
Fibonacci Heaps

Andres Mendez-Vazquez

November 7, 2018

Contents
1 Introduction 2

2 Advantages of Fibonacci Heaps 2

3 Before Fibonacci Heaps 3

4 Fibonacci Heaps 4
4.1 Data Structure Support . 5
4.2 Preview of the Amortized Analysis 6
4.3 Degree Observation . 6
4.4 Operations . 7

4.4.1 Meargeable-Heap Operation 7
4.4.2 The Rest Of the Operations 11

4.5 Proving the D (n) bound!!! . 13

1

1 Introduction
The Fibonacci heap data structure is used to support the operations “meargeable
heap” operations:

1. MAKE -HEAP() creates and returns a new heap containing no elements.

2. INSERT(H,x) inserts element x, whose key has already been filled in, into
heap H.

3. MINIMUM(H) returns a pointer to the element in heap H whose key is
minimum.

4. EXTRACT-MIN(H) deletes the element from heap H whose key is mini-
mum, returning a pointer to the element.

5. UNION(H1, H2) creates and returns a new heap that contains all the
elements of heaps H1 and H2. Heaps are “destroyed” by this operation.

6. DECREASE-KEY(H,x, k) assigns to element x within heap H the new
key value k.

7. DELETE(H,x) deletes element x from heap H.

The advantage of using Fibonacci heaps is in the fact that the amortized times
are better than other implementations (Fig.)

Figure 1: Running Times Fibonacci Trees

2 Advantages of Fibonacci Heaps
From the theoretical point of view Fibonacci heaps are desirable for applications
where Extract-Min and Delete operations are relative small with respect to the
total number of operations performed. This situation arises in many applications
as:

2

• Minimum Spanning Trees

• Single-Source Shortest paths

• Etc.

3 Before Fibonacci Heaps
It is necessary to review some definitions before we finally define what is Fi-
bonacci Heap.

Definition 1. A free tree Is a connected acyclic undirected graph.

Figure 2: Free tree

Definition 2. A rooted tree is a free tree in which one of the nodes is a root.

Figure 3: Binomial Tree

Definition 3. A ordered is a rooted tree where the children are ordered.

Finally we have that:

Definition 4. A Binomial Tree (Fig. 3) is a ordered tree defined recursively.

3

From this simple definition we can then prove the following lemma.

Lemma 1. For the Binomial tree Bk,

1. There are 2k nodes.

2. The Height of the tree is k.

3. There are exactly
(

k
i

)
nodes at depth i for i=0,1,...,k.

4. The root has degree k, which is greater than that of any other node. It is
more, if the children of the root are numbered from left to right by k-1,
k-2,...,0, child i is the root of a subtree Bi

Proof. This is left to you.

From here Fibonacci Heaps can be defined.

4 Fibonacci Heaps
The definition of a Fibonacci Heap is as follows.

Definition 5. A Fibonacci heap is a collection of rooted trees that are min-
heap ordered. That is, each tree obeys the min-heap property: the key of a
node is greater than or equal to the key of its parent.

4

Figure 4: The Fibonacci Heap. The first figure represent the abstract construct,
but the second contains the supporting underlying data structure. Here, the
black nodes represent the marked nodes.

4.1 Data Structure Support
Although the definition look great, in reality we require to be able to support this
abstract idea for the computer implementation. For this, we use the following
at each node:

1. Each node contains a x.parent and x.child field.

2. The children of each a node x are linked together in a circular double
linked list (Child list of x). The advantages of using this double linked list
is the deletion or insertion anywhere in the list can be done in O(1) time.

(a) Each child y of x has a y.left and y.right to do this.

3. Each child has a field degree and field mark.

(a) The fieldmark indicates whether a node has lost a child since the last
time was made the child of another node. Newly created nodes are
unmarked (Boolean value FALSE), and a node becomes unmarked
whenever it is made the child of another node.

In addition,

5

• The roots of all the trees in a Fibonacci heap H are linked together using
their left and right pointers into a circular, doubly linked list called the
root list of the Fibonacci heap.

