
Analysis of Algorithms
Minimum Spanning Trees

Andres Mendez-Vazquez

November 9, 2015

1 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

2 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

3 / 69

Originally

We had a Graph without weights
2

3

5

1

4

6

7

9

8

4 / 69

Then

Now, we have have weights
b

c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

5 / 69

Finally, the optimization problem

We want to find
min

T

∑
(u,v)∈T

w(u, v)

Where T ⊆ E such that T is acyclic and connects all the vertices.

2
3

5

1

4

6

7

9

8
12

4

5

11

8

9

2

1

17

8

2

21

This problem is called
The minimum spanning tree problem

6 / 69

Finally, the optimization problem

We want to find
min

T

∑
(u,v)∈T

w(u, v)

Where T ⊆ E such that T is acyclic and connects all the vertices.

2
3

5

1

4

6

7

9

8
12

4

5

11

8

9

2

1

17

8

2

21

This problem is called
The minimum spanning tree problem

6 / 69

When do you need minimum spanning trees?

In power distribution
We want to connect points x and y with the minimum amount of cable.

In a wireless network
Given a collection of mobile beacons we want to maintain the minimum
connection overhead between all of them.

7 / 69

When do you need minimum spanning trees?

In power distribution
We want to connect points x and y with the minimum amount of cable.

In a wireless network
Given a collection of mobile beacons we want to maintain the minimum
connection overhead between all of them.

7 / 69

Some Applications

Tracking the Genetic Variance of Age-Gender-Associated
Staphylococcus Aureus

8 / 69

Some Applications
What?
Urban Tapestries is an interactive location-based wireless application
allowing users to access and publish location-specific multimedia content.

Using MST we can create paths for public multimedia shows that are
no too exhausting

9 / 69

These models can be seen as

Connected, undirected graphs G = (V , E)
E is the set of possible connections between pairs of beacons.
Each of the this edges (u, v) has a weight w(u, v) specifying the cost
of connecting u and v.

10 / 69

These models can be seen as

Connected, undirected graphs G = (V , E)
E is the set of possible connections between pairs of beacons.
Each of the this edges (u, v) has a weight w(u, v) specifying the cost
of connecting u and v.

10 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

11 / 69

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal
Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea
Prior to each iteration, A is a subset of some minimum spanning tree.
At each step, we determine an edge (u, v) that can be added to A
such that A ∪ {(u, v)} is also a subset of a minimum spanning tree.

12 / 69

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal
Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea
Prior to each iteration, A is a subset of some minimum spanning tree.
At each step, we determine an edge (u, v) that can be added to A
such that A ∪ {(u, v)} is also a subset of a minimum spanning tree.

12 / 69

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal
Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea
Prior to each iteration, A is a subset of some minimum spanning tree.
At each step, we determine an edge (u, v) that can be added to A
such that A ∪ {(u, v)} is also a subset of a minimum spanning tree.

12 / 69

Generic minimum spanning tree algorithm

A Generic Code
Generic-MST(G,w)

1 A = ∅
2 while A does not form a spanning tree
3 do find an edge (u, v) that is safe for A
4 A = A ∪ {(u, v)}
5 return A

This has the following loop invariance
Initialization: Line 1 A trivially satisfies.
Maintenance: The loop only adds safe edges.
Termination: The final A contains all the edges in a minimum spanning

tree.

13 / 69

Generic minimum spanning tree algorithm

A Generic Code
Generic-MST(G,w)

1 A = ∅
2 while A does not form a spanning tree
3 do find an edge (u, v) that is safe for A
4 A = A ∪ {(u, v)}
5 return A

This has the following loop invariance
Initialization: Line 1 A trivially satisfies.
Maintenance: The loop only adds safe edges.
Termination: The final A contains all the edges in a minimum spanning

tree.

13 / 69

Generic minimum spanning tree algorithm

A Generic Code
Generic-MST(G,w)

1 A = ∅
2 while A does not form a spanning tree
3 do find an edge (u, v) that is safe for A
4 A = A ∪ {(u, v)}
5 return A

This has the following loop invariance
Initialization: Line 1 A trivially satisfies.
Maintenance: The loop only adds safe edges.
Termination: The final A contains all the edges in a minimum spanning

tree.

