
Analysis of Algorithms
Basic Graph Algorithms

Andres Mendez-Vazquez

October 28, 2015

1 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

2 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

3 / 84

We are full of Graphs

Maps

4 / 84

We are full of Graphs

Branch CPU estimators

5 / 84

We are full of Graphs

Social Networks

6 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

7 / 84

History

Something Notable
Graph theory started with Euler who was asked to find a nice path across
the seven Königsberg bridges

The Actual City

8 / 84

History
Something Notable
Graph theory started with Euler who was asked to find a nice path across
the seven Königsberg bridges

The Actual City

8 / 84

No solution for a odd number of Bridges

What we want
The (Eulerian) path should cross over each of the seven bridges exactly
once

We cannot do this for the original problem

9 / 84

No solution for a odd number of Bridges

What we want
The (Eulerian) path should cross over each of the seven bridges exactly
once

We cannot do this for the original problem

9 / 84

Necessary Condition

Euler discovered that
A necessary condition for the walk of the desired form is that the graph be
connected and have exactly zero or two nodes of odd degree.

Add an extra bridge

10 / 84

Necessary Condition

Euler discovered that
A necessary condition for the walk of the desired form is that the graph be
connected and have exactly zero or two nodes of odd degree.

Add an extra bridge

Add Extra Bridge

10 / 84

Studying Graphs

All the previous examples are telling us
Data Structures are required to design structures to hold the information
coming from graphs!!!

Good Representations
They will allow to handle the data structures with ease!!!

11 / 84

Studying Graphs

All the previous examples are telling us
Data Structures are required to design structures to hold the information
coming from graphs!!!

Good Representations
They will allow to handle the data structures with ease!!!

11 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

12 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory
Definition
A Graph is composed of the following parts: Nodes and Edges

Nodes
They can represent multiple things:

People
Cities
States of Being
etc

Edges
They can represent multiple things too:

Distance between cities
Friendships
Matching Strings
Etc

13 / 84

Basic Theory

Definition
A graph G = (V ,E) is composed of a set of vertices (or nodes) V and a
set of edges E , each assumed finite i.e. |V | = n and |E | = m.

Example

14 / 84

Basic Theory

Definition
A graph G = (V ,E) is composed of a set of vertices (or nodes) V and a
set of edges E , each assumed finite i.e. |V | = n and |E | = m.

Example

14 / 84

Properties

Incident
An edge ek = (vi , vj) is incident with the vertices vi and vj .

A simple graph has no self-loops or multiple edges like below

15 / 84

Properties

Incident
An edge ek = (vi , vj) is incident with the vertices vi and vj .

A simple graph has no self-loops or multiple edges like below

15 / 84

Some properties

Degree
The degree d(v) of a vertex V is its number of incident edges

A self loop
A self-loop counts for 2 in the degree function.

Proposition
The sum of the degrees of a graph G = (V ,E) equals 2|E | = 2m (trivial).

16 / 84

Some properties

Degree
The degree d(v) of a vertex V is its number of incident edges

A self loop
A self-loop counts for 2 in the degree function.

Proposition
The sum of the degrees of a graph G = (V ,E) equals 2|E | = 2m (trivial).

16 / 84

Some properties

Degree
The degree d(v) of a vertex V is its number of incident edges

A self loop
A self-loop counts for 2 in the degree function.

Proposition
The sum of the degrees of a graph G = (V ,E) equals 2|E | = 2m (trivial).

16 / 84

Some properties

Complete
A complete graph Kn is a simple graph with all n(n−1)/2 possible edges,
like the graph below for n = 2, 3, 4, 5.

Example

17 / 84

Some properties

Complete
A complete graph Kn is a simple graph with all n(n−1)/2 possible edges,
like the graph below for n = 2, 3, 4, 5.

Example

17 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

18 / 84

Clearly

We need to represent
Nodes
Vertices

We need to represent
Directed edges
Undirected edges

19 / 84

Clearly

We need to represent
Nodes
Vertices

We need to represent
Directed edges
Undirected edges

19 / 84

We need NICE representations of this definition

First One
Adjacency Representation

Second One
Matrix Representation

20 / 84

We need NICE representations of this definition

First One
Adjacency Representation

Second One
Matrix Representation

20 / 84

Adjacency-list representation

Basic Definition
It is an array of size |V| with

A list for each bucket representing a node telling us which nodes are
connected to it by one edge

