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0 Spanning trees
@ Basic concepts
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Originally

We had a Graph without weights




Then

Now, we have have weights




Finally, the optimization problem

We want to find

min Y,  w(u,v)
T (u,v)ET

Where T C FE such that T is acyclic and connects all the vertices.
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Finally, the optimization problem

We want to find

min Y,  w(u,v)
T (u,v)ET

Where T C FE such that T is acyclic and connects all the vertices.

° ”
This problem is called
The minimum spanning tree problem
\/
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When do you need minimum spanning trees?

In power distribution
We want to connect points x and y with the minimum amount of cable.

&)

Cinvestav

7/69



When do you need minimum spanning trees?

In power distribution

We want to connect points x and y with the minimum amount of cable.

In a wireless network

Given a collection of mobile beacons we want to maintain the minimum
connection overhead between all of them.
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Some Applications

Tracking the Genetic Variance of Age-Gender-Associated

Staphylococcus Aureus

spa CC012
spa CC065
spa CC084
spa CC078
spa CC002
spa CC153
spa CC024
spa CC159
spa CC1137
spa CC005
spa CC267
spa CC127
spa CC163/216
spa CC246
spa CC164
spa CC493
Cluster 17
Cluster 18
Cluster 19
Cluster 20
Cluster 21

0000000000000000000000

© Excluded
@ Singleton
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Some Applications

Urban Tapestries is an interactive location-based wireless application

allowing users to access and publish location-specific multimedia content.

@ Using MST we can create paths for public multimedia shows that are
no too exhausting




These models can be seen as

Connected, undirected graphs G = (V. F)

@ FE is the set of possible connections between pairs of beacons.
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These models can be seen as

Connected, undirected graphs G = (V. F)

@ FE is the set of possible connections between pairs of beacons.

@ Each of the this edges (u, v) has a weight w(u, v) specifying the cost
of connecting v and v.
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Outline

e Spanning trees

@ Growing a Minimum Spanning Tree
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Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal
Both algorithms Kruskal and Prim use a greedy approach. J
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Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal

Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea

@ Prior to each iteration, A is a subset of some minimum spanning tree.
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Growing a Minimum Spanning Tree

There are two classic algorithms, Prim and Kruskal
Both algorithms Kruskal and Prim use a greedy approach.

Basic greedy idea

@ Prior to each iteration, A is a subset of some minimum spanning tree.

@ At each step, we determine an edge (u, v) that can be added to A
such that AU {(u,v)} is also a subset of a minimum spanning tree.
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Generic minimum spanning tree algorithm

A Generic Code

Generic-MST( G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A
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Generic minimum spanning tree algorithm

A Generic Code
Generic-MST( G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A

y

This has the following loop invariance

Initialization: Line 1 A trivially satisfies.
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Generic minimum spanning tree algorithm

A Generic Code

Generic-MST( G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A

N

This has the following loop invariance
Initialization: Line 1 A trivially satisfies.

Maintenance: The loop only adds safe edges.

4

Cinvestav

13 /69



Generic minimum spanning tree algorithm

A Generic Code

Generic-MST( G, w)
Q A=10
@ while A does not form a spanning tree
(s) do find an edge (u, v) that is safe for A
o A=AU{(u,v)}
© return A

N

This has the following loop invariance

Initialization: Line 1 A trivially satisfies.
Maintenance: The loop only adds safe edges.

Termination: The final A contains all the edges in a minimum spanning
Eieet
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Some basic definitions for the Greedy Choice

A cut (S, V — S) is a partition of V

@ Then (u,v) in E crosses the cut (S, V — §) if one end point is in S
and the other isin V —§.

&)

Cinvestav

14 /69



Some basic definitions for the Greedy Choice

A cut (S, V — S) is a partition of V

@ Then (u,v) in E crosses the cut (S, V — §) if one end point is in S
and the other isin V —§.

@ We say that a cut respects A if no edge in A crosses the cut.
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Some basic definitions for the Greedy Choice

A cut (S, V — S) is a partition of V

@ Then (u,v) in E crosses the cut (S, V — §) if one end point is in S
and the other isin V —§.

@ We say that a cut respects A if no edge in A crosses the cut.

@ A light edge is an edge crossing the cut with minimum weight with
respect to the other edges crossing the cut.
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Outline

e Spanning trees

@ The Greedy Choice and Safe Edges
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The Greedy Choice

The following algorithms are based in the Greedy Choice. I
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The Greedy Choice

The following algorithms are based in the Greedy Choice. I

Which Greedy Choice?

The way we add edges to the set of edges belonging to the Minimum
Spanning Trees.
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The Greedy Choice

The following algorithms are based in the Greedy Choice. l

Which Greedy Choice?

The way we add edges to the set of edges belonging to the Minimum
Spanning Trees.

