operatorname{Relax}(u, v, w)$
(0) for each (u, v) to $E[G]$
©

$$
\text { if } v . d>u . d+w(u, v)
$$

©
return false

The Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.
Bellman-Ford (G, s, w)
(1) Initialize (G, s)
(2) for $i=1$ to $|V[G]|-1$
(3) for each (u, v) to $E[G]$
(9) $\operatorname{Relax}(u, v, w)$
(6) for each (u, v) to $E[G]$
(0) if $v . d>u . d+w(u, v)$
(1) return false
(8) return true

Time Complexity

$O(V E)$

Outline

Introduction

- Introduction and Similar Problems
(2) General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Properties of Relaxation

Some properties

- $v . d$, if not ∞, is the length of some path from s to v.

Properties of Relaxation

Some properties

- $v . d$, if not ∞, is the length of some path from s to v.
- $v . d$ either stays the same or decreases with time.

Properties of Relaxation

Some properties

- $v . d$, if not ∞, is the length of some path from s to v.
- v.d either stays the same or decreases with time.

Therefore

- If $v . d=\delta(s, v)$ at any time, this holds thereafter.

Properties of Relaxation

Some properties

- $v . d$, if not ∞, is the length of some path from s to v.
- v.d either stays the same or decreases with time.

Therefore

- If $v . d=\delta(s, v)$ at any time, this holds thereafter.

Something nice

- Note that $v . d \geq \delta(s, v)$ always (Upper-Bound Property).

Properties of Relaxation

Some properties

- $v . d$, if not ∞, is the length of some path from s to v.
- $v . d$ either stays the same or decreases with time.

Therefore

- If $v . d=\delta(s, v)$ at any time, this holds thereafter.

Something nice

- Note that $v . d \geq \delta(s, v)$ always (Upper-Bound Property).
- After i iterations of relaxing an all (u, v), if the shortest path to v has i edges, then $v . d=\delta(s, v)$.

Properties of Relaxation

Some properties

- $v . d$, if not ∞, is the length of some path from s to v.
- $v . d$ either stays the same or decreases with time.

Therefore

- If $v . d=\delta(s, v)$ at any time, this holds thereafter.

Something nice

- Note that $v . d \geq \delta(s, v)$ always (Upper-Bound Property).
- After i iterations of relaxing an all (u, v), if the shortest path to v has i edges, then $v . d=\delta(s, v)$.
- If there is no path from s to v, then $v . d=\delta(s, v)=\infty$ is an invariant.
olinestav

Properties of Relaxation

Lemma 24.10 (Triangle inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

Properties of Relaxation

Lemma 24.10 (Triangle inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$
\begin{equation*}
\delta(s, v) \leq \delta(s, u)+w(u, v) \tag{1}
\end{equation*}
$$

Properties of Relaxation

Lemma 24.10 (Triangle inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$
\begin{equation*}
\delta(s, v) \leq \delta(s, u)+w(u, v) \tag{1}
\end{equation*}
$$

Proof

(1) Suppose that p is a shortest path from source s to vertex v.

Properties of Relaxation

Lemma 24.10 (Triangle inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$
\begin{equation*}
\delta(s, v) \leq \delta(s, u)+w(u, v) \tag{1}
\end{equation*}
$$

Proof

(1) Suppose that p is a shortest path from source s to vertex v.
(2) Then, p has no more weight than any other path from s to vertex v.

Properties of Relaxation

Lemma 24.10 (Triangle inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have:

$$
\begin{equation*}
\delta(s, v) \leq \delta(s, u)+w(u, v) \tag{1}
\end{equation*}
$$

Proof

(1) Suppose that p is a shortest path from source s to vertex v.
(2) Then, p has no more weight than any other path from s to vertex v.
(3) Not only p has no more weiht tha a particular shortest path that goes from s to u and then takes edge (u, v).

Properties of Relaxation

Lemma 24.11 (Upper Bound Property)

- Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Consider any algorithm in which $v . d$, and $v . \pi$ are first initialized by calling $\operatorname{Initialize}(G, s)$ (s is the source), and are only changed by calling Relax.

Properties of Relaxation

Lemma 24.11 (Upper Bound Property)

- Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Consider any algorithm in which $v . d$, and $v . \pi$ are first initialized by calling $\operatorname{Initialize}(G, s)$ (s is the source), and are only changed by calling Relax.
- Then, we have that $v . d \geq \delta(s, v) \forall v \in V[G]$, and this invariant is maintained over any sequence of relaxation steps on the edges of G.

Properties of Relaxation

Lemma 24.11 (Upper Bound Property)

- Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Consider any algorithm in which $v . d$, and $v . \pi$ are first initialized by calling $\operatorname{Initialize}(G, s)$ (s is the source), and are only changed by calling Relax.
- Then, we have that $v . d \geq \delta(s, v) \forall v \in V[G]$, and this invariant is maintained over any sequence of relaxation steps on the edges of G.
- Moreover, once $v . d=\delta(s, v)$, it never changes.

Proof of Lemma

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

- $v . d \geq \delta(s, v)$ for all $v \in V$

Proof of Lemma

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

- $v . d \geq \delta(s, v)$ for all $v \in V$

For the Basis

$v . d \geq \delta(s, v)$ is true after initialization, since:

Proof of Lemma

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

- $v . d \geq \delta(s, v)$ for all $v \in V$

For the Basis

$v . d \geq \delta(s, v)$ is true after initialization, since:

- v.d $=\infty$ making $v . d \geq \delta(s, v)$ for all $v \in V-\{s\}$.

Proof of Lemma

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

- $v . d \geq \delta(s, v)$ for all $v \in V$

For the Basis

$v . d \geq \delta(s, v)$ is true after initialization, since:

- v.d $=\infty$ making $v . d \geq \delta(s, v)$ for all $v \in V-\{s\}$.
- For $s, s . d=0 \geq \delta(s, s)$.

