Analysis of Algorithms Minimum Spanning Trees

Andres Mendez-Vazquez

November 9, 2015

イロン イロン イヨン イヨン 三日

1/69

Outline

Basic concepts

- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's Algorithm

Directly from the previous Corollary

Prim's AlgorithmImplementation

4 More About the MST Problem

- Faster Algorithms
- Applications
- Exercises

Outline

• Growing a Minimum Spanning Tree

- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's AlgorithmDirectly from the previous Corollary

3 Prim's Algorithm• Implementation

4 More About the MST Problem

- Faster Algorithms
- Applications
- Exercises

Originally

We had a Graph without weights

Then

Now, we have have weights

Finally, the optimization problem

We want to find

$$\min_{T} \sum_{(u,v)\in T} w(u,v)$$

Where $T \subseteq E$ such that T is acyclic and connects all the vertices.

6/69

This problem is called

The minimum spanning tree problem

Finally, the optimization problem

We want to find

$$\min_{T} \sum_{(u,v)\in T} w(u,v)$$

Where $T \subseteq E$ such that T is acyclic and connects all the vertices.

イロト イヨト イヨト

6/69

This problem is called

The minimum spanning tree problem

When do you need minimum spanning trees?

In power distribution

We want to connect points x and y with the minimum amount of cable.

In a wireless network

Given a collection of mobile beacons we want to maintain the minimum connection overhead between all of them.

イロト イヨト イヨト イヨト

When do you need minimum spanning trees?

In power distribution

We want to connect points x and y with the minimum amount of cable.

In a wireless network

Given a collection of mobile beacons we want to maintain the minimum connection overhead between all of them.

イロト イヨト イヨト

Some Applications

Tracking the Genetic Variance of Age-Gender-Associated Staphylococcus Aureus

Cinvestav

Some Applications

What?

Urban Tapestries is an interactive location-based wireless application allowing users to access and publish location-specific multimedia content.

• Using MST we can create paths for public multimedia shows that are no too exhausting

These models can be seen as

Connected, undirected graphs G = (V, E)

• E is the set of possible connections between pairs of beacons.

 Each of the this edges (u, v) has a weight w(u, v) specifying the cost of connecting u and v.

< ロ > < 同 > < 回 > < 回 >

These models can be seen as

Connected, undirected graphs G = (V, E)

- E is the set of possible connections between pairs of beacons.
- Each of the this edges (u, v) has a weight w(u, v) specifying the cost of connecting u and v.

Outline

• Growing a Minimum Spanning Tree

- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's AlgorithmDirectly from the previous Corollary

3 Prim's Algorithm• Implementation

4 More About the MST Problem

- Faster Algorithms
- Applications
- Exercises

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal

Both algorithms Kruskal and Prim use a greedy approach.

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal

Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea

 $\bullet\,$ Prior to each iteration, A is a subset of some minimum spanning tree.

< ロ > < 同 > < 回 > < 回 >

Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal

Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea

- $\bullet\,$ Prior to each iteration, A is a subset of some minimum spanning tree.
- At each step, we determine an edge (u, v) that can be added to A such that $A \cup \{(u, v)\}$ is also a subset of a minimum spanning tree.

イロト イヨト イヨト

A Generic Code

 $\mathsf{Generic}\text{-}\mathsf{MST}(\mathit{G}, \mathit{w})$

$$\bullet \ A = \emptyset$$

- while A does not form a spanning tree
- \bullet do find an edge (u, v) that is safe for A

$$\bullet \qquad A = A \cup \{(u, v)\}$$

 \bigcirc return A

A Generic Code

 $\mathsf{Generic}\text{-}\mathsf{MST}(\mathit{G}, \mathit{w})$

$$\bullet \ A = \emptyset$$

- while A does not form a spanning tree
- do find an edge (u, v) that is safe for A

$$A = A \cup \{(u, v)\}$$

 \bigcirc return A

This has the following loop invariance

Initialization: Line 1 A trivially satisfies.

nination: The final A contains all the edges in a minimum spanni

Cinvestav ∽ < <> 13 / 69

< ロ > < 同 > < 回 > < 回 >

A Generic Code

Generic-MST(G, w)

- $\bullet \ A = \emptyset$
- while A does not form a spanning tree
- do find an edge (u, v) that is safe for A

$$A = A \cup \{(u, v)\}$$

 \bigcirc return A

4

This has the following loop invariance

Initialization: Line 1 A trivially satisfies.