They are known as
Safe Edges
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Recognizing safe edges

Theorem for Recognizing Safe Edges (23.1)

Let G = (V, E) be a connected, undirected graph with weights w defined
on E. Let A C E that is included in a MST for G, let (S, V — S) be any
cut of G that respects A, and let (u, v) be a light edge crossing

(S, V —8). Then, edge (u, v) is safe for A.
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Observations

@ At any point in the execution of the algorithm the graph
Gy = (V,A) is a forest, and each of the connected components
of G4 is a tree.
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Observations

Notice that

@ At any point in the execution of the algorithm the graph
Gy = (V,A) is a forest, and each of the connected components
of G4 is a tree.

Thus

o Any safe edge (u, v) for A connects distinct components of Gy, since
AU {(u,v)} must be acyclic.

| A\
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The basic corollary

Corollary 23.2

Let G = (V, E) be a connected, undirected graph with real-valued weight
function w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, and let C = (V,, E.) be a connected
component (tree) in the forest G4 = (V, A). If (u,v) is a light edge
connecting C' to some other component in G4, then (u, v) is safe for A.

y
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The basic corollary

Corollary 23.2

Let G = (V, E) be a connected, undirected graph with real-valued weight
function w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, and let C = (V,, E.) be a connected
component (tree) in the forest G4 = (V, A). If (u,v) is a light edge
connecting C' to some other component in G4, then (u, v) is safe for A.

Proof

The cut (V,, V — V,) respects A4, and (u, v) is a light edge for this cut.
Therefore, (u, v) is safe for A.

| A\

v
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Outline

0 Spanning trees

@ Kruskal's algorithm
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Outline

e Kruskal's Algorithm
@ Directly from the previous Corollary
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Kruskal's Algorithm

Algorithm
MST-KRUSKAL(G, w)
Q A=0
@ for each vertex v € V(]
(s) do Make-Set

V.
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Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

V.
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Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

@ for each edge (u, v) € E taken in non-decreasing order by weight

e} do if FIND — SET(u) # FIND — SET(v)
Q then A = AU {(u,v)}
o Union(u,v)

V.
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Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

@ for each edge (u, v) € E taken in non-decreasing order by weight

e} do if FIND — SET(u) # FIND — SET(v)
Q then A = AU {(u,v)}

o Union(u,v)

Q return A

4
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Let us run the Algorithm

We have as an input the following graph

Cinvestav

23 /69



Let us run the Algorithm

15! step everybody is a set!!!
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Let us run the Algorithm

Given (f, g) with weight 1
Question: FIND — SET(f) # FIND — SET(g)?

V.
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Let us run the Algorithm

Then A= AU{(f,g)} next FIND — SET(f) # FIND — SET(©)?
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Let us run the Algorithm

Then A = AU{(f, i)}, next FIND — SET(c) # FIND — SET(f)?

4
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Let us run the Algorithm

Then A = AU {(c,f)}, next FIND — SET(a) # FIND — SET(d)?
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Let us run the Algorithm

Then A = AU {(a,d)}, next FIND — SET(b) # FIND — SET(e)?

Cinvestav

29/69



Let us run the Algorithm

Then A= AU {(b,e)}, next FIND — SET(e) # FIND — SET(7)?
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Let us run the Algorithm

Then A = AU {(e, i)}, next FIND — SET(b) # FIND — SET(f)?
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Let us run the Algorithm

Then A = A, next FIND — SET(b) # FIND — SET(c¢)?
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Let us run the Algorithm

Then A = A, next FIND — SET(d) # FIND — SET(e)?
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Let us run the Algorithm

Then A = AU{(d, )}, next FIND — SET(a) # FIND — SET(b)?
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Let us run the Algorithm

Then A = A, next FIND — SET(e) # FIND — SET(g)?
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Let us run the Algorithm

Then A = A, next FIND — SET(g) # FIND — SET(h)?
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Let us run the Algorithm

Then A= AU{(g,h)}
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Kruskal's Algorithm

Algorithm

MST-KRUSKAL(G, w)

Q A=0
@ for each vertex v € V(]
(s) do Make-Set

@ sort the edges of E into non-decreasing order by weight w

@ for each edge (u,v) € E taken in non-decreasing order by weight

e do if FIND — SET(u) # FIND — SET(v)
Q then A = AU {(u,v)}

o Union(u,v)

Q return A

4
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Complexity

Explanation

@ Line 1. Initializing the set A takes O(1) time.
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Complexity
@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).
@ Line 4. Sorting the edges in line 4 takes O(Elog E).
°

Lines 5 to 8. The for loop performs:

» O(E) FIND-SET and UNION operations.
» Along with the | V| MAKE-SET operations that take O((V + E)a(V)),
where « is the pseudoinverse of the Ackermann’s function.
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Complexity

Explanation

@ Line 1. Initializing the set A takes O(1) time.

