
Minimum Spanning Trees

October 1, 2014

1 Introduction
As we have realized in the class of Graph Algorithms, many problems can be
represented as a graph. For example, we could be a electrical machine company
with different possible sources of parts to the production of a particular engine.
The process and production departments gives a total cost of each of the possible
production sites around the world. Then, some clever guy decides to do the
following

• Each sites will be represented as a node vi and belong to a production
system T .

• The cost = manufacture + moving w (vi, vj) cost is given to move a partic-
ular product from vi to vj , he points out that we could consider this cost
as a bidirectional cost. After all this is an attempt to have a provisional
answer.

• We add a node s as the final destination linked to the final assembly nodes
with edges that are equal to the moving cost.

Then, Voilà!!! The clever guy runs an algorithm that produces a minimum size
tree based in the formulation:

minT

∑
vi,vj∈T

w (vi, vj) . (1)

Then, the guy produces an initial analysis of the cost of producing the elec-
trical engine. OK, How he did? Ah! The Minimum Spanning Tree (MST)
problems and solutions.

2 The Setup
Given any graph with undirected edges G = (V,E) such a there is a function
w : P (E)→ R, we want to be able to solve the following minimization problem:

1

minT

∑
(u,v)∈T

w (u, v)

s.t. T ⊆ E

with the particularity that the set of edges T connects all of the vertices’s
on G. We will examine two algorithms to solve this problem:

• Kruskal’s algorithm.

• Prim’s algorithm.

And remember the Fibonacci Heap? This will allow to minimize the complexity
of one of them.

3 Growing the MST
For the two algorithms considered here, a greedy strategy is used that can be
exemplified by the following phrase:

• Prior to each iteration of the algorithm, A is a subset of some minimum
spanning tree.

Algorithm 1 Generic-MST

Generic−MST(G,w)
A = ∅
whi le A does not form a spanning t r e e

f i nd an edge (u, v) that i s s a f e f o r A
A = A ∪ (u, v)

re turn A

Note
The edge that can be added to A is called a safe edge and makes A∪{(u, v)}
a subset of a minimum spanning tree.

4 Basic Definitions
We have the following definitions.

Definition 1. A cut (S, V − S) is a partition of V .

2

Figure 1: Cut in a Graph

From this, we have the following definitions.

Definition 2. We have the following

1. (u, v) in E crosses the cut (S, V − S) if one end point is in S and the
other in V − S.

2. The cut respects A if no edge in A crosses the cut.

3. A light edge is a edge crossing the cut with minimum weight with respect
the other edges crossing the cut.

5 Recognizing Safe Edges
For this, we will prove the following algorithm.

Theorem 1. Let G=(V,E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, let (S,V-S) be any cut of G that respects A, and
let (u,v) be a light edge crossing (S,V-S). Then, edge (u,v) is safe for A.

Proof. Let T be a MST that includes A, we have two cases

Case 1
The light edge is in T , we are done.

Case 2
If this is not the case, we build a spanning tree T ′ that includes A∪{(u, v)}.

1. Build a new spanning tree.
Simply, we realized that for the cut (S, V − S) exist a edge (x, y) ∈
T different from (u, v) such that together with (u, v) forms a cycle
between u and v (Fig. 2). The edge (x, y) is not in A because the
cut respects A, and in addition removing (x, y) breaks set T in two
parts (After all (x, y) belongs to a simple path between u and v).
Thus adding (u,v) into a new set T ′ = T − {(x, y)} ∪ {(u, v)} that is
a spanning tree.

3

2. Prove is a MST.
Since (u, v) is a light edge of (S, V − S) and (x, y) crosses also the
cut (S, V − S), we have that

w(T ′) = w(T)− w(x, y) + w(u, v) ≤ w(T). (2)

In addition T is a MST or w(T) ≤ w(T ′), thus w(T) = w(T ′) i.e. T ′

is a minimum spanning tree.
3. See that (u,v) is a safe edge.

We have that A ⊆ T ′, since A ⊆ T and (x, y) /∈ A. Then, A ∪
{(u, v)} ⊆ T ′. Thus, T ′ is a MST, then by definition (u, v) is safe for
A.

Figure 2: A cycle

Using this theorem, we realized the following about the Generic-MST:

1. The set A at each iteration is always acyclic.

2. The Graph GA(V,A) is a forest.

3. Each connected component is a tree, if not a contradiction arises.

4. Each iteration connects distinct component of GA.

5. The while loop only repeats itself |V | − 1 times more will produce a con-
tradiction.

Understanding this will allows to understand that corollary 23.2 is why Prim
and Kruskal can work.

4

Corollary. 23.3 Let G=(V,E) be a connected, undirected graph with a real-
valued weight function w defined on E. Let A be a subset of E that is included
in some minimum spanning tree for G, and let C = (Vc, Ec) be a connected
component (tree) in the forest GA = (V,A) If (u, v) is a light edge connecting C
to some other component in GA, then (u, v) is safe for A.

6 Code and Complexity of Prim’s and Kruskal’s
Algorithms

6.1 Kruskal’s Complexity
Based in the code for Kruskal (Algo. 2), it is possible to calculate the following
complexity.

Algorithm 2 Kruskal’s Algorithm

Using Disjoint-set Implementation

Using the Disjoint-Set we have the following complexities

• Lines 1. Initialization of A takes O(1).

• Lines 2-3. The complexity of these lines is O (|V |) for making all the
necessary sets.

• Lines 4. Time of sorting the edges is O (E lgE).

• Lines 5-8. They perform O (E) Find-Set and Union operations on the
disjoint-set forest. Because these operations can be taken along with the
ones in Lines 2-3, we can use the following trick: A constant time O (1)
is bounded by the inverse Ackermann function over the set of vertices
O(α(V)) or O (V) = O (V α (V)) . Thus

O ((V + E)α (V)) (3)

5

Now assuming the following:

– G is connected therefore

|E| ≥ |V | − 1 =⇒ O ((V + E)α (V)) = O (Eα (V)) (4)

– In addition, the Ackermann function is bounded by

α (|V |) = O(lg V) = O (lgE) (5)

Finally, we have that Kruskal’s Algorithm has the following complexity:
O (E lgE). However, by making the following observation, we have that
|E| < |V |2, thus

lg |E| = O (lg V) (6)

Then, we can restate the running time of Kruskal’s algorithm as O(E lg V).

6.2 Prim’s Algorithm
We have the following code for Prim’s (Algo.).

Algorithm 3 Prim’s Algorithm

Using Min-Heap

Using this data structure, we have that:

• Lines 1-5. The priority queue Q can be implemented using Build-Min-
Heap in O (V) time.

• Line 6. The while loops is executed |V | times.

6

• Line 7. The Extract-Min is then bounded by O (V lg V) complexity.

• Lines 8-11. They execute O(E) because the total number of elements in
the adjacency representation is 2 |E|.

• Line 9. The “belonging” operation ∈ can be implemented using a dirty
bit that is turned to zero once the element is remvoed from the priority
queue Q.

• Line 11. It implies a decreasing of the key v.key using the heapify oper-
ation. This can be implemented in O (lg V) time.

Finally, we have the following complexity for Prim’s:

O(V lg V + E lg V) = O (E lg V) . (7)

Using Fibonacci Heap

Here the extract operation can be implemented in O (lg V) amortized time and
the decrease key operation can be implemented in O (1) amortized time. Using
these two implementations for the priority queue Q, we have that

O (E + V lg V) . (8)

Thus, in amortized time Fibonacci heap is better.

7