• The pointerH.min of the Fibonacci data structure thus points to the node
in the root list whose key is minimum. Trees may appear in any order
within a root list.

• The Fibonacci data structure has the field H.n =the number of nodes
currently in the Fibonacci Heap H.

Note: The main idea of th Fibonacci heap is to delay housekeeping work as
long as possible.

4.2 Preview of the Amortized Analysis
The following potential function is used for the amortized analysis of the data
structure.

Φ (H) = t (H) + 2m (H)

Here,

• t (H) the number of tree at the root list.

• m (H) the number of marked nodes.

At (Fig. 4) has a potential of Φ (H) = t (H) + 2m (H) = 5 + 2 ∗ 3 = 11.

4.3 Degree Observation
Here, we will use an upper bound D(n) for the degrees at each node in the
Fibonacci Heaps. Here, a proof will be given such that when we have

• Mergeable-Heap Operations

– Make Fibonacci Heap

– Insertion

– Find the Minimum

– Fib-Heap-Extract-Min

– Fib-Heap-Union

– Consolidate

• Decrease-Key

• Delete

operations, it is possible to say that D(n) = O (lg n).

6

4.4 Operations
4.4.1 Meargeable-Heap Operation

The mergeable-heap operations on Fibonacci heaps delay work as long as pos-
sible.

Crating a new Fibonacci Heap The Make-Fib-Heap procedure returns a
heap object H, where H.n = 0 and H.min = NIL. Then, t (H) = 0 and
m (H) = 0, the potential of the empty Fibonacci heap is Φ (H) = 0, thus the
amortized cost of the operation is O(1).

Insertion Here is the Basic Code.

Algorithm 1 Insertion

The amortized analysis is as follow:

• H is the input Fibonacci Heap and H ′ be the resulting Fibonacci Heap
after insertion.

• t (H ′) = t (H) + 1, m (H ′) = m (H).

• ci = O(1) this is because the number of steps to insert the node is a
constant.

Thus, ĉi = ci+Φ (H ′)−Φ (H) = O(1)+[t(H ′) + 2 ·m(H ′)− t(H)− 2 ·m(H)] =
O(1) + [t (H) + 1− t(H)] = O(1) + 1 = O(1). Then, insertion has an amortized
cost of O(1).

Finding the Minimum The code is way simpler, simply return the key of
min(H). The amortized cost is simply O (1).

7

Union of two Fibonacci Heaps The union code only merges the root list
and determines the minimum.

Algorithm 2 Union

The amortized cost is as follow:

• t(H) = t (H1) + t (H2) and m(H) = m (H1) + m (H2).

• ci = O(1) this is because the number of steps to make the union operations
is a constant.

Thus, ĉi = ci + Φ (H) − [Φ (H1) + Φ (H2)] = O(1) + 0 = O(1). Then, the
amortized cost of the union operation is O(1).

Extracting the Minimum The extracting code is as follow.

Algorithm 3 Extract Min

Here, the code in lines 3-6 remove the node z and adds the children of z
to the root list of H. Next, if the Fibonacci Heap is not empty a consolidation

8

code is triggered. An example can be seen at the slides. The consolidate code
is used to eliminate subtrees that have the same root degree by linking them.
It repeatedly executes the following steps

1. Find two roots x and y in the root list with the same degree. Without
loss of generality, let x.key ≤ y.key.

2. Link y to x: remove y from the root list, and make y a child of x by calling
the FIB-HEAP-LINK procedure. This procedure increments the attribute
x.degree and clears the mark on y.

For this, the procedure uses an array A [0, 1, ..., D (H.n)] to keep track of roots
according to their degrees. An example of it is at the slides.

9

Algorithm 4 Consolidate

The Consolidate code has two main parts

1. Lines 4-14 are used to consolidate the numbers of subtrees with same
degree into a single tree using the array A [0, 1, ..., D (H.n)]. This lines
can be proved to maintain the invariance d = x.degree by the induction
(I am leaving this to you).

