Analysis of Algorithms

Minimum Spanning Trees

Andres Mendez-Vazquez

November 9, 2015

/ 69

Outline

e Spanning trees
@ Basic concepts
@ Growing a Minimum Spanning Tree
@ The Greedy Choice and Safe Edges
@ Kruskal's algorithm

e Kruskal's Algorithm
@ Directly from the previous Corollary

9 Prim’s Algorithm
@ Implementation

e More About the MST Problem
@ Faster Algorithms
@ Applications

@ Exercises E@;

Cinvestav

2/69

Outline

0 Spanning trees
@ Basic concepts

&)

Cinvestav

3/69

Originally

We had a Graph without weights

Then

Now, we have have weights

Finally, the optimization problem

We want to find

min Y, w(u,v)
T (u,v)ET

Where T C FE such that T is acyclic and connects all the vertices.

)

Cinvestav

6 /69

Finally, the optimization problem

We want to find

min Y, w(u,v)
T (u,v)ET

Where T C FE such that T is acyclic and connects all the vertices.

° ”
This problem is called
The minimum spanning tree problem
\/

Cinvestav

6 /69

When do you need minimum spanning trees?

In power distribution
We want to connect points x and y with the minimum amount of cable.

&)

Cinvestav

7/69

When do you need minimum spanning trees?

In power distribution

We want to connect points x and y with the minimum amount of cable.

In a wireless network

Given a collection of mobile beacons we want to maintain the minimum
connection overhead between all of them.

&)

Cinvestav

7/69

Some Applications

Tracking the Genetic Variance of Age-Gender-Associated

Staphylococcus Aureus

spa CC012
spa CC065
spa CC084
spa CC078
spa CC002
spa CC153
spa CC024
spa CC159
spa CC1137
spa CC005
spa CC267
spa CC127
spa CC163/216
spa CC246
spa CC164
spa CC493
Cluster 17
Cluster 18
Cluster 19
Cluster 20
Cluster 21

0000000000000000000000

© Excluded
@ Singleton

V.

Cinvestav

8/69

Some Applications

Urban Tapestries is an interactive location-based wireless application

allowing users to access and publish location-specific multimedia content.

@ Using MST we can create paths for public multimedia shows that are
no too exhausting

These models can be seen as

Connected, undirected graphs G = (V. F)

@ FE is the set of possible connections between pairs of beacons.

&)

Cinvestav

10/69

These models can be seen as

Connected, undirected graphs G = (V. F)

@ FE is the set of possible connections between pairs of beacons.

@ Each of the this edges (u, v) has a weight w(u, v) specifying the cost
of connecting v and v.

&)

Cinvestav

10 /69

Outline

e Spanning trees

@ Growing a Minimum Spanning Tree

&)

Cinvestav

11 /69

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal
Both algorithms Kruskal and Prim use a greedy approach. J

&)

Cinvestav

12 /69

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal

Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea

@ Prior to each iteration, A is a subset of some minimum spanning tree.

&)

Cinvestav

12 /69

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal
Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea

@ Prior to each iteration, A is a subset of some minimum spanning tree.

@ At each step, we determine an edge (u, v) that can be added to A
such that AU {(u,v)} is also a subset of a minimum spanning tree.

&)

Cinvestav

12 /69

Generic minimum spanning tree algorithm

A Generic Code

Generic-MST(G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A

Cinvestav

13 /69

Generic minimum spanning tree algorithm

A Generic Code
Generic-MST(G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A

y

This has the following loop invariance

Initialization: Line 1 A trivially satisfies.

4

Cinvestav

13 /69

Generic minimum spanning tree algorithm

A Generic Code

Generic-MST(G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A

N

This has the following loop invariance
Initialization: Line 1 A trivially satisfies.

Maintenance: The loop only adds safe edges.

