
Analysis of Algorithm
Disjoint Set Representation

Andres Mendez-Vazquez

March 11, 2018

1 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

2 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

3 / 117



Disjoint Set Representation

Problem
1 Items are drawn from the finite universe U = 1, 2, ..., n for some fixed
n.

2 We want to maintain a partition of U as a collection of disjoint sets.
3 In addition, we want to uniquely name each set by one of its items

called its representative item.

These disjoint sets are maintained under the following operations
1 MakeSet(x)
2 Union(A,B)
3 Find(x)

4 / 117



Disjoint Set Representation

Problem
1 Items are drawn from the finite universe U = 1, 2, ..., n for some fixed
n.

2 We want to maintain a partition of U as a collection of disjoint sets.
3 In addition, we want to uniquely name each set by one of its items

called its representative item.

These disjoint sets are maintained under the following operations
1 MakeSet(x)
2 Union(A,B)
3 Find(x)

4 / 117



Disjoint Set Representation

Problem
1 Items are drawn from the finite universe U = 1, 2, ..., n for some fixed
n.

2 We want to maintain a partition of U as a collection of disjoint sets.
3 In addition, we want to uniquely name each set by one of its items

called its representative item.

These disjoint sets are maintained under the following operations
1 MakeSet(x)
2 Union(A,B)
3 Find(x)

4 / 117



Disjoint Set Representation

Problem
1 Items are drawn from the finite universe U = 1, 2, ..., n for some fixed
n.

2 We want to maintain a partition of U as a collection of disjoint sets.
3 In addition, we want to uniquely name each set by one of its items

called its representative item.

These disjoint sets are maintained under the following operations
1 MakeSet(x)
2 Union(A,B)
3 Find(x)

4 / 117



Disjoint Set Representation

Problem
1 Items are drawn from the finite universe U = 1, 2, ..., n for some fixed
n.

2 We want to maintain a partition of U as a collection of disjoint sets.
3 In addition, we want to uniquely name each set by one of its items

called its representative item.

These disjoint sets are maintained under the following operations
1 MakeSet(x)
2 Union(A,B)
3 Find(x)

4 / 117



Disjoint Set Representation

Problem
1 Items are drawn from the finite universe U = 1, 2, ..., n for some fixed
n.

2 We want to maintain a partition of U as a collection of disjoint sets.
3 In addition, we want to uniquely name each set by one of its items

called its representative item.

These disjoint sets are maintained under the following operations
1 MakeSet(x)
2 Union(A,B)
3 Find(x)

4 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

5 / 117



Operations

MakeSet(x)
Given x ∈ U currently not belonging to any set in the collection, create a
new singleton set {x} and name it x.

I This is usually done at start, once per item, to create the initial trivial
partition.

Union(A,B)
It changes the current partition by replacing its sets A and B with A ∪B.
Name the set A or B.

I The operation may choose either one of the two representatives as the
new representatives.

Find(x)
It returns the name of the set that currently contains item x.

6 / 117



Operations

MakeSet(x)
Given x ∈ U currently not belonging to any set in the collection, create a
new singleton set {x} and name it x.

I This is usually done at start, once per item, to create the initial trivial
partition.

Union(A,B)
It changes the current partition by replacing its sets A and B with A ∪B.
Name the set A or B.

I The operation may choose either one of the two representatives as the
new representatives.

Find(x)
It returns the name of the set that currently contains item x.

6 / 117



Operations

MakeSet(x)
Given x ∈ U currently not belonging to any set in the collection, create a
new singleton set {x} and name it x.

I This is usually done at start, once per item, to create the initial trivial
partition.

Union(A,B)
It changes the current partition by replacing its sets A and B with A ∪B.
Name the set A or B.

I The operation may choose either one of the two representatives as the
new representatives.

Find(x)
It returns the name of the set that currently contains item x.

6 / 117



Example

for x = 1 to 9 do MakeSet(x)
98621 2 3 4 5 6 8 97

Then, you do a Union(1, 2)

Now, Union(3, 4); Union(5, 8); Union(6, 9)

7 / 117



Example

for x = 1 to 9 do MakeSet(x)
98621 2 3 4 5 6 8 97

Then, you do a Union(1, 2)

9863 4 5 6 8 9721 2

Now, Union(3, 4); Union(5, 8); Union(6, 9)

7 / 117



Example

for x = 1 to 9 do MakeSet(x)
98621 2 3 4 5 6 8 97

Then, you do a Union(1, 2)

9863 4 5 6 8 9721 2

Now, Union(3, 4); Union(5, 8); Union(6, 9)

21 2 3 4 5 678 9

7 / 117



Example

Now, Union(1, 5); Union(7, 4)

21 2 3 45 678 9

Then, if we do the following operations
Find(1) returns 5
Find(9) returns 9

Finally, Union(5, 9)

Then Find(9) returns 5

8 / 117



Example

Now, Union(1, 5); Union(7, 4)

21 2 3 45 678 9

Then, if we do the following operations
Find(1) returns 5
Find(9) returns 9

Finally, Union(5, 9)

Then Find(9) returns 5

8 / 117



Example

Now, Union(1, 5); Union(7, 4)

21 2 3 45 678 9

Then, if we do the following operations
Find(1) returns 5
Find(9) returns 9

Finally, Union(5, 9)

21 2 3 45 6 78 9

Then Find(9) returns 5

8 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

9 / 117



Union-Find Problem

Problem
S = be a sequence of m = |S| MakeSet, Union and Find operations
(intermixed in arbitrary order):

I n of which are MakeSet.
I At most n− 1 are Union.
I The rest are Finds.

Cost(S) = total computational time to execute sequence s.
Goal: Find an implementation that, for every m and n, minimizes the
amortized cost per operation:

Cost (S)
|S|

(1)

for any arbitrary sequence S.

10 / 117



Union-Find Problem

Problem
S = be a sequence of m = |S| MakeSet, Union and Find operations
(intermixed in arbitrary order):

I n of which are MakeSet.
I At most n− 1 are Union.
I The rest are Finds.

Cost(S) = total computational time to execute sequence s.
Goal: Find an implementation that, for every m and n, minimizes the
amortized cost per operation:

Cost (S)
|S|

(1)

for any arbitrary sequence S.

10 / 117



Union-Find Problem

Problem
S = be a sequence of m = |S| MakeSet, Union and Find operations
(intermixed in arbitrary order):

I n of which are MakeSet.
I At most n− 1 are Union.
I The rest are Finds.

Cost(S) = total computational time to execute sequence s.
Goal: Find an implementation that, for every m and n, minimizes the
amortized cost per operation:

Cost (S)
|S|

(1)

for any arbitrary sequence S.

10 / 117



Union-Find Problem

Problem
S = be a sequence of m = |S| MakeSet, Union and Find operations
(intermixed in arbitrary order):

I n of which are MakeSet.
I At most n− 1 are Union.
I The rest are Finds.

Cost(S) = total computational time to execute sequence s.
Goal: Find an implementation that, for every m and n, minimizes the
amortized cost per operation:

Cost (S)
|S|

(1)

for any arbitrary sequence S.

10 / 117



Union-Find Problem

Problem
S = be a sequence of m = |S| MakeSet, Union and Find operations
(intermixed in arbitrary order):

I n of which are MakeSet.
I At most n− 1 are Union.
I The rest are Finds.

Cost(S) = total computational time to execute sequence s.
Goal: Find an implementation that, for every m and n, minimizes the
amortized cost per operation:

Cost (S)
|S|

(1)

for any arbitrary sequence S.

10 / 117



Union-Find Problem

Problem
S = be a sequence of m = |S| MakeSet, Union and Find operations
(intermixed in arbitrary order):

I n of which are MakeSet.
I At most n− 1 are Union.
I The rest are Finds.

Cost(S) = total computational time to execute sequence s.
Goal: Find an implementation that, for every m and n, minimizes the
amortized cost per operation:

Cost (S)
|S|

(1)

for any arbitrary sequence S.

10 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

11 / 117



Applications

Examples
1 Maintaining partitions and equivalence classes.
2 Graph connectivity under edge insertion.
3 Minimum spanning trees (e.g. Kruskal’s algorithm).
4 Random maze construction.

12 / 117



Applications

Examples
1 Maintaining partitions and equivalence classes.
2 Graph connectivity under edge insertion.
3 Minimum spanning trees (e.g. Kruskal’s algorithm).
4 Random maze construction.

12 / 117



Applications

Examples
1 Maintaining partitions and equivalence classes.
2 Graph connectivity under edge insertion.
3 Minimum spanning trees (e.g. Kruskal’s algorithm).
4 Random maze construction.

12 / 117



Applications

Examples
1 Maintaining partitions and equivalence classes.
2 Graph connectivity under edge insertion.
3 Minimum spanning trees (e.g. Kruskal’s algorithm).
4 Random maze construction.

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

14 15

3

5 6 8

1 2 4

7

13 16

Mazing

12 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

13 / 117



Circular lists

We use the following structures
Data structure: Two arrays Set[1..n] and next[1..n].

Set[x] returns the name of the set that contains item x.
A is a set if and only if Set[A] = A

next[x] returns the next item on the list of the set that contains item
x.

14 / 117



Circular lists

We use the following structures
Data structure: Two arrays Set[1..n] and next[1..n].

Set[x] returns the name of the set that contains item x.
A is a set if and only if Set[A] = A

next[x] returns the next item on the list of the set that contains item
x.

14 / 117



Circular lists

We use the following structures
Data structure: Two arrays Set[1..n] and next[1..n].

Set[x] returns the name of the set that contains item x.
A is a set if and only if Set[A] = A

next[x] returns the next item on the list of the set that contains item
x.

14 / 117



Circular lists

We use the following structures
Data structure: Two arrays Set[1..n] and next[1..n].

Set[x] returns the name of the set that contains item x.
A is a set if and only if Set[A] = A

next[x] returns the next item on the list of the set that contains item
x.