21 / 84

Adjacency-list representation

Basic Definition
It is an array of size |V| with

A list for each bucket representing a node telling us which nodes are
connected to it by one edge

1

2

3

4

5

6

4

4 6

4

5

1

2

2 3 5

21 / 84

Properties

Space for storage
For undirected or directed graphs O (V + E)

Search: Successful or Unsuccessful
O(1 + degree(v))

In addition
Adjacency lists can readily be adapted to represent weighted graphs

Weight function w : E → R
The weight w(u, v) of the edge (u, v) ∈ E is simply stored with
vertex v in u’s adjacency list

22 / 84

Properties

Space for storage
For undirected or directed graphs O (V + E)

Search: Successful or Unsuccessful
O(1 + degree(v))

In addition
Adjacency lists can readily be adapted to represent weighted graphs

Weight function w : E → R
The weight w(u, v) of the edge (u, v) ∈ E is simply stored with
vertex v in u’s adjacency list

22 / 84

Properties

Space for storage
For undirected or directed graphs O (V + E)

Search: Successful or Unsuccessful
O(1 + degree(v))

In addition
Adjacency lists can readily be adapted to represent weighted graphs

Weight function w : E → R
The weight w(u, v) of the edge (u, v) ∈ E is simply stored with
vertex v in u’s adjacency list

22 / 84

Properties

Space for storage
For undirected or directed graphs O (V + E)

Search: Successful or Unsuccessful
O(1 + degree(v))

In addition
Adjacency lists can readily be adapted to represent weighted graphs

Weight function w : E → R
The weight w(u, v) of the edge (u, v) ∈ E is simply stored with
vertex v in u’s adjacency list

22 / 84

Possible Disadvantage

When looking to see if an edge exist
There is no quicker way to determine if a given edge (u,v)

23 / 84

Adjacency Matrix Representation

In a natural way the edges can be identified by the nodes
For example, the edge between 1 and 4 nodes gets named as (1,4)

Then
How, we use this to represent the graph through a Matrix or and Array of
Arrays??!!!

24 / 84

Adjacency Matrix Representation

In a natural way the edges can be identified by the nodes
For example, the edge between 1 and 4 nodes gets named as (1,4)

Then
How, we use this to represent the graph through a Matrix or and Array of
Arrays??!!!

24 / 84

What about the following?

How do we indicate that an edge exist given the following matrix
1 2 3 4 5 6

1 − − − − − −
2 − − − − − −
3 − − − − − −
4 − − − − − −
5 − − − − − −
6 − − − − − −

You say it!!
Use a 0 for no-edge
Use a 1 for edge

25 / 84

What about the following?

How do we indicate that an edge exist given the following matrix
1 2 3 4 5 6

1 − − − − − −
2 − − − − − −
3 − − − − − −
4 − − − − − −
5 − − − − − −
6 − − − − − −

You say it!!
Use a 0 for no-edge
Use a 1 for edge

25 / 84

We have then...

Definition
0/1 N ×N matrix with N =Number of nodes or vertices
A(i, j) = 1 iff (i, j) is an edge

26 / 84

We have then...
For the previous example

1 2 3 4 5 6
1 0 0 0 1 0 0
2 0 0 0 1 0 0
3 0 0 0 1 0 0
4 1 1 1 0 1 0
5 0 0 0 1 0 1
6 0 0 0 0 1 0

27 / 84

Properties of the Matrix for Undirected Graphs

Property One
Diagonal entries are zero.

Property Two
Adjacency matrix of an undirected graph is symmetric:

A (i, j) = A (j, i) for all i and j

28 / 84

Properties of the Matrix for Undirected Graphs

Property One
Diagonal entries are zero.

Property Two
Adjacency matrix of an undirected graph is symmetric:

A (i, j) = A (j, i) for all i and j

28 / 84

Complexity

Memory

Θ (V 2) (1)

Looking for an edge
O(1)

29 / 84

Complexity

Memory

Θ (V 2) (1)

Looking for an edge
O(1)

29 / 84

Traversing the Graph

Why do we need to traverse the graph?
Do you have any examples?

Yes
Search for paths satisfying various constraints

I Shortest Path

Visit some sets of vertices
I Tours

Search if two graphs are equivalent
I Isomorphisms

30 / 84

Traversing the Graph

Why do we need to traverse the graph?
Do you have any examples?

Yes
Search for paths satisfying various constraints

I Shortest Path

Visit some sets of vertices
I Tours

Search if two graphs are equivalent
I Isomorphisms

30 / 84

Traversing the Graph

Why do we need to traverse the graph?
Do you have any examples?