Proof of Lemma

Loop Invariance

The Proof can be done by induction over the number of relaxation steps and the loop invariance:

- $v . d \geq \delta(s, v)$ for all $v \in V$

For the Basis

$v . d \geq \delta(s, v)$ is true after initialization, since:

- $v . d=\infty$ making $v . d \geq \delta(s, v)$ for all $v \in V-\{s\}$.
- For $s, s . d=0 \geq \delta(s, s)$.

For the inductive step, consider the relaxation of an edge (u, v)
By the inductive hypothesis, we have that $x . d \geq \delta(s, x)$ for all $x \in V$ prior to relaxation.

Thus

If you call Relax (u, v, w), it may change $v . d$

$$
v . d=u . d+w(u, v)
$$

Thus

If you call Relax (u, v, w), it may change $v . d$

$$
\begin{aligned}
v . d & =u \cdot d+w(u, v) \\
& \geq \delta(s, u)+w(u, v) \text { by inductive hypothesis }
\end{aligned}
$$

Thus

If you call Relax (u, v, w), it may change $v . d$

$$
\begin{aligned}
v . d & =u . d+w(u, v) \\
& \geq \delta(s, u)+w(u, v) \text { by inductive hypothesis } \\
& \geq \delta(s, v) \text { by the triangle inequality }
\end{aligned}
$$

Thus

If you call Relax (u, v, w), it may change $v . d$

$$
\begin{aligned}
v . d & =u \cdot d+w(u, v) \\
& \geq \delta(s, u)+w(u, v) \text { by inductive hypothesis } \\
& \geq \delta(s, v) \text { by the triangle inequality }
\end{aligned}
$$

Thus, the invariant is maintained.

Properties of Relaxation

Proof of lemma 24.11 cont...

- To proof that the value $v . d$ never changes once $v . d=\delta(s, v)$:

Properties of Relaxation

Proof of lemma 24.11 cont...

- To proof that the value $v . d$ never changes once $v . d=\delta(s, v)$:
- Note the following: Once $v . d=\delta(s, v)$, it cannot decrease because $v . d \geq \delta(s, v)$ and Relaxation never increases d.

Next, we have

Corollary 24.12 (No-path property)
If there is no path from s to v, then $v \cdot d=\delta(s, v)=\infty$ is an invariant.

Next, we have

Corollary 24.12 (No-path property)

If there is no path from s to v, then $v \cdot d=\delta(s, v)=\infty$ is an invariant.

Proof

By the upper-bound property, we always have $\infty=\delta(s, v) \leq v . d$. Then, $v . d=\infty$.

More Lemmas

Lemma 24.13

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Then, immediately after relaxing edge (u, v) by calling $\operatorname{Relax}(u, v, w)$ we have $v . d \leq u . d+w(u, v)$.

Proof

First

If, just prior to relaxing edge (u, v),

Proof

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that $v . d>u . d+w(u, v)$

Proof

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that $v . d>u . d+w(u, v)$
- Then, $v . d=u . d+w(u, v)$ after relaxation.

Proof

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that $v . d>u . d+w(u, v)$
- Then, $v . d=u . d+w(u, v)$ after relaxation.

Now, Case 2

If $v . d \leq u . d+w(u, v)$ just before relaxation, then:

Proof

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that $v . d>u . d+w(u, v)$
- Then, $v . d=u . d+w(u, v)$ after relaxation.

Now, Case 2

If $v . d \leq u . d+w(u, v)$ just before relaxation, then:

- neither $u . d$ nor $v . d$ changes

Proof

First

If, just prior to relaxing edge (u, v),

- Case 1: if we have that $v . d>u . d+w(u, v)$
- Then, $v . d=u . d+w(u, v)$ after relaxation.

Now, Case 2

If $v . d \leq u . d+w(u, v)$ just before relaxation, then:

- neither $u . d$ nor $v . d$ changes

Thus, afterwards

$$
v . d \leq u . d+w(u, v)
$$

More Lemmas

Lemma 24.14 (Convergence property)

- Let p be a shortest path from s to v, where

$$
p=s \stackrel{p_{1}}{\rightsquigarrow} u \rightarrow v=p_{1} \cup\{(u, v)\} .
$$

More Lemmas

Lemma 24.14 (Convergence property)

- Let p be a shortest path from s to v, where

$$
p=s \stackrel{p_{1}}{\rightsquigarrow} u \rightarrow v=p_{1} \cup\{(u, v)\} .
$$

- If $u . d=\delta(s, u)$ holds at any time prior to calling $\operatorname{Relax}(u, v, w)$, then $v . d=\delta(s, v)$ holds at all times after the call.

More Lemmas

Lemma 24.14 (Convergence property)

- Let p be a shortest path from s to v, where

$$
p=s \stackrel{p_{1}}{\rightsquigarrow} u \rightarrow v=p_{1} \cup\{(u, v)\} .
$$

- If $u . d=\delta(s, u)$ holds at any time prior to calling $\operatorname{Relax}(u, v, w)$, then $v . d=\delta(s, v)$ holds at all times after the call.

Proof:

By the upper-bound property, if $u . d=\delta(s, u)$ at some moment before relaxing edge (u, v), holding afterwards.

Proof

Thus, after relaxing (u, v)

$$
v . d \leq u . d+w(u, v) \text { by lemma } 24.13
$$

Proof

Thus, after relaxing (u, v)

$$
\begin{aligned}
v . d & \leq u . d+w(u, v) \text { by lemma } 24.13 \\
& =\delta(s, u)+w(u, v)
\end{aligned}
$$

Proof

Thus, after relaxing (u, v)

$$
\begin{aligned}
v . d & \leq u . d+w(u, v) \text { by lemma } 24.13 \\
& =\delta(s, u)+w(u, v) \\
& =\delta(s, v) \text { by corollary of lemma } 24.1
\end{aligned}
$$

Now

Proof

Thus, after relaxing (u, v)

$$
\begin{aligned}
v . d & \leq u . d+w(u, v) \text { by lemma } 24.13 \\
& =\delta(s, u)+w(u, v) \\
& =\delta(s, v) \text { by corollary of lemma } 24.1
\end{aligned}
$$

Now

By lemma 24.11, v. $d \geq \delta(s, v)$, so $v . d=\delta(s, v)$.

