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1 Introduction

Here, we look at the problem of going from a source s to a possible multiple destinations. Most of the work is in
the slides, but I wanted to point some stuff in the names of each of the Lemmas involved in proving the algorithms
for finding the shortest paths.

2 Problem Definition

Formally the problem can be defined using the following concepts:
1. We have a weighted directed graph G = (V, E)
2. An associated weight function w : ' — R mapping edges to real-valued weights.

3. We define weight w (p) of a path p = (vg,v1, ..., v) is defined as

4. A shortest-path weight 0 (u,v) from u to v by
5 (u,v) = min {w (p) lu L v} if there is a path from u ~» v . o)
> otherwise

Thus a shortest path from vertex u to v can be defined as any path p such that w (p) = § (u, v).

3 Optimal substructure of a shortest path

All the following algorithms relay in the optimal substructure of the shortest path
1. Bellman-Ford Algorithm
2. DAG Algorithm
3. Dijkstra’s Algorithm (Greedy Algorithm)



4. Edmond-Karp Algorithm
5. Floyd-Warshall Algorithm (Dynamic-programming Algorithm)

Thus, it is clear that we need to analyze and prove the lemmas in this chapter.

4 General Results

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function w : £ — R,
let p = (vo, v1,..., V) be a shortest path from vertex v, to vertex vx and, for any
iand j suchthat0 <i < j <k, let p;; = (v;, Vj+1.....V;) be the subpath of p
from vertex v; to vertex v;. Then, p;; is a shortest path from v; to v;.

Proof If we decompose path p into v, ROy 24 V; 2 Vi, then we have that
w(p) = w(poi) + w(pi;) + w(pjk). Now, assume that there is a path p/; from v

. . ;  Pij  pj .
to v; with weight w(p;;) < w(p;;). Then, vg RO vy ~5 Vj vk is a path from v

to vx whose weight w(po;) +w(p;;) +w(pjx) is less than w(p), which contradicts
the assumption that p is a shortest path from vg to vg. |

Lemma 24.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function w : £ — R
and source vertex s. Then, for all edges (1, v) € E, we have

5(s,v) <d8(s,u) +w(u,v).

Proof Suppose that p is a shortest path from source s to vertex v. Then p has
no more weight than any other path from s to v. Specifically, path p has no more
weight than the particular path that takes a shortest path from source s to vertex u
and then takes edge (u, v).

Exercise 24.5-3 asks you to handle the case in which there is no shortest path
from s to v. |



Lemma 24.11 (Upper-bound property)

Let G = (V, E) be a weighted, directed graph with weight function w : £ — R.
Let s € V be the source vertex, and let the graph be initialized by INITIALIZE-
SINGLE-SOURCE(G, s). Then, v.d = é(s,v) for all v € V, and this invariant is
maintained over any sequence of relaxation steps on the edges of G. Moreover,
once v.d achieves its lower bound §(s, v), it never changes.

Proof We prove the invariant v.d > (s, v) for all vertices v € V by induction
over the number of relaxation steps.

For the basis, v.d > §(s, v) is certainly true after initialization, since v.d = oo
implies v.d > §(s,v) for all v € V — {s}, and since s.d = 0 > 4(s, s) (note that
d(s,s) = —oo if 5 is on a negative-weight cycle and 0 otherwise).

For the inductive step, consider the relaxation of an edge (u, v). By the inductive
hypothesis, x.d > §(s, x) for all x € V prior to the relaxation. The only d value
that may change 1s v.d. If it changes, we have

v.d = u.d+w(u,v)
> 6(s,u) + w(u,v) (by the inductive hypothesis)
> 4(s,v) (by the triangle inequality) ,

and so the invariant is maintained.

To see that the value of v.d never changes once v.d = §(s, v), note that having
achieved its lower bound, v.d cannot decrease because we have just shown that
v.d > §(s,v), and it cannot increase because relaxation steps do not increase d
values. ]

Lemma 24.13

Let G = (V, E) be a weighted, directed graph with weight function w : £ — R,
and let (¥,v) € E. Then, immediately after relaxing edge (u,v) by executing
RELAX (u, v, w), we have v.d < u.d + w(u,v).

Proof If, just prior to relaxing edge (u,v), we have v.d > u.d + w(u,v), then
v.d = u.d + w(u,v) afterward. If, instead, v.d < u.d + w(u,v) just before
the relaxation, then neither u.d nor v.d changes, and so v.d < u.d + w(u,v)
afterward. ]



5 Lemma’s Names
We have the following names for several of the lemmas in the slides, they tend to be quite enlightening:
e Triangle inequality (Lemma 24.10)

e Upper-bound property (Lemma 24.11)

No-path property (Corollary 24.12)

e Convergence property (Lemma 24.14)

Path-relaxation property (Lemma 24.15)

Predecessor-subgraph property (Lemma 24.17)

6 Notes about some Proofs

6.1 Proof Lemma 24.16

Proof. Then, we have two simple paths from s to v:
e p1, which can be decomposed into s ~» u ~» x — z ~ v.
e po, which can be decomposed into s ~» u ~» y — z ~~ v.

with = # y. However, z.m = z and z.m = y or = y a contradiction. Thus, G, contains a simple path from s
to v, thus forms a rooted tree G, with root s. O