@ Line 2 to 3. Making the sets takes O (V).

@ Line 4. Sorting the edges in line 4 takes O(Elog E).
@ Lines 5 to 8. The for loop performs:

» O(E) FIND-SET and UNION operations.
» Along with the | V| MAKE-SET operations that take O((V + E)a(V)),
where « is the pseudoinverse of the Ackermann’s function.

e Given that G is connected, we have |E| > |V|—1, and so the
disjoint-set operations take O(Ea(V')) time and
a(]V]) = 0O(log V) = O(log E).




Complexity

Explanation
@ Line 1. Initializing the set A takes O(1) time.
@ Line 2 to 3. Making the sets takes O (V).
@ Line 4. Sorting the edges in line 4 takes O(Elog E).
@ Lines 5 to 8. The for loop performs:

» O(E) FIND-SET and UNION operations.
» Along with the | V| MAKE-SET operations that take O((V + E)a(V)),
where « is the pseudoinverse of the Ackermann’s function.

e Given that G is connected, we have |E| > |V|—1, and so the
disjoint-set operations take O(Ea(V')) time and
a(]V]) = 0O(log V) = O(log E).

@ The total running time of Kruskal's algorithm is O(E log E), but
observing that |E| < |V|? — log |E| < 2log| V|, we have that

log|E| = O (log V), and so we can restate the running time of the
alerarrmtbmm o M T laer 070 39/6
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9 Prim’s Algorithm
@ Implementation
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Prim's Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm

@ The tree starts from an arbitrary root vertex r.
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Prim's Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm

@ The tree starts from an arbitrary root vertex r.

@ At each step, a light edge is added to the tree A that connects A to
an isolated vertex of G4 = (V, A).

&)

Cinvestav

41/69



Prim's Algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm

@ The tree starts from an arbitrary root vertex r.

@ At each step, a light edge is added to the tree A that connects A to
an isolated vertex of G4 = (V, A).

@ When the algorithm terminates, the edges in A form a minimum
spanning tree.
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Problem

In order to implement Prim's algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

5
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Problem

In order to implement Prim's algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue ()

During execution of the algorithm, all vertices that are not in the tree
reside in a min-priority queue Q based on a key attribute.
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Problem

In order to implement Prim's algorithm efficiently, we need a fast way to
select a new edge to add to the tree formed by the edges in A.

For this, we use a min-priority queue @)

During execution of the algorithm, all vertices that are not in the tree
reside in a min-priority queue Q based on a key attribute.

| A

There is a field key for every vertex v

@ It is the minimum weight of any edge connecting v to a vertex in the
minimum spanning tree (THE LIGHT EDGE!!!).

@ By convention, v.key = oo if there is no such edge.

v

=
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The algorithm

MST-PRIM(G, w, 7)
@ for each u € V [(]
o u.key = 0o
o u.m = NIL
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The algorithm

MST-PRIM(G, w, 7)
@ for each u € V [(]

o u.key = 0o
o u.m = NIL
Q rkey=20

Q Q=VI[G]
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The algorithm

MST-PRIM(G, w, 7)
@ for each u € V [(]

o u.key = 0o
o u.m = NIL
Q rkey=20

Q@ Q="VI[G

Q while Q # 0

(7] u =Extract-Min(Q)
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The algorithm

MST-PRIM(G, w, )
@ for each u € V [(]
o u.key = 0o
o u.m = NIL
Q rkey=20
Q@ Q="VI[G
Q while Q # 0
Q u =Extract-Min(Q)
(8] for each v € Adj [u]
o if ve @ and w(u,v) < v.key
(10 v =u
@ v.key = w (u, v)>an implicit decrease key
in @
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Explanation

Q A={(v,mv]):ve V-{r}—-Q}
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Explanation

Q@ A={(vnfv]):veV—{r}-Q}
@ The vertices already placed into the minimum spanning tree are those
in V—0Q.
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Explanation

Q@ A={(vnfv]):veV—{r}-Q}

@ The vertices already placed into the minimum spanning tree are those
in V—0Q.

@ For all vertices v € @, if w[v] # NIL, then key[v] < oo and key[v] is
the weight of a light edge (v, 7[v]) connecting v to some vertex
already placed into the minimum spanning tree.
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Let us run the Algorithm

We have as an input the following graph
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Let us run the Algorithm

Select 7 =b

vvvvvvvvv



Let us run the Algorithm

Extract b from the priority queue @)
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Let us run the Algorithm

Update the predecessor of a and its key to 12 from oo

Note: The RED color represent the field 7 [v]

v

4

N4
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Let us run the Algorithm

Update the predecessor of ¢ and its key to 9 from oo
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Let us run the Algorithm

Update the predecessor of e and its key to 5 from oo
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Let us run the Algorithm

Update the predecessor of f and its key to 8 from oo
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Let us run the Algorithm

Extract e, then update adjacent vertices
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Let us run the Algorithm

Extract ¢ from the priority queue @)

V.
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Let us run the Algorithm

Update adjacent vertices
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Let us run the Algorithm

Extract f and update adjacent vertices
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Let us run the Algorithm

Extract ¢ and update
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Let us run the Algorithm

Extract ¢ and no update
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Let us run the Algorithm

Extract d and update key at 1
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Let us run the Algorithm

Extract a and no update
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Let us run the Algorithm

Extract h
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Complexity |

Complexity analysis

@ The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.