14 / 117



Circular lists

Example: n = 16,
Partition: {{1, 2, 8, 9} , {4, 3, 10, 13, 14, 15, 16} , {7, 6, 5, 11, 12} }
Set

next

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 4 4 7 7 7 1 1 4 7 7 4 4 4 4

2 8 10 3 12 5 6 9 1 13 7 11 14 15 16 4

Set Position 1

15 / 117



Circular lists

Example: n = 16,
Partition: {{1, 2, 8, 9} , {4, 3, 10, 13, 14, 15, 16} , {7, 6, 5, 11, 12} }
Set

next

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 4 4 7 7 7 1 1 4 7 7 4 4 4 4

2 8 10 3 12 5 6 9 1 13 7 11 14 15 16 4

Set Position 1
1 2 8 91

15 / 117



Circular lists

Set Position 7
7 6 5 12 117

Set Position 4

16 / 117



Circular lists

Set Position 7
7 6 5 12 117

Set Position 4
4 3 10 13 14 15 164

16 / 117



Operations and Cost

Make(x)
1 Set[x] = x

2 next[x] = x

Complexity
O (1) Time

Find(x)
1 return Set[x]

Complexity
O (1) Time

17 / 117



Operations and Cost

Make(x)
1 Set[x] = x

2 next[x] = x

Complexity
O (1) Time

Find(x)
1 return Set[x]

Complexity
O (1) Time

17 / 117



Operations and Cost

Make(x)
1 Set[x] = x

2 next[x] = x

Complexity
O (1) Time

Find(x)
1 return Set[x]

Complexity
O (1) Time

17 / 117



Operations and Cost

Make(x)
1 Set[x] = x

2 next[x] = x

Complexity
O (1) Time

Find(x)
1 return Set[x]

Complexity
O (1) Time

17 / 117



Operations and Cost

For the union
We are assuming Set[A] = A 6=Set[B] = B

Union1(A,B)
1 Set[B] = A

2 x =next[B]
3 while (x 6= B)
4 Set[x] = A /* Rename Set B to A*/
5 x =next[x]
6 x =next[B] /* Splice list A and B */
7 next[B] =next[A]
8 next[A] = x

18 / 117



Operations and Cost

For the union
We are assuming Set[A] = A 6=Set[B] = B

Union1(A,B)
1 Set[B] = A

2 x =next[B]
3 while (x 6= B)
4 Set[x] = A /* Rename Set B to A*/
5 x =next[x]
6 x =next[B] /* Splice list A and B */
7 next[B] =next[A]
8 next[A] = x

18 / 117



Operations and Cost

For the union
We are assuming Set[A] = A 6=Set[B] = B

Union1(A,B)
1 Set[B] = A

2 x =next[B]
3 while (x 6= B)
4 Set[x] = A /* Rename Set B to A*/
5 x =next[x]
6 x =next[B] /* Splice list A and B */
7 next[B] =next[A]
8 next[A] = x

18 / 117



Operations an Cost

Thus, we have in the Splice part

A

B
x

19 / 117



We have a Problem

Complexity
O (|B|) Time

Not only that, if we have the following sequence of operations
1 for x = 1 to n
2 MakeSet(x)
3 for x = 1 to n− 1
4 Union1(x+ 1, x)

20 / 117



We have a Problem

Complexity
O (|B|) Time

Not only that, if we have the following sequence of operations
1 for x = 1 to n
2 MakeSet(x)
3 for x = 1 to n− 1
4 Union1(x+ 1, x)

20 / 117



Thus

Thus, we have the following number of aggregated steps

n+
n−1∑
i=1

i = n+ n (n− 1)
2

= n+ n2 − n
2

= n2

2 + n

2
= Θ

(
n2
)

21 / 117



Thus

Thus, we have the following number of aggregated steps

n+
n−1∑
i=1

i = n+ n (n− 1)
2

= n+ n2 − n
2

= n2

2 + n

2
= Θ

(
n2
)

21 / 117



Thus

Thus, we have the following number of aggregated steps

n+
n−1∑
i=1

i = n+ n (n− 1)
2

= n+ n2 − n
2

= n2

2 + n

2
= Θ

(
n2
)

21 / 117



Thus

Thus, we have the following number of aggregated steps

n+
n−1∑
i=1

i = n+ n (n− 1)
2

= n+ n2 − n
2

= n2

2 + n

2
= Θ

(
n2
)

21 / 117



Thus

Thus, we have the following number of aggregated steps

n+
n−1∑
i=1

i = n+ n (n− 1)
2

= n+ n2 − n
2

= n2

2 + n

2
= Θ

(
n2
)

21 / 117



Aggregate Time

Thus, the aggregate time is as follow
Aggregate Time = Θ

(
n2)

Therefore
Amortized Time per operation = Θ (n)

22 / 117



Aggregate Time

Thus, the aggregate time is as follow
Aggregate Time = Θ

(
n2)

Therefore
Amortized Time per operation = Θ (n)

22 / 117



This is not exactly good

Thus, we need to have something better
We will try now the Weighted-Union Heuristic!!!

23 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

24 / 117



Implementation 2: Weighted-Union Heuristic Lists

We extend the previous data structure
Data structure: Three arrays Set[1..n], next[1..n], size[1..n].

size[A] returns the number of items in set A if A == Set[A]
(Otherwise, we do not care).

25 / 117



Operations

MakeSet(x)
1 Set[x] = x

2 next[x] = x

3 size[x] = 1

Complexity
O (1) time

Find(x)
1 return Set[x]

Complexity
O (1) time

26 / 117



Operations

MakeSet(x)
1 Set[x] = x

2 next[x] = x

3 size[x] = 1

Complexity
O (1) time

Find(x)
1 return Set[x]

Complexity
O (1) time

26 / 117



Operations

MakeSet(x)
1 Set[x] = x

2 next[x] = x

3 size[x] = 1

Complexity
O (1) time

Find(x)
1 return Set[x]

Complexity
O (1) time

26 / 117



Operations

MakeSet(x)
1 Set[x] = x

2 next[x] = x

3 size[x] = 1

Complexity
O (1) time

Find(x)
1 return Set[x]

Complexity
O (1) time

26 / 117



Operations

Union2(A,B)
1 if size[set [A]] >size[set [B]]
2 size[set [A]] =size[set [A]]+size[set [B]]
3 Union1(A,B)
4 else
5 size[set [B]] =size[set [A]]+size[set [B]]
6 Union1(B,A)

Note: Weight Balanced Union: Merge smaller set into large set

Complexity
O (min {|A| , |B|}) time.

27 / 117



Operations

Union2(A,B)
1 if size[set [A]] >size[set [B]]
2 size[set [A]] =size[set [A]]+size[set [B]]
3 Union1(A,B)
4 else
5 size[set [B]] =size[set [A]]+size[set [B]]
6 Union1(B,A)

Note: Weight Balanced Union: Merge smaller set into large set

Complexity
O (min {|A| , |B|}) time.

27 / 117



What about the operations eliciting the worst behavior
Remember

1 for x = 1 to n
2 MakeSet(x)
3 for x = 1 to n− 1
4 Union2(x+ 1, x)

We have then

n+
n−1∑
i=1

1 = n+ n− 1

= 2n− 1
= Θ (n)

IMPORTANT: This is not the worst sequence!!!

28 / 117



What about the operations eliciting the worst behavior
Remember

1 for x = 1 to n
2 MakeSet(x)
3 for x = 1 to n− 1
4 Union2(x+ 1, x)

We have then

n+
n−1∑
i=1

1 = n+ n− 1

= 2n− 1
= Θ (n)

IMPORTANT: This is not the worst sequence!!!

28 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Worst Sequence s
MakeSet(x), for x = 1, .., n. Then do n− 1 Unions in round-robin manner.

Within each round, the sets have roughly equal size.
I Starting round: Each round has size 1.
I Next round: Each round has size 2.
I Next: ... size 4.
I ...

We claim the following
Aggregate time = Θ(n logn)
Amortized time per operation = Θ(logn)

29 / 117



For this, notice the following worst sequence

Example n = 16
Round 0: {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16}
Round 1: {1, 2} {3, 4} {5, 6} {7, 8} {9, 10} {11, 12} {13, 14} {15,
16}
Round 2: {1, 2, 3, 4} {5, 6, 7, 8} {9, 10, 11, 12} {13, 14, 15, 16}
Round 3: {1, 2, 3, 4, 5, 6, 7, 8} {9, 10, 11, 12, 13, 14, 15, 16}
Round 4: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

30 / 117



For this, notice the following worst sequence

Example n = 16
Round 0: {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16}
Round 1: {1, 2} {3, 4} {5, 6} {7, 8} {9, 10} {11, 12} {13, 14} {15,
16}
Round 2: {1, 2, 3, 4} {5, 6, 7, 8} {9, 10, 11, 12} {13, 14, 15, 16}
Round 3: {1, 2, 3, 4, 5, 6, 7, 8} {9, 10, 11, 12, 13, 14, 15, 16}
Round 4: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

30 / 117



For this, notice the following worst sequence

Example n = 16
Round 0: {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16}
Round 1: {1, 2} {3, 4} {5, 6} {7, 8} {9, 10} {11, 12} {13, 14} {15,
16}
Round 2: {1, 2, 3, 4} {5, 6, 7, 8} {9, 10, 11, 12} {13, 14, 15, 16}
Round 3: {1, 2, 3, 4, 5, 6, 7, 8} {9, 10, 11, 12, 13, 14, 15, 16}
Round 4: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

30 / 117



For this, notice the following worst sequence

Example n = 16
Round 0: {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16}
Round 1: {1, 2} {3, 4} {5, 6} {7, 8} {9, 10} {11, 12} {13, 14} {15,
16}
Round 2: {1, 2, 3, 4} {5, 6, 7, 8} {9, 10, 11, 12} {13, 14, 15, 16}
Round 3: {1, 2, 3, 4, 5, 6, 7, 8} {9, 10, 11, 12, 13, 14, 15, 16}
Round 4: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

30 / 117



For this, notice the following worst sequence

Example n = 16
Round 0: {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16}
Round 1: {1, 2} {3, 4} {5, 6} {7, 8} {9, 10} {11, 12} {13, 14} {15,
16}
Round 2: {1, 2, 3, 4} {5, 6, 7, 8} {9, 10, 11, 12} {13, 14, 15, 16}
Round 3: {1, 2, 3, 4, 5, 6, 7, 8} {9, 10, 11, 12, 13, 14, 15, 16}
Round 4: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

30 / 117



Now

Given the previous worst case
What is the complexity of this implementation?

31 / 117



Now, the Amortized Costs of this implementation

Claim 1: Amortized time per operation is O(log n)
For this, we have the following theorem!!!

32 / 117



Theorem

Theorem 21.1
Using the linked-list representation of disjoint sets and the weighted-Union
heuristic, a sequence of m MakeSet, Union, and FindSet operations, n of
which are MakeSet operations, takes O (m+ n logn) time.

33 / 117



Proof

Because each Union operation unites two disjoint sets
We perform at most n− 1 Union operations over all.

We now bound the total time taken by these Union operations
We start by determining, for each object,

I an upper bound on the number of times the object’s pointer back to
its set object is updated.

34 / 117



Proof

Because each Union operation unites two disjoint sets
We perform at most n− 1 Union operations over all.

We now bound the total time taken by these Union operations
We start by determining, for each object,

I an upper bound on the number of times the object’s pointer back to
its set object is updated.

34 / 117



Proof

Because each Union operation unites two disjoint sets
We perform at most n− 1 Union operations over all.

We now bound the total time taken by these Union operations
We start by determining, for each object,

I an upper bound on the number of times the object’s pointer back to
its set object is updated.

34 / 117



Proof

Consider a particular object x.
We know that each time x’s pointer was updated, x must have
started in the smaller set.

The first time x’s pointer was updated
The resulting set must have had at least 2 members.

Similarly
Similarly, the next time x’s pointer was updated, the resulting set
must have had at least 4 members.

35 / 117



Proof

Consider a particular object x.
We know that each time x’s pointer was updated, x must have
started in the smaller set.

The first time x’s pointer was updated
The resulting set must have had at least 2 members.

Similarly
Similarly, the next time x’s pointer was updated, the resulting set
must have had at least 4 members.

35 / 117



Proof

Consider a particular object x.
We know that each time x’s pointer was updated, x must have
started in the smaller set.

The first time x’s pointer was updated
The resulting set must have had at least 2 members.

Similarly
Similarly, the next time x’s pointer was updated, the resulting set
must have had at least 4 members.

35 / 117



Proof

Example

36 / 117



Proof

Continuing on
We observe that for any k ≤ n, after x’s pointer has been updated dlogne
times!!!

The resulting set must have at least k members.

