# Minimum Spanning Trees 

October 1, 2014

## 1 Introduction

As we have realized in the class of Graph Algorithms, many problems can be represented as a graph. For example, we could be a electrical machine company with different possible sources of parts to the production of a particular engine. The process and production departments gives a total cost of each of the possible production sites around the world. Then, some clever guy decides to do the following

- Each sites will be represented as a node $v_{i}$ and belong to a production system $T$.
- The cost $=$ manufacture $+\operatorname{moving} w\left(v_{i}, v_{j}\right)$ cost is given to move a particular product from $v_{i}$ to $v_{j}$, he points out that we could consider this cost as a bidirectional cost. After all this is an attempt to have a provisional answer.
- We add a node $s$ as the final destination linked to the final assembly nodes with edges that are equal to the moving cost.

Then, Voilà!!! The clever guy runs an algorithm that produces a minimum size tree based in the formulation:

$$
\begin{equation*}
\min _{T} \sum_{v_{i}, v_{j} \in T} w\left(v_{i}, v_{j}\right) . \tag{1}
\end{equation*}
$$

Then, the guy produces an initial analysis of the cost of producing the electrical engine. OK, How he did? Ah! The Minimum Spanning Tree (MST) problems and solutions.

## 2 The Setup

Given any graph with undirected edges $G=(V, E)$ such a there is a function $w: P(E) \rightarrow \mathbb{R}$, we want to be able to solve the following minimization problem:

$$
\begin{array}{r}
\min _{T} \sum_{(u, v) \in T} w(u, v) \\
\text { s.t. } T \subseteq E
\end{array}
$$

with the particularity that the set of edges $T$ connects all of the vertices's on $G$. We will examine two algorithms to solve this problem:

- Kruskal's algorithm.
- Prim's algorithm.

And remember the Fibonacci Heap? This will allow to minimize the complexity of one of them.

## 3 Growing the MST

For the two algorithms considered here, a greedy strategy is used that can be exemplified by the following phrase:

- Prior to each iteration of the algorithm, A is a subset of some minimum spanning tree.

```
Algorithm 1 Generic-MST
Generic \(-\operatorname{MST}(G, w)\)
    \(A=\emptyset\)
    while \(A\) does not form a spanning tree
                find an edge \((u, v)\) that is safe for \(A\)
                \(A=A \cup(u, v)\)
    return \(A\)
```


## Note

The edge that can be added to $A$ is called a safe edge and makes $A \cup\{(u, v)\}$ a subset of a minimum spanning tree.

## 4 Basic Definitions

We have the following definitions.
Definition 1. A cut $(S, V-S)$ is a partition of $V$.


Figure 1: Cut in a Graph

From this, we have the following definitions.
Definition 2. We have the following

1. $(u, v)$ in $E$ crosses the cut $(S, V-S)$ if one end point is in $S$ and the other in $V-S$.
2. The cut respects $A$ if no edge in $A$ crosses the cut.
3. A light edge is a edge crossing the cut with minimum weight with respect the other edges crossing the cut.

## 5 Recognizing Safe Edges

For this, we will prove the following algorithm.
Theorem 1. Let $G=(V, E)$ be a connected, undirected graph with a real-valued weight function $w$ defined on $E$. Let $A$ be a subset of $E$ that is included in some minimum spanning tree for $G$, let $(S, V-S)$ be any cut of $G$ that respects $A$, and let $(u, v)$ be a light edge crossing ( $S, V-S$ ). Then, edge $(u, v)$ is safe for $A$.

Proof. Let T be a MST that includes A, we have two cases
Case 1
The light edge is in $T$, we are done.

## Case 2

If this is not the case, we build a spanning tree $T^{\prime}$ that includes $A \cup\{(u, v)\}$.

1. Build a new spanning tree.

Simply, we realized that for the cut $(S, V-S)$ exist a edge $(x, y) \in$ $T$ different from $(u, v)$ such that together with $(u, v)$ forms a cycle between $u$ and $v$ (Fig. 2). The edge $(x, y)$ is not in $A$ because the cut respects $A$, and in addition removing $(x, y)$ breaks set $T$ in two parts (After all $(x, y)$ belongs to a simple path between $u$ and $v$ ). Thus adding $(\mathrm{u}, \mathrm{v})$ into a new set $T^{\prime}=T-\{(x, y)\} \cup\{(u, v)\}$ that is a spanning tree.
2. Prove is a MST.

Since $(u, v)$ is a light edge of $(S, V-S)$ and $(x, y)$ crosses also the cut $(S, V-S)$, we have that

$$
\begin{equation*}
w\left(T^{\prime}\right)=w(T)-w(x, y)+w(u, v) \leq w(T) \tag{2}
\end{equation*}
$$

In addition $T$ is a MST or $w(T) \leq w\left(T^{\prime}\right)$, thus $w(T)=w\left(T^{\prime}\right)$ i.e. $T^{\prime}$ is a minimum spanning tree.
3. See that $(u, v)$ is a safe edge.

We have that $A \subseteq T^{\prime}$, since $A \subseteq T$ and $(x, y) \notin A$. Then, $A \cup$ $\{(u, v)\} \subseteq T^{\prime}$. Thus, $T^{\prime}$ is a MST, then by definition $(u, v)$ is safe for A.