Outline

Introduction

- Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Predecessor Subgraph for Bellman

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Predecessor Subgraph for Bellman

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Proof

It is necessary to prove two things in order to get a tree:

Predecessor Subgraph for Bellman

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Proof

It is necessary to prove two things in order to get a tree:
(1) G_{π} is acyclic.

Predecessor Subgraph for Bellman

Lemma 24.16

Assume a given graph G that has no negative weight cycles reachable from s. Then, after the initialization, the predecessor subgraph G_{π} is always a tree with root s, and any sequence of relaxations steps on edges of G maintains this property as an invariant.

Proof

It is necessary to prove two things in order to get a tree:
(1) G_{π} is acyclic.
(2) There exists a unique path from source s to each vertex V_{π}.

Proof of G_{π} is acyclic

First

Suppose there exist a cycle $c=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=v_{k}$. We have $v_{i} . \pi=v_{i-1}$ for $i=1,2, \ldots, k$.

Proof of G_{π} is acyclic

First

Suppose there exist a cycle $c=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=v_{k}$. We have $v_{i} . \pi=v_{i-1}$ for $i=1,2, \ldots, k$.

Second

Assume relaxation of $\left(v_{k-1}, v_{k}\right)$ created the cycle. We are going to show that the cycle has a negative weight.

Proof of G_{π} is acyclic

First

Suppose there exist a cycle $c=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=v_{k}$. We have $v_{i} . \pi=v_{i-1}$ for $i=1,2, \ldots, k$.

Second

Assume relaxation of $\left(v_{k-1}, v_{k}\right)$ created the cycle. We are going to show that the cycle has a negative weight.

We claim that

The cycle must be reachable from s (Why?)

Proof

First

Each vertex on the cycle has a non-NIL predecessor, and so each vertex on it was assigned a finite shortest-path estimate when it was assigned its non-NIL value.

Proof

First

Each vertex on the cycle has a non-NIL predecessor, and so each vertex on it was assigned a finite shortest-path estimate when it was assigned its non-NIL value.

Then

By the upper-bound property, each vertex on the cycle has a finite shortest-path weight,

Proof

First

Each vertex on the cycle has a non-NIL predecessor, and so each vertex on it was assigned a finite shortest-path estimate when it was assigned its non-NIL value.

Then

By the upper-bound property, each vertex on the cycle has a finite shortest-path weight,

Thus

Making the cycle reachable from s.

Proof

Before call to $\operatorname{Relax}\left(v_{k-1}, v_{k}, w\right)$:

$$
\begin{equation*}
v_{i} . \pi=v_{i-1} \text { for } i=1, \ldots, k-1 \tag{2}
\end{equation*}
$$

Proof

Before call to $\operatorname{Relax}\left(v_{k-1}, v_{k}, w\right)$:

$$
\begin{equation*}
v_{i} . \pi=v_{i-1} \text { for } i=1, \ldots, k-1 \tag{2}
\end{equation*}
$$

Thus

This Implies $v_{i} . d$ was last updated by

$$
\begin{equation*}
v_{i} \cdot d=v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \tag{3}
\end{equation*}
$$

for $i=1, \ldots, k-1$ (Because Relax updates π).

Proof

Before call to $\operatorname{Relax}\left(v_{k-1}, v_{k}, w\right)$:

$$
\begin{equation*}
v_{i} . \pi=v_{i-1} \text { for } i=1, \ldots, k-1 \tag{2}
\end{equation*}
$$

Thus

This Implies $v_{i} . d$ was last updated by

$$
\begin{equation*}
v_{i} \cdot d=v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \tag{3}
\end{equation*}
$$

for $i=1, \ldots, k-1$ (Because Relax updates π).

This implies

This implies

$$
\begin{equation*}
v_{i} \cdot d \geq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \tag{4}
\end{equation*}
$$

for $i=1, \ldots, k-1$ (Before Relaxation in Lemma 24.13).

Proof

Thus

Because $v_{k} . \pi$ is changed by call Relax (Immediately before), $v_{k} . d>v_{k-1} . d+w\left(v_{k-1}, v_{k}\right)$, we have that:

Proof

Thus

Because $v_{k} . \pi$ is changed by call Relax (Immediately before), $v_{k} . d>v_{k-1} . d+w\left(v_{k-1}, v_{k}\right)$, we have that:

$$
\sum_{i=1}^{k} v_{i} \cdot d>\sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right)
$$

Proof

Thus

Because $v_{k} . \pi$ is changed by call Relax (Immediately before), $v_{k} . d>v_{k-1} . d+w\left(v_{k-1}, v_{k}\right)$, we have that:

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & >\sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

We have finally that

$38 / 108$

Proof

Thus

Because $v_{k} . \pi$ is changed by call Relax (Immediately before), $v_{k} . d>v_{k-1} . d+w\left(v_{k-1}, v_{k}\right)$, we have that:

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & >\sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

We have finally that

Because $\sum_{i=1}^{k} v_{i} . d=\sum_{i=1}^{k} v_{i-1} . d$, we have that $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0$, i.e., a negative weight cycle!!!

Some comments

Comments

- $v_{i} . d \geq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$ for $i=1, \ldots, k-1$ because when $\operatorname{Relax}\left(v_{i-1}, v_{i}, w\right)$ was called, there was an equality, and $v_{i-1} . d$ may have gotten smaller by further calls to Relax.

Some comments

Comments

- $v_{i} . d \geq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$ for $i=1, \ldots, k-1$ because when $\operatorname{Relax}\left(v_{i-1}, v_{i}, w\right)$ was called, there was an equality, and $v_{i-1} . d$ may have gotten smaller by further calls to Relax.
- $v_{k} \cdot d>v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$ before the last call to Relax because that last call changed $v_{k} . d$.