13 / 69

Generic minimum spanning tree algorithm

A Generic Code
Generic-MST(G,w)

1 A = ∅
2 while A does not form a spanning tree
3 do find an edge (u, v) that is safe for A
4 A = A ∪ {(u, v)}
5 return A

This has the following loop invariance
Initialization: Line 1 A trivially satisfies.
Maintenance: The loop only adds safe edges.
Termination: The final A contains all the edges in a minimum spanning

tree.

13 / 69

Some basic definitions for the Greedy Choice

A cut (S , V − S) is a partition of V
Then (u, v) in E crosses the cut (S ,V − S) if one end point is in S
and the other is in V − S .
We say that a cut respects A if no edge in A crosses the cut.
A light edge is an edge crossing the cut with minimum weight with
respect to the other edges crossing the cut.

14 / 69

Some basic definitions for the Greedy Choice

A cut (S , V − S) is a partition of V
Then (u, v) in E crosses the cut (S ,V − S) if one end point is in S
and the other is in V − S .
We say that a cut respects A if no edge in A crosses the cut.
A light edge is an edge crossing the cut with minimum weight with
respect to the other edges crossing the cut.

14 / 69

Some basic definitions for the Greedy Choice

A cut (S , V − S) is a partition of V
Then (u, v) in E crosses the cut (S ,V − S) if one end point is in S
and the other is in V − S .
We say that a cut respects A if no edge in A crosses the cut.
A light edge is an edge crossing the cut with minimum weight with
respect to the other edges crossing the cut.

14 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

15 / 69

The Greedy Choice

Remark
The following algorithms are based in the Greedy Choice.

Which Greedy Choice?
The way we add edges to the set of edges belonging to the Minimum
Spanning Trees.

They are known as
Safe Edges

16 / 69

The Greedy Choice

Remark
The following algorithms are based in the Greedy Choice.

Which Greedy Choice?
The way we add edges to the set of edges belonging to the Minimum
Spanning Trees.

They are known as
Safe Edges

16 / 69

The Greedy Choice

Remark
The following algorithms are based in the Greedy Choice.

Which Greedy Choice?
The way we add edges to the set of edges belonging to the Minimum
Spanning Trees.

They are known as
Safe Edges

16 / 69

Recognizing safe edges

Theorem for Recognizing Safe Edges (23.1)
Let G = (V ,E) be a connected, undirected graph with weights w defined
on E . Let A ⊆ E that is included in a MST for G, let (S ,V − S) be any
cut of G that respects A, and let (u, v) be a light edge crossing
(S ,V − S). Then, edge (u, v) is safe for A.

b c d

i

h g f

ea

4

8

8

11

7

2

6

1 2

2

4

9

14

10

S

V-S

S

V-S

17 / 69

Observations

Notice that
At any point in the execution of the algorithm the graph
GA = (V ,A) is a forest, and each of the connected components
of GA is a tree.

Thus
Any safe edge (u, v) for A connects distinct components of GA, since
A ∪ {(u, v)} must be acyclic.

18 / 69

Observations

Notice that
At any point in the execution of the algorithm the graph
GA = (V ,A) is a forest, and each of the connected components
of GA is a tree.

Thus
Any safe edge (u, v) for A connects distinct components of GA, since
A ∪ {(u, v)} must be acyclic.

18 / 69

The basic corollary

Corollary 23.2
Let G = (V ,E) be a connected, undirected graph with real-valued weight
function w defined on E . Let A be a subset of E that is included in some
minimum spanning tree for G, and let C = (Vc,Ec) be a connected
component (tree) in the forest GA = (V ,A). If (u, v) is a light edge
connecting C to some other component in GA, then (u, v) is safe for A.

Proof
The cut (Vc,V −Vc) respects A, and (u, v) is a light edge for this cut.
Therefore, (u, v) is safe for A.

19 / 69

The basic corollary

Corollary 23.2
Let G = (V ,E) be a connected, undirected graph with real-valued weight
function w defined on E . Let A be a subset of E that is included in some
minimum spanning tree for G, and let C = (Vc,Ec) be a connected
component (tree) in the forest GA = (V ,A). If (u, v) is a light edge
connecting C to some other component in GA, then (u, v) is safe for A.

Proof
The cut (Vc,V −Vc) respects A, and (u, v) is a light edge for this cut.
Therefore, (u, v) is safe for A.