Thus
Since the largest set has at most n members, each object’s pointer is
updated at most dlogne times over all the Union operations.

Then
The total time spent updating object pointers over all Union operations is
O (n logn).

37 / 117



Proof

Continuing on
We observe that for any k ≤ n, after x’s pointer has been updated dlogne
times!!!

The resulting set must have at least k members.

Thus
Since the largest set has at most n members, each object’s pointer is
updated at most dlogne times over all the Union operations.

Then
The total time spent updating object pointers over all Union operations is
O (n logn).

37 / 117



Proof

Continuing on
We observe that for any k ≤ n, after x’s pointer has been updated dlogne
times!!!

The resulting set must have at least k members.

Thus
Since the largest set has at most n members, each object’s pointer is
updated at most dlogne times over all the Union operations.

Then
The total time spent updating object pointers over all Union operations is
O (n logn).

37 / 117



Proof

Continuing on
We observe that for any k ≤ n, after x’s pointer has been updated dlogne
times!!!

The resulting set must have at least k members.

Thus
Since the largest set has at most n members, each object’s pointer is
updated at most dlogne times over all the Union operations.

Then
The total time spent updating object pointers over all Union operations is
O (n logn).

37 / 117



Proof

We must also account for updating the tail pointers and the list
lengths
It takes only O (1) time per Union operation

Therefore
The total time spent in all Union operations is thus O (n logn).

The time for the entire sequence of m operations follows easily
Each MakeSet and FindSet operation takes O (1) time, and there are
O (m) of them.

38 / 117



Proof

We must also account for updating the tail pointers and the list
lengths
It takes only O (1) time per Union operation

Therefore
The total time spent in all Union operations is thus O (n logn).

The time for the entire sequence of m operations follows easily
Each MakeSet and FindSet operation takes O (1) time, and there are
O (m) of them.

38 / 117



Proof

We must also account for updating the tail pointers and the list
lengths
It takes only O (1) time per Union operation

Therefore
The total time spent in all Union operations is thus O (n logn).

The time for the entire sequence of m operations follows easily
Each MakeSet and FindSet operation takes O (1) time, and there are
O (m) of them.

38 / 117



Proof

Therefore
The total time for the entire sequence is thus O (m+ n logn).

39 / 117



Amortized Cost: Aggregate Analysis

Aggregate cost O(m+ n log n). Amortized cost per operation
O(log n).

O(m+ n logn)
m

= O (1 + logn) = O (logn) (2)

40 / 117



There are other ways of analyzing the amortized cost

It is possible to use
1 Accounting Method.
2 Potential Method.

41 / 117



Amortized Costs: Accounting Method

Accounting method
MakeSet(x): Charge (1 + logn). 1 to do the operation, logn stored
as credit with item x.
Find(x): Charge 1, and use it to do the operation.
Union(A,B): Charge 0 and use 1 stored credit from each item in the
smaller set to move it.

42 / 117



Amortized Costs: Accounting Method

Accounting method
MakeSet(x): Charge (1 + logn). 1 to do the operation, logn stored
as credit with item x.
Find(x): Charge 1, and use it to do the operation.
Union(A,B): Charge 0 and use 1 stored credit from each item in the
smaller set to move it.

42 / 117



Amortized Costs: Accounting Method

Accounting method
MakeSet(x): Charge (1 + logn). 1 to do the operation, logn stored
as credit with item x.
Find(x): Charge 1, and use it to do the operation.
Union(A,B): Charge 0 and use 1 stored credit from each item in the
smaller set to move it.

42 / 117



Amortized Costs: Accounting Method

Credit invariant
Total stored credit is

∑
S
|S| log

(
n
|S|

)
, where the summation is taken over

the collection S of all disjoint sets of the current partition.

43 / 117



Amortized Costs: Potential Method

Potential function method
Exercise:

Define a regular potential function and use it to do the amortized
analysis.
Can you make the Union amortized cost O(logn), MakeSet and Find
costs O(1)?

44 / 117



Amortized Costs: Potential Method

Potential function method
Exercise:

Define a regular potential function and use it to do the amortized
analysis.
Can you make the Union amortized cost O(logn), MakeSet and Find
costs O(1)?

44 / 117



Amortized Costs: Potential Method

Potential function method
Exercise:

Define a regular potential function and use it to do the amortized
analysis.
Can you make the Union amortized cost O(logn), MakeSet and Find
costs O(1)?

44 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

45 / 117



Improving over the heuristic using union by rank

Union by Rank
Instead of using the number of nodes in each tree to make a decision, we
maintain a rank, a upper bound on the height of the tree.

We have the following data structure to support this:
We maintain a parent array p[1..n].

A is a set if and only if A = p[A] (a tree root).
x ∈ A if and only if x is in the tree rooted at A.

46 / 117



Improving over the heuristic using union by rank

Union by Rank
Instead of using the number of nodes in each tree to make a decision, we
maintain a rank, a upper bound on the height of the tree.

We have the following data structure to support this:
We maintain a parent array p[1..n].

A is a set if and only if A = p[A] (a tree root).
x ∈ A if and only if x is in the tree rooted at A.

46 / 117



Improving over the heuristic using union by rank

Union by Rank
Instead of using the number of nodes in each tree to make a decision, we
maintain a rank, a upper bound on the height of the tree.

We have the following data structure to support this:
We maintain a parent array p[1..n].

A is a set if and only if A = p[A] (a tree root).
x ∈ A if and only if x is in the tree rooted at A.

46 / 117



Improving over the heuristic using union by rank

Union by Rank
Instead of using the number of nodes in each tree to make a decision, we
maintain a rank, a upper bound on the height of the tree.

We have the following data structure to support this:
We maintain a parent array p[1..n].

A is a set if and only if A = p[A] (a tree root).
x ∈ A if and only if x is in the tree rooted at A.

46 / 117



Improving over the heuristic using union by rank
Union by Rank
Instead of using the number of nodes in each tree to make a decision, we
maintain a rank, a upper bound on the height of the tree.

We have the following data structure to support this:
We maintain a parent array p[1..n].

A is a set if and only if A = p[A] (a tree root).
x ∈ A if and only if x is in the tree rooted at A.

1

13 5 8

20 14 10

19

4

2 18 6

15 9 11

17

7

3

12

16

46 / 117



Forest of Up-Trees: Operations without union by rank or
weight

MakeSet(x)
1 p[x] = x

Complexity
O (1) time

Union(A,B)
1 p[B] = A

Note: We are assuming that p[A] == A 6=p[B] == B. This is the
reason we need a find operation!!!

47 / 117



Forest of Up-Trees: Operations without union by rank or
weight

MakeSet(x)
1 p[x] = x

Complexity
O (1) time

Union(A,B)
1 p[B] = A

Note: We are assuming that p[A] == A 6=p[B] == B. This is the
reason we need a find operation!!!

47 / 117



Forest of Up-Trees: Operations without union by rank or
weight

MakeSet(x)
1 p[x] = x

Complexity
O (1) time

Union(A,B)
1 p[B] = A

Note: We are assuming that p[A] == A 6=p[B] == B. This is the
reason we need a find operation!!!

47 / 117



Example

Remember we are doing the joins without caring about getting the
worst case

B

A

48 / 117



Forest of Up-Trees: Operations without union by rank or
weight

Find(x)
1 if x ==p[x]
2 return x
3 return Find(p [x])

Example

49 / 117



Forest of Up-Trees: Operations without union by rank or
weight

Find(x)
1 if x ==p[x]
2 return x
3 return Find(p [x])

Example

x

49 / 117



Forest of Up-Trees: Operations without union by rank or
weight

Still I can give you a horrible case
Sequence of operations

1 for x = 1 to n
2 MakeSet(x)
3 for x = 1 to n− 1
4 Union(x)
5 for x = 1 to n− 1
6 Find(1)

50 / 117



Forest of Up-Trees: Operations without union by rank or
weight

Still I can give you a horrible case
Sequence of operations

1 for x = 1 to n
2 MakeSet(x)
3 for x = 1 to n− 1
4 Union(x)
5 for x = 1 to n− 1
6 Find(1)

50 / 117



Forest of Up-Trees: Operations without union by rank or
weight

We finish with this data structure

1

2

n-1

n

Thus the last part of the sequence give us a total time of
Aggregate Time Θ

(
n2)

Amortized Analysis per operation Θ (n)

51 / 117



Forest of Up-Trees: Operations without union by rank or
weight

We finish with this data structure

1

2

n-1

n

Thus the last part of the sequence give us a total time of
Aggregate Time Θ

(
n2)

Amortized Analysis per operation Θ (n)

51 / 117



Self-Adjusting forest of Up-Trees

How, we avoid this problem
Use together the following heuristics!!!

1 Balanced Union.
I By tree weight (i.e., size)
I By tree rank (i.e., height)

2 Find with path compression

Observations
Each single improvement (1 or 2) by itself will result in logarithmic
amortized cost per operation.
The two improvements combined will result in amortized cost per
operation approaching very close to O(1).

52 / 117



Self-Adjusting forest of Up-Trees

How, we avoid this problem
Use together the following heuristics!!!

1 Balanced Union.
I By tree weight (i.e., size)
I By tree rank (i.e., height)

2 Find with path compression

Observations
Each single improvement (1 or 2) by itself will result in logarithmic
amortized cost per operation.
The two improvements combined will result in amortized cost per
operation approaching very close to O(1).

52 / 117



Self-Adjusting forest of Up-Trees

How, we avoid this problem
Use together the following heuristics!!!

1 Balanced Union.
I By tree weight (i.e., size)
I By tree rank (i.e., height)

2 Find with path compression

Observations
Each single improvement (1 or 2) by itself will result in logarithmic
amortized cost per operation.
The two improvements combined will result in amortized cost per
operation approaching very close to O(1).

52 / 117



Self-Adjusting forest of Up-Trees

How, we avoid this problem
Use together the following heuristics!!!

1 Balanced Union.
I By tree weight (i.e., size)
I By tree rank (i.e., height)

2 Find with path compression

Observations
Each single improvement (1 or 2) by itself will result in logarithmic
amortized cost per operation.
The two improvements combined will result in amortized cost per
operation approaching very close to O(1).

52 / 117



Self-Adjusting forest of Up-Trees

How, we avoid this problem
Use together the following heuristics!!!

1 Balanced Union.
I By tree weight (i.e., size)
I By tree rank (i.e., height)

2 Find with path compression

Observations
Each single improvement (1 or 2) by itself will result in logarithmic
amortized cost per operation.
The two improvements combined will result in amortized cost per
operation approaching very close to O(1).

52 / 117



Self-Adjusting forest of Up-Trees

How, we avoid this problem
Use together the following heuristics!!!

1 Balanced Union.
I By tree weight (i.e., size)
I By tree rank (i.e., height)

2 Find with path compression

Observations
Each single improvement (1 or 2) by itself will result in logarithmic
amortized cost per operation.
The two improvements combined will result in amortized cost per
operation approaching very close to O(1).

52 / 117



Self-Adjusting forest of Up-Trees

How, we avoid this problem
Use together the following heuristics!!!

1 Balanced Union.
I By tree weight (i.e., size)
I By tree rank (i.e., height)

2 Find with path compression

Observations
Each single improvement (1 or 2) by itself will result in logarithmic
amortized cost per operation.
The two improvements combined will result in amortized cost per
operation approaching very close to O(1).