Proof of existence of a unique path from source s

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π}, the graph G_{π} contains at least one path from s to v.

Proof of existence of a unique path from source s

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π}, the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

Proof of existence of a unique path from source s

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π}, the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

Proof of existence of a unique path from source s

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π}, the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

- This can only be possible if for two nodes x and $y \Rightarrow x \neq y$, but $z . \pi=x=y!!!$

Proof of existence of a unique path from source s

Let G_{π} be the predecessor subgraph.

- So, for any v in V_{π}, the graph G_{π} contains at least one path from s to v.
- Assume now that you have two paths:

- This can only be possible if for two nodes x and $y \Rightarrow x \neq y$, but $z . \pi=x=y!!!$
- Contradiction!!! Therefore, we have only one path and G_{π} is a tree.

Outline

Introduction

- Introduction and Similar Problems

- General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Lemma 24.17

Lemma 24.17

Same conditions as before. It calls Initialize and repeatedly calls Relax until $v . d=\delta(s, v)$ for all v in V. Then G_{π} is a shortest path tree rooted at s.

Lemma 24.17

Lemma 24.17

Same conditions as before. It calls Initialize and repeatedly calls Relax until $v . d=\delta(s, v)$ for all v in V. Then G_{π} is a shortest path tree rooted at s.

Proof

- For all v in V, there is a unique simple path p from s to v in G_{π} (Lemma 24.16).

Lemma 24.17

Lemma 24.17

Same conditions as before. It calls Initialize and repeatedly calls Relax until $v . d=\delta(s, v)$ for all v in V. Then G_{π} is a shortest path tree rooted at s.

Proof

- For all v in V, there is a unique simple path p from s to v in G_{π} (Lemma 24.16).
- We want to prove that it is a shortest path from s to v in G.

Proof

Then

Let $p=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=s$ and $v_{k}=v$. Thus, we have $v_{i} \cdot d=\delta\left(s, v_{i}\right)$.

Proof

Then

Let $p=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=s$ and $v_{k}=v$. Thus, we have $v_{i} \cdot d=\delta\left(s, v_{i}\right)$.

And reasoning as before

$$
\begin{equation*}
v_{i} \cdot d \geq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \tag{5}
\end{equation*}
$$

Proof

Then

Let $p=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=s$ and $v_{k}=v$. Thus, we have $v_{i} \cdot d=\delta\left(s, v_{i}\right)$.

And reasoning as before

$$
\begin{equation*}
v_{i} \cdot d \geq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \tag{5}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
w\left(v_{i-1}, v_{i}\right) \leq \delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right) \tag{6}
\end{equation*}
$$

Proof

Then, we sum over all weights

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

Proof

Then, we sum over all weights

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)\right)
\end{aligned}
$$

Proof

Then, we sum over all weights

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)\right) \\
& =\delta\left(s, v_{k}\right)-\delta\left(s, v_{0}\right)
\end{aligned}
$$

Proof

Then, we sum over all weights

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)\right) \\
& =\delta\left(s, v_{k}\right)-\delta\left(s, v_{0}\right) \\
& =\delta\left(s, v_{k}\right)
\end{aligned}
$$

Finally

Proof

Then, we sum over all weights

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)\right) \\
& =\delta\left(s, v_{k}\right)-\delta\left(s, v_{0}\right) \\
& =\delta\left(s, v_{k}\right)
\end{aligned}
$$

Finally

So, equality holds and p is a shortest path because $\delta\left(s, v_{k}\right) \leq w(p)$.

Outline

Introduction
－Introduction and Similar Problems

－General Results

－Optimal Substructure Properties
－Predecessor Graph
－The Relaxation Concept
－The Bellman－Ford Algorithm
－Properties of Relaxation

（3）Bellman－Ford Algorithm

－Predecessor Subgraph for Bellman
－Shortest Path for Bellman
－Example
－Bellman－Ford finds the Shortest Path
－Correctness of Bellman－Ford
4 Directed Acyclic Graphs（DAG）
－Relaxing Edges
－Example
5 Dijkstra＇s Algorithm
－Dijkstra＇s Algorithm：A Greedy Method
－Example
－Correctness Dijkstra＇s algorithm
－Complexity of Dijkstra＇s Algorithm

Again the Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect"

 reachable negative weight cycles.Bellman-Ford (G, s, w)
(1) Initialize (G, s)
(2) for $i=1$ to $|V[G]|-1$
(3) for each (u, v) to $E[G]$
(4)

Relax $(u, v, w) \triangleleft$ The Decision Part of the Dynamic Programming for u.d and $u . \pi$.
(5) for each (u, v) to $E[G]$
(6)

$$
\text { if } v . d>u . d+w(u, v)
$$

return false
(8) return true

Again the Bellman-Ford Algorithm

Bellman-Ford can have negative weight edges. It will "detect" reachable negative weight cycles.

Bellman-Ford (G, s, w)
(1) Initialize (G, s)
(2) for $i=1$ to $|V[G]|-1$
(3) for each (u, v) to $E[G]$
(4)

Relax $(u, v, w) \triangleleft$ The Decision Part of the Dynamic Programming for u.d and $u . \pi$.
(5) for each (u, v) to $E[G]$
©

$$
\text { if } v . d>u . d+w(u, v)
$$

return false
(8) return true

Observation

If Bellman-Ford has not converged after $V(G)-1$ iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

Example

Red Arrows are the representation of $v . \pi$

Example

Here, whenever we have $v \cdot d=\infty$ and $v \cdot u=\infty$ no change is done

Example

Here, we keep updating in the second iteration

cinvestor

Example

Here, during it. we notice that e can be updated for a better value

cinvestov

Example

Here, we keep updating in third iteration and d and g also is updated

Example

Here, we keep updating in fourth iteration

Example

Here, f is updated during this iteration

Outline

Introduction

- Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

$v . d==\delta(s, v)$ upon termination

Lemma 24.2

Assuming no negative weight cycles reachable from $s, v . d==\delta(s, v)$ holds upon termination for all vertices v reachable from s.