Maintenance: The loop only adds safe edges.

Cinvestav ∽ < <> 13 / 69

< ロ > < 同 > < 回 > < 回 >

A Generic Code

Generic-MST(G, w)

 $\bullet \ A = \emptyset$

4

- while A does not form a spanning tree
- do find an edge (u, v) that is safe for A

$$A = A \cup \{(u, v)\}$$

 \bigcirc return A

This has the following loop invariance

Initialization: Line 1 A trivially satisfies.

Maintenance: The loop only adds safe edges.

Termination: The final A contains all the edges in a minimum spanning tree.

イロト イボト イヨト イヨト

Some basic definitions for the Greedy Choice

A cut (S, V - S) is a partition of V

• Then (u, v) in E crosses the cut (S, V - S) if one end point is in S and the other is in V - S.

We say that a cut respects A if no edge in A crosses the cut.

A light edge is an edge crossing the cut with minimum weight with respect to the other edges crossing the cut.

(日) (日) (日) (日) (日)

Some basic definitions for the Greedy Choice

A cut (S, V - S) is a partition of V

- Then (u, v) in E crosses the cut (S, V S) if one end point is in S and the other is in V S.
- We say that a cut respects A if no edge in A crosses the cut.
 - A light edge is an edge crossing the cut with minimum weight with respect to the other edges crossing the cut.

イロト イヨト イヨト

Some basic definitions for the Greedy Choice

A cut (S, V - S) is a partition of V

- Then (u, v) in E crosses the cut (S, V S) if one end point is in S and the other is in V S.
- We say that a cut respects A if no edge in A crosses the cut.
- A light edge is an edge crossing the cut with minimum weight with respect to the other edges crossing the cut.

イロト イヨト イヨト

Outline

Spanning trees

- Basic concepts
- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Directly from the previous Corollary

Implementation

- Faster Algorithms
- Applications
- Exercises

The Greedy Choice

Remark

The following algorithms are based in the Greedy Choice.

Which Greedy Choice?

The way we add edges to the set of edges belonging to the Minimum Spanning Trees.

They are known as

Safe Edges

The Greedy Choice

Remark

The following algorithms are based in the Greedy Choice.

Which Greedy Choice?

The way we add edges to the set of edges belonging to the Minimum Spanning Trees.

They are known as

Safe Edges

The Greedy Choice

Remark

The following algorithms are based in the Greedy Choice.

Which Greedy Choice?

The way we add edges to the set of edges belonging to the Minimum Spanning Trees.

They are known as

Safe Edges

イロト イヨト イヨト

Recognizing safe edges

Theorem for Recognizing Safe Edges (23.1)

Let G = (V, E) be a connected, undirected graph with weights w defined on E. Let $A \subseteq E$ that is included in a MST for G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, edge (u, v) is safe for A.

Cinvestav

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Observations

Notice that

• At any point in the execution of the algorithm the graph $G_A = (V, A)$ is a forest, and each of the connected components of G_A is a tree.

Thus

Any safe edge (u, v) for A connects distinct components of G_A , since $A \cup \{(u, v)\}$ must be acyclic.

Observations

Notice that

• At any point in the execution of the algorithm the graph $G_A = (V, A)$ is a forest, and each of the connected components of G_A is a tree.

Thus

• Any safe edge (u, v) for A connects distinct components of G_A , since $A \cup \{(u, v)\}$ must be acyclic.

イロト イボト イヨト イヨト

The basic corollary

Corollary 23.2

Let G = (V, E) be a connected, undirected graph with real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_c, E_c)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.

Proof

The cut $(V_c, V - V_c)$ respects A, and (u, v) is a light edge for this cut. Therefore, (u, v) is safe for A.

イロン イロン イヨン イヨン

The basic corollary

Corollary 23.2

Let G = (V, E) be a connected, undirected graph with real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_c, E_c)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.