19 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

20 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

21 / 69

Kruskal’s Algorithm

Algorithm
MST-KRUSKAL(G,w)

1 A = ∅
2 for each vertex v ∈ V [G]
3 do Make-Set
4 sort the edges of E into non-decreasing order by weight w
5 for each edge (u, v) ∈ E taken in non-decreasing order by weight
6 do if FIND − SET (u) 6= FIND − SET (v)
7 then A = A ∪ {(u, v)}
8 Union(u,v)
9 return A

22 / 69

Kruskal’s Algorithm

Algorithm
MST-KRUSKAL(G,w)

1 A = ∅
2 for each vertex v ∈ V [G]
3 do Make-Set
4 sort the edges of E into non-decreasing order by weight w
5 for each edge (u, v) ∈ E taken in non-decreasing order by weight
6 do if FIND − SET (u) 6= FIND − SET (v)
7 then A = A ∪ {(u, v)}
8 Union(u,v)
9 return A

22 / 69

Kruskal’s Algorithm

Algorithm
MST-KRUSKAL(G,w)

1 A = ∅
2 for each vertex v ∈ V [G]
3 do Make-Set
4 sort the edges of E into non-decreasing order by weight w
5 for each edge (u, v) ∈ E taken in non-decreasing order by weight
6 do if FIND − SET (u) 6= FIND − SET (v)
7 then A = A ∪ {(u, v)}
8 Union(u,v)
9 return A

22 / 69

Kruskal’s Algorithm

Algorithm
MST-KRUSKAL(G,w)

1 A = ∅
2 for each vertex v ∈ V [G]
3 do Make-Set
4 sort the edges of E into non-decreasing order by weight w
5 for each edge (u, v) ∈ E taken in non-decreasing order by weight
6 do if FIND − SET (u) 6= FIND − SET (v)
7 then A = A ∪ {(u, v)}
8 Union(u,v)
9 return A

22 / 69

Let us run the Algorithm

We have as an input the following graph

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

23 / 69

Let us run the Algorithm

1st step everybody is a set!!!

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

24 / 69

Let us run the Algorithm

Given (f , g) with weight 1
Question: FIND − SET (f) 6= FIND − SET (g)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

25 / 69

Let us run the Algorithm

Then A = A ∪ {(f , g)}, next FIND − SET (f) 6= FIND − SET (i)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

26 / 69

Let us run the Algorithm

Then A = A ∪ {(f , i)}, next FIND − SET (c) 6= FIND − SET (f)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

27 / 69

Let us run the Algorithm

Then A = A ∪ {(c, f)}, next FIND − SET (a) 6= FIND − SET (d)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

28 / 69

Let us run the Algorithm

Then A = A ∪ {(a, d)}, next FIND − SET (b) 6= FIND − SET (e)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

29 / 69

Let us run the Algorithm

Then A = A ∪ {(b, e)}, next FIND − SET (e) 6= FIND − SET (i)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

30 / 69

Let us run the Algorithm

Then A = A ∪ {(e, i)}, next FIND − SET (b) 6= FIND − SET (f)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

31 / 69

Let us run the Algorithm

Then A = A, next FIND − SET (b) 6= FIND − SET (c)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

32 / 69

Let us run the Algorithm

Then A = A, next FIND − SET (d) 6= FIND − SET (e)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

33 / 69

Let us run the Algorithm

Then A = A ∪ {(d, e)}, next FIND − SET (a) 6= FIND − SET (b)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

34 / 69

Let us run the Algorithm

Then A = A, next FIND − SET (e) 6= FIND − SET (g)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

35 / 69

Let us run the Algorithm

Then A = A, next FIND − SET (g) 6= FIND − SET (h)?

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

36 / 69

Let us run the Algorithm

Then A = A ∪ {(g, h)}

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

37 / 69

Kruskal’s Algorithm

Algorithm
MST-KRUSKAL(G,w)

1 A = ∅
2 for each vertex v ∈ V [G]
3 do Make-Set
4 sort the edges of E into non-decreasing order by weight w
5 for each edge (u, v) ∈ E taken in non-decreasing order by weight
6 do if FIND − SET (u) 6= FIND − SET (v)
7 then A = A ∪ {(u, v)}
8 Union(u,v)
9 return A

38 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Complexity
Explanation

Line 1. Initializing the set A takes O(1) time.
Line 2 to 3. Making the sets takes O (V).
Line 4. Sorting the edges in line 4 takes O(E log E).
Lines 5 to 8. The for loop performs:

I O(E) FIND-SET and UNION operations.
I Along with the |V | MAKE-SET operations that take O((V + E)α(V)),

where α is the pseudoinverse of the Ackermann’s function.