52 / 117



Balanced Union by Size

Using size for Balanced Union
We can use the size of each set to obtain what we want

53 / 117



We have then
MakeSet(x)

1 p[x] = x

2 size[x] = 1

Note: Complexity O (1) time

Union(A,B)
Input: assume that p[A]=A 6=p[B]=B

1 if size[A] >size[B]
2 size[A] =size[A]+size[B]
3 p[B] = A

4 else
5 size[B] =size[A]+size[B]
6 p[A] = B

Note: Complexity O (1) time
54 / 117



We have then
MakeSet(x)

1 p[x] = x

2 size[x] = 1

Note: Complexity O (1) time

Union(A,B)
Input: assume that p[A]=A 6=p[B]=B

1 if size[A] >size[B]
2 size[A] =size[A]+size[B]
3 p[B] = A

4 else
5 size[B] =size[A]+size[B]
6 p[A] = B

Note: Complexity O (1) time
54 / 117



We have then
MakeSet(x)

1 p[x] = x

2 size[x] = 1

Note: Complexity O (1) time

Union(A,B)
Input: assume that p[A]=A 6=p[B]=B

1 if size[A] >size[B]
2 size[A] =size[A]+size[B]
3 p[B] = A

4 else
5 size[B] =size[A]+size[B]
6 p[A] = B

Note: Complexity O (1) time
54 / 117



Example

Now, we use the size for the union

size[A]>size[B]

B

A

55 / 117



Nevertheless

Union by size can make the analysis too complex
People would rather use the rank

Rank
It is defined as the height of the tree

Because
The use of the rank simplify the amortized analysis for the data structure!!!

56 / 117



Nevertheless

Union by size can make the analysis too complex
People would rather use the rank

Rank
It is defined as the height of the tree

Because
The use of the rank simplify the amortized analysis for the data structure!!!

56 / 117



Nevertheless

Union by size can make the analysis too complex
People would rather use the rank

Rank
It is defined as the height of the tree

Because
The use of the rank simplify the amortized analysis for the data structure!!!

56 / 117



Thus, we use the balanced union by rank

MakeSet(x)
1 p[x] = x

2 rank[x] = 0

Note: Complexity O (1) time

Union(A,B)
Input: assume that p[A]=A 6=p[B]=B

1 if rank[A] >rank[B]
2 p[B] = A
3 else
4 p[A] = B
5 if rank[A] ==rank[B]
6 rank[B]=rank[B]+1

Note: Complexity O (1) time

57 / 117



Thus, we use the balanced union by rank

MakeSet(x)
1 p[x] = x

2 rank[x] = 0

Note: Complexity O (1) time

Union(A,B)
Input: assume that p[A]=A 6=p[B]=B

1 if rank[A] >rank[B]
2 p[B] = A
3 else
4 p[A] = B
5 if rank[A] ==rank[B]
6 rank[B]=rank[B]+1

Note: Complexity O (1) time

57 / 117



Thus, we use the balanced union by rank

MakeSet(x)
1 p[x] = x

2 rank[x] = 0

Note: Complexity O (1) time

Union(A,B)
Input: assume that p[A]=A 6=p[B]=B

1 if rank[A] >rank[B]
2 p[B] = A
3 else
4 p[A] = B
5 if rank[A] ==rank[B]
6 rank[B]=rank[B]+1

Note: Complexity O (1) time

57 / 117



Example

Now
We use the rank for the union

Case I
The rank of A is larger than B

58 / 117



Example

Now
We use the rank for the union

Case I
The rank of A is larger than B

rank[A]>rank[B]

B

A

58 / 117



Example

Case II
The rank of B is larger than A

59 / 117



Example

Case II
The rank of B is larger than A

 rank[B]>rank[A]

B
A

59 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

60 / 117



Here is the new heuristic to improve overall performance:

Path Compression
Find(x)

1 if x 6=p[x]
2 p[x]=Find(p [x])
3 return p[x]

Complexity
O (depth (x)) time

61 / 117



Here is the new heuristic to improve overall performance:

Path Compression
Find(x)

1 if x 6=p[x]
2 p[x]=Find(p [x])
3 return p[x]

Complexity
O (depth (x)) time

61 / 117



Example

We have the following structure

62 / 117



Example

The recursive Find(p [x])

63 / 117



Example

The recursive Find(p [x])

64 / 117



Path compression

Find(x) should traverse the path from x up to its root.
This might as well create shortcuts along the way to improve the efficiency
of the future operations.

Find(2)
3

13 15 10 13 15 10

3

12 14 12 1411

11

2

2

1

1

7 8

7 84

6 5

9

4

6 5

9

65 / 117



Outline
1 Disjoint Set Representation

Definition of the Problem
Operations

2 Union-Find Problem
The Main Problem
Applications

3 Implementations
First Attempt: Circular List
Operations and Cost
Still we have a Problem

Weighted-Union Heuristic
Operations
Still a Problem

Heuristic Union by Rank

4 Balanced Union
Path compression
Time Complexity
Ackermann’s Function
Bounds
The Rank Observation
Proof of Complexity
Theorem for Union by Rank and Path Compression)

66 / 117



Time complexity

Tight upper bound on time complexity
An amortized time of O(mα(m,n)) for m operations.
Where α(m,n) is the inverse of the Ackermann’s function (almost a
constant).
This bound, for a slightly different definition of α than that given
here is shown in Cormen’s book.

67 / 117



Time complexity

Tight upper bound on time complexity
An amortized time of O(mα(m,n)) for m operations.
Where α(m,n) is the inverse of the Ackermann’s function (almost a
constant).
This bound, for a slightly different definition of α than that given
here is shown in Cormen’s book.

67 / 117



Time complexity

Tight upper bound on time complexity
An amortized time of O(mα(m,n)) for m operations.
Where α(m,n) is the inverse of the Ackermann’s function (almost a
constant).
This bound, for a slightly different definition of α than that given
here is shown in Cormen’s book.

67 / 117



Ackermann’s Function

Definition
A(1, j) = 2j where j ≥ 1
A(i, 1) = A(i− 1, 2) where i ≥ 2
A(i, j) = A(i− 1, A(i, j − 1)) where i, j ≥ 2

Note: This is one of several in-equivalent but similar definitions
of Ackermann’s function found in the literature.
Cormen’s book authors give a different definition,
although they never really call theirs Ackermann’s
function.

Property
Ackermann’s function grows very fast, thus it’s inverse grows very slow.

68 / 117



Ackermann’s Function

Definition
A(1, j) = 2j where j ≥ 1
A(i, 1) = A(i− 1, 2) where i ≥ 2
A(i, j) = A(i− 1, A(i, j − 1)) where i, j ≥ 2

Note: This is one of several in-equivalent but similar definitions
of Ackermann’s function found in the literature.
Cormen’s book authors give a different definition,
although they never really call theirs Ackermann’s
function.

Property
Ackermann’s function grows very fast, thus it’s inverse grows very slow.

68 / 117



Ackermann’s Function

Definition
A(1, j) = 2j where j ≥ 1
A(i, 1) = A(i− 1, 2) where i ≥ 2
A(i, j) = A(i− 1, A(i, j − 1)) where i, j ≥ 2

Note: This is one of several in-equivalent but similar definitions
of Ackermann’s function found in the literature.
Cormen’s book authors give a different definition,
although they never really call theirs Ackermann’s
function.

Property
Ackermann’s function grows very fast, thus it’s inverse grows very slow.

68 / 117



Ackermann’s Function

Definition
A(1, j) = 2j where j ≥ 1
A(i, 1) = A(i− 1, 2) where i ≥ 2
A(i, j) = A(i− 1, A(i, j − 1)) where i, j ≥ 2

Note: This is one of several in-equivalent but similar definitions
of Ackermann’s function found in the literature.
Cormen’s book authors give a different definition,
although they never really call theirs Ackermann’s
function.

Property
Ackermann’s function grows very fast, thus it’s inverse grows very slow.

68 / 117



Ackermann’s Function

Definition
A(1, j) = 2j where j ≥ 1
A(i, 1) = A(i− 1, 2) where i ≥ 2
A(i, j) = A(i− 1, A(i, j − 1)) where i, j ≥ 2

Note: This is one of several in-equivalent but similar definitions
of Ackermann’s function found in the literature.
Cormen’s book authors give a different definition,
although they never really call theirs Ackermann’s
function.

Property
Ackermann’s function grows very fast, thus it’s inverse grows very slow.

68 / 117



Ackermann’s Function

Definition
A(1, j) = 2j where j ≥ 1
A(i, 1) = A(i− 1, 2) where i ≥ 2
A(i, j) = A(i− 1, A(i, j − 1)) where i, j ≥ 2

Note: This is one of several in-equivalent but similar definitions
of Ackermann’s function found in the literature.
Cormen’s book authors give a different definition,
although they never really call theirs Ackermann’s
function.

Property
Ackermann’s function grows very fast, thus it’s inverse grows very slow.

68 / 117



Ackermann’s Function

Example A(3, 4)

A (3, 4) = 2
2. . .

2}2

2. . .
2
}2

2. . .
2
}16

Notation: 2
2. . .

2}10

means 22222222222

69 / 117



Inverse of Ackermann’s function

Definition

α(m,n) = min
{
i ≥ 1|A

(
i,

⌊
m

n

⌋)
> logn

}
(3)

Note: This is not a true mathematical inverse.
Intuition: Grows about as slowly as Ackermann’s function does fast.

How slowly?
Let bm

n c = k, then m ≥ n→ k ≥ 1

70 / 117



Inverse of Ackermann’s function

Definition

α(m,n) = min
{
i ≥ 1|A

(
i,

⌊
m

n

⌋)
> logn

}
(3)

Note: This is not a true mathematical inverse.
Intuition: Grows about as slowly as Ackermann’s function does fast.

How slowly?
Let bm

n c = k, then m ≥ n→ k ≥ 1

70 / 117



Inverse of Ackermann’s function

Definition

α(m,n) = min
{
i ≥ 1|A

(
i,

⌊
m

n

⌋)
> logn

}
(3)

Note: This is not a true mathematical inverse.
Intuition: Grows about as slowly as Ackermann’s function does fast.

How slowly?
Let bm

n c = k, then m ≥ n→ k ≥ 1

70 / 117



Inverse of Ackermann’s function

Definition

α(m,n) = min
{
i ≥ 1|A

(
i,

⌊
m

n

⌋)
> logn

}
(3)

Note: This is not a true mathematical inverse.
Intuition: Grows about as slowly as Ackermann’s function does fast.

How slowly?
Let bm

n c = k, then m ≥ n→ k ≥ 1

70 / 117



Thus

First
We can show that A(i, k) ≥ A(i, 1) for all i ≥ 1.

This is left to you...

For Example

Consider i = 4, then A(i, k) ≥ A(4, 1) = 2
2..

.2
}

10
≈ 1080.

Finally
if logn < 1080. i.e., if n < 21080 =⇒ α(m,n) ≤ 4

71 / 117



Thus

First
We can show that A(i, k) ≥ A(i, 1) for all i ≥ 1.

This is left to you...

For Example

Consider i = 4, then A(i, k) ≥ A(4, 1) = 2
2..

.2
}

10
≈ 1080.