Proof

The cut $(V_c, V - V_c)$ respects A, and (u, v) is a light edge for this cut. Therefore, (u, v) is safe for A.

イロン イロン イヨン イヨン

Outline

Spanning trees

- Basic concepts
- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Directly from the previous Corollary

Implementation

- Faster Algorithms
- Applications
- Exercises

Outline

- Basic concepts
- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's Algorithm Directly from the previous Corollary

Implementation

- Faster Algorithms
- Applications
- Exercises

Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

- $\bullet \ A = \emptyset$
- **2** for each vertex $v \in V[G]$
- o do Make-Set
- $lacebox{ or }$ sort the edges of f E into non-decreasing order by weight w
- $igodoldsymbol{0}$ for each edge $(u,v)\in E$ taken in non-decreasing order by weight
- do if $FIND SET(u) \neq FIND SET(v)$
- - Union(u,v)

 \bigcirc return A

イロト イヨト イヨト イヨト
Algorithm

MST-KRUSKAL(G, w)

- $\bullet \ A = \emptyset$
- 2 for each vertex $v \in V[G]$
- o do Make-Set
- ${\small \textcircled{0}}$ sort the edges of E into non-decreasing order by weight w
- o for each edge (u, v) ∈ E taken in non-decreasing order by weight
 o if FIND SET(u) ≠ FIND SET(v)
 - then $A = A \cup \{(u, v)\}$
- return A

Algorithm

MST-KRUSKAL(G, w)

- $\bullet \ A = \emptyset$
- 2 for each vertex $v \in V[G]$
- o do Make-Set
- ${\small \textcircled{0}}$ sort the edges of E into non-decreasing order by weight w
- () for each edge $(u,v) \in E$ taken in non-decreasing order by weight

• do if
$$FIND - SET(u) \neq FIND - SET(v)$$

Union(u,v)

return A

8

Algorithm

MST-KRUSKAL(G, w)

- $\bullet \ A = \emptyset$
- 2 for each vertex $v \in V[G]$
- o do Make-Set
- ${\small \textcircled{0}}$ sort the edges of E into non-decreasing order by weight w
- () for each edge $(u,v) \in E$ taken in non-decreasing order by weight

• do if
$$FIND - SET(u) \neq FIND - SET(v)$$

 $\textcircled{0} \qquad \qquad \text{then } A = A \cup \{(u,v)\}$

Union(u,v)

 ${f 0}$ return A

8

We have as an input the following graph

э

< ロ > < 回 > < 回 > < 回 > < 回 >

1^{st} step everybody is a set!!!

Cinvestav ≅ ∽ ۹ (~ 24 / 69

Given (f, g) with weight 1

Question: $FIND - SET(f) \neq FIND - SET(g)$?

25 / 69

イロト イヨト イヨト

イロト イヨト イヨト

< ロ > < 回 > < 回 > < 回 > < 回 >

< ロ > < 回 > < 回 > < 回 > < 回 >

イロト イヨト イヨト

イロト イヨト イヨト

Then $A = A \cup \{(g, h)\}$

2

Algorithm

MST-KRUSKAL(G, w)

- $\bullet \ A = \emptyset$
- 2 for each vertex $v \in V[G]$
- o do Make-Set
- ${\small \textcircled{0}}$ sort the edges of E into non-decreasing order by weight w
- () for each edge $(u,v)\in E$ taken in non-decreasing order by weight

• do if
$$FIND - SET(u) \neq FIND - SET(v)$$

 $\textcircled{0} \qquad \qquad \text{then } A = A \cup \{(u,v)\}$

Union(u,v)

 ${f 0}$ return A

8

Explanation

- Line 1. Initializing the set A takes ${\cal O}(1)$ time.
- Line 2 to 3. Making the sets takes O()
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:
 - ► O(E) FIND-SET and UNION operations.
 - ► Along with the |V| MAKE-SET operations that take $O((V + E)\alpha(V))$, where α is the pseudoinverse of the Ackermann's function.

Explanation

- Line 1. Initializing the set A takes O(1) time.
- Line 2 to 3. Making the sets takes O(V).
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:
 - O(E) FIND-SET and UNION operations.
 - Along with the |V| MAKE-SET operations that take $O((V + E)\alpha(V))$, where α is the pseudoinverse of the Ackermann's function.