$v \cdot d==\delta(s, v)$ upon termination

Lemma 24.2

Assuming no negative weight cycles reachable from $s, v . d==\delta(s, v)$ holds upon termination for all vertices v reachable from s.

Proof

Consider a shortest path p, where $p=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=s$ and $v_{k}=v$.

Lemma 24.2

Assuming no negative weight cycles reachable from $s, v . d==\delta(s, v)$ holds upon termination for all vertices v reachable from s.

Proof

Consider a shortest path p, where $p=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=s$ and $v_{k}=v$.

We know the following

Shortest paths are simple, p has at most $|V|-1$, thus we have that $k \leq|V|-1$.

Proof

Something Notable

Claim: $v_{i} . d=\delta\left(s, v_{i}\right)$ holds after the i th pass over edges.

Proof

Something Notable

Claim: $v_{i} . d=\delta\left(s, v_{i}\right)$ holds after the i th pass over edges.
In the algorithm
Each of the $|V|-1$ iterations of the for loop (Lines 2-4) relaxes all edges in E.

Proof

Something Notable

Claim: $v_{i} . d=\delta\left(s, v_{i}\right)$ holds after the i th pass over edges.
In the algorithm
Each of the $|V|-1$ iterations of the for loop (Lines 2-4) relaxes all edges in E.

Proof follows by induction on i

- The edges relaxed in the i th iteration, for $i=1,2, \ldots, k$, is $\left(v_{i-1}, v_{i}\right)$.

Proof

Something Notable

Claim: $v_{i} . d=\delta\left(s, v_{i}\right)$ holds after the i th pass over edges.

In the algorithm

Each of the $|V|-1$ iterations of the for loop (Lines 2-4) relaxes all edges in E.

Proof follows by induction on i

- The edges relaxed in the i th iteration, for $i=1,2, \ldots, k$, is $\left(v_{i-1}, v_{i}\right)$.
- By lemma 24.11, once $v_{i} \cdot d=\delta\left(s, v_{i}\right)$ holds, it continues to hold.

Finding a path between s and v

Corollary 24.3

Let $G=(V, E)$ be a weighted, directed graph with source vertex s and weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then, for each vertex $v \in V$, there is a path from s to v if and only if Bellman-Ford terminates with $v . d<\infty$ when it is run on G

Finding a path between s and v

Corollary 24.3

Let $G=(V, E)$ be a weighted, directed graph with source vertex s and weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then, for each vertex $v \in V$, there is a path from s to v if and only if Bellman-Ford terminates with $v . d<\infty$ when it is run on G

Proof

Left to you...

Outline

Introduction

- Introduction and Similar Problems

- General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Correctness of Bellman-Ford

Claim: The Algorithm returns the correct value

Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.

Correctness of Bellman-Ford

Claim: The Algorithm returns the correct value
Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.

Case 1: There is no reachable negative weight cycle.
Upon termination, we have for all (u, v) :

$$
v . d=\delta(s, v)
$$

Correctness of Bellman-Ford

Claim: The Algorithm returns the correct value
Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.

Case 1: There is no reachable negative weight cycle.
Upon termination, we have for all (u, v) :

$$
v \cdot d=\delta(s, v)
$$

by lemma 24.2 (last slide) if v is reachable or $v . d=\delta(s, v)=\infty$ otherwise.

Correctness of Bellman-Ford

Then, we have that

$$
v . d=\delta(s, v)
$$

Correctness of Bellman-Ford

Then, we have that

$$
\begin{aligned}
v . d & =\delta(s, v) \\
& \leq \delta(s, u)+w(u, v)
\end{aligned}
$$

Correctness of Bellman-Ford

Then, we have that

$$
\begin{aligned}
v . d & =\delta(s, v) \\
& \leq \delta(s, u)+w(u, v) \\
& \leq u . d+w(u, v)
\end{aligned}
$$

Correctness of Bellman-Ford

Then, we have that

$$
\begin{aligned}
v . d & =\delta(s, v) \\
& \leq \delta(s, u)+w(u, v) \\
& \leq u \cdot d+w(u, v)
\end{aligned}
$$

Remember:
5. for each (u, v) to $E[G]$
6. if $v . d>u . d+w(u, v)$
7. return false

Thus

Correctness of Bellman-Ford

Then, we have that

$$
\begin{aligned}
v . d & =\delta(s, v) \\
& \leq \delta(s, u)+w(u, v) \\
& \leq u . d+w(u, v)
\end{aligned}
$$

Remember:
5. for each (u, v) to $E[G]$
6. if $v . d>u . d+w(u, v)$
7. return false

Thus

So algorithm returns true.

Correctness of Bellman-Ford

Case 2: There exists a reachable negative weight cycle $c=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=v_{k}$.
Then, we have:

$$
\begin{equation*}
\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0 \tag{7}
\end{equation*}
$$

Correctness of Bellman-Ford

Case 2: There exists a reachable negative weight cycle $c=<v_{0}, v_{1}, \ldots, v_{k}>$, where $v_{0}=v_{k}$.
Then, we have:

$$
\begin{equation*}
\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0 \tag{7}
\end{equation*}
$$

Suppose algorithm returns true

Then $v_{i} . d \leq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$ for $i=1, \ldots, k$ because Relax did not change any $v_{i} . d$.

Correctness of Bellman-Ford

Thus

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & \leq \sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

Correctness of Bellman-Ford

Thus

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & \leq \sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

Since $v_{0}=v_{k}$

Each vertex in c appears exactly once in each of the summations, $\sum_{i=1}^{k} v_{i} . d$ and $\sum_{i=1}^{k} v_{i-1} \cdot d$, thus

$$
\begin{equation*}
\sum_{i=1}^{k} v_{i} \cdot d=\sum_{i=1}^{k} v_{i-1} \cdot d \tag{8}
\end{equation*}
$$

Correctness of Bellman-Ford

By Corollary 24.3

$v_{i} . d$ is finite for $i=1,2, \ldots, k$, thus

$$
0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

Correctness of Bellman-Ford

By Corollary 24.3

$v_{i} . d$ is finite for $i=1,2, \ldots, k$, thus

$$
0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

Hence

This contradicts (Eq. 7). Thus, algorithm returns false.

