Single-Source Shortest Paths

November 10, 2014

1 Introduction

Here, we look at the problem of going from a source s to a possible multiple destinations. Most of the work is in the slides, but I wanted to point some stuff in the names of each of the Lemmas involved in proving the algorithms for finding the shortest paths.

2 Problem Definition

Formally the problem can be defined using the following concepts:

1. We have a weighted directed graph $G=(V, E)$
2. An associated weight function $w: E \rightarrow \mathbb{R}$ mapping edges to real-valued weights.
3. We define weight $w(p)$ of a path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is defined as

$$
\begin{equation*}
w(p)=\sum_{i=1}^{k} w\left(v_{i-1} v_{i}\right) \tag{1}
\end{equation*}
$$

4. A shortest-path weight $\delta(u, v)$ from u to v by

$$
\delta(u, v)= \begin{cases}\min \{w(p) \mid u \stackrel{p}{\rightsquigarrow} v\} & \text { if there is a path from } u \rightsquigarrow v \tag{2}\\ \infty & \text { otherwise }\end{cases}
$$

Thus a shortest path from vertex u to v can be defined as any path p such that $w(p)=\delta(u, v)$.

3 Optimal substructure of a shortest path

All the following algorithms relay in the optimal substructure of the shortest path

1. Bellman-Ford Algorithm
2. DAG Algorithm
3. Dijkstra's Algorithm (Greedy Algorithm)

4. Edmond-Karp Algorithm

5. Floyd-Warshall Algorithm (Dynamic-programming Algorithm)

Thus, it is clear that we need to analyze and prove the lemmas in this chapter.

4 General Results

Lemma 24.1 (Subpaths of shortest paths are shortest paths)
Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be a shortest path from vertex v_{0} to vertex v_{k} and, for any i and j such that $0 \leq i \leq j \leq k$, let $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ be the subpath of p from vertex v_{i} to vertex v_{j}. Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.

Proof If we decompose path p into $\nu_{0} \stackrel{p_{0 i}}{\sim} v_{i} \stackrel{p_{i j}}{\sim} \nu_{j} \xrightarrow{p_{j k}} \nu_{k}$, then we have that $w(p)=w\left(p_{0 i}\right)+w\left(p_{i j}\right)+w\left(p_{j k}\right)$. Now, assume that there is a path $p_{i j}^{\prime}$ from v_{i} to v_{j} with weight $w\left(p_{i j}^{\prime}\right)<w\left(p_{i j}\right)$. Then, $v_{0} \stackrel{p_{0 i}}{\sim} v_{i} \stackrel{p_{i j}^{\prime}}{\sim} v_{j} \stackrel{p_{j k}}{\sim} v_{k}$ is a path from v_{0} to ν_{k} whose weight $w\left(p_{0 i}\right)+w\left(p_{i j}^{\prime}\right)+w\left(p_{j k}\right)$ is less than $w(p)$, which contradicts the assumption that p is a shortest path from ν_{0} to ν_{k}.

Lemma 24.10 (Triangle inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have
$\delta(s, v) \leq \delta(s, u)+w(u, v)$.

Proof Suppose that p is a shortest path from source s to vertex v. Then p has no more weight than any other path from s to v. Specifically, path p has no more weight than the particular path that takes a shortest path from source s to vertex u and then takes edge (u, v).

Exercise 24.5-3 asks you to handle the case in which there is no shortest path from s to v.

Lemma 24.11 (Upper-bound property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $s \in V$ be the source vertex, and let the graph be initialized by Initialize-$\operatorname{Single-Source}(G, s)$. Then, $v . d \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover, once $v . d$ achieves its lower bound $\delta(s, v)$, it never changes.

Proof We prove the invariant $v . d \geq \delta(s, v)$ for all vertices $v \in V$ by induction over the number of relaxation steps.

For the basis, $v . d \geq \delta(s, v)$ is certainly true after initialization, since $v . d=\infty$ implies $v . d \geq \delta(s, v)$ for all $v \in V-\{s\}$, and since $s . d=0 \geq \delta(s, s)$ (note that $\delta(s, s)=-\infty$ if s is on a negative-weight cycle and 0 otherwise).

For the inductive step, consider the relaxation of an edge (u, v). By the inductive hypothesis, $x . d \geq \delta(s, x)$ for all $x \in V$ prior to the relaxation. The only d value that may change is $v . d$. If it changes, we have

$$
\begin{aligned}
\nu . d & =u \cdot d+w(u, v) & & \\
& \geq \delta(s, u)+w(u, v) & & \text { (by the inductive hypothesis) } \\
& \geq \delta(s, v) & & \text { (by the triangle inequality) }
\end{aligned}
$$

and so the invariant is maintained.
To see that the value of $v . d$ never changes once $v . d=\delta(s, v)$, note that having achieved its lower bound, v.d cannot decrease because we have just shown that $v . d \geq \delta(s, v)$, and it cannot increase because relaxation steps do not increase d values.

Lemma 24.13

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, and let $(u, v) \in E$. Then, immediately after relaxing edge (u, v) by executing $\operatorname{RELAX}(u, v, w)$, we have $v . d \leq u . d+w(u, v)$.

Proof If, just prior to relaxing edge (u, v), we have $v . d>u . d+w(u, v)$, then $v . d=u . d+w(u, v)$ afterward. If, instead, v.d $\leq u . d+w(u, v)$ just before the relaxation, then neither $u . d$ nor $v . d$ changes, and so $v . d \leq u . d+w(u, v)$ afterward.

5 Lemma's Names

We have the following names for several of the lemmas in the slides, they tend to be quite enlightening:

- Triangle inequality (Lemma 24.10)
- Upper-bound property (Lemma 24.11)
- No-path property (Corollary 24.12)
- Convergence property (Lemma 24.14)
- Path-relaxation property (Lemma 24.15)
- Predecessor-subgraph property (Lemma 24.17)

6 Notes about some Proofs

6.1 Proof Lemma 24.16

Proof. Then, we have two simple paths from s to v :

- p_{1}, which can be decomposed into $s \rightsquigarrow u \rightsquigarrow x \rightarrow z \rightsquigarrow v$.
- p_{2}, which can be decomposed into $s \rightsquigarrow u \rightsquigarrow y \rightarrow z \rightsquigarrow v$.
with $x \neq y$. However, $z . \pi=x$ and $z . \pi=y$ or $x=y$ a contradiction. Thus, G_{π} contains a simple path from s to v, thus forms a rooted tree G_{π} with root s.