- Given that G is connected, we have |E| ≥ |V| − 1, and so the disjoint-set operations take O(Eα(V)) time and α(|V|) = O(log V) = O(log E).
- The total running time of Kruskal's algorithm is $O(E \log E)$, but observing that $|E| < |V|^2 \mapsto \log |E| < 2 \log |V|$, we have that
- $\log |E| = O(\log V)$, and so we can restate the running time of the algorithm as $O(E \log V)$.

Explanation

- Line 1. Initializing the set A takes O(1) time.
- Line 2 to 3. Making the sets takes O(V).
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:
 - O(E) FIND-SET and UNION operations.
 - Along with the |V| MAKE-SET operations that take O((V+E)α(V)), where α is the pseudoinverse of the Ackermann's function.

- Given that G is connected, we have |E| ≥ |V| − 1, and so the disjoint-set operations take O(Eα(V)) time and α(|V|) = O(log V) = O(log E).
 - The total running time of Kruskal's algorithm is $O(E \log E)$, but observing that $|E| < |V|^2 \mapsto \log |E| < 2 \log |V|$, we have that
 - $\log |E| = O(\log V)$, and so we can restate the running time of the algorithm as $O(E \log V)$.

Explanation

- Line 1. Initializing the set A takes O(1) time.
- Line 2 to 3. Making the sets takes O(V).
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:

O(E) FIND-SET and UNION operations.
 Along with the |V| MAKE-SET operations that take O((V+E)α(V) where α is the pseudoinverse of the Ackermann's function.

- Given that G is connected, we have |E| ≥ |V| − 1, and so the disjoint-set operations take O(Eα(V)) time and α(|V|) = O(log V) = O(log E).
 - ▶ The total running time of Kruskal's algorithm is $O(E \log E)$, but observing that $|E| < |V|^2 \mapsto \log |E| < 2 \log |V|$, we have that
 - $\log |E| = O(\log V)$, and so we can restate the running time of the algorithm as $O(E \log V)$.

Explanation

- Line 1. Initializing the set A takes O(1) time.
- Line 2 to 3. Making the sets takes O(V).
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:
 - O(E) FIND-SET and UNION operations.

where α is the pseudoinverse of the Ackermann's function.

- Given that G is connected, we have |E| ≥ |V| − 1, and so the disjoint-set operations take O(Eα(V)) time and α(|V|) = O(log V) = O(log E).
 - The total running time of Kruskal's algorithm is O(E log E), but observing that |E| < |V|² → log |E| < 2 log |V|, we have that</p>
 - $\log |E| = O(\log V)$, and so we can restate the running time of the algorithm as $O(E \log V)$.

Explanation

- Line 1. Initializing the set A takes O(1) time.
- Line 2 to 3. Making the sets takes O(V).
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:
 - O(E) FIND-SET and UNION operations.
 - Along with the |V| MAKE-SET operations that take $O((V + E)\alpha(V))$, where α is the pseudoinverse of the Ackermann's function.

- Given that G is connected, we have |E| ≥ |V| − 1, and so the disjoint-set operations take O(Eα(V)) time and α(|V|) = O(log V) = O(log E).
 - The total running time of Kruskal's algorithm is $O(E \log E)$, but observing that $|E| < |V|^2 \mapsto \log |E| < 2 \log |V|$, we have that
 - $\log |E| = O(\log V)$, and so we can restate the running time of t algorithm as $O(E \log V)$

Explanation

- Line 1. Initializing the set A takes O(1) time.
- Line 2 to 3. Making the sets takes O(V).
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:
 - O(E) FIND-SET and UNION operations.
 - ► Along with the |V| MAKE-SET operations that take $O((V + E)\alpha(V))$, where α is the pseudoinverse of the Ackermann's function.

Thus

• Given that G is connected, we have $|E| \ge |V| - 1$, and so the disjoint-set operations take $O(E\alpha(V))$ time and $\alpha(|V|) = O(\log V) = O(\log E)$.