Thus
Given that G is connected, we have |E | ≥ |V | − 1, and so the
disjoint-set operations take O(Eα(V)) time and
α(|V |) = O(log V) = O(log E).
The total running time of Kruskal’s algorithm is O(E log E), but
observing that |E | < |V |2 7−→ log |E | < 2 log |V |, we have that
log |E | = O (log V), and so we can restate the running time of the
algorithm as O(E log V). 39 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

40 / 69

Prim’s Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm
The tree starts from an arbitrary root vertex r .
At each step, a light edge is added to the tree A that connects A to
an isolated vertex of GA = (V ,A).
When the algorithm terminates, the edges in A form a minimum
spanning tree.

41 / 69

Prim’s Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm
The tree starts from an arbitrary root vertex r .
At each step, a light edge is added to the tree A that connects A to
an isolated vertex of GA = (V ,A).
When the algorithm terminates, the edges in A form a minimum
spanning tree.

41 / 69

Prim’s Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm
The tree starts from an arbitrary root vertex r .
At each step, a light edge is added to the tree A that connects A to
an isolated vertex of GA = (V ,A).
When the algorithm terminates, the edges in A form a minimum
spanning tree.

41 / 69

Problem

Important
In order to implement Prim’s algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue Q
During execution of the algorithm, all vertices that are not in the tree
reside in a min-priority queue Q based on a key attribute.

There is a field key for every vertex v
It is the minimum weight of any edge connecting v to a vertex in the
minimum spanning tree (THE LIGHT EDGE!!!).
By convention, v.key =∞ if there is no such edge.

42 / 69

Problem

Important
In order to implement Prim’s algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue Q
During execution of the algorithm, all vertices that are not in the tree
reside in a min-priority queue Q based on a key attribute.

There is a field key for every vertex v
It is the minimum weight of any edge connecting v to a vertex in the
minimum spanning tree (THE LIGHT EDGE!!!).
By convention, v.key =∞ if there is no such edge.

42 / 69

Problem

Important
In order to implement Prim’s algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue Q
During execution of the algorithm, all vertices that are not in the tree
reside in a min-priority queue Q based on a key attribute.

There is a field key for every vertex v
It is the minimum weight of any edge connecting v to a vertex in the
minimum spanning tree (THE LIGHT EDGE!!!).
By convention, v.key =∞ if there is no such edge.

42 / 69

The algorithm
Pseudo-code
MST-PRIM(G,w, r)

1 for each u ∈ V [G]
2 u.key =∞
3 u.π = NIL
4 r .key = 0
5 Q = V [G]
6 while Q 6= ∅
7 u =Extract-Min(Q)
8 for each v ∈ Adj [u]
9 if v ∈ Q and w (u, v) < v.key
10 π [v] = u
11 v.key = w (u, v).an implicit decrease key

in Q
43 / 69

The algorithm
Pseudo-code
MST-PRIM(G,w, r)

1 for each u ∈ V [G]
2 u.key =∞
3 u.π = NIL
4 r .key = 0
5 Q = V [G]
6 while Q 6= ∅
7 u =Extract-Min(Q)
8 for each v ∈ Adj [u]
9 if v ∈ Q and w (u, v) < v.key
10 π [v] = u
11 v.key = w (u, v).an implicit decrease key

in Q
43 / 69

The algorithm
Pseudo-code
MST-PRIM(G,w, r)

1 for each u ∈ V [G]
2 u.key =∞
3 u.π = NIL
4 r .key = 0
5 Q = V [G]
6 while Q 6= ∅
7 u =Extract-Min(Q)
8 for each v ∈ Adj [u]
9 if v ∈ Q and w (u, v) < v.key
10 π [v] = u
11 v.key = w (u, v).an implicit decrease key

in Q
43 / 69

The algorithm
Pseudo-code
MST-PRIM(G,w, r)