4

Cinvestav

13 /69

Generic minimum spanning tree algorithm

A Generic Code

Generic-MST(G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A

N

This has the following loop invariance

Initialization: Line 1 A trivially satisfies.
Maintenance: The loop only adds safe edges.

Termination: The final A contains all the edges in a minimum spanning
Eieet

y

Cinvestav

13 /69

Some basic definitions for the Greedy Choice

A cut (S, V — S) is a partition of V

@ Then (u,v) in E crosses the cut (S, V — §) if one end point is in S
and the other isin V —§.

&)

Cinvestav

14 /69

Some basic definitions for the Greedy Choice

A cut (S, V — S) is a partition of V

@ Then (u,v) in E crosses the cut (S, V — §) if one end point is in S
and the other isin V —§.

@ We say that a cut respects A if no edge in A crosses the cut.

&)

Cinvestav

14 /69

Some basic definitions for the Greedy Choice

A cut (S, V — S) is a partition of V

@ Then (u,v) in E crosses the cut (S, V — §) if one end point is in S
and the other isin V —§.

@ We say that a cut respects A if no edge in A crosses the cut.

@ A light edge is an edge crossing the cut with minimum weight with
respect to the other edges crossing the cut.

&)

Cinvestav

14 /69

Outline

e Spanning trees

@ The Greedy Choice and Safe Edges

&)

Cinvestav

15 /69

The Greedy Choice

The following algorithms are based in the Greedy Choice. I

&)

Cinvestav

16 /69

The Greedy Choice

The following algorithms are based in the Greedy Choice. I

Which Greedy Choice?

The way we add edges to the set of edges belonging to the Minimum
Spanning Trees.

&)

Cinvestav

16 /69

The Greedy Choice

The following algorithms are based in the Greedy Choice. l

Which Greedy Choice?

The way we add edges to the set of edges belonging to the Minimum
Spanning Trees.

They are known as
Safe Edges

Cinvestav

16 /69

Recognizing safe edges

Theorem for Recognizing Safe Edges (23.1)

Let G = (V, E) be a connected, undirected graph with weights w defined
on E. Let A C E that is included in a MST for G, let (S, V — S) be any
cut of G that respects A, and let (u, v) be a light edge crossing

(S, V —8). Then, edge (u, v) is safe for A.

Cinvestav

17 /69

Observations

@ At any point in the execution of the algorithm the graph
Gy = (V,A) is a forest, and each of the connected components
of G4 is a tree.

&)

Cinvestav

18/69

Observations

Notice that

@ At any point in the execution of the algorithm the graph
Gy = (V,A) is a forest, and each of the connected components
of G4 is a tree.

Thus

o Any safe edge (u, v) for A connects distinct components of Gy, since
AU {(u,v)} must be acyclic.

| A\

&)

Cinvestav

18/69

The basic corollary

Corollary 23.2

Let G = (V, E) be a connected, undirected graph with real-valued weight
function w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, and let C = (V,, E.) be a connected
component (tree) in the forest G4 = (V, A). If (u,v) is a light edge
connecting C' to some other component in G4, then (u, v) is safe for A.

y

&)

Cinvestav

19/69

The basic corollary

Corollary 23.2

Let G = (V, E) be a connected, undirected graph with real-valued weight
function w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, and let C = (V,, E.) be a connected
component (tree) in the forest G4 = (V, A). If (u,v) is a light edge
connecting C' to some other component in G4, then (u, v) is safe for A.

Proof

The cut (V,, V — V,) respects A4, and (u, v) is a light edge for this cut.
Therefore, (u, v) is safe for A.

| A\

v

&)

Cinvestav

19/69

Outline

0 Spanning trees

@ Kruskal's algorithm

&)

Cinvestav

20/69

Outline

e Kruskal's Algorithm
@ Directly from the previous Corollary

&)

Cinvestav

21 /69

Kruskal's Algorithm

Algorithm
MST-KRUSKAL(G, w)
Q A=0
@ for each vertex v € V(]
(s) do Make-Set

V.