Explanation

- Line 1. Initializing the set A takes O(1) time.
- Line 2 to 3. Making the sets takes O(V).
- Line 4. Sorting the edges in line 4 takes $O(E \log E)$.
- Lines 5 to 8. The for loop performs:
 - O(E) FIND-SET and UNION operations.
 - ► Along with the |V| MAKE-SET operations that take $O((V + E)\alpha(V))$, where α is the pseudoinverse of the Ackermann's function.

Thus

- Given that G is connected, we have $|E| \ge |V| 1$, and so the disjoint-set operations take $O(E\alpha(V))$ time and $\alpha(|V|) = O(\log V) = O(\log E)$.
- The total running time of Kruskal's algorithm is $O(E \log E)$, but observing that $|E| < |V|^2 \mapsto \log |E| < 2 \log |V|$, we have that $\log |E| = O(\log V)$, and so we can restate the running time of the algorithm as $O(E \log V)$

Outline

Spanning tree

Basic concepts

- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's AlgorithmDirectly from the previous Corollary

4 More About the MST Problem

- Faster Algorithms
- Applications
- Exercises

Prim's Algorithm

Prim's algorithm operates much like Dijkstra's algorithm

- The tree starts from an arbitrary root vertex r.
- At each step, a light edge is added to the tree A that connects A to an isolated vertex of $G_A = (V, A)$.
- When the algorithm terminates, the edges in A form a minimum spanning tree.

< ロ > < 同 > < 回 > < 回 >

Prim's Algorithm

Prim's algorithm operates much like Dijkstra's algorithm

- The tree starts from an arbitrary root vertex r.
- At each step, a light edge is added to the tree A that connects A to an isolated vertex of $G_A = (V, A)$.

When the algorithm terminates, the edges in A form a minimum spanning tree.

< ロ > < 同 > < 回 > < 回 >

Prim's Algorithm

Prim's algorithm operates much like Dijkstra's algorithm

- The tree starts from an arbitrary root vertex r.
- At each step, a light edge is added to the tree A that connects A to an isolated vertex of $G_A = (V, A)$.
- When the algorithm terminates, the edges in A form a minimum spanning tree.

イロト イヨト イヨト

Problem

Important

In order to implement Prim's algorithm efficiently, we need a fast way to select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue Q

During execution of the algorithm, all vertices that are not in the tree reside in a min-priority queue Q based on a key attribute.

There is a field key for every vertex v

- It is the minimum weight of any edge connecting v to a vertex in the minimum spanning tree (THE LIGHT EDGE!!!).

Problem

Important

In order to implement Prim's algorithm efficiently, we need a fast way to select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue Q

During execution of the algorithm, all vertices that are not in the tree reside in a min-priority queue Q based on a key attribute.

There is a field key for every vertex a

- It is the minimum weight of any edge connecting v to a vertex in the minimum spanning tree (THE LIGHT EDGE!!!).
- By convention, $v.key = \infty$ if there is no such edge.

Problem

Important

In order to implement Prim's algorithm efficiently, we need a fast way to select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue Q

During execution of the algorithm, all vertices that are not in the tree reside in a min-priority queue ${\bf Q}$ based on a key attribute.

There is a field key for every vertex v

- It is the minimum weight of any edge connecting v to a vertex in the minimum spanning tree (THE LIGHT EDGE!!!).
- By convention, $v.key = \infty$ if there is no such edge.

A D > A D > A D > A D >

The algorithm

Pseudo-code

- $\mathsf{MST-PRIM}(G, w, r)$
 - $\bullet \quad \text{for each } u \in V[G]$
 - $2 \qquad u.key = \infty$
 - $\textbf{0} u.\pi = NIL$
 - r.key = 0
 - $\bigcirc \ Q = V[G]$
 - while $Q \neq \emptyset$
 - $u = \mathsf{Extract-Min}(Q)$
 - for each $v \in Adj [u]$
 - if $v \in Q$ and $w\left(u,v
 ight) < v.key$
 - $\pi\left[v\right]=u$
 - $v.key = w\left(u,v
 ight)$ >an implicit decrease key