Finally
if logn < 1080. i.e., if n < 21080 =⇒ α(m,n) ≤ 4

71 / 117



Thus

First
We can show that A(i, k) ≥ A(i, 1) for all i ≥ 1.

This is left to you...

For Example

Consider i = 4, then A(i, k) ≥ A(4, 1) = 2
2..

.2
}

10
≈ 1080.

Finally
if logn < 1080. i.e., if n < 21080 =⇒ α(m,n) ≤ 4

71 / 117



Thus

First
We can show that A(i, k) ≥ A(i, 1) for all i ≥ 1.

This is left to you...

For Example

Consider i = 4, then A(i, k) ≥ A(4, 1) = 2
2..

.2
}

10
≈ 1080.

Finally
if logn < 1080. i.e., if n < 21080 =⇒ α(m,n) ≤ 4

71 / 117



Thus

First
We can show that A(i, k) ≥ A(i, 1) for all i ≥ 1.

This is left to you...

For Example

Consider i = 4, then A(i, k) ≥ A(4, 1) = 2
2..

.2
}

10
≈ 1080.

Finally
if logn < 1080. i.e., if n < 21080 =⇒ α(m,n) ≤ 4

71 / 117



Instead of Using the Ackermann Inverse

We define the following function

log∗ n = min
{
i ≥ 0| log(i) n ≤ 1

}
(4)

The i means log · · · logn i times

Then
We will establish O (m log∗ n) as upper bound.

72 / 117



Instead of Using the Ackermann Inverse

We define the following function

log∗ n = min
{
i ≥ 0| log(i) n ≤ 1

}
(4)

The i means log · · · logn i times

Then
We will establish O (m log∗ n) as upper bound.

72 / 117



In particular

Something Notable

In particular, we have that log∗ 2
2. . .

2}
k

= k + 1

For Example

log∗ 265536 = 2
2222}

4
= 5 (5)

Therefore
We have that log∗ n ≤ 5 for all practical purposes.

73 / 117



In particular

Something Notable

In particular, we have that log∗ 2
2. . .

2}
k

= k + 1

For Example

log∗ 265536 = 2
2222}

4
= 5 (5)

Therefore
We have that log∗ n ≤ 5 for all practical purposes.

73 / 117



In particular

Something Notable

In particular, we have that log∗ 2
2. . .

2}
k

= k + 1

For Example

log∗ 265536 = 2
2222}

4
= 5 (5)

Therefore
We have that log∗ n ≤ 5 for all practical purposes.

73 / 117



The Rank Observation

Something Notable
It is that once somebody becomes a child of another node their rank does
not change given any posterior operation.

74 / 117



For Example

The number in the right is the height
MakeSet(1),MakeSet(2),MakeSet(3), ..., MakeSet(10)

1/0 2/0 3/0 4/0 5/0

6/0 7/0 8/0 9/0 10/0

75 / 117



Example

Now, we do
Union(6, 1),Union(7, 2), ..., Union(10, 1)

1/1 2/1 3/1 4/1 5/1

6/0 7/0 8/0 9/0 10/0

76 / 117



Example

Next - Assuming that you are using a FindSet to get the name set
Union(1, 2)

3/1 4/1 5/1

8/0 9/0 10/0

2/2

7/01/1

6/0

77 / 117



Example

Next
Union(3, 4)

2/2

7/01/1

6/0

3/1

4/2

8/0

9/0

5/1

10/0

78 / 117



Example

Next
Union(2, 4)

2/2

1/1

6/0

7/0

3/1

4/3

8/0

9/0

5/1

10/0

79 / 117



Example

Now you give a FindSet(8)

2/2

1/1

6/0

7/0

4/3

9/0

5/1

10/03/1 8/0

80 / 117



Example

Now you give a Union(4, 5)

2/2

1/1

6/0

7/0

4/3

9/03/1 8/0 5/1

10/0

81 / 117



Properties of ranks

Lemma 1 (About the Rank Properties)
1 ∀x, rank[x] ≤ rank[p[x]].
2 ∀x and x 6= p[x], then rank[x] < rank[p[x]].
3 rank[x] is initially 0.
4 rank[x] does not decrease.
5 Once x 6= p[x] holds rank[x] does not change.
6 rank[p[x]] is a monotonically increasing function of time.

Proof
By induction on the number of operations...

82 / 117



Properties of ranks

Lemma 1 (About the Rank Properties)
1 ∀x, rank[x] ≤ rank[p[x]].
2 ∀x and x 6= p[x], then rank[x] < rank[p[x]].
3 rank[x] is initially 0.
4 rank[x] does not decrease.
5 Once x 6= p[x] holds rank[x] does not change.
6 rank[p[x]] is a monotonically increasing function of time.

Proof
By induction on the number of operations...

82 / 117



Properties of ranks

Lemma 1 (About the Rank Properties)
1 ∀x, rank[x] ≤ rank[p[x]].
2 ∀x and x 6= p[x], then rank[x] < rank[p[x]].
3 rank[x] is initially 0.
4 rank[x] does not decrease.
5 Once x 6= p[x] holds rank[x] does not change.
6 rank[p[x]] is a monotonically increasing function of time.

Proof
By induction on the number of operations...

82 / 117



Properties of ranks

Lemma 1 (About the Rank Properties)
1 ∀x, rank[x] ≤ rank[p[x]].
2 ∀x and x 6= p[x], then rank[x] < rank[p[x]].
3 rank[x] is initially 0.
4 rank[x] does not decrease.
5 Once x 6= p[x] holds rank[x] does not change.
6 rank[p[x]] is a monotonically increasing function of time.

Proof
By induction on the number of operations...

82 / 117



Properties of ranks

Lemma 1 (About the Rank Properties)
1 ∀x, rank[x] ≤ rank[p[x]].
2 ∀x and x 6= p[x], then rank[x] < rank[p[x]].
3 rank[x] is initially 0.
4 rank[x] does not decrease.
5 Once x 6= p[x] holds rank[x] does not change.
6 rank[p[x]] is a monotonically increasing function of time.

Proof
By induction on the number of operations...

82 / 117



Properties of ranks

Lemma 1 (About the Rank Properties)
1 ∀x, rank[x] ≤ rank[p[x]].
2 ∀x and x 6= p[x], then rank[x] < rank[p[x]].
3 rank[x] is initially 0.
4 rank[x] does not decrease.
5 Once x 6= p[x] holds rank[x] does not change.
6 rank[p[x]] is a monotonically increasing function of time.

Proof
By induction on the number of operations...

82 / 117



Properties of ranks

Lemma 1 (About the Rank Properties)
1 ∀x, rank[x] ≤ rank[p[x]].
2 ∀x and x 6= p[x], then rank[x] < rank[p[x]].
3 rank[x] is initially 0.
4 rank[x] does not decrease.
5 Once x 6= p[x] holds rank[x] does not change.
6 rank[p[x]] is a monotonically increasing function of time.

Proof
By induction on the number of operations...

82 / 117



For Example

Imagine a MakeSet(x)
Then, rank [x] ≤ rank [p [x]]
Thus, it is true after n operations.
The we get the n+ 1 operations that can be:

I Case I - FindSet.
I Case II - Union.

The rest are for you to prove
It is a good mental exercise!!!

83 / 117



For Example

Imagine a MakeSet(x)
Then, rank [x] ≤ rank [p [x]]
Thus, it is true after n operations.
The we get the n+ 1 operations that can be:

I Case I - FindSet.
I Case II - Union.

The rest are for you to prove
It is a good mental exercise!!!

83 / 117



For Example

Imagine a MakeSet(x)
Then, rank [x] ≤ rank [p [x]]
Thus, it is true after n operations.
The we get the n+ 1 operations that can be:

I Case I - FindSet.
I Case II - Union.

The rest are for you to prove
It is a good mental exercise!!!

83 / 117



For Example

Imagine a MakeSet(x)
Then, rank [x] ≤ rank [p [x]]
Thus, it is true after n operations.
The we get the n+ 1 operations that can be:

I Case I - FindSet.
I Case II - Union.

The rest are for you to prove
It is a good mental exercise!!!

83 / 117



For Example

Imagine a MakeSet(x)
Then, rank [x] ≤ rank [p [x]]
Thus, it is true after n operations.
The we get the n+ 1 operations that can be:

I Case I - FindSet.
I Case II - Union.

The rest are for you to prove
It is a good mental exercise!!!

83 / 117



The Number of Nodes in a Tree

Lemma 2
For all tree roots x, size(x) ≥ 2rank[x]

Note size (x)= Number of nodes in tree rooted at x

Proof
By induction on the number of link operations:

Basis Step
I Before first link, all ranks are 0 and each tree contains one node.

Inductive Step
I Consider linking x and y (Link (x, y))
I Assume lemma holds before this operation; we show that it will holds

after.

84 / 117



The Number of Nodes in a Tree

Lemma 2
For all tree roots x, size(x) ≥ 2rank[x]

Note size (x)= Number of nodes in tree rooted at x

Proof
By induction on the number of link operations:

Basis Step
I Before first link, all ranks are 0 and each tree contains one node.

Inductive Step
I Consider linking x and y (Link (x, y))
I Assume lemma holds before this operation; we show that it will holds

after.

84 / 117



The Number of Nodes in a Tree

Lemma 2
For all tree roots x, size(x) ≥ 2rank[x]

Note size (x)= Number of nodes in tree rooted at x

Proof
By induction on the number of link operations:

Basis Step
I Before first link, all ranks are 0 and each tree contains one node.

Inductive Step
I Consider linking x and y (Link (x, y))
I Assume lemma holds before this operation; we show that it will holds

after.

84 / 117



The Number of Nodes in a Tree

Lemma 2
For all tree roots x, size(x) ≥ 2rank[x]

Note size (x)= Number of nodes in tree rooted at x

Proof
By induction on the number of link operations:

Basis Step
I Before first link, all ranks are 0 and each tree contains one node.

Inductive Step
I Consider linking x and y (Link (x, y))
I Assume lemma holds before this operation; we show that it will holds

after.

84 / 117



The Number of Nodes in a Tree

Lemma 2
For all tree roots x, size(x) ≥ 2rank[x]

Note size (x)= Number of nodes in tree rooted at x

Proof
By induction on the number of link operations:

Basis Step
I Before first link, all ranks are 0 and each tree contains one node.

Inductive Step
I Consider linking x and y (Link (x, y))
I Assume lemma holds before this operation; we show that it will holds

after.

84 / 117



The Number of Nodes in a Tree

Lemma 2
For all tree roots x, size(x) ≥ 2rank[x]

Note size (x)= Number of nodes in tree rooted at x

Proof
By induction on the number of link operations:

Basis Step
I Before first link, all ranks are 0 and each tree contains one node.

Inductive Step
I Consider linking x and y (Link (x, y))
I Assume lemma holds before this operation; we show that it will holds

after.

84 / 117



The Number of Nodes in a Tree

Lemma 2
For all tree roots x, size(x) ≥ 2rank[x]

Note size (x)= Number of nodes in tree rooted at x

Proof
By induction on the number of link operations:

Basis Step
I Before first link, all ranks are 0 and each tree contains one node.

Inductive Step
I Consider linking x and y (Link (x, y))
I Assume lemma holds before this operation; we show that it will holds

after.

