
Analysis of Algorithms
Fibonacci Heaps

Andres Mendez-Vazquez

October 29, 2015

1 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

2 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

3 / 120

Some previous definitions

Free Tree
A free tree is a connected acyclic undirected graph.

Rooted Tree
A rooted tree is a free tree in which one of the nodes is a root.

Ordered Tree