The algorithm

Pseudo-code

 $\mathsf{MST-PRIM}(G, w, r)$

- $\bullet \ \ \, \text{for each} \ \, u\in \, V\left[\,G\right]$
- $u.key = \infty$
- $\bullet \qquad u.\pi = NIL$
- I r.key = 0
- **5** Q = V[G]

```
If while Q 
eq \emptyset
```

```
u = \mathsf{Extract-Min}(Q)
for each v \in Adi[u]
```

```
 \text{ if } v \in Q \text{ and } w\left( u, v \right) < v.k\epsilon \\
```

```
\pi\left[v\right]=u
```

 $v.key = w\left(u, v
ight)$ >an implicit decrease key
The algorithm

Pseudo-code

 $\mathsf{MST-PRIM}(G, w, r)$

- $\bullet \ \ \, \text{for each} \ \, u\in V\left[\, G \right]$
- $2 u.key = \infty$
- $\bullet \qquad u.\pi = NIL$
- I r.key = 0
- Q = V[G]
- $\bullet \ \text{while} \ Q \neq \emptyset$

0

 $u = \mathsf{Extract-Min}(Q)$

for each $v \in Adj \left[u
ight]$

 $\text{ if } v \in Q \text{ and } w\left(u, v \right) < v.key$

 $\pi\left[v\right] = u$

 $v.key = w\left(u,v
ight)$ >an implicit decrease key

The algorithm

Pseudo-code

 $\mathsf{MST}\operatorname{-PRIM}(G, w, r)$

- for each $u \in V[G]$
- $u.key = \infty$
- $\bullet \qquad u.\pi = NIL$
- I.key = 0
- Q = V[G]
- $\bullet \ \ \, \text{while} \ \ \, Q \neq \emptyset$
- u = Extract-Min(Q)
- - $\text{if } v \in \, Q \, \, \text{and} \, \, w \, (u,v) < v.key$

 $\pi[v] = u$

 $v.key = w\left(u,v
ight)$ >an implicit decrease key

in Q

9

10

•

Explanation

Observations

$$A = \{ (v, \pi[v]) : v \in V - \{r\} - Q \}.$$

For all vertices v ∈ Q, if π[v] ≠ NIL, then key[v] < ∞ and key[v] is the weight of a light edge (v, π[v]) connecting v to some vertex already placed into the minimum spanning tree.

Explanation

Observations

- $A = \{ (v, \pi[v]) : v \in V \{r\} Q \}.$
- **2** The vertices already placed into the minimum spanning tree are those in V Q.

For all vertices v ∈ Q, if π[v] ≠ NIL, then key[v] < ∞ and key[v] is the weight of a light edge (v, π[v]) connecting v to some vertex already placed into the minimum spanning tree.

イロン 不通 とうせい イヨン

Explanation

Observations

- $A = \{ (v, \pi[v]) : v \in V \{r\} Q \}.$
- **2** The vertices already placed into the minimum spanning tree are those in V Q.
- For all vertices $v \in Q$, if $\pi[v] \neq NIL$, then $key[v] < \infty$ and key[v] is the weight of a light edge $(v, \pi[v])$ connecting v to some vertex already placed into the minimum spanning tree.

We have as an input the following graph

э

Extract b from the priority queue Q

э

Update the predecessor of a and its key to 12 from ∞

Note: The RED color represent the field $\pi[v]$

Cinvestav 王 シへへ 48 / 69

イロト イヨト イヨト

Update the predecessor of c and its key to 9 from ∞

< ロ > < 回 > < 回 > < 回 > < 回 >

Update the predecessor of e and its key to 5 from ∞

< ロ > < 回 > < 回 > < 回 > < 回 >

Update the predecessor of f and its key to 8 from ∞

э

Extract *e*, then update adjacent vertices

э

Extract i from the priority queue Q0 rb 9 9 12 ∞ h 122 а 8 21 4 178 f d 11 11 e 8

э

Update adjacent vertices

э

Extract f and update adjacent vertices

э

э

Extract c and no update 0 rb 29 С 12 21h 12а 8 21 4 $\mathbf{2}$ f d 11 17 11 e 8 5 8

Extract \boldsymbol{d} and update key at 1

э

Extract *a* and no update

э

2

メロト メロト メヨト メヨト

Complexity analysis

- The performance of Prim's algorithm depends on how we implement the min-priority queue Q.
- If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform the initialization in lines 1 to 5 will run in O(|V|) time.
- The body of the while loop is executed |V| times, and EXTRACT-MIN operation takes O(log V) time, the total time for all calls to EXTRACT-MIN is O(V log V).
- The for loop in lines 8 to 11 is executed O(E) times altogether, since the sum of the lengths of all adjacency lists is 2|E|.