2. Lines 15-23 clean the original Fibonacci Heap, then using the pointers at
the array A, each subtree is inserted into the root list of H.

10

Amortized Analysis’s Observations In order to make the analysis, we
have the following observations:

1. The cost of FIB-EXTRACT-MIN contributes at most O (D (n)) because

(a) The for loop at lines 3 to 5 in the code FIB-EXTRACT-MIN.
(b) for loop at lines 2-3 and 16-23 of CONSOLIDATE.

2. The size of the root list when calling Consolidate is at mostD(n)+t(H)−1
because the min root was extracted an it has at most D(n) children.

3. At lines 4 to 14 in the CONSOLIDATE code the amount of work done by
the for and the while loop is proportional to D(n) + t(H) because each
time we go through an element in the root list (for loop), the while loop
consolidate the tree pointed by the pointer to a tree x with same degree.

4. Then, the actual cost is ci = O (D (n) + t (H)).

Thus, assuming that H’ is the new heap and H is the old one, we have that

• Φ (H) = t (H) + 2 ·m (H).

• Φ (H ′) = D (n) + 1 + 2 ·m (H) because H ′ has at most D(n) + 1 elements
and no node is marked in the process.

Then,

ĉi = ci + Φ (H ′)− Φ (H)

= O (D (n) + t (H)) + D (n) + 1 + 2 ·m (H)− t (H)− 2 ·m (H)

= O (D (n) + t (H))− t (H)

= O (D (n)) ,

since we can scale up the units of potential to dominate the constant hidden
in O(t (H)).

4.4.2 The Rest Of the Operations

Decreasing a Key The examples of the codes are at the slides. The FIB-
HEAP-DECREASE works as follow:

1. Lines 1–3 ensure that the new key is no greater than the current key of x
and then assign the new key to x.

2. If x is not a root and if x.key ≤ y.key, where y is x’s parent, then CUT
and CASCADING-CUT are triggered.

Then CUT simply removes x from the child-list of y. The CASCADING-CUT
uses the mark attributes to obtain the desired time bounds. The mark label
records the following events that happened to y:

11

1. At some time, y was converted into an element of the root list.

2. Then, y was linked to (made the child of) another node.

3. Then, two children of y were removed by cuts.

As soon as the second child has been lost, we cut y from its parent, making it
a new root. Then:

• The attribute y.mark is TRUE if steps 1 and 2 have occurred and one child
of y has been cut. The CUT procedure, therefore, clears y.mark in line 4,
since it performs step 1. We can now see why line 3 of FIB-HEAP-LINK
clears y.mark.

Now we have a new problem, x might be the second child cut from its parent
y to another node. Therefore, in line 7 of FIB-HEAP-DECREASE attempts to
perform a cascading-cut on y. We have three cases:

1. If y is a root return.

2. if y is not a root and it is unmarked then y is marked.

3. If y is not a root and it is marked, then y is CUT and a cascading cut is
performed in its parent z.

Once all the cascading cuts are done, the H.min us updated if necessary. The
amortized analysis is then:

• Let H the Fibonacci Heap before the FIB-HEAP-DECREASE-KEY with
Φ (H) = t(H)− 2 ·m (H)

• H ′is the final heap.

• Then, ci = O(1) + cascading − cuts. Assume that you requiere c calls to
cascade CASCADING-CUT (One for the line 7 at the code FIB-HEAP-
DECREASE-KEY followed by c− 1 others). Thus, ci = O (c).

• Finally, Φ (H ′) = t (H)+c(The original trees + the ones created by the c calls)+
2(m (H)− (c− 1) + 1)(The original marks - (c−1) cleared marks by CUT
+ the branch to y.mark==FALSE true making y.mark=TRUE). Thus
Φ (H ′) = t (H) + c + 2(m(H)− c + 2) = t (H) + 2m (H)− c + 4

In this way, we have the amortized cost of decrease key is

ĉi = ci + t (H) + 2m (H)− c + 4− t (H)− 2m (H)

= ci + 4− c = O(c) + 4− c = O(1)

Delete a key Code and Analysis can be seen at the slides.