Yes
Search for paths satisfying various constraints

I Shortest Path

Visit some sets of vertices
I Tours

Search if two graphs are equivalent
I Isomorphisms

30 / 84

Traversing the Graph

Why do we need to traverse the graph?
Do you have any examples?

Yes
Search for paths satisfying various constraints

I Shortest Path

Visit some sets of vertices
I Tours

Search if two graphs are equivalent
I Isomorphisms

30 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

31 / 84

Breadth-first search

Definition
Given a graph G = (V ,E) and a source vertex s, breadth-first search
systematically explores the edges of Gto “discover” every vertex that is
reachable from the vertex s

Something Notable
A vertex is discovered the first time it is encountered during the search

32 / 84

Breadth-first search

Definition
Given a graph G = (V ,E) and a source vertex s, breadth-first search
systematically explores the edges of Gto “discover” every vertex that is
reachable from the vertex s

Something Notable
A vertex is discovered the first time it is encountered during the search

32 / 84

Breadth-First Search Algorithm

Algorithm
BFS(G, s)
1. for each vertex u ∈ G.V − {s}
2. u.color = WHITE
3. u.d =∞
4. u.π = NIL
5. s.color =GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. Enqueue(Q, s)

10. while Q 6= ∅
11. u =Dequeue(Q)
12. for each v ∈ G.Adj [u]
13. if v.color ==WHITE
14. v.color =GRAY
15. v.d = u.d + 1
16. v.π = u
17. Enqueue(Q, v)
18. u.color = BLACK

33 / 84

Breadth-First Search Algorithm

Algorithm
BFS(G, s)
1. for each vertex u ∈ G.V − {s}
2. u.color = WHITE
3. u.d =∞
4. u.π = NIL
5. s.color =GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. Enqueue(Q, s)

10. while Q 6= ∅
11. u =Dequeue(Q)
12. for each v ∈ G.Adj [u]
13. if v.color ==WHITE
14. v.color =GRAY
15. v.d = u.d + 1
16. v.π = u
17. Enqueue(Q, v)
18. u.color = BLACK

33 / 84

Breadth-First Search Algorithm

Algorithm
BFS(G, s)
1. for each vertex u ∈ G.V − {s}
2. u.color = WHITE
3. u.d =∞
4. u.π = NIL
5. s.color =GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. Enqueue(Q, s)

10. while Q 6= ∅
11. u =Dequeue(Q)
12. for each v ∈ G.Adj [u]
13. if v.color ==WHITE
14. v.color =GRAY
15. v.d = u.d + 1
16. v.π = u
17. Enqueue(Q, v)
18. u.color = BLACK

33 / 84

Breadth-First Search Algorithm

Algorithm
BFS(G, s)
1. for each vertex u ∈ G.V − {s}
2. u.color = WHITE
3. u.d =∞
4. u.π = NIL
5. s.color =GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. Enqueue(Q, s)

10. while Q 6= ∅
11. u =Dequeue(Q)
12. for each v ∈ G.Adj [u]
13. if v.color ==WHITE
14. v.color =GRAY
15. v.d = u.d + 1
16. v.π = u
17. Enqueue(Q, v)
18. u.color = BLACK

33 / 84

Breadth-First Search Algorithm

Algorithm
BFS(G, s)
1. for each vertex u ∈ G.V − {s}
2. u.color = WHITE
3. u.d =∞
4. u.π = NIL
5. s.color =GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. Enqueue(Q, s)

10. while Q 6= ∅
11. u =Dequeue(Q)
12. for each v ∈ G.Adj [u]
13. if v.color ==WHITE
14. v.color =GRAY
15. v.d = u.d + 1
16. v.π = u
17. Enqueue(Q, v)
18. u.color = BLACK

33 / 84

Breadth-First Search Algorithm

Algorithm
BFS(G, s)
1. for each vertex u ∈ G.V − {s}
2. u.color = WHITE
3. u.d =∞
4. u.π = NIL
5. s.color =GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. Enqueue(Q, s)

10. while Q 6= ∅
11. u =Dequeue(Q)
12. for each v ∈ G.Adj [u]
13. if v.color ==WHITE
14. v.color =GRAY
15. v.d = u.d + 1
16. v.π = u
17. Enqueue(Q, v)
18. u.color = BLACK