(人間) とうき くうう

Complexity analysis

- The performance of Prim's algorithm depends on how we implement the min-priority queue Q.
- If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform the initialization in lines 1 to 5 will run in $O(|\,V|)$ time.
- The body of the while loop is executed |V| times, and EXTRACT-MIN operation takes O(log V) time, the total time for all calls to EXTRACT-MIN is O(V log V).
- The for loop in lines 8 to 11 is executed O(E) times altogether, since the sum of the lengths of all adjacency lists is 2|E|.

< ロ > < 同 > < 回 > < 回 >

Complexity analysis

- The performance of Prim's algorithm depends on how we implement the min-priority queue Q.
- If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform the initialization in lines 1 to 5 will run in O(|V|) time.
- The body of the while loop is executed |V| times, and EXTRACT-MIN operation takes $O(\log V)$ time, the total time for all calls to EXTRACT-MIN is $O(V \log V)$.
- The for loop in lines 8 to 11 is executed O(E) times altogether, since the sum of the lengths of all adjacency lists is 2|E|.

< ロ > < 同 > < 回 > < 回 >

Complexity analysis

- The performance of Prim's algorithm depends on how we implement the min-priority queue Q.
- If Q is a binary min-heap, BUILD-MIN-HEAP procedure to perform the initialization in lines 1 to 5 will run in O(|V|) time.
- The body of the while loop is executed |V| times, and EXTRACT-MIN operation takes $O(\log V)$ time, the total time for all calls to EXTRACT-MIN is $O(V \log V)$.
- The for loop in lines 8 to 11 is executed O(E) times altogether, since the sum of the lengths of all adjacency lists is 2|E|.

イロト イヨト イヨト

Complexity analysis (continuation)

- $\bullet\,$ Within the for loop, the test for membership in Q in line 9 can be implemented in constant time.
- The assignment in line 11 involves an implicit DECREASE-KEY operation on the min-heap, which can be implemented in a binary min-heap in O(log V) time. Thus, the total time for Prim's algorithm is:

 $O(V \log V + E \log V) = O(E \log V)$

ヘロト 人間ト 人目下 人目下

Complexity analysis (continuation)

- $\bullet\,$ Within the for loop, the test for membership in Q in line 9 can be implemented in constant time.
- The assignment in line 11 involves an implicit DECREASE-KEY operation on the min-heap, which can be implemented in a binary min-heap in $O(\log V)$ time. Thus, the total time for Prim's algorithm is:

$$O(V \log V + E \log V) = O(E \log V)$$

イロト イヨト イヨト

If you use Fibonacci Heaps

Complexity analysis

- EXTRACT-MIN operation in $O(\log V)$ amortized time.
- DECREASE-KEY operation (to implement line 11) in O(1) amortized time.
- If we use a Fibonacci Heap to implement the min-priority queue Q we get a running time of O(E + V log V).

ヘロト 人間ト 人目下 人目下

If you use Fibonacci Heaps

Complexity analysis

- EXTRACT-MIN operation in $O(\log V)$ amortized time.
- DECREASE-KEY operation (to implement line 11) in O(1) amortized time.
 - If we use a Fibonacci Heap to implement the min-priority queue Q we get a running time of $O(E + V \log V)$.

< ロ > < 同 > < 回 > < 回 >

If you use Fibonacci Heaps

Complexity analysis

- EXTRACT-MIN operation in $O(\log V)$ amortized time.
- DECREASE-KEY operation (to implement line 11) in O(1) amortized time.
- If we use a Fibonacci Heap to implement the min-priority queue Q we get a running time of $O(E + V \log V)$.