Outline

Introduction

- Introduction and Similar Problems

- General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Another Example

Something Notable

By relaxing the edges of a weighted DAG $G=(V, E)$ according to a topological sort of its vertices, we can compute shortest paths from a single source in time.

Another Example

Something Notable

By relaxing the edges of a weighted DAG $G=(V, E)$ according to a topological sort of its vertices, we can compute shortest paths from a single source in time.

Why?

Shortest paths are always well defined in a DAG, since even if there are negative-weight edges, no negative-weight cycles can exist.

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity $\Theta(V+E)$)
DAG -SHORTEST-PATHS (G, w, s)
(1) Topological sort vertices in G
(2) Initialize (G, s)

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity $\Theta(V+E)$)
DAG -SHORTEST-PATHS (G, w, s)
(1) Topological sort vertices in G
(2) Initialize (G, s)
(3) for each u in $V[G]$ in topological sorted order

Single-source Shortest Paths in Directed Acyclic Graphs

In a DAG, we can do the following (Complexity $\Theta(V+E)$)
DAG -SHORTEST-PATHS (G, w, s)
(1) Topological sort vertices in G
(2) Initialize (G, s)
(3) for each u in $V[G]$ in topological sorted order
(9) for each v to $A d j[u]$
©
$\operatorname{Relax}(u, v, w)$

It is based in the following theorem

Theorem 24.5

If a weighted, directed graph $G=(V, E)$ has source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $v . d=\delta(s, v)$ for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest path.

It is based in the following theorem

Theorem 24.5

If a weighted, directed graph $G=(V, E)$ has source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $v . d=\delta(s, v)$ for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest path.

Proof

Left to you...

Complexity

We have that
(1) Line 1 takes $\Theta(V+E)$.

Complexity

We have that

(1) Line 1 takes $\Theta(V+E)$.
(2) Line 2 takes $\Theta(V)$.

Complexity

We have that

(1) Line 1 takes $\Theta(V+E)$.
(2) Line 2 takes $\Theta(V)$.
(3) Lines 3-5 makes an iteration per vertex:

Complexity

We have that

(1) Line 1 takes $\Theta(V+E)$.
(2) Line 2 takes $\Theta(V)$.
(3) Lines 3-5 makes an iteration per vertex:
(1) In addition, the for loop in lines 4-5 relaxes each edge exactly once (Remember the sorting).

Complexity

We have that

(1) Line 1 takes $\Theta(V+E)$.
(2) Line 2 takes $\Theta(V)$.
(3) Lines 3-5 makes an iteration per vertex:
(1) In addition, the for loop in lines 4-5 relaxes each edge exactly once (Remember the sorting).
(2) Making each iteration of the inner loop Θ (1)

Complexity

We have that

(1) Line 1 takes $\Theta(V+E)$.
(2) Line 2 takes $\Theta(V)$.
(3) Lines 3-5 makes an iteration per vertex:
(1) In addition, the for loop in lines 4-5 relaxes each edge exactly once (Remember the sorting).
(2) Making each iteration of the inner loop Θ (1)

Therefore

The total running time is equal to $\Theta(V+E)$.

Outline

Introduction

- Introduction and Similar Problems
- General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford

4 Directed Acyclic Graphs (DAG)

- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Example

After Initialization, we have \mathbf{b} is the source

Example

\mathbf{a} is the first in the topological sort, but no update is done

Example

b is the next one

Example

c is the next one

Example

Example

e is the next one

Example

Finally, w is the next one

Outline

Introduction

- Introduction and Similar Problems
- General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Dijkstra's Algorithm

It is a greedy based method Ideas?

Dijkstra's Algorithm

It is a greedy based method Ideas?

Yes
We need to keep track of the greedy choice!!!

Dijkstra's Algorithm

Assume no negative weight edges
(1) Dijkstra's algorithm maintains a set S of vertices whose shortest path from s has been determined.

Dijkstra's Algorithm

Assume no negative weight edges
(1) Dijkstra's algorithm maintains a set S of vertices whose shortest path from s has been determined.
(2) It repeatedly selects u in $V-S$ with minimum shortest path estimate (greedy choice).

Dijkstra's Algorithm

Assume no negative weight edges
(1) Dijkstra's algorithm maintains a set S of vertices whose shortest path from s has been determined.
(2) It repeatedly selects u in $V-S$ with minimum shortest path estimate (greedy choice).
(3) It store $V-S$ in priority queue Q.

Dijkstra's algorithm

DIJKSTRA (G, w, s)
(1) $\operatorname{INITIALIZE}(G, s)$
(2) $S=\emptyset$
(3) $Q=V[G]$

Dijkstra's algorithm

DIJKSTRA (G, w, s)
(1) $\operatorname{INITIALIZE}(G, s)$
(2) $S=\emptyset$
(3) $Q=V[G]$
(9) while $Q \neq \emptyset$
(6) $u=$ Extract- $\operatorname{Min}(Q)$
(c) $S=S \cup\{u\}$

Dijkstra's algorithm

DIJKSTRA (G, w, s)

(1) INITIALIZE (G, s)
(2) $S=\emptyset$
(3) $Q=V[G]$
(9) while $Q \neq \emptyset$
(6) $u=\operatorname{Extract}-\operatorname{Min}(Q)$
(6) $S=S \cup\{u\}$
(1) for each vertex $v \in \operatorname{Adj}[u]$
(8)

Relax (u,v,w)