&3

Cinvestav

22 /69

Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

V.

&3

Cinvestav

22 /69

Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

@ for each edge (u, v) € E taken in non-decreasing order by weight

e} do if FIND — SET(u) # FIND — SET(v)
Q then A = AU {(u,v)}
o Union(u,v)

V.

&3

Cinvestav

22 /69

Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

@ for each edge (u, v) € E taken in non-decreasing order by weight

e} do if FIND — SET(u) # FIND — SET(v)
Q then A = AU {(u,v)}

o Union(u,v)

Q return A

4

&3

Cinvestav

22 /69

Let us run the Algorithm

We have as an input the following graph

Cinvestav

23 /69

Let us run the Algorithm

15! step everybody is a set!!!

Cinvestav

24 /69

Let us run the Algorithm

Given (f, g) with weight 1
Question: FIND — SET(f) # FIND — SET(g)?

V.

&

Cinvestav

25 /69

Let us run the Algorithm

Then A= AU{(f,g)} next FIND — SET(f) # FIND — SET(©)?

Cinvestav

26 /69

Let us run the Algorithm

Then A = AU{(f, i)}, next FIND — SET(c) # FIND — SET(f)?

4

&)

Cinvestav

27 /69

Let us run the Algorithm

Then A = AU {(c,f)}, next FIND — SET(a) # FIND — SET(d)?

Cinvestav

28/ 69

Let us run the Algorithm

Then A = AU {(a,d)}, next FIND — SET(b) # FIND — SET(e)?

Cinvestav

29/69

Let us run the Algorithm

Then A= AU {(b,e)}, next FIND — SET(e) # FIND — SET(7)?

Cinvestav

30/69

Let us run the Algorithm

Then A = AU {(e, i)}, next FIND — SET(b) # FIND — SET(f)?

Cinvestav

31/69

Let us run the Algorithm

Then A = A, next FIND — SET(b) # FIND — SET(c¢)?

Cinvestav

32/69

Let us run the Algorithm

Then A = A, next FIND — SET(d) # FIND — SET(e)?

Cinvestav

33/69

Let us run the Algorithm

Then A = AU{(d,)}, next FIND — SET(a) # FIND — SET(b)?

Cinvestav

34/69

Let us run the Algorithm

Then A = A, next FIND — SET(e) # FIND — SET(g)?

Cinvestav

35/69

Let us run the Algorithm

Then A = A, next FIND — SET(g) # FIND — SET(h)?

Cinvestav

36 /69

Let us run the Algorithm

Then A= AU{(g,h)}

Cinvestav

37/69

Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

@ for each edge (u,v) € E taken in non-decreasing order by weight

e do if FIND — SET(u) # FIND — SET(v)
Q then A = AU {(u,v)}

o Union(u,v)

Q return A

4

&3

Cinvestav

38 /69

Complexity

Explanation

@ Line 1. Initializing the set A takes O(1) time.

39 /69

Complexity

Explanation

@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).

39 /69

Complexity
@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).
@ Line 4. Sorting the edges in line 4 takes O(Elog E).

39 /69

Complexity
@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).
@ Line 4. Sorting the edges in line 4 takes O(Elog E).

@ Lines 5 to 8. The for loop performs:

39 /69

Complexity
@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).
@ Line 4. Sorting the edges in line 4 takes O(Elog E).
@ Lines 5 to 8. The for loop performs:
» O(E) FIND-SET and UNION operations.

39 /69

Complexity
@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).
@ Line 4. Sorting the edges in line 4 takes O(Elog E).
°

Lines 5 to 8. The for loop performs:

» O(E) FIND-SET and UNION operations.
» Along with the | V| MAKE-SET operations that take O((V + E)a(V)),
where « is the pseudoinverse of the Ackermann’s function.

v

39 /69

Complexity

Explanation

@ Line 1. Initializing the set A takes O(1) time.