33 / 84

Breadth-First Search Algorithm

Algorithm
BFS(G, s)
1. for each vertex u ∈ G.V − {s}
2. u.color = WHITE
3. u.d =∞
4. u.π = NIL
5. s.color =GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. Enqueue(Q, s)

10. while Q 6= ∅
11. u =Dequeue(Q)
12. for each v ∈ G.Adj [u]
13. if v.color ==WHITE
14. v.color =GRAY
15. v.d = u.d + 1
16. v.π = u
17. Enqueue(Q, v)
18. u.color = BLACK

33 / 84

BFS allows to change the order of recursion

Remember

1

2

3 4

5

6

34 / 84

Loop Invariance

The While loop
This while loop maintains the following invariant :

At the test in line 10, the queue Q consists of the set of gray vertices

First iteration
Q = sand s.color = GRAY

Maintenance
The inner loop only pushes gray nodes into the queue.

35 / 84

Loop Invariance

The While loop
This while loop maintains the following invariant :

At the test in line 10, the queue Q consists of the set of gray vertices

First iteration
Q = sand s.color = GRAY

Maintenance
The inner loop only pushes gray nodes into the queue.

35 / 84

Loop Invariance

The While loop
This while loop maintains the following invariant :

At the test in line 10, the queue Q consists of the set of gray vertices

First iteration
Q = sand s.color = GRAY

Maintenance
The inner loop only pushes gray nodes into the queue.

35 / 84

Loop Invariance

Termination
When every node that can be visited is painted black

36 / 84

Example

What do you see?

0

0

37 / 84

Example

What do you see?

0

1 1

1

1

38 / 84

Example

What do you see?

0

1 2

1

12

39 / 84

Example

What do you see?

0

2 2 2

1

12

2

2

40 / 84

Example

What do you see?

0

2 2

1

12

2

2

41 / 84

Example

What do you see?

0

2 3

1

12

2

2

3

42 / 84

Example

What do you see?

0

3 3

1

12

2

2

3

3

43 / 84

Example

What do you see?

0

3

1

12

2

2

3

3

44 / 84

Example

What do you see?

01

12

2

2

3

3

45 / 84

Complexity

What about the outer loop?
O(V) Enqueue / Dequeue operations – Each adjacency list is processed
only once.

What about the inner loop?
The sum of the lengths of f all the adjacency lists is Θ(E) so the scanning
takes O(E)

46 / 84

Complexity

What about the outer loop?
O(V) Enqueue / Dequeue operations – Each adjacency list is processed
only once.

What about the inner loop?
The sum of the lengths of f all the adjacency lists is Θ(E) so the scanning
takes O(E)

46 / 84

Complexity

Overhead of Creation
O (V)

Then
Total complexity O (V + E)

47 / 84

Complexity

Overhead of Creation
O (V)

Then
Total complexity O (V + E)

47 / 84

Properties: Predecessor Graph

Something Notable
Breadth-first search constructs a breadth-first tree, initially containing only
its root, which is the source vertex s

Thus
We say that u is the predecessor or parent of v in the breadth-first tree.

48 / 84

Properties: Predecessor Graph

Something Notable
Breadth-first search constructs a breadth-first tree, initially containing only
its root, which is the source vertex s

Thus
We say that u is the predecessor or parent of v in the breadth-first tree.

48 / 84

For example

From the previous example

Predecessor Graph

49 / 84

For example

From the previous example

Predecessor Graph
s

r w

v t x

yu

49 / 84

This allow to use the Algorithm for finding The Shortest
Path

Clearly
This is the unweighted version or all weights are equal!!!

We have the following function
δ (s, v)= shortest path from s to v

We claim that
Upon termination of BFS, every vertex v ∈ V reachable from s has

v.d = δ(s, v)

50 / 84

This allow to use the Algorithm for finding The Shortest
Path

Clearly
This is the unweighted version or all weights are equal!!!

We have the following function
δ (s, v)= shortest path from s to v

We claim that
Upon termination of BFS, every vertex v ∈ V reachable from s has

v.d = δ(s, v)

50 / 84

This allow to use the Algorithm for finding The Shortest
Path

Clearly
This is the unweighted version or all weights are equal!!!

We have the following function
δ (s, v)= shortest path from s to v

We claim that
Upon termination of BFS, every vertex v ∈ V reachable from s has

v.d = δ(s, v)

50 / 84

Intuitive Idea of Claim

Correctness of breadth-first search
Let G = (V ,E) be a directed or undirected graph.
Suppose that BFS is run on G from a given source vertex s ∈ V .