4
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Complexity |

@ The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.

e If @ is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(| V) time.

V.
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Complexity |

Complexity analysis
@ The performance of Prim’s algorithm depends on how we implement

the min-priority queue Q.

e If @ is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(| V) time.

@ The body of the while loop is executed | V| times, and
EXTRACT-MIN operation takes O(log V') time, the total time for all
calls to EXTRACT-MIN is O(V log V).

V.
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Complexity |

Complexity analysis

@ The performance of Prim’s algorithm depends on how we implement
the min-priority queue Q.

e If @ is a binary min-heap, BUILD-MIN-HEAP procedure to perform
the initialization in lines 1 to 5 will run in O(| V) time.

@ The body of the while loop is executed | V| times, and
EXTRACT-MIN operation takes O(log V') time, the total time for all
calls to EXTRACT-MIN is O(V log V).

@ The for loop in lines 8 to 11 is executed O(F) times altogether, since
the sum of the lengths of all adjacency lists is 2| E]|.

4
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Complexity Il

Complexity analysis (continuation)

@ Within the for loop, the test for membership in @ in line 9 can be
implemented in constant time.

&)

Cinvestav

62 /69



Complexity Il

Complexity analysis (continuation)

@ Within the for loop, the test for membership in @ in line 9 can be
implemented in constant time.

@ The assignment in line 11 involves an implicit DECREASE-KEY
operation on the min-heap, which can be implemented in a binary

min-heap in O(log V') time. Thus, the total time for Prim's algorithm

IS:

O(Vleg V+ Elog V)= O(Flog V)
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If you use Fibonacci Heaps

Complexity analysis

o EXTRACT-MIN operation in O(log V') amortized time.
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If you use Fibonacci Heaps

Complexity analysis

o EXTRACT-MIN operation in O(log V') amortized time.

o DECREASE-KEY operation (to implement line 11) in O(1) amortized
time.
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If you use Fibonacci Heaps

Complexity analysis

o EXTRACT-MIN operation in O(log V') amortized time.

o DECREASE-KEY operation (to implement line 11) in O(1) amortized
time.

@ If we use a Fibonacci Heap to implement the min-priority queue @ we
get a running time of O(E + Vlog V).

<
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Outline

e More About the MST Problem
@ Faster Algorithms
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Faster Algorithms

Linear Time Algorithms

o Karger, Klein & Tarjan (1995) proposed a linear time randomized
algorithm.

@ The Fastest (O (Ea (E, V))) by Bernard Chazelle (2000) is based on
the soft heap, an approximate priority queue.

» Chazelle has also written essays about music and politics
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Faster Algorithms

Linear Time Algorithms

o Karger, Klein & Tarjan (1995) proposed a linear time randomized
algorithm.

@ The Fastest (O (Ea (E, V))) by Bernard Chazelle (2000) is based on
the soft heap, an approximate priority queue.

» Chazelle has also written essays about music and politics

Linear-time algorithms in special cases

| \

If the graph is dense ( i.e. logloglog V < %) then a deterministic
algorithm by Fredman and Tarjan finds the MST in time O (E).

v
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Outline

e More About the MST Problem

@ Applications
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Applications

Minimum spanning trees have direct applications in the design of

networks
@ Telecommunications networks
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@ Water supply networks

@ Electrical grids

v

As a subroutine in

Machine Learning/Big Data Cluster Analysis

°
@ Network Communications are using Spanning Tree Protocol (STP)
@ Image registration and segmentation

@ Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.

67 /69



Applications

Minimum spanning trees have direct applications in the design of

networks

@ Telecommunications networks
@ Transportation networks
@ Water supply networks

@ Electrical grids

v

As a subroutine in

Machine Learning/Big Data Cluster Analysis

°
@ Network Communications are using Spanning Tree Protocol (STP)
@ Image registration and segmentation

@ Circuit design: implementing efficient multiple constant
multiplications, as used in finite impulse response filters.

o Etc
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Outline

o More About the MST Problem

@ Exercises §

Cinvestav
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Exercises

From Cormen’s book solve

23.1-3
23.1-5
23.1-7
23.1-9
23.2-2
23.2-3
23.2-5
23.2-7

4

&)
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