Figure 2: A cycle
Using this theorem, we realized the following about the Generic-MST:

1. The set A at each iteration is always acyclic.
2. The Graph $G_{A}(V, A)$ is a forest.
3. Each connected component is a tree, if not a contradiction arises.
4. Each iteration connects distinct component of $G_{A}$.
5. The while loop only repeats itself $|V|-1$ times more will produce a contradiction.

Understanding this will allows to understand that corollary 23.2 is why Prim and Kruskal can work.

Corollary. 23.3 Let $G=(V, E)$ be a connected, undirected graph with a realvalued weight function $w$ defined on $E$. Let $A$ be a subset of $E$ that is included in some minimum spanning tree for $G$, and let $C=\left(V_{c}, E_{c}\right)$ be a connected component (tree) in the forest $G_{A}=(V, A)$ If $(u, v)$ is a light edge connecting $C$ to some other component in $G_{A}$, then $(u, v)$ is safe for $A$.

## 6 Code and Complexity of Prim's and Kruskal's Algorithms

### 6.1 Kruskal's Complexity

Based in the code for Kruskal (Algo. 2), it is possible to calculate the following complexity.

```
Algorithm 2 Kruskal's Algorithm
    MST-Kruskal( \(G, w\) )
    \(A=\emptyset\)
    for each vertex \(v \in G . V\)
        Make-Set(v)
    sort the edges of G.E into nondecreasing order by weight \(w\)
    for each edge \((u, v) \in G . E\), taken in nondecreasing order by weight
    if \(\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)\)
        \(A=A \cup\{(u, \nu)\}\)
        Union \((u, v)\)
    return \(A\)
```


## Using Disjoint-set Implementation

Using the Disjoint-Set we have the following complexities

- Lines 1. Initialization of A takes $O(1)$.
- Lines 2-3. The complexity of these lines is $O(|V|)$ for making all the necessary sets.
- Lines 4. Time of sorting the edges is $O(E \lg E)$.
- Lines 5-8. They perform $O(E)$ Find-Set and Union operations on the disjoint-set forest. Because these operations can be taken along with the ones in Lines 2-3, we can use the following trick: A constant time $O(1)$ is bounded by the inverse Ackermann function over the set of vertices $O(\alpha(V))$ or $O(V)=O(V \alpha(V))$. Thus

$$
\begin{equation*}
O((V+E) \alpha(V)) \tag{3}
\end{equation*}
$$

Now assuming the following:

- $G$ is connected therefore

$$
\begin{equation*}
|E| \geq|V|-1 \Longrightarrow O((V+E) \alpha(V))=O(E \alpha(V)) \tag{4}
\end{equation*}
$$

- In addition, the Ackermann function is bounded by

$$
\begin{equation*}
\alpha(|V|)=O(\lg V)=O(\lg E) \tag{5}
\end{equation*}
$$

Finally, we have that Kruskal's Algorithm has the following complexity: $O(E \lg E)$. However, by making the following observation, we have that $|E|<|V|^{2}$, thus

$$
\begin{equation*}
\lg |E|=O(\lg V) \tag{6}
\end{equation*}
$$

Then, we can restate the running time of Kruskal's algorithm as $O(E \lg V)$.

### 6.2 Prim's Algorithm

We have the following code for Prim's (Algo. ).

```
Algorithm 3 Prim's Algorithm
    \(\operatorname{MST}-\operatorname{Prim}(G, w, r)\)
        for each \(u \in G . V\)
        \(u . k e y=\infty\)
        \(u . \pi=\mathrm{NIL}\)
    \(r . k e y=0\)
    \(Q=G . V\)
    while \(Q \neq \emptyset\)
        \(u=\operatorname{Extract-Min}(Q)\)
        for each \(v \in G . \operatorname{Adj}[u]\)
            if \(v \in Q\) and \(w(u, v)<v\). key
        \(\nu . \pi=u\)
        \(\nu . k e y=w(u, \nu)\)
```


## Using Min-Heap

Using this data structure, we have that:

- Lines 1-5. The priority queue $Q$ can be implemented using Build-MinHeap in $O(V)$ time.
- Line 6. The while loops is executed $|V|$ times.
- Line 7. The Extract-Min is then bounded by $O(V \lg V)$ complexity.
- Lines 8-11. They execute $O(E)$ because the total number of elements in the adjacency representation is $2|E|$.
- Line 9. The "belonging" operation $\in$ can be implemented using a dirty bit that is turned to zero once the element is remvoed from the priority queue $Q$.
- Line 11. It implies a decreasing of the key v.key using the heapify operation. This can be implemented in $O(\lg V)$ time.

Finally, we have the following complexity for Prim's:

$$
\begin{equation*}
O(V \lg V+E \lg V)=O(E \lg V) \tag{7}
\end{equation*}
$$

## Using Fibonacci Heap

Here the extract operation can be implemented in $O(\lg V)$ amortized time and the decrease key operation can be implemented in $O(1)$ amortized time. Using these two implementations for the priority queue $Q$, we have that

$$
\begin{equation*}
O(E+V \lg V) \tag{8}
\end{equation*}
$$

Thus, in amortized time Fibonacci heap is better.