1 for each u ∈ V [G]
2 u.key =∞
3 u.π = NIL
4 r .key = 0
5 Q = V [G]
6 while Q 6= ∅
7 u =Extract-Min(Q)
8 for each v ∈ Adj [u]
9 if v ∈ Q and w (u, v) < v.key
10 π [v] = u
11 v.key = w (u, v).an implicit decrease key

in Q
43 / 69

Explanation

Observations
1 A = {(v, π[v]) : v ∈ V − {r} −Q}.
2 The vertices already placed into the minimum spanning tree are those

in V −Q.
3 For all vertices v ∈ Q, if π[v] 6= NIL, then key[v] <∞ and key[v] is

the weight of a light edge (v, π[v]) connecting v to some vertex
already placed into the minimum spanning tree.

44 / 69

Explanation

Observations
1 A = {(v, π[v]) : v ∈ V − {r} −Q}.
2 The vertices already placed into the minimum spanning tree are those

in V −Q.
3 For all vertices v ∈ Q, if π[v] 6= NIL, then key[v] <∞ and key[v] is

the weight of a light edge (v, π[v]) connecting v to some vertex
already placed into the minimum spanning tree.

44 / 69

Explanation

Observations
1 A = {(v, π[v]) : v ∈ V − {r} −Q}.
2 The vertices already placed into the minimum spanning tree are those

in V −Q.
3 For all vertices v ∈ Q, if π[v] 6= NIL, then key[v] <∞ and key[v] is

the weight of a light edge (v, π[v]) connecting v to some vertex
already placed into the minimum spanning tree.

44 / 69

Let us run the Algorithm

We have as an input the following graph

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

45 / 69

Let us run the Algorithm

Select r =b

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

46 / 69

Let us run the Algorithm

Extract b from the priority queue Q

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

47 / 69

Let us run the Algorithm

Update the predecessor of a and its key to 12 from ∞

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

Note: The RED color represent the field π [v]

48 / 69

Let us run the Algorithm

Update the predecessor of c and its key to 9 from ∞

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

49 / 69

Let us run the Algorithm

Update the predecessor of e and its key to 5 from ∞

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

50 / 69

Let us run the Algorithm

Update the predecessor of f and its key to 8 from ∞

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

51 / 69

Let us run the Algorithm

Extract e, then update adjacent vertices

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

52 / 69

Let us run the Algorithm

Extract i from the priority queue Q

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

53 / 69

Let us run the Algorithm

Update adjacent vertices

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

54 / 69

Let us run the Algorithm

Extract f and update adjacent vertices

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

55 / 69

Let us run the Algorithm

Extract g and update

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

56 / 69

Let us run the Algorithm

Extract c and no update

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

57 / 69

Let us run the Algorithm

Extract d and update key at 1

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

58 / 69

Let us run the Algorithm

Extract a and no update

b
c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

59 / 69

Let us run the Algorithm

Extract h
b

c

f

a

d

e

i

g

h
12

4

5

11

8

9

2

1

17

8

2

21

60 / 69

Complexity I

Complexity analysis
The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.
If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(|V |) time.
The body of the while loop is executed |V | times, and
EXTRACT-MIN operation takes O(log V) time, the total time for all
calls to EXTRACT-MIN is O(V log V).
The for loop in lines 8 to 11 is executed O(E) times altogether, since
the sum of the lengths of all adjacency lists is 2|E |.

61 / 69

Complexity I

Complexity analysis
The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.
If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(|V |) time.
The body of the while loop is executed |V | times, and
EXTRACT-MIN operation takes O(log V) time, the total time for all
calls to EXTRACT-MIN is O(V log V).
The for loop in lines 8 to 11 is executed O(E) times altogether, since
the sum of the lengths of all adjacency lists is 2|E |.

61 / 69

Complexity I

Complexity analysis
The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.
If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(|V |) time.
The body of the while loop is executed |V | times, and
EXTRACT-MIN operation takes O(log V) time, the total time for all
calls to EXTRACT-MIN is O(V log V).
The for loop in lines 8 to 11 is executed O(E) times altogether, since
the sum of the lengths of all adjacency lists is 2|E |.