Outline

Introduction
－Introduction and Similar Problems

－General Results

－Optimal Substructure Properties
－Predecessor Graph
－The Relaxation Concept
－The Bellman－Ford Algorithm
－Properties of Relaxation
（3）Bellman－Ford Algorithm
－Predecessor Subgraph for Bellman
－Shortest Path for Bellman
－Example
－Bellman－Ford finds the Shortest Path
－Correctness of Bellman－Ford
（4）Directed Acyclic Graphs（DAG）
－Relaxing Edges
－Example
（5）Dijkstra＇s Algorithm
－Dijkstra＇s Algorithm：A Greedy Method
－Example
－Correctness Dijkstra＇s algorithm
－Complexity of Dijkstra＇s Algorithm

Example

The Graph After Initialization

Example

We use
 to represent $v . \pi$ and color black to represent the set S

Example

$s \leftarrow$ Extract-Min (Q) and update the elements adjacent to s

Example

$\mathrm{a} \leftarrow$ Extract-Min (Q) and update the elements adjacent to a

Example

$\mathrm{e} \leftarrow$ Extract-Min (Q) and update the elements adjacent to e

Example

$\mathrm{b} \leftarrow$ Extract-Min (Q) and update the elements adjacent to b

Example

$\mathrm{h} \leftarrow$ Extract-Min (Q) and update the elements adjacent to h

Example

$c \leftarrow$ Extract-Min (Q) and no-update

Example

$\mathrm{d} \leftarrow$ Extract-Min (Q) and no-update

$90 / 108$

Example

$\mathrm{g} \leftarrow$ Extract-Min (Q) and no-update

Example

$\mathrm{f} \leftarrow$ Extract-Min (Q) and no-update

Outline

Introduction

- Introduction and Similar Problems
(2) General Results
- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Correctness Dijkstra's algorithm

Theorem 24.6
Upon termination, $u . d=\delta(s, u)$ for all u in V (assuming non negative weights).

Correctness Dijkstra's algorithm

Theorem 24.6
Upon termination, $u . d=\delta(s, u)$ for all u in V (assuming non negative weights).

Proof

By lemma 24.11, once $u . d=\delta(s, u)$ holds, it continues to hold.

Correctness Dijkstra's algorithm

Theorem 24.6

Upon termination, $u . d=\delta(s, u)$ for all u in V (assuming non negative weights).

Proof

By lemma 24.11, once $u . d=\delta(s, u)$ holds, it continues to hold.

We are going to use the following loop Invariance
At the start of each iteration of the while loop of lines 4-8, $v . d=\delta(s, v)$ for each vertex $v \in S$.

Proof

Thus
We are going to prove for each u in $V, u . d=\delta(s, u)$ when u is inserted in S.

Proof

Thus

We are going to prove for each u in $V, u . d=\delta(s, u)$ when u is inserted in S.

Initialization

Initially $S=\emptyset$, thus the invariant is true.

Proof

Thus

We are going to prove for each u in $V, u . d=\delta(s, u)$ when u is inserted in S.

Initialization

Initially $S=\emptyset$, thus the invariant is true.

Maintenance

We want to show that in each iteration $u . d=\delta(s, u)$ for the vertex added to set S.

Proof

Thus

We are going to prove for each u in $V, u . d=\delta(s, u)$ when u is inserted in S.

Initialization

Initially $S=\emptyset$, thus the invariant is true.

Maintenance

We want to show that in each iteration $u . d=\delta(s, u)$ for the vertex added to set S.

For this, note the following

- Note that $s . d=\delta(s, s)=0$ when s is inserted, so $u \neq s$.

Proof

Thus

We are going to prove for each u in $V, u . d=\delta(s, u)$ when u is inserted in S.

Initialization

Initially $S=\emptyset$, thus the invariant is true.

Maintenance

We want to show that in each iteration $u . d=\delta(s, u)$ for the vertex added to set S.

For this, note the following

- Note that $s . d=\delta(s, s)=0$ when s is inserted, so $u \neq s$.
- In addition, we have that $S \neq \emptyset$ before u is added.

Proof

Use contradiction

Now, suppose not. Let u be the first vertex such that $u . d \neq \delta(\mathrm{s}, \mathrm{u})$ when inserted in S.

Proof

Use contradiction

Now, suppose not. Let u be the first vertex such that $u . d \neq \delta(\mathrm{s}, \mathrm{u})$ when inserted in S.

Note the following

Note that $s . d=\delta(s, s)=0$ when s is inserted, so $u \neq s$; thus $S \neq \varnothing$ just before u is inserted (in fact $s \in S$).

Proof

Now

Note that there exist a path from s to u, for otherwise $u . d=\delta(s, u)=\infty$ by corollary 24.12.

- "If there is no path from s to v, then $v \cdot d=\delta(s, v)=\infty$ is an invariant."

Proof

Now

Note that there exist a path from s to u, for otherwise $u . d=\delta(s, u)=\infty$ by corollary 24.12 .

- "If there is no path from s to v, then $v \cdot d=\delta(s, v)=\infty$ is an invariant."

Thus exist a shortest path p
Between s and u.

Proof

Now

Note that there exist a path from s to u, for otherwise $u . d=\delta(s, u)=\infty$ by corollary 24.12 .

- "If there is no path from s to v, then $v \cdot d=\delta(s, v)=\infty$ is an invariant."

Thus exist a shortest path p
Between s and u.

Observation

Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in $V-S$, namely u.

Proof

Consider the following

- The first y along p from s to u such that $y \in V-S$.
- And let $x \in S$ be y 's predecessor along p.

Proof

Proof (continuation)

Then, shortest path from s to $u: s \stackrel{p_{1}}{\rightsquigarrow} x \rightarrow y \stackrel{p_{2}}{\rightsquigarrow} u$ looks like...

Remark: Either of paths p_{1} or p_{2} may have no edges.

Proof

We claim

$y . d=\delta(s, y)$ when u is added into S.

Proof

We claim

$y . d=\delta(s, y)$ when u is added into S.

Proof of the claim

(1) Observe that $x \in S$.
(2) In addition, we know that u is the first vertex for which $u . d \neq \delta(s, u)$ when it id added to S

Proof

Then

In addition, we had that $x . d=\delta(s, x)$ when x was inserted into S.