Then
Then, during its execution, BFS discovers every vertex v ∈ V that is
reachable from the source.

51 / 84

Intuitive Idea of Claim

Correctness of breadth-first search
Let G = (V ,E) be a directed or undirected graph.
Suppose that BFS is run on G from a given source vertex s ∈ V .

Then
Then, during its execution, BFS discovers every vertex v ∈ V that is
reachable from the source.

51 / 84

Intuitive Idea of Claim

Correctness of breadth-first search
Let G = (V ,E) be a directed or undirected graph.
Suppose that BFS is run on G from a given source vertex s ∈ V .

Then
Then, during its execution, BFS discovers every vertex v ∈ V that is
reachable from the source.

51 / 84

Intuitive Idea of Claim

Distance Idea
First, once a node u is reached from v, we use the previous shortest
distance from s to update the node distance.

52 / 84

Intuitive Idea of Claim

You can use the idea of strong induction
Given a branch of the breadth-first search u s, u1, u2, ..., un

un .π = un−1.π + 1 = un−1.π + 2 = n + s.π = n (2)

Thus, we have that
For any vertex v 6= s that is reachable from s, one of the shortest
path from s to v is

I A shortest path from s to v.π followed by thew edge (v.π, v).

53 / 84

Intuitive Idea of Claim

You can use the idea of strong induction
Given a branch of the breadth-first search u s, u1, u2, ..., un

un .π = un−1.π + 1 = un−1.π + 2 = n + s.π = n (2)

Thus, we have that
For any vertex v 6= s that is reachable from s, one of the shortest
path from s to v is

I A shortest path from s to v.π followed by thew edge (v.π, v).

53 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

54 / 84

Depth-first search

Given G
Pick an unvisited vertex v, remember the rest.

I Recurse on vertices adjacent to v

55 / 84

The Pseudo-code

Code for DFS
DFS(G)
1. for each vertex u ∈ G.V
2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G.V
6. if u.color = WHITE
7.

DFS-VISIT(G, u)

DFS-VISIT(G, u)
1. time = time + 1
2. u.d = time
3. u.color = GRAY
4. for each vertex v ∈ G.Adj [u]
5. if v.color == WHITE
6. v.π = u
7. DFS-VISIT(G, v)
8. u.color = BLACK
9. time = time + 1

10. u.f = time

56 / 84

The Pseudo-code

Code for DFS
DFS(G)
1. for each vertex u ∈ G.V
2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G.V
6. if u.color = WHITE
7.

DFS-VISIT(G, u)

DFS-VISIT(G, u)
1. time = time + 1
2. u.d = time
3. u.color = GRAY
4. for each vertex v ∈ G.Adj [u]
5. if v.color == WHITE
6. v.π = u
7. DFS-VISIT(G, v)
8. u.color = BLACK
9. time = time + 1

10. u.f = time

56 / 84

The Pseudo-code

Code for DFS
DFS(G)
1. for each vertex u ∈ G.V
2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G.V
6. if u.color = WHITE
7.

DFS-VISIT(G, u)

DFS-VISIT(G, u)
1. time = time + 1
2. u.d = time
3. u.color = GRAY
4. for each vertex v ∈ G.Adj [u]
5. if v.color == WHITE
6. v.π = u
7. DFS-VISIT(G, v)
8. u.color = BLACK
9. time = time + 1

10. u.f = time

56 / 84

The Pseudo-code

Code for DFS
DFS(G)
1. for each vertex u ∈ G.V
2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G.V
6. if u.color = WHITE
7.

DFS-VISIT(G, u)

DFS-VISIT(G, u)
1. time = time + 1
2. u.d = time
3. u.color = GRAY
4. for each vertex v ∈ G.Adj [u]
5. if v.color == WHITE
6. v.π = u
7. DFS-VISIT(G, v)
8. u.color = BLACK
9. time = time + 1

10. u.f = time

56 / 84

The Pseudo-code

Code for DFS
DFS(G)
1. for each vertex u ∈ G.V
2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G.V
6. if u.color = WHITE
7.

DFS-VISIT(G, u)

DFS-VISIT(G, u)
1. time = time + 1
2. u.d = time
3. u.color = GRAY
4. for each vertex v ∈ G.Adj [u]
5. if v.color == WHITE
6. v.π = u
7. DFS-VISIT(G, v)
8. u.color = BLACK
9. time = time + 1

10. u.f = time

56 / 84

The Pseudo-code

Code for DFS
DFS(G)
1. for each vertex u ∈ G.V
2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G.V
6. if u.color = WHITE
7.