@ Line 2 to 3. Making the sets takes O (V).

@ Line 4. Sorting the edges in line 4 takes O(Elog E).
@ Lines 5 to 8. The for loop performs:

» O(E) FIND-SET and UNION operations.
» Along with the | V| MAKE-SET operations that take O((V + E)a(V)),
where « is the pseudoinverse of the Ackermann’s function.

e Given that G is connected, we have |E| > |V|—1, and so the
disjoint-set operations take O(Ea(V')) time and
a(]V]) = 0O(log V) = O(log E).

Complexity

Explanation
@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).
@ Line 4. Sorting the edges in line 4 takes O(Elog E).
@ Lines 5 to 8. The for loop performs:

» O(E) FIND-SET and UNION operations.
» Along with the | V| MAKE-SET operations that take O((V + E)a(V)),
where « is the pseudoinverse of the Ackermann’s function.

e Given that G is connected, we have |E| > |V|—1, and so the
disjoint-set operations take O(Ea(V')) time and
a(]V]) = 0O(log V) = O(log E).

@ The total running time of Kruskal's algorithm is O(E log E), but
observing that |E| < |V|? — log |E| < 2log| V|, we have that

log|E| = O (log V), and so we can restate the running time of the
alerarrmtbmm o M T laer 070 39/6

Outline

9 Prim’s Algorithm
@ Implementation

&)

Cinvestav

40/69

Prim's Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm

@ The tree starts from an arbitrary root vertex r.

&)

Cinvestav

41/69

Prim's Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm

@ The tree starts from an arbitrary root vertex r.

@ At each step, a light edge is added to the tree A that connects A to
an isolated vertex of G4 = (V, A).

&)

Cinvestav

41/69

Prim's Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm

@ The tree starts from an arbitrary root vertex r.

@ At each step, a light edge is added to the tree A that connects A to
an isolated vertex of G4 = (V, A).

@ When the algorithm terminates, the edges in A form a minimum
spanning tree.

&)

Cinvestav

41/69

Problem

In order to implement Prim's algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

5

Cinvestav

42 /69

Problem

In order to implement Prim's algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue ()

During execution of the algorithm, all vertices that are not in the tree
reside in a min-priority queue Q based on a key attribute.

5

Cinvestav

42 /69

Problem

In order to implement Prim's algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue @)

During execution of the algorithm, all vertices that are not in the tree
reside in a min-priority queue Q based on a key attribute.

| A

There is a field key for every vertex v

@ It is the minimum weight of any edge connecting v to a vertex in the
minimum spanning tree (THE LIGHT EDGE!!!).

@ By convention, v.key = oo if there is no such edge.

v

=

Cinvestav

42 /69

The algorithm

MST-PRIM(G, w, 7)
@ for each u € V [(]
o u.key = 0o
o u.m = NIL

43 /69

The algorithm

MST-PRIM(G, w, 7)
@ for each u € V [(]

o u.key = 0o
o u.m = NIL
Q rkey=20

Q Q=VI[G]

43 /69

The algorithm

MST-PRIM(G, w, 7)
@ for each u € V [(]

o u.key = 0o
o u.m = NIL
Q rkey=20

Q@ Q="VI[G

Q while Q # 0

(7] u =Extract-Min(Q)

43 /69

The algorithm

MST-PRIM(G, w,)
@ for each u € V [(]
o u.key = 0o
o u.m = NIL
Q rkey=20
Q@ Q="VI[G
Q while Q # 0
Q u =Extract-Min(Q)
(8] for each v € Adj [u]
o if ve @ and w(u,v) < v.key
(10 v =u
@ v.key = w (u, v)>an implicit decrease key
in @

43 /69

Explanation

Q A={(v,mv]):ve V-{r}—-Q}

&)

Cinvestav

44 /69

Explanation

Q@ A={(vnfv]):veV—{r}-Q}
@ The vertices already placed into the minimum spanning tree are those
in V—0Q.