Proof

Then

In addition, we had that $x . d=\delta(s, x)$ when x was inserted into S.

Then, we relaxed the edge between x and y
Edge (x, y) was relaxed at that time!

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p=s^{p_{1}} \rightsquigarrow u \rightarrow v$. If $u . d=\delta(s, u)$ holds at any time prior to calling $\operatorname{Relax}(u, v, w)$, then $v . d=\delta(s, v)$ holds at all times after the call.

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p=s s^{p_{1}} \rightsquigarrow u \rightarrow v$. If $u . d=\delta(s, u)$ holds at any time prior to calling $\operatorname{Relax}(u, v, w)$, then $v . d=\delta(s, v)$ holds at all times after the call.

Then

- Then, using this convergence property.

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p=s \stackrel{p_{1}}{\rightsquigarrow} u \rightarrow v$. If $u . d=\delta(s, u)$ holds at any time prior to calling $\operatorname{Relax}(u, v, w)$, then $v . d=\delta(s, v)$ holds at all times after the call.

Then

- Then, using this convergence property.

$$
\begin{equation*}
y . d=\delta(s, y)=\delta(s, x)+w(x, y) \tag{9}
\end{equation*}
$$

Proof

Remember? Convergence property (Lemma 24.14)

Let p be a shortest path from s to v, where $p=s \stackrel{p_{1}}{\rightsquigarrow} u \rightarrow v$. If $u . d=\delta(s, u)$ holds at any time prior to calling $\operatorname{Relax}(u, v, w)$, then $v . d=\delta(s, v)$ holds at all times after the call.

Then

- Then, using this convergence property.

$$
\begin{equation*}
y \cdot d=\delta(s, y)=\delta(s, x)+w(x, y) \tag{9}
\end{equation*}
$$

- The claim is implied!!!

Proof

Now

(1) We obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.

Proof

Now

(1) We obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.
(2) y appears before u in a shortest path on a shortest path from s to u.

Proof

Now

(1) We obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.
(2) y appears before u in a shortest path on a shortest path from s to u.
(3) In addition, all edges have positive weights.

Proof

Now

(1) We obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.
(2) y appears before u in a shortest path on a shortest path from s to u.
(3) In addition, all edges have positive weights.
(9) Then, $\delta(s, y) \leq \delta(s, u)$, thus

Proof

Now

(1) We obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.
(2) y appears before u in a shortest path on a shortest path from s to u.
(3) In addition, all edges have positive weights.
(9) Then, $\delta(s, y) \leq \delta(s, u)$, thus

$$
y \cdot d=\delta(s, y)
$$

Proof

Now

(1) We obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.
(2) y appears before u in a shortest path on a shortest path from s to u.
(3) In addition, all edges have positive weights.
(9) Then, $\delta(s, y) \leq \delta(s, u)$, thus

$$
\begin{aligned}
y \cdot d & =\delta(s, y) \\
& \leq \delta(s, u)
\end{aligned}
$$

Proof

Now

(1) We obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.
(2) y appears before u in a shortest path on a shortest path from s to u.
(3) In addition, all edges have positive weights.
(c) Then, $\delta(s, y) \leq \delta(s, u)$, thus

$$
\begin{aligned}
y \cdot d & =\delta(s, y) \\
& \leq \delta(s, u) \\
& \leq u \cdot d
\end{aligned}
$$

- The last inequality is due to the Upper-Bound Property (Lemma 24.11).

Proof

Then

But because both vertices u and y where in $V-S$ when u was chosen in line $5 \Rightarrow u . d \leq y . d$.

Proof

Then

But because both vertices u and y where in $V-S$ when u was chosen in line $5 \Rightarrow u$. $d \leq y . d$.

Thus

$$
y \cdot d=\delta(s, y)=\delta(s, u)=u \cdot d
$$

Proof

Then

But because both vertices u and y where in $V-S$ when u was chosen in line $5 \Rightarrow u . d \leq y . d$.

Thus

$$
y \cdot d=\delta(s, y)=\delta(s, u)=u . d
$$

Consequently

- We have that $u . d=\delta(s, u)$, which contradicts our choice of u.

Proof

Then

But because both vertices u and y where in $V-S$ when u was chosen in line $5 \Rightarrow u . d \leq y . d$.

Thus

$$
y \cdot d=\delta(s, y)=\delta(s, u)=u . d
$$

Consequently

- We have that $u . d=\delta(s, u)$, which contradicts our choice of u.
- Conclusion: $u . d=\delta(s, u)$ when u is added to S and the equality is maintained afterwards.

Finally

Termination

- At termination $Q=\emptyset$
- Thus, $V-S=\emptyset$ or equivalent $S=V$

Finally

Termination

- At termination $Q=\emptyset$
- Thus, $V-S=\emptyset$ or equivalent $S=V$

Thus

$u . d=\delta(s, u)$ for all vertices $u \in V!!!$

Outline

Introduction

- Introduction and Similar Problems

General Results

- Optimal Substructure Properties
- Predecessor Graph
- The Relaxation Concept
- The Bellman-Ford Algorithm
- Properties of Relaxation
(3) Bellman-Ford Algorithm
- Predecessor Subgraph for Bellman
- Shortest Path for Bellman
- Example
- Bellman-Ford finds the Shortest Path
- Correctness of Bellman-Ford
(4) Directed Acyclic Graphs (DAG)
- Relaxing Edges
- Example
(5) Dijkstra's Algorithm
- Dijkstra's Algorithm: A Greedy Method
- Example
- Correctness Dijkstra's algorithm
- Complexity of Dijkstra's Algorithm

Complexity

Running time is

$O\left(V^{2}\right)$ using linear array for priority queue.
$O((V+E) \log V)$ using binary heap.
$O(V \log V+E)$ using Fibonacci heap.

Exercises

From Cormen's book solve

- 24.1-1
- 24.1-3
- 24.1-4
- 23.3-1
- 23.3-3
- 23.3-4
- 23.3-6
- 23.3-7
- 23.3-8
- 23.3-10