イロト イヨト イヨト

Outline

Spanning tree

Basic concepts

- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's AlgorithmDirectly from the previous Corollary

3 Prim's Algorithm• Implementation

More About the MST Problem Faster Algorithms Applications

Exercises

Faster Algorithms

Linear Time Algorithms

- Karger, Klein & Tarjan (1995) proposed a linear time randomized algorithm.
- The Fastest ($O(E\alpha(E, V))$) by Bernard Chazelle (2000) is based on the soft heap, an approximate priority queue.
 - Chazelle has also written essays about music and politics

Linear-time algorithms in special cases

If the graph is dense $\Big($ i.e. $\log\log\log V \leq rac{E}{V}\Big)$, then a deterministic algorithm by Fredman and Tarjan finds the MST in time O(E).

Faster Algorithms

Linear Time Algorithms

- Karger, Klein & Tarjan (1995) proposed a linear time randomized algorithm.
- The Fastest ($O(E\alpha(E, V))$) by Bernard Chazelle (2000) is based on the soft heap, an approximate priority queue.
 - Chazelle has also written essays about music and politics

Linear-time algorithms in special cases

If the graph is dense (i.e. $\log \log \log V \leq \frac{E}{V}$), then a deterministic algorithm by Fredman and Tarjan finds the MST in time O(E).

Outline

Spanning tree

Basic concepts

- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's AlgorithmDirectly from the previous Corollary

3 Prim's Algorithm• Implementation

More About the MST Problem Faster Algorithms Applications

Exercises

Applications

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks
- Electrical grids

Applications

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks

As a subroutine in

- Machine Learning/Big Data Cluster Analysis
- Network Communications are using Spanning Tree Protocol (STP)
- Image registration and segmentation
- Circuit design: implementing efficient multiple constant multiplications, as used in finite impulse response filters.
- Etc
Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks

- Machine Learning/Big Data Cluster Analysis
- Network Communications are using Spanning Tree Protocol (STP)
- Image registration and segmentation
- Circuit design: implementing efficient multiple constant multiplications, as used in finite impulse response filters.
- Etc

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks
- Electrical grids

Machine Learning/Big Data Cluster Analysi

- Network Communications are using Spanning Tree Protocol (STP)
- Image registration and segmentation
- Circuit design: implementing efficient multiple constant multiplications, as used in finite impulse response filters.
- Etc

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks
- Electrical grids

- Machine Learning/Big Data Cluster Analysis
 - Network Communications are using Spanning Tree Protocol (STP)
- Image registration and segmentation
- Circuit design: implementing efficient multiple constant multiplications, as used in finite impulse response filters.

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks
- Electrical grids

- Machine Learning/Big Data Cluster Analysis
- Network Communications are using Spanning Tree Protocol (STP)
- Circuit design: implementing efficient multiple constant multiplications, as used in finite impulse response filters.

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks
- Electrical grids

As a subroutine in

- Machine Learning/Big Data Cluster Analysis
- Network Communications are using Spanning Tree Protocol (STP)
- Image registration and segmentation

Circuit design: implementing efficient multiple constant

イロン 不通 と イヨン イヨン

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks
- Electrical grids

- Machine Learning/Big Data Cluster Analysis
- Network Communications are using Spanning Tree Protocol (STP)
- Image registration and segmentation
- Circuit design: implementing efficient multiple constant multiplications, as used in finite impulse response filters.

Minimum spanning trees have direct applications in the design of networks

- Telecommunications networks
- Transportation networks
- Water supply networks
- Electrical grids

- Machine Learning/Big Data Cluster Analysis
- Network Communications are using Spanning Tree Protocol (STP)
- Image registration and segmentation
- Circuit design: implementing efficient multiple constant multiplications, as used in finite impulse response filters.
- Etc

Outline

Spanning tree

Basic concepts

- Growing a Minimum Spanning Tree
- The Greedy Choice and Safe Edges
- Kruskal's algorithm

Kruskal's AlgorithmDirectly from the previous Corollary

3 Prim's Algorithm• Implementation

More About the MST Problem Faster Algorithms Applications

Exercises

Exercises

From Cormen's book solve

- 23.1-3
- 23.1-5
- 23.1-7
- 23.1-9
- 23.2-2
- 23.2-3
- 23.2-5
- 23.2-7