&)

Cinvestav

44 /69

Explanation

Q@ A={(vnfv]):veV—{r}-Q}

@ The vertices already placed into the minimum spanning tree are those
in V—0Q.

@ For all vertices v € @, if w[v] # NIL, then key[v] < oo and key[v] is
the weight of a light edge (v, 7[v]) connecting v to some vertex
already placed into the minimum spanning tree.

&)

Cinvestav

44 /69

Let us run the Algorithm

We have as an input the following graph

Cinvestav

45 /69

Let us run the Algorithm

Select 7 =b

vvvvvvvvv

Let us run the Algorithm

Extract b from the priority queue @)

Cinvestav

47 /69

Let us run the Algorithm

Update the predecessor of a and its key to 12 from oo

Note: The RED color represent the field 7 [v]

v

4

N4

Cinvestav

48 /69

Let us run the Algorithm

Update the predecessor of ¢ and its key to 9 from oo

Cinvestav

49 /69

Let us run the Algorithm

Update the predecessor of e and its key to 5 from oo

Cinvestav

50 /69

Let us run the Algorithm

Update the predecessor of f and its key to 8 from oo

Cinvestav

51/69

Let us run the Algorithm

Extract e, then update adjacent vertices

Cinvestav

52 /69

Let us run the Algorithm

Extract ¢ from the priority queue @)

V.

&)

Cinvestav

53 /69

Let us run the Algorithm

Update adjacent vertices

Cinvestav

54 /69

Let us run the Algorithm

Extract f and update adjacent vertices

Cinvestav

55 /69

Let us run the Algorithm

Extract ¢ and update

Cinvestav

56 /69

Let us run the Algorithm

Extract ¢ and no update

Cinvestav

57 /69

Let us run the Algorithm

Extract d and update key at 1

Cinvestav

58 /69

Let us run the Algorithm

Extract a and no update

Cinvestav

59 /69

Let us run the Algorithm

Extract h

Cinvestav

60 /69

Complexity |

Complexity analysis

@ The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.

4

&)

Cinvestav

61/69

Complexity |

@ The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.

e If @ is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(| V) time.

V.

&)

Cinvestav

61/69

Complexity |

Complexity analysis
@ The performance of Prim’s algorithm depends on how we implement

the min-priority queue Q.

e If @ is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(| V) time.

@ The body of the while loop is executed | V| times, and
EXTRACT-MIN operation takes O(log V') time, the total time for all
calls to EXTRACT-MIN is O(V log V).

V.

&)

Cinvestav

61 /69

Complexity |

Complexity analysis

@ The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.

e If @ is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(| V) time.

@ The body of the while loop is executed | V| times, and
EXTRACT-MIN operation takes O(log V') time, the total time for all
calls to EXTRACT-MIN is O(V log V).

@ The for loop in lines 8 to 11 is executed O(F) times altogether, since
the sum of the lengths of all adjacency lists is 2| E]|.

4

&)

Cinvestav

61 /69

Complexity Il

Complexity analysis (continuation)

@ Within the for loop, the test for membership in @ in line 9 can be
implemented in constant time.

&)

Cinvestav

62 /69

Complexity Il

Complexity analysis (continuation)

@ Within the for loop, the test for membership in @ in line 9 can be
implemented in constant time.

@ The assignment in line 11 involves an implicit DECREASE-KEY
operation on the min-heap, which can be implemented in a binary

min-heap in O(log V') time. Thus, the total time for Prim's algorithm

IS:

O(Vleg V+ Elog V)= O(Flog V)

&)

Cinvestav

62 /69

If you use Fibonacci Heaps

Complexity analysis

o EXTRACT-MIN operation in O(log V') amortized time.

&)

Cinvestav

63 /69

If you use Fibonacci Heaps

Complexity analysis

o EXTRACT-MIN operation in O(log V') amortized time.

o DECREASE-KEY operation (to implement line 11) in O(1) amortized
time.