84 / 117



Case 1: rank[x] 6= rank[y]

Assume rank [x] < rank [y]

Note: rank′ [x] == rank [x] and rank′ [y] == rank [y]

85 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]

= 2rank′[y]

86 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]

= 2rank′[y]

86 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]

= 2rank′[y]

86 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]

= 2rank′[y]

86 / 117



Case 2: rank[x] == rank[y]

Assume rank [x] == rank [y]

Note: rank′ [x] == rank [x] and rank′ [y] == rank [y] + 1

87 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]+1

= 2rank′[y]

Note: In the worst case rank [x] == rank [y] == 0

88 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]+1

= 2rank′[y]

Note: In the worst case rank [x] == rank [y] == 0

88 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]+1

= 2rank′[y]

Note: In the worst case rank [x] == rank [y] == 0

88 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]+1

= 2rank′[y]

Note: In the worst case rank [x] == rank [y] == 0

88 / 117



Therefore

We have that

size′ (y) = size (x) + size (y)
≥ 2rank[x] + 2rank[y]

≥ 2rank[y]+1

= 2rank′[y]

Note: In the worst case rank [x] == rank [y] == 0

88 / 117



The number of nodes at certain rank

Lemma 3
For any integer r ≥ 0, there are an most n

2r nodes of rank r.

Proof
First fix r.
When rank r is assigned to some node x, then imagine that you label
each node in the tree rooted at x by “x.”
By lemma 21.3, 2r or more nodes are labeled each time when
executing a union.
By lemma 21.2, each node is labeled at most once, when its root is
first assigned rank r.
If there were more than n

2r nodes of rank r.
Then, we will have that more than 2r ·

(
n
2r

)
= n nodes would be

labeled by a node of rank r, a contradiction.

89 / 117



The number of nodes at certain rank

Lemma 3
For any integer r ≥ 0, there are an most n

2r nodes of rank r.

Proof
First fix r.
When rank r is assigned to some node x, then imagine that you label
each node in the tree rooted at x by “x.”
By lemma 21.3, 2r or more nodes are labeled each time when
executing a union.
By lemma 21.2, each node is labeled at most once, when its root is
first assigned rank r.
If there were more than n

2r nodes of rank r.
Then, we will have that more than 2r ·

(
n
2r

)
= n nodes would be

labeled by a node of rank r, a contradiction.

89 / 117



The number of nodes at certain rank

Lemma 3
For any integer r ≥ 0, there are an most n

2r nodes of rank r.

Proof
First fix r.
When rank r is assigned to some node x, then imagine that you label
each node in the tree rooted at x by “x.”
By lemma 21.3, 2r or more nodes are labeled each time when
executing a union.
By lemma 21.2, each node is labeled at most once, when its root is
first assigned rank r.
If there were more than n

2r nodes of rank r.
Then, we will have that more than 2r ·

(
n
2r

)
= n nodes would be

labeled by a node of rank r, a contradiction.

89 / 117



The number of nodes at certain rank

Lemma 3
For any integer r ≥ 0, there are an most n

2r nodes of rank r.

Proof
First fix r.
When rank r is assigned to some node x, then imagine that you label
each node in the tree rooted at x by “x.”
By lemma 21.3, 2r or more nodes are labeled each time when
executing a union.
By lemma 21.2, each node is labeled at most once, when its root is
first assigned rank r.
If there were more than n

2r nodes of rank r.
Then, we will have that more than 2r ·

(
n
2r

)
= n nodes would be

labeled by a node of rank r, a contradiction.

89 / 117



The number of nodes at certain rank

Lemma 3
For any integer r ≥ 0, there are an most n

2r nodes of rank r.

Proof
First fix r.
When rank r is assigned to some node x, then imagine that you label
each node in the tree rooted at x by “x.”
By lemma 21.3, 2r or more nodes are labeled each time when
executing a union.
By lemma 21.2, each node is labeled at most once, when its root is
first assigned rank r.
If there were more than n

2r nodes of rank r.
Then, we will have that more than 2r ·

(
n
2r

)
= n nodes would be

labeled by a node of rank r, a contradiction.

89 / 117



The number of nodes at certain rank

Lemma 3
For any integer r ≥ 0, there are an most n

2r nodes of rank r.

Proof
First fix r.
When rank r is assigned to some node x, then imagine that you label
each node in the tree rooted at x by “x.”
By lemma 21.3, 2r or more nodes are labeled each time when
executing a union.
By lemma 21.2, each node is labeled at most once, when its root is
first assigned rank r.
If there were more than n

2r nodes of rank r.
Then, we will have that more than 2r ·

(
n
2r

)
= n nodes would be

labeled by a node of rank r, a contradiction.

89 / 117



The number of nodes at certain rank

Lemma 3
For any integer r ≥ 0, there are an most n

2r nodes of rank r.

Proof
First fix r.
When rank r is assigned to some node x, then imagine that you label
each node in the tree rooted at x by “x.”
By lemma 21.3, 2r or more nodes are labeled each time when
executing a union.
By lemma 21.2, each node is labeled at most once, when its root is
first assigned rank r.
If there were more than n

2r nodes of rank r.
Then, we will have that more than 2r ·

(
n
2r

)
= n nodes would be

labeled by a node of rank r, a contradiction.

89 / 117



Corollary 1

Corollary 1
Every node has rank at most blognc.

Proof
if there is a rank r such that r > logn→ n

2r < 1 nodes of rank r a
contradiction.

90 / 117



Corollary 1

Corollary 1
Every node has rank at most blognc.

Proof
if there is a rank r such that r > logn→ n

2r < 1 nodes of rank r a
contradiction.

90 / 117



Providing the time bound

Lemma 4 (Lemma 21.7)
Suppose we convert a sequence S′ of m′ MakeSet, Union and FindSet
operations into a sequence S of m MakeSet, Link, and FindSet operations
by turning each Union into two FindSet operations followed by a Link.
Then, if sequence S runs in O(m log∗ n) time, sequence S′ runs in
O(m′ log∗ n) time.

91 / 117



Proof:

The proof is quite easy
1 Since each UNION operation in sequence S′ is converted into three

operations in S.

m′ ≤ m ≤ 3m′ (6)

2 We have that m = O (m′)
3 Then, if the new sequence S runs in O (m log∗ n) this implies that

the old sequence S′ runs in O (m′ log∗ n)

92 / 117



Proof:

The proof is quite easy
1 Since each UNION operation in sequence S′ is converted into three

operations in S.

m′ ≤ m ≤ 3m′ (6)

2 We have that m = O (m′)
3 Then, if the new sequence S runs in O (m log∗ n) this implies that

the old sequence S′ runs in O (m′ log∗ n)

92 / 117



Proof:

The proof is quite easy
1 Since each UNION operation in sequence S′ is converted into three

operations in S.

m′ ≤ m ≤ 3m′ (6)

2 We have that m = O (m′)
3 Then, if the new sequence S runs in O (m log∗ n) this implies that

the old sequence S′ runs in O (m′ log∗ n)

92 / 117



Theorem for Union by Rank and Path Compression

Theorem
Any sequence of m MakeSet, Link, and FindSet operations, n of which are
MakeSet operations, is performed in worst-case time O(m log∗ n).

Proof
First, MakeSet and Link take O(1) time.
The Key of the Analysis is to Accurately Charging FindSet.

93 / 117



Theorem for Union by Rank and Path Compression

Theorem
Any sequence of m MakeSet, Link, and FindSet operations, n of which are
MakeSet operations, is performed in worst-case time O(m log∗ n).

Proof
First, MakeSet and Link take O(1) time.
The Key of the Analysis is to Accurately Charging FindSet.

93 / 117



Theorem for Union by Rank and Path Compression

Theorem
Any sequence of m MakeSet, Link, and FindSet operations, n of which are
MakeSet operations, is performed in worst-case time O(m log∗ n).

Proof
First, MakeSet and Link take O(1) time.
The Key of the Analysis is to Accurately Charging FindSet.

93 / 117



For this, we have the following

We can do the following
Partition ranks into blocks.
Put each rank j into block log∗ r for r = 0, 1, ..., blognc (Corollary 1).
Highest-numbered block is log∗(logn) = (log∗ n)− 1.

In addition, the cost of FindSet pays for the foollowing situations
1 The FindSet pays for the cost of the root and its child.
2 A bill is given to every node whose rank parent changes in the path

compression!!!

94 / 117



For this, we have the following

We can do the following
Partition ranks into blocks.
Put each rank j into block log∗ r for r = 0, 1, ..., blognc (Corollary 1).
Highest-numbered block is log∗(logn) = (log∗ n)− 1.

In addition, the cost of FindSet pays for the foollowing situations
1 The FindSet pays for the cost of the root and its child.
2 A bill is given to every node whose rank parent changes in the path

compression!!!

94 / 117



For this, we have the following

We can do the following
Partition ranks into blocks.
Put each rank j into block log∗ r for r = 0, 1, ..., blognc (Corollary 1).
Highest-numbered block is log∗(logn) = (log∗ n)− 1.

In addition, the cost of FindSet pays for the foollowing situations
1 The FindSet pays for the cost of the root and its child.
2 A bill is given to every node whose rank parent changes in the path

compression!!!

94 / 117



For this, we have the following

We can do the following
Partition ranks into blocks.
Put each rank j into block log∗ r for r = 0, 1, ..., blognc (Corollary 1).
Highest-numbered block is log∗(logn) = (log∗ n)− 1.

In addition, the cost of FindSet pays for the foollowing situations
1 The FindSet pays for the cost of the root and its child.
2 A bill is given to every node whose rank parent changes in the path

compression!!!

94 / 117



For this, we have the following

We can do the following
Partition ranks into blocks.
Put each rank j into block log∗ r for r = 0, 1, ..., blognc (Corollary 1).
Highest-numbered block is log∗(logn) = (log∗ n)− 1.

In addition, the cost of FindSet pays for the foollowing situations
1 The FindSet pays for the cost of the root and its child.
2 A bill is given to every node whose rank parent changes in the path

compression!!!

94 / 117



Now, define the Block function

Define the following Upper Bound Function

B(j) ≡



−1 if j = −1
1 if j = 0
2 if j = 1

2
2. . .

2}
j−1

if j ≥ 2

95 / 117



First

Something Notable
These are going to be the upper bounds for blocks in the ranks

Where
For j = 0, 1, ..., log∗ n− 1, block j consist of the set of ranks:

B(j − 1) + 1, B(j − 1) + 2, ..., B(j)︸ ︷︷ ︸
Elements in Block j

(7)

96 / 117



First

Something Notable
These are going to be the upper bounds for blocks in the ranks

Where
For j = 0, 1, ..., log∗ n− 1, block j consist of the set of ranks:

B(j − 1) + 1, B(j − 1) + 2, ..., B(j)︸ ︷︷ ︸
Elements in Block j

(7)

96 / 117



For Example

We have that
B(−1) = 1
B(0) = 0
B(1) = 2
B(2) = 22 = 4

B(3) = 222 = 24 = 16

B(4) = 2222
= 216 = 65536

97 / 117



For Example

We have that
B(−1) = 1
B(0) = 0
B(1) = 2
B(2) = 22 = 4

B(3) = 222 = 24 = 16

B(4) = 2222
= 216 = 65536

97 / 117



For Example

We have that
B(−1) = 1
B(0) = 0
B(1) = 2
B(2) = 22 = 4

B(3) = 222 = 24 = 16

B(4) = 2222
= 216 = 65536

97 / 117



For Example

We have that
B(−1) = 1
B(0) = 0
B(1) = 2
B(2) = 22 = 4

B(3) = 222 = 24 = 16

B(4) = 2222
= 216 = 65536

97 / 117



For Example

We have that
B(−1) = 1
B(0) = 0
B(1) = 2
B(2) = 22 = 4

B(3) = 222 = 24 = 16

B(4) = 2222
= 216 = 65536

97 / 117



For Example

We have that
B(−1) = 1
B(0) = 0
B(1) = 2
B(2) = 22 = 4

B(3) = 222 = 24 = 16

B(4) = 2222
= 216 = 65536

97 / 117



For Example

Thus, we have
Block j Set of Ranks

0 0,1
1 2
2 3,4
3 5,...,16
4 17,...,65536
...