61 / 69

Complexity I

Complexity analysis
The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.
If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(|V |) time.
The body of the while loop is executed |V | times, and
EXTRACT-MIN operation takes O(log V) time, the total time for all
calls to EXTRACT-MIN is O(V log V).
The for loop in lines 8 to 11 is executed O(E) times altogether, since
the sum of the lengths of all adjacency lists is 2|E |.

61 / 69

Complexity II

Complexity analysis (continuation)
Within the for loop, the test for membership in Q in line 9 can be
implemented in constant time.
The assignment in line 11 involves an implicit DECREASE-KEY
operation on the min-heap, which can be implemented in a binary
min-heap in O(log V) time. Thus, the total time for Prim’s algorithm
is:

O(V log V + E log V) = O(E log V)

62 / 69

Complexity II

Complexity analysis (continuation)
Within the for loop, the test for membership in Q in line 9 can be
implemented in constant time.
The assignment in line 11 involves an implicit DECREASE-KEY
operation on the min-heap, which can be implemented in a binary
min-heap in O(log V) time. Thus, the total time for Prim’s algorithm
is:

O(V log V + E log V) = O(E log V)

62 / 69

If you use Fibonacci Heaps

Complexity analysis
EXTRACT-MIN operation in O(log V) amortized time.
DECREASE-KEY operation (to implement line 11) in O(1) amortized
time.
If we use a Fibonacci Heap to implement the min-priority queue Q we
get a running time of O(E + V log V).

63 / 69

If you use Fibonacci Heaps

Complexity analysis
EXTRACT-MIN operation in O(log V) amortized time.
DECREASE-KEY operation (to implement line 11) in O(1) amortized
time.
If we use a Fibonacci Heap to implement the min-priority queue Q we
get a running time of O(E + V log V).

63 / 69

If you use Fibonacci Heaps

Complexity analysis
EXTRACT-MIN operation in O(log V) amortized time.
DECREASE-KEY operation (to implement line 11) in O(1) amortized
time.
If we use a Fibonacci Heap to implement the min-priority queue Q we
get a running time of O(E + V log V).

63 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

64 / 69

Faster Algorithms

Linear Time Algorithms
Karger, Klein & Tarjan (1995) proposed a linear time randomized
algorithm.
The Fastest (O (Eα (E ,V))) by Bernard Chazelle (2000) is based on
the soft heap, an approximate priority queue.

I Chazelle has also written essays about music and politics

Linear-time algorithms in special cases
If the graph is dense

(
i.e. log log log V ≤ E

V

)
, then a deterministic

algorithm by Fredman and Tarjan finds the MST in time O (E).

65 / 69

Faster Algorithms

Linear Time Algorithms
Karger, Klein & Tarjan (1995) proposed a linear time randomized
algorithm.
The Fastest (O (Eα (E ,V))) by Bernard Chazelle (2000) is based on
the soft heap, an approximate priority queue.

I Chazelle has also written essays about music and politics

Linear-time algorithms in special cases
If the graph is dense

(
i.e. log log log V ≤ E

V

)
, then a deterministic

algorithm by Fredman and Tarjan finds the MST in time O (E).

65 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

66 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Applications
Minimum spanning trees have direct applications in the design of
networks

Telecommunications networks
Transportation networks
Water supply networks
Electrical grids

As a subroutine in
Machine Learning/Big Data Cluster Analysis
Network Communications are using Spanning Tree Protocol (STP)
Image registration and segmentation
Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.
Etc

67 / 69

Outline

1 Spanning trees
Basic concepts
Growing a Minimum Spanning Tree
The Greedy Choice and Safe Edges
Kruskal’s algorithm

2 Kruskal’s Algorithm
Directly from the previous Corollary

3 Prim’s Algorithm
Implementation

4 More About the MST Problem
Faster Algorithms
Applications
Exercises

68 / 69

Exercises

From Cormen’s book solve
23.1-3
23.1-5
23.1-7
23.1-9
23.2-2
23.2-3
23.2-5
23.2-7

69 / 69

	Spanning trees
	Basic concepts
	Growing a Minimum Spanning Tree
	The Greedy Choice and Safe Edges
	Kruskal's algorithm

	Kruskal's Algorithm
	Directly from the previous Corollary

	Prim's Algorithm
	Implementation

	More About the MST Problem
	Faster Algorithms
	Applications
	Exercises