DFS-VISIT(G, u)

DFS-VISIT(G, u)
1. time = time + 1
2. u.d = time
3. u.color = GRAY
4. for each vertex v ∈ G.Adj [u]
5. if v.color == WHITE
6. v.π = u
7. DFS-VISIT(G, v)
8. u.color = BLACK
9. time = time + 1

10. u.f = time

56 / 84

The Pseudo-code

Code for DFS
DFS(G)
1. for each vertex u ∈ G.V
2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G.V
6. if u.color = WHITE
7.

DFS-VISIT(G, u)

DFS-VISIT(G, u)
1. time = time + 1
2. u.d = time
3. u.color = GRAY
4. for each vertex v ∈ G.Adj [u]
5. if v.color == WHITE
6. v.π = u
7. DFS-VISIT(G, v)
8. u.color = BLACK
9. time = time + 1

10. u.f = time

56 / 84

Example

What do we do?

57 / 84

Example

What do we do?

58 / 84

Example

What do we do?

59 / 84

Example

What do we do?

60 / 84

Example

What do we do?

61 / 84

Example

What do we do?

62 / 84

Example

What do we do?

63 / 84

Example

What do we do?

64 / 84

Complexity

Analysis
1 The loops on lines 1–3 and lines 5–7 of DFS take Θ (V).
2 The procedure DFS-VISIT is called exactly once for each vertex

v ∈ V .
3 During an execution of DFS-VISIT(G, v) the loop on lines 4–7

executes |Adj (v)| times.
4 But ∑v∈V |Adj (v)| = Θ (E) we have that the cost of executing g

lines 4–7 of DFS-VISIT is Θ (E) .

Then
DFS complexity is Θ (V + E)

65 / 84

Complexity

Analysis
1 The loops on lines 1–3 and lines 5–7 of DFS take Θ (V).
2 The procedure DFS-VISIT is called exactly once for each vertex

v ∈ V .
3 During an execution of DFS-VISIT(G, v) the loop on lines 4–7

executes |Adj (v)| times.
4 But ∑v∈V |Adj (v)| = Θ (E) we have that the cost of executing g

lines 4–7 of DFS-VISIT is Θ (E) .

Then
DFS complexity is Θ (V + E)

65 / 84

Complexity

Analysis
1 The loops on lines 1–3 and lines 5–7 of DFS take Θ (V).
2 The procedure DFS-VISIT is called exactly once for each vertex

v ∈ V .
3 During an execution of DFS-VISIT(G, v) the loop on lines 4–7

executes |Adj (v)| times.
4 But ∑v∈V |Adj (v)| = Θ (E) we have that the cost of executing g

lines 4–7 of DFS-VISIT is Θ (E) .

Then
DFS complexity is Θ (V + E)

65 / 84

Complexity

Analysis
1 The loops on lines 1–3 and lines 5–7 of DFS take Θ (V).
2 The procedure DFS-VISIT is called exactly once for each vertex

v ∈ V .
3 During an execution of DFS-VISIT(G, v) the loop on lines 4–7

executes |Adj (v)| times.
4 But ∑v∈V |Adj (v)| = Θ (E) we have that the cost of executing g

lines 4–7 of DFS-VISIT is Θ (E) .

Then
DFS complexity is Θ (V + E)

65 / 84

Complexity

Analysis
1 The loops on lines 1–3 and lines 5–7 of DFS take Θ (V).
2 The procedure DFS-VISIT is called exactly once for each vertex

v ∈ V .
3 During an execution of DFS-VISIT(G, v) the loop on lines 4–7

executes |Adj (v)| times.
4 But ∑v∈V |Adj (v)| = Θ (E) we have that the cost of executing g

lines 4–7 of DFS-VISIT is Θ (E) .

Then
DFS complexity is Θ (V + E)

65 / 84

Applications

We have several
Topological Sort
Strongly Connected Components
Computer Vision Algorithms
Artificial Intelligence Algorithms
Importance in Social Network
Rank Algorithms for Google
Etc.

66 / 84

Applications

We have several
Topological Sort
Strongly Connected Components
Computer Vision Algorithms
Artificial Intelligence Algorithms
Importance in Social Network
Rank Algorithms for Google
Etc.

66 / 84

Applications

We have several
Topological Sort
Strongly Connected Components
Computer Vision Algorithms
Artificial Intelligence Algorithms
Importance in Social Network
Rank Algorithms for Google
Etc.