...

Note B(j) = 2B(j−1) for j > 0.

98 / 117



For Example

Thus, we have
Block j Set of Ranks

0 0,1
1 2
2 3,4
3 5,...,16
4 17,...,65536
...

...

Note B(j) = 2B(j−1) for j > 0.

98 / 117



Example

Now you give a Union(4, 5)

2/2

1/1

6/0

7/0

4/3

9/03/1 8/0 5/1

10/0

Block 0 

Block 1 

Block 2 

99 / 117



Finally

Given our Bound in the Ranks
Thus, all the blocks from B (0) to B (log∗ n− 1) will be used for storing
the ranking elements

100 / 117



Charging for FindSets

Two types of charges for FindSet(x0)
Block charges and Path charges.

Charge each
node as either:
1) Block Charge
2) Path Charge

101 / 117



Charging for FindSets

Thus, for find sets
The find operation pays for the work done for the root and its
immediate child.
It also pays for all the nodes which are not in the same block as
their parents.

102 / 117



Charging for FindSets

Thus, for find sets
The find operation pays for the work done for the root and its
immediate child.
It also pays for all the nodes which are not in the same block as
their parents.

102 / 117



Then

First
1 All these nodes are children of some other nodes, so their ranks will

not change and they are bound to stay in the same block until the
end of the computation.

2 If a node is in the same block as its parent, it will be charged for the
work done in the FindSet Operation!!!

103 / 117



Then

First
1 All these nodes are children of some other nodes, so their ranks will

not change and they are bound to stay in the same block until the
end of the computation.

2 If a node is in the same block as its parent, it will be charged for the
work done in the FindSet Operation!!!

103 / 117



Thus

We have the following charges
Block Charge :

I For j = 0, 1, ..., log∗ n− 1, give one block charge to the last node with
rank in block j on the path x0, x1, ..., xl.

I Also give one block charge to the child of the root, i.e., xl−1, and the
root itself, i.e., xl−1.

Path Charge :
I Give nodes in x0, ..., xl a path charge until they are moved to point to

a name element with a rank different from the child’s block

104 / 117



Thus

We have the following charges
Block Charge :

I For j = 0, 1, ..., log∗ n− 1, give one block charge to the last node with
rank in block j on the path x0, x1, ..., xl.

I Also give one block charge to the child of the root, i.e., xl−1, and the
root itself, i.e., xl−1.

Path Charge :
I Give nodes in x0, ..., xl a path charge until they are moved to point to

a name element with a rank different from the child’s block

104 / 117



Thus

We have the following charges
Block Charge :

I For j = 0, 1, ..., log∗ n− 1, give one block charge to the last node with
rank in block j on the path x0, x1, ..., xl.

I Also give one block charge to the child of the root, i.e., xl−1, and the
root itself, i.e., xl−1.

Path Charge :
I Give nodes in x0, ..., xl a path charge until they are moved to point to

a name element with a rank different from the child’s block

104 / 117



Thus

We have the following charges
Block Charge :

I For j = 0, 1, ..., log∗ n− 1, give one block charge to the last node with
rank in block j on the path x0, x1, ..., xl.

I Also give one block charge to the child of the root, i.e., xl−1, and the
root itself, i.e., xl−1.

Path Charge :
I Give nodes in x0, ..., xl a path charge until they are moved to point to

a name element with a rank different from the child’s block

104 / 117



Thus

We have the following charges
Block Charge :

I For j = 0, 1, ..., log∗ n− 1, give one block charge to the last node with
rank in block j on the path x0, x1, ..., xl.

I Also give one block charge to the child of the root, i.e., xl−1, and the
root itself, i.e., xl−1.

Path Charge :
I Give nodes in x0, ..., xl a path charge until they are moved to point to

a name element with a rank different from the child’s block

104 / 117



Charging for FindSets

Two types of charges for FindSet(x0)
Block charges and Path charges.

Charge each
node as either:
1) Block Charge
2) Path Charge

105 / 117



Charging for FindSets

Two types of charges for FindSet(x0)
Block charges and Path charges.

Charge each
node as either:
1) Block Charge
2) Path Charge

105 / 117



Next

Something Notable
Number of nodes whose parents are in different blocks is limited by
(log∗ n)− 1.

I Making it an upper bound for the charges when changing the last
node with rank in block j.

2 charges for the root and its child.

Thus
The cost of the Block Charges for the FindSet operation is upper bounded
by:

log∗ n− 1 + 2 = log∗ n+ 1. (8)

106 / 117



Next

Something Notable
Number of nodes whose parents are in different blocks is limited by
(log∗ n)− 1.

I Making it an upper bound for the charges when changing the last
node with rank in block j.

2 charges for the root and its child.

Thus
The cost of the Block Charges for the FindSet operation is upper bounded
by:

log∗ n− 1 + 2 = log∗ n+ 1. (8)

106 / 117



Next

Something Notable
Number of nodes whose parents are in different blocks is limited by
(log∗ n)− 1.

I Making it an upper bound for the charges when changing the last
node with rank in block j.

2 charges for the root and its child.

Thus
The cost of the Block Charges for the FindSet operation is upper bounded
by:

log∗ n− 1 + 2 = log∗ n+ 1. (8)

106 / 117



Next

Something Notable
Number of nodes whose parents are in different blocks is limited by
(log∗ n)− 1.

I Making it an upper bound for the charges when changing the last
node with rank in block j.

2 charges for the root and its child.

Thus
The cost of the Block Charges for the FindSet operation is upper bounded
by:

log∗ n− 1 + 2 = log∗ n+ 1. (8)

106 / 117



Next

Something Notable
Number of nodes whose parents are in different blocks is limited by
(log∗ n)− 1.

I Making it an upper bound for the charges when changing the last
node with rank in block j.

2 charges for the root and its child.

Thus
The cost of the Block Charges for the FindSet operation is upper bounded
by:

log∗ n− 1 + 2 = log∗ n+ 1. (8)

106 / 117



Claim

Claim
Once a node other than a root or its child is given a Block Charge (B.C.),
it will never be given a Path Charge (P.C.)

107 / 117



Proof

Proof
Given a node x, we know that:

rank [p [x]]− rank [x] is monotonically increasing ⇒
log∗ rank [p [x]]− log∗ rank [x] is monotonically increasing.
Thus, Once x and p[x] are in different blocks, they will always be in
different blocks because:

I The rank of the parent can only increases.
I And the child’s rank stays the same

Thus, the node x will be billed in the first FindSet operation a patch
charge and block charge if necessary.
Thus, the node x will never be charged again a path charge because
is already pointing to the member set name.

108 / 117



Proof

Proof
Given a node x, we know that:

rank [p [x]]− rank [x] is monotonically increasing ⇒
log∗ rank [p [x]]− log∗ rank [x] is monotonically increasing.
Thus, Once x and p[x] are in different blocks, they will always be in
different blocks because:

I The rank of the parent can only increases.
I And the child’s rank stays the same

Thus, the node x will be billed in the first FindSet operation a patch
charge and block charge if necessary.
Thus, the node x will never be charged again a path charge because
is already pointing to the member set name.

108 / 117



Proof

Proof
Given a node x, we know that:

rank [p [x]]− rank [x] is monotonically increasing ⇒
log∗ rank [p [x]]− log∗ rank [x] is monotonically increasing.
Thus, Once x and p[x] are in different blocks, they will always be in
different blocks because:

I The rank of the parent can only increases.
I And the child’s rank stays the same

Thus, the node x will be billed in the first FindSet operation a patch
charge and block charge if necessary.
Thus, the node x will never be charged again a path charge because
is already pointing to the member set name.

108 / 117



Proof

Proof
Given a node x, we know that:

rank [p [x]]− rank [x] is monotonically increasing ⇒
log∗ rank [p [x]]− log∗ rank [x] is monotonically increasing.
Thus, Once x and p[x] are in different blocks, they will always be in
different blocks because:

I The rank of the parent can only increases.
I And the child’s rank stays the same

Thus, the node x will be billed in the first FindSet operation a patch
charge and block charge if necessary.
Thus, the node x will never be charged again a path charge because
is already pointing to the member set name.

108 / 117



Proof

Proof
Given a node x, we know that:

rank [p [x]]− rank [x] is monotonically increasing ⇒
log∗ rank [p [x]]− log∗ rank [x] is monotonically increasing.
Thus, Once x and p[x] are in different blocks, they will always be in
different blocks because:

I The rank of the parent can only increases.
I And the child’s rank stays the same

Thus, the node x will be billed in the first FindSet operation a patch
charge and block charge if necessary.
Thus, the node x will never be charged again a path charge because
is already pointing to the member set name.

108 / 117



Proof

Proof
Given a node x, we know that:

rank [p [x]]− rank [x] is monotonically increasing ⇒
log∗ rank [p [x]]− log∗ rank [x] is monotonically increasing.
Thus, Once x and p[x] are in different blocks, they will always be in
different blocks because:

I The rank of the parent can only increases.
I And the child’s rank stays the same

Thus, the node x will be billed in the first FindSet operation a patch
charge and block charge if necessary.
Thus, the node x will never be charged again a path charge because
is already pointing to the member set name.

108 / 117



Proof

Proof
Given a node x, we know that:

rank [p [x]]− rank [x] is monotonically increasing ⇒
log∗ rank [p [x]]− log∗ rank [x] is monotonically increasing.
Thus, Once x and p[x] are in different blocks, they will always be in
different blocks because:

I The rank of the parent can only increases.
I And the child’s rank stays the same

Thus, the node x will be billed in the first FindSet operation a patch
charge and block charge if necessary.
Thus, the node x will never be charged again a path charge because
is already pointing to the member set name.

108 / 117



Remaining Goal

The Total cost of the FindSet’s Operations
Total cost of FindSet’s = Total Block Charges + Total Path Charges.

We want to show
Total Block Charges + Total Path Charges= O(m log∗ n)

109 / 117



Remaining Goal

The Total cost of the FindSet’s Operations
Total cost of FindSet’s = Total Block Charges + Total Path Charges.

We want to show
Total Block Charges + Total Path Charges= O(m log∗ n)

109 / 117



Bounding Block Charges

This part is easy
Block numbers range over 0, ..., log∗ n− 1.

The number of Block Charges per FindSet is ≤ log∗ n+ 1 .
The total number of FindSet’s is ≤ m
The total number of Block Charges is ≤ m(log∗ n+ 1) .

110 / 117



Bounding Block Charges

This part is easy
Block numbers range over 0, ..., log∗ n− 1.

