Single-Source Shortest Paths

November 10, 2014

1 Introduction

Here, we look at the problem of going from a source s to a possible multiple destinations. Most of the work is in the slides, but I wanted to point some stuff in the names of each of the Lemmas involved in proving the algorithms for finding the shortest paths.

2 Problem Definition

Formally the problem can be defined using the following concepts:

- 1. We have a weighted directed graph G = (V, E)
- 2. An associated weight function $w: E \to \mathbb{R}$ mapping edges to real-valued weights.
- 3. We define weight w(p) of a path $p = \langle v_0, v_1, ..., v_k \rangle$ is defined as

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}v_i).$$
(1)

4. A shortest-path weight $\delta(u, v)$ from u to v by

$$\delta(u,v) = \begin{cases} \min\left\{w\left(p\right)|u \stackrel{p}{\rightsquigarrow} v\right\} & \text{if there is a path from } u \rightsquigarrow v\\ \infty & \text{otherwise} \end{cases}$$
(2)

Thus a shortest path from vertex u to v can be defined as any path p such that $w(p) = \delta(u, v)$.

3 Optimal substructure of a shortest path

All the following algorithms relay in the optimal substructure of the shortest path

- 1. Bellman-Ford Algorithm
- 2. DAG Algorithm
- 3. Dijkstra's Algorithm (Greedy Algorithm)

- 4. Edmond-Karp Algorithm
- 5. Floyd-Warshall Algorithm (Dynamic-programming Algorithm)

Thus, it is clear that we need to analyze and prove the lemmas in this chapter.

4 General Results

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any *i* and *j* such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of *p* from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Proof If we decompose path p into $v_0 \stackrel{p_{0i}}{\sim} v_i \stackrel{p_{ij}}{\sim} v_j \stackrel{p_{jk}}{\sim} v_k$, then we have that $w(p) = w(p_{0i}) + w(p_{ij}) + w(p_{jk})$. Now, assume that there is a path p'_{ij} from v_i to v_j with weight $w(p'_{ij}) < w(p_{ij})$. Then, $v_0 \stackrel{p_{0i}}{\sim} v_i \stackrel{p'_{ij}}{\sim} v_j \stackrel{p_{jk}}{\sim} v_k$ is a path from v_0 to v_k whose weight $w(p_{0i}) + w(p'_{ij}) + w(p_{jk})$ is less than w(p), which contradicts the assumption that p is a shortest path from v_0 to v_k .

Lemma 24.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have

 $\delta(s,\nu) \leq \delta(s,u) + w(u,\nu) .$

Proof Suppose that p is a shortest path from source s to vertex v. Then p has no more weight than any other path from s to v. Specifically, path p has no more weight than the particular path that takes a shortest path from source s to vertex u and then takes edge (u, v).

Exercise 24.5-3 asks you to handle the case in which there is no shortest path from *s* to ν .

Lemma 24.11 (*Upper-bound property*)

Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$. Let $s \in V$ be the source vertex, and let the graph be initialized by INITIALIZE-SINGLE-SOURCE(G, s). Then, $v.d \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover, once v.d achieves its lower bound $\delta(s, v)$, it never changes.

Proof We prove the invariant $\nu.d \ge \delta(s, \nu)$ for all vertices $\nu \in V$ by induction over the number of relaxation steps.

For the basis, $v.d \ge \delta(s, v)$ is certainly true after initialization, since $v.d = \infty$ implies $v.d \ge \delta(s, v)$ for all $v \in V - \{s\}$, and since $s.d = 0 \ge \delta(s, s)$ (note that $\delta(s, s) = -\infty$ if *s* is on a negative-weight cycle and 0 otherwise).

For the inductive step, consider the relaxation of an edge (u, v). By the inductive hypothesis, $x.d \ge \delta(s, x)$ for all $x \in V$ prior to the relaxation. The only d value that may change is v.d. If it changes, we have

v.d = u.d + w(u, v) $\geq \delta(s, u) + w(u, v) \quad \text{(by the inductive hypothesis)}$ $\geq \delta(s, v) \quad \text{(by the triangle inequality)},$

and so the invariant is maintained.

To see that the value of v.d never changes once $v.d = \delta(s, v)$, note that having achieved its lower bound, v.d cannot decrease because we have just shown that $v.d \ge \delta(s, v)$, and it cannot increase because relaxation steps do not increase d values.

Lemma 24.13

Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$, and let $(u, v) \in E$. Then, immediately after relaxing edge (u, v) by executing RELAX(u, v, w), we have $v.d \le u.d + w(u, v)$.

Proof If, just prior to relaxing edge (u, v), we have v.d > u.d + w(u, v), then v.d = u.d + w(u, v) afterward. If, instead, $v.d \le u.d + w(u, v)$ just before the relaxation, then neither u.d nor v.d changes, and so $v.d \le u.d + w(u, v)$ afterward.

5 Lemma's Names

We have the following names for several of the lemmas in the slides, they tend to be quite enlightening:

- Triangle inequality (Lemma 24.10)
- Upper-bound property (Lemma 24.11)
- No-path property (Corollary 24.12)
- Convergence property (Lemma 24.14)
- Path-relaxation property (Lemma 24.15)
- Predecessor-subgraph property (Lemma 24.17)

6 Notes about some Proofs

6.1 Proof Lemma 24.16

Proof. Then, we have two simple paths from s to v:

- p_1 , which can be decomposed into $s \rightsquigarrow u \rightsquigarrow x \to z \rightsquigarrow v$.
- p_2 , which can be decomposed into $s \rightsquigarrow u \rightsquigarrow y \rightarrow z \rightsquigarrow v$.

with $x \neq y$. However, $z.\pi = x$ and $z.\pi = y$ or x = y a contradiction. Thus, G_{π} contains a simple path from s to v, thus forms a rooted tree G_{π} with root s.