66 / 84

Applications

We have several
Topological Sort
Strongly Connected Components
Computer Vision Algorithms
Artificial Intelligence Algorithms
Importance in Social Network
Rank Algorithms for Google
Etc.

66 / 84

Applications

We have several
Topological Sort
Strongly Connected Components
Computer Vision Algorithms
Artificial Intelligence Algorithms
Importance in Social Network
Rank Algorithms for Google
Etc.

66 / 84

Applications

We have several
Topological Sort
Strongly Connected Components
Computer Vision Algorithms
Artificial Intelligence Algorithms
Importance in Social Network
Rank Algorithms for Google
Etc.

66 / 84

Applications

We have several
Topological Sort
Strongly Connected Components
Computer Vision Algorithms
Artificial Intelligence Algorithms
Importance in Social Network
Rank Algorithms for Google
Etc.

66 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

67 / 84

Finding a path between nodes

We do the following
Start a breadth-first search at vertex v.
Terminate when vertex u is visited or when Q becomes empty
(whichever occurs first).

Time Complexity
O
(
V 2)when adjacency matrix used.

O(V + E) when adjacency lists used.

68 / 84

Finding a path between nodes

We do the following
Start a breadth-first search at vertex v.
Terminate when vertex u is visited or when Q becomes empty
(whichever occurs first).

Time Complexity
O
(
V 2)when adjacency matrix used.

O(V + E) when adjacency lists used.

68 / 84

Finding a path between nodes

We do the following
Start a breadth-first search at vertex v.
Terminate when vertex u is visited or when Q becomes empty
(whichever occurs first).

Time Complexity
O
(
V 2)when adjacency matrix used.

O(V + E) when adjacency lists used.

68 / 84

Finding a path between nodes

We do the following
Start a breadth-first search at vertex v.
Terminate when vertex u is visited or when Q becomes empty
(whichever occurs first).

Time Complexity
O
(
V 2)when adjacency matrix used.

O(V + E) when adjacency lists used.

68 / 84

This allow to use the Algorithm for finding The Shortest
Path

Clearly
This is the unweighted version or all weights are equal!!!

We have the following function
δ (s, v)= shortest path from s to v

Actually
Upon termination of BFS, every vertex v ∈ V reachable from s has
distance(v) = δ(s, v)

69 / 84

This allow to use the Algorithm for finding The Shortest
Path

Clearly
This is the unweighted version or all weights are equal!!!

We have the following function
δ (s, v)= shortest path from s to v

Actually
Upon termination of BFS, every vertex v ∈ V reachable from s has
distance(v) = δ(s, v)

69 / 84

This allow to use the Algorithm for finding The Shortest
Path

Clearly
This is the unweighted version or all weights are equal!!!

We have the following function
δ (s, v)= shortest path from s to v

Actually
Upon termination of BFS, every vertex v ∈ V reachable from s has
distance(v) = δ(s, v)

69 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

70 / 84

Connected Components

Definition
A connected component (or just component) of an undirected graph is a
subgraph in which any two vertices are connected to each other by paths.

Example

71 / 84

Connected Components
Definition
A connected component (or just component) of an undirected graph is a
subgraph in which any two vertices are connected to each other by paths.

Example

71 / 84

Procedure

First
Start a breadth-first search at any as yet unvisited vertex of the graph.

Thus
Newly visited vertices (plus edges between them) define a component.

Repeat
Repeat until all vertices are visited.

72 / 84

Procedure

First
Start a breadth-first search at any as yet unvisited vertex of the graph.

Thus
Newly visited vertices (plus edges between them) define a component.

Repeat
Repeat until all vertices are visited.

72 / 84

Procedure

First
Start a breadth-first search at any as yet unvisited vertex of the graph.

Thus
Newly visited vertices (plus edges between them) define a component.

Repeat
Repeat until all vertices are visited.

72 / 84

Time

O (V 2)
When adjacency matrix used

O(V + E)
When adjacency lists used (E is number of edges)

73 / 84

Time

O (V 2)
When adjacency matrix used

O(V + E)
When adjacency lists used (E is number of edges)

73 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

74 / 84

Spanning Tree with edges with same weight of no weight

Definition
A spanning tree of a graph G = (V ,E) is a acyclic graph where for
u, v ∈ V , there is a path between them

Example

75 / 84

Spanning Tree with edges with same weight of no weight

Definition
A spanning tree of a graph G = (V ,E) is a acyclic graph where for
u, v ∈ V , there is a path between them

Example
2

3

5

1

4

6

7

9

8

75 / 84

Procedure

First
Start a breadth-first search at any vertex of the graph.