The number of Block Charges per FindSet is ≤ log∗ n+ 1 .
The total number of FindSet’s is ≤ m
The total number of Block Charges is ≤ m(log∗ n+ 1) .

110 / 117



Bounding Block Charges

This part is easy
Block numbers range over 0, ..., log∗ n− 1.

The number of Block Charges per FindSet is ≤ log∗ n+ 1 .
The total number of FindSet’s is ≤ m
The total number of Block Charges is ≤ m(log∗ n+ 1) .

110 / 117



Bounding Block Charges

This part is easy
Block numbers range over 0, ..., log∗ n− 1.

The number of Block Charges per FindSet is ≤ log∗ n+ 1 .
The total number of FindSet’s is ≤ m
The total number of Block Charges is ≤ m(log∗ n+ 1) .

110 / 117



Bounding Path Charges
Claim
Let N(j) be the number of nodes whose ranks are in block j. Then, for all
j ≥ 0, N(j) ≤ 3n

2B(j)

Proof

By Lemma 3, N(j) ≤
B(j)∑

r=B(j−1)+1

n
2r summing over all possible ranks

For j = 0:

N (0) ≤ n

20 + n

2
= 3n

2
= 3n

2B(0)
111 / 117



Bounding Path Charges
Claim
Let N(j) be the number of nodes whose ranks are in block j. Then, for all
j ≥ 0, N(j) ≤ 3n

2B(j)

Proof

By Lemma 3, N(j) ≤
B(j)∑

r=B(j−1)+1

n
2r summing over all possible ranks

For j = 0:

N (0) ≤ n

20 + n

2
= 3n

2
= 3n

2B(0)
111 / 117



Bounding Path Charges
Claim
Let N(j) be the number of nodes whose ranks are in block j. Then, for all
j ≥ 0, N(j) ≤ 3n

2B(j)

Proof

By Lemma 3, N(j) ≤
B(j)∑

r=B(j−1)+1

n
2r summing over all possible ranks

For j = 0:

N (0) ≤ n

20 + n

2
= 3n

2
= 3n

2B(0)
111 / 117



Bounding Path Charges
Claim
Let N(j) be the number of nodes whose ranks are in block j. Then, for all
j ≥ 0, N(j) ≤ 3n

2B(j)

Proof

By Lemma 3, N(j) ≤
B(j)∑

r=B(j−1)+1

n
2r summing over all possible ranks

For j = 0:

N (0) ≤ n

20 + n

2
= 3n

2
= 3n

2B(0)
111 / 117



Bounding Path Charges
Claim
Let N(j) be the number of nodes whose ranks are in block j. Then, for all
j ≥ 0, N(j) ≤ 3n

2B(j)

Proof

By Lemma 3, N(j) ≤
B(j)∑

r=B(j−1)+1

n
2r summing over all possible ranks

For j = 0:

N (0) ≤ n

20 + n

2
= 3n

2
= 3n

2B(0)
111 / 117



Proof of claim

For j ≥ 1

N(j) ≤ n

2B(j−1)+1

B(j)−(B(j−1)+1)∑
r=0

1
2r

<
n

2B(j−1)+1

∞∑
r=0

1
2r

= n

2B(j−1) This is where the fact that B (j) = 2B(j−1)is used.

= n

B(j)

<
3n

2B(j)

112 / 117



Proof of claim

For j ≥ 1

N(j) ≤ n

2B(j−1)+1

B(j)−(B(j−1)+1)∑
r=0

1
2r

<
n

2B(j−1)+1

∞∑
r=0

1
2r

= n

2B(j−1) This is where the fact that B (j) = 2B(j−1)is used.

= n

B(j)

<
3n

2B(j)

112 / 117



Proof of claim

For j ≥ 1

N(j) ≤ n

2B(j−1)+1

B(j)−(B(j−1)+1)∑
r=0

1
2r

<
n

2B(j−1)+1

∞∑
r=0

1
2r

= n

2B(j−1) This is where the fact that B (j) = 2B(j−1)is used.

= n

B(j)

<
3n

2B(j)

112 / 117



Proof of claim

For j ≥ 1

N(j) ≤ n

2B(j−1)+1

B(j)−(B(j−1)+1)∑
r=0

1
2r

<
n

2B(j−1)+1

∞∑
r=0

1
2r

= n

2B(j−1) This is where the fact that B (j) = 2B(j−1)is used.

= n

B(j)

<
3n

2B(j)

112 / 117



Proof of claim

For j ≥ 1

N(j) ≤ n

2B(j−1)+1

B(j)−(B(j−1)+1)∑
r=0

1
2r

<
n

2B(j−1)+1

∞∑
r=0

1
2r

= n

2B(j−1) This is where the fact that B (j) = 2B(j−1)is used.

= n

B(j)

<
3n

2B(j)

112 / 117



Bounding Path Charges

We have the following
Let P (n) denote the overall number of path charges. Then:

P (n) ≤
log∗ n−1∑

j=0
αj · βj (9)

I αj is the max number of nodes with ranks in Block j
I βj is the max number of path charges per node of Block j.

113 / 117



Bounding Path Charges

We have the following
Let P (n) denote the overall number of path charges. Then:

P (n) ≤
log∗ n−1∑

j=0
αj · βj (9)

I αj is the max number of nodes with ranks in Block j
I βj is the max number of path charges per node of Block j.

113 / 117



Bounding Path Charges

We have the following
Let P (n) denote the overall number of path charges. Then:

P (n) ≤
log∗ n−1∑

j=0
αj · βj (9)

I αj is the max number of nodes with ranks in Block j
I βj is the max number of path charges per node of Block j.

113 / 117



Then, we have the following

Upper Bounds
By claim, αj upper-bounded by 3n

2B(j) ,
In addition, we need to bound βj that represents the maximum
number of path charges for nodes x at block j.

Note: Any node in Block j that is given a P.C. will be in Block j
after all m operations.

114 / 117



Then, we have the following

Upper Bounds
By claim, αj upper-bounded by 3n

2B(j) ,
In addition, we need to bound βj that represents the maximum
number of path charges for nodes x at block j.

Note: Any node in Block j that is given a P.C. will be in Block j
after all m operations.

114 / 117



Then, we have the following

Upper Bounds
By claim, αj upper-bounded by 3n

2B(j) ,
In addition, we need to bound βj that represents the maximum
number of path charges for nodes x at block j.

Note: Any node in Block j that is given a P.C. will be in Block j
after all m operations.

114 / 117



Then, we have the following

Upper Bounds
By claim, αj upper-bounded by 3n

2B(j) ,
In addition, we need to bound βj that represents the maximum
number of path charges for nodes x at block j.

Note: Any node in Block j that is given a P.C. will be in Block j
after all m operations.

Path Compression
is issued

114 / 117



Now, we bound βj

So, every time x is assessed a Path Charges, it gets a new parent with
increased rank.

Note: x’s rank is not changed by path compression

Suppose x has a rank in Block j
Repeated Path Charges to x will ultimately result in x’s parent having
a rank in a Block higher than j.
From that point onward, x is given Block Charges, not Path Charges.

Therefore, the Worst Case
x has the lowest rank in Block j, i.e., B (j − 1) + 1, and x’s parents
ranks successively take on the values.

B(j − 1) + 2, B(j − 1) + 3, ..., B(j)

115 / 117



Now, we bound βj

So, every time x is assessed a Path Charges, it gets a new parent with
increased rank.

Note: x’s rank is not changed by path compression

Suppose x has a rank in Block j
Repeated Path Charges to x will ultimately result in x’s parent having
a rank in a Block higher than j.
From that point onward, x is given Block Charges, not Path Charges.

Therefore, the Worst Case
x has the lowest rank in Block j, i.e., B (j − 1) + 1, and x’s parents
ranks successively take on the values.

B(j − 1) + 2, B(j − 1) + 3, ..., B(j)

115 / 117



Now, we bound βj

So, every time x is assessed a Path Charges, it gets a new parent with
increased rank.

Note: x’s rank is not changed by path compression

Suppose x has a rank in Block j
Repeated Path Charges to x will ultimately result in x’s parent having
a rank in a Block higher than j.
From that point onward, x is given Block Charges, not Path Charges.

Therefore, the Worst Case
x has the lowest rank in Block j, i.e., B (j − 1) + 1, and x’s parents
ranks successively take on the values.

B(j − 1) + 2, B(j − 1) + 3, ..., B(j)

115 / 117



Now, we bound βj

So, every time x is assessed a Path Charges, it gets a new parent with
increased rank.

Note: x’s rank is not changed by path compression

Suppose x has a rank in Block j
Repeated Path Charges to x will ultimately result in x’s parent having
a rank in a Block higher than j.
From that point onward, x is given Block Charges, not Path Charges.

Therefore, the Worst Case
x has the lowest rank in Block j, i.e., B (j − 1) + 1, and x’s parents
ranks successively take on the values.

B(j − 1) + 2, B(j − 1) + 3, ..., B(j)

115 / 117



Now, we bound βj

So, every time x is assessed a Path Charges, it gets a new parent with
increased rank.

Note: x’s rank is not changed by path compression

Suppose x has a rank in Block j
Repeated Path Charges to x will ultimately result in x’s parent having
a rank in a Block higher than j.
From that point onward, x is given Block Charges, not Path Charges.

Therefore, the Worst Case
x has the lowest rank in Block j, i.e., B (j − 1) + 1, and x’s parents
ranks successively take on the values.

B(j − 1) + 2, B(j − 1) + 3, ..., B(j)

115 / 117



Finally

Hence, x can be given at most B(j)−B(j − 1)− 1 Path Charges.
Therefore:

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)(B(j)−B(j − 1)− 1)

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)B(j)

P (n) = 3
2n log∗ n

116 / 117



Finally

Hence, x can be given at most B(j)−B(j − 1)− 1 Path Charges.
Therefore:

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)(B(j)−B(j − 1)− 1)

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)B(j)

P (n) = 3
2n log∗ n

116 / 117



Finally

Hence, x can be given at most B(j)−B(j − 1)− 1 Path Charges.
Therefore:

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)(B(j)−B(j − 1)− 1)

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)B(j)

P (n) = 3
2n log∗ n

116 / 117



Finally

Hence, x can be given at most B(j)−B(j − 1)− 1 Path Charges.
Therefore:

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)(B(j)−B(j − 1)− 1)

P (n) ≤
log∗ n−1∑

j=0
3n

2B(j)B(j)

P (n) = 3
2n log∗ n

116 / 117



Thus

FindSet operations contribute

O(m(log∗ n+ 1) + n log∗ n) = O(m log∗ n) (10)

MakeSet and Link contribute O(n)
Entire sequence takes O (m log∗ n).

117 / 117



Thus

FindSet operations contribute

O(m(log∗ n+ 1) + n log∗ n) = O(m log∗ n) (10)

MakeSet and Link contribute O(n)
Entire sequence takes O (m log∗ n).

117 / 117


	Disjoint Set Representation
	Definition of the Problem
	Operations

	Union-Find Problem
	The Main Problem
	Applications

	Implementations
	First Attempt: Circular List
	Operations and Cost
	Still we have a Problem

	Weighted-Union Heuristic
	Operations
	Still a Problem

	Heuristic Union by Rank

	Balanced Union
	Path compression
	Time Complexity
	Ackermann's Function
	Bounds
	The Rank Observation
	Proof of Complexity
	Theorem for Union by Rank and Path Compression)