&)

Cinvestav

63 /69

If you use Fibonacci Heaps

Complexity analysis

o EXTRACT-MIN operation in O(log V') amortized time.

o DECREASE-KEY operation (to implement line 11) in O(1) amortized
time.

@ If we use a Fibonacci Heap to implement the min-priority queue @ we
get a running time of O(E + Vlog V).

<

&)

Cinvestav

63 /69

Outline

e More About the MST Problem
@ Faster Algorithms

&)

Cinvestav

64 /69

Faster Algorithms

Linear Time Algorithms

o Karger, Klein & Tarjan (1995) proposed a linear time randomized
algorithm.

@ The Fastest (O (Ea (E, V))) by Bernard Chazelle (2000) is based on
the soft heap, an approximate priority queue.

» Chazelle has also written essays about music and politics

&)

Cinvestav

65 /69

Faster Algorithms

Linear Time Algorithms

o Karger, Klein & Tarjan (1995) proposed a linear time randomized
algorithm.

@ The Fastest (O (Ea (E, V))) by Bernard Chazelle (2000) is based on
the soft heap, an approximate priority queue.

» Chazelle has also written essays about music and politics

Linear-time algorithms in special cases

| \

If the graph is dense (i.e. logloglog V < %) then a deterministic
algorithm by Fredman and Tarjan finds the MST in time O (E).

v

&)

Cinvestav

65 /69

Outline

e More About the MST Problem

@ Applications

&)

Cinvestav

66 /69

Applications

Minimum spanning trees have direct applications in the design of

networks
@ Telecommunications networks

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks

@ Telecommunications networks

@ Transportation networks

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks
@ Telecommunications networks
@ Transportation networks

@ Water supply networks

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks
@ Telecommunications networks
@ Transportation networks
@ Water supply networks

@ Electrical grids

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks
@ Telecommunications networks
@ Transportation networks
@ Water supply networks

@ Electrical grids

v

As a subroutine in

@ Machine Learning/Big Data Cluster Analysis

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks
@ Telecommunications networks
@ Transportation networks
@ Water supply networks

@ Electrical grids

V
As a subroutine in

@ Machine Learning/Big Data Cluster Analysis

@ Network Communications are using Spanning Tree Protocol (STP)

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks
@ Telecommunications networks
@ Transportation networks
@ Water supply networks

@ Electrical grids

V
As a subroutine in

@ Machine Learning/Big Data Cluster Analysis

@ Network Communications are using Spanning Tree Protocol (STP)

@ Image registration and segmentation

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks

@ Telecommunications networks
@ Transportation networks
@ Water supply networks

@ Electrical grids

v

As a subroutine in

Machine Learning/Big Data Cluster Analysis

°
@ Network Communications are using Spanning Tree Protocol (STP)
@ Image registration and segmentation

@ Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.

67 /69

Applications

Minimum spanning trees have direct applications in the design of

networks

@ Telecommunications networks
@ Transportation networks
@ Water supply networks

@ Electrical grids

v

As a subroutine in

Machine Learning/Big Data Cluster Analysis

°
@ Network Communications are using Spanning Tree Protocol (STP)
@ Image registration and segmentation

@ Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.

o Etc

67 /69

Outline

o More About the MST Problem

@ Exercises §

Cinvestav

68 /69

Exercises

From Cormen’s book solve

23.1-3
23.1-5
23.1-7
23.1-9
23.2-2
23.2-3
23.2-5
23.2-7

4

&)

Cinvestav

69 /69

	Spanning trees
	Basic concepts
	Growing a Minimum Spanning Tree
	The Greedy Choice and Safe Edges
	Kruskal's algorithm

	Kruskal's Algorithm
	Directly from the previous Corollary

	Prim's Algorithm
	Implementation

	More About the MST Problem
	Faster Algorithms
	Applications
	Exercises