Thus
If graph is connected, the n − 1 edges used to get to unvisited vertices
define a spanning tree (breadth-first spanning tree).

76 / 84

Procedure

First
Start a breadth-first search at any vertex of the graph.

Thus
If graph is connected, the n − 1 edges used to get to unvisited vertices
define a spanning tree (breadth-first spanning tree).

76 / 84

Time

O (V 2)
When adjacency matrix used

O(V + E)
When adjacency lists used (E is number of edges)

77 / 84

Time

O (V 2)
When adjacency matrix used

O(V + E)
When adjacency lists used (E is number of edges)

77 / 84

Outline

1 Introduction
Graphs Everywhere
History
Basic Theory
Representing Graphs in a Computer

2 Traversing the Graph
Breadth-first search
Depth-First Search

3 Applications
Finding a path between nodes
Connected Components
Spanning Trees
Topological Sorting

78 / 84

Topological Sorting

Definitions
A topological sort (sometimes abbreviated topsort or toposort) or
topological ordering of a directed graph is a linear ordering of its vertices
such that for every directed edge (u, v) from vertex u to vertex y, u comes
before v in the ordering.

From Industrial Engineering
The canonical application of topological sorting (topological order) is
in scheduling a sequence of jobs or tasks based on their dependencies.
Topological sorting algorithms were first studied in the early 1960s in
the context of the PERT technique for scheduling in project
management (Jarnagin 1960).

79 / 84

Topological Sorting

Definitions
A topological sort (sometimes abbreviated topsort or toposort) or
topological ordering of a directed graph is a linear ordering of its vertices
such that for every directed edge (u, v) from vertex u to vertex y, u comes
before v in the ordering.

From Industrial Engineering
The canonical application of topological sorting (topological order) is
in scheduling a sequence of jobs or tasks based on their dependencies.
Topological sorting algorithms were first studied in the early 1960s in
the context of the PERT technique for scheduling in project
management (Jarnagin 1960).

79 / 84

Then

We have that
The jobs are represented by vertices, and there is an edge from x to y if
job x must be completed before job y can be started.

Example
When washing clothes, the washing machine must finish before we put the
clothes to dry.

Then
A topological sort gives an order in which to perform the jobs.

80 / 84

Then

We have that
The jobs are represented by vertices, and there is an edge from x to y if
job x must be completed before job y can be started.

Example
When washing clothes, the washing machine must finish before we put the
clothes to dry.

Then
A topological sort gives an order in which to perform the jobs.

80 / 84

Then

We have that
The jobs are represented by vertices, and there is an edge from x to y if
job x must be completed before job y can be started.

Example
When washing clothes, the washing machine must finish before we put the
clothes to dry.

Then
A topological sort gives an order in which to perform the jobs.

80 / 84

Algorithm

Pseudo Code
TOPOLOGICAL-SORT

1 Call DFS(G) to compute finishing times v.f for each vertex v.
2 As each vertex is finished, insert it onto the front of a linked list
3 Return the linked list of vertices

81 / 84

Algorithm

Pseudo Code
TOPOLOGICAL-SORT

1 Call DFS(G) to compute finishing times v.f for each vertex v.
2 As each vertex is finished, insert it onto the front of a linked list
3 Return the linked list of vertices

81 / 84

Algorithm

Pseudo Code
TOPOLOGICAL-SORT

1 Call DFS(G) to compute finishing times v.f for each vertex v.
2 As each vertex is finished, insert it onto the front of a linked list
3 Return the linked list of vertices

81 / 84

Example

Dressing

undershort
socks

pants

belt
shirt

tie

jacket

shoes

watch
11/16

12/15

6/7

1/8

2/5

3/4

17/18

13/14

u.d/u.f

9/10

82 / 84

Thus

Using the u.f
As each vertex is finished, insert it onto the front of a
linked list

83 / 84

Example

After Sorting

undershortsocks pants beltshirt tie jacketshoes watch

11/16 12/15 6/71/8 2/5 3/417/18 13/14 9/10

84 / 84

	Introduction
	Graphs Everywhere
	History
	Basic Theory
	Representing Graphs in a Computer

	Traversing the Graph
	Breadth-first search
	Depth-First Search

	Applications
	Finding a path between nodes
	Connected Components
	Spanning Trees
	Topological Sorting