12

4.5 Proving the D (n) bound!!!
For this, we define a quantity size(x)= the number of nodes at subtree rooted
at x, x itself. We will prove that size(x) is exponential in x.degree.

Lemma 19.1

Let x be any node in a Fibonacci heap, and suppose that x.degree = k.
Let y1, y2, ..., yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then, y1.degree ≥ 0 and
yi.degree ≥ i− 2 for i = 2, 3, ..., k.

Proof: We know that y1.degree ≥ 0. Now, for i ≥ 2, yi was linked to
x, all of y1, y2, ..., yi−1 were children of x, and so we must have had
x.degree ≥ i− 1. Then, node yi is linked to x (by CONSOLIDATE)
only if x.degree = yi.degree, we must have also had yi.degree ≥ i−1
at that time. Since then, node yi has lost at most one child, since it
would have been cut from x (by CASCADING -CUT) if it had lost
two children. We conclude that yi.degree ≥ i− 2.

Then, using the Fibonacci sequence definition:

Fk =

0 if k = 0

1 if k = 1

Fk−1 + Fk−2 if k ≥ 2

We can prove the following lemmas.

Lemma 19.2

For all integers k ≥ 0, Fk+2 = 1 +
∑k

i=0 Fi.

Proof: For k = 0, we have that 1 +
∑0

i=0 Fi = 1 + F0 = 1 + 0 = F2.

Assume the inductive hypothesis that Fk+1 = 1 +
∑k−1

i=0 Fi, then:

Fk+2 = Fk + Fk+1 = Fk +

(
1 +

k−1∑
i=0

Fi

)
= 1 +

k∑
i=0

Fk.

Lemma 19.3

For all integers k ≥ 0, (k + 2)nd Fibonacci number satisfies Fk+1 ≥ Φk,
where Φ = 1+

√
5

2 .

Proof: For k = 0, we have that F2 = 1 = Φ0, and when k = 1 ⇒
F3 = 2 > 1.619 > Φ. Now, we assume that Fi+2 > Φi for i =
0, 1, 2, ..., k−1. Now, we know that Φ is a positive root of x2 = x+1.
Thus,

13

Fk+2 = Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2 (Φ + 1)

= Φk−2 · Φ2

= Φk.

Here, we prove the relation between size(x) and the degree of any node of a
Fibonacci heap.

Lemma 19.4
Let x be any node in a Fibonacci Heap, k = x.degree. Then size(x) ≥
Fk+2 ≥ Φk.

Proof: Let sk denote the minimum possible size of any node with degree
k. It is trivial that s0 = 1 and s1 = 2. In addition, sk ≤ size(x) and
for k ≤ k′ ⇒ sk ≤ sk′ . Now, consider some node x, in any Fibonacci
heap, such that x.degree = k and size(x) = sk. Therefore, if bound
from below sk, we bound from below size(x). Using Lemma 19.1,
let y1, ..., yk denote the children of z in the order in which they were
linked to z. Thus

size(x) ≥ sk

≥ 1(x itself) + 1(For the first child y1) +

k∑
i=2

syi.degree

≥ 2 +

k∑
i=2

si−2,

Now by using induction on k, we can prove that sk ≥ Fk+2. This
is trivial for k = 0 and k = 1. Assume that is true for k ≥ 2 then
si ≥ Fi+2 for i = 0, 1, ..., k − 1.

sk ≥ 2 +

k∑
i=2

si−2

≥ 2 +

k∑
i=2

Fi

= 1 +

k∑
i=1

Fi

= Fk+2 ≥ Φk.

14

Then, size(x) ≥ Φk.

Corollary 19.5

The maximum degree D(n) of any node in an n-node Fibonacci heap is
O(lg n).

Proof: Let x be any node in a n-node Fibonacci heap, and k = x.degree.
By Lemma 19.4 n ≥ size(x) ≥ Φk ⇒ k ≤ logΦn ≤ log2 n× logΦn for
all n > n0. Then, the maximum degree of any node is thus bounded
by O(log2 n).

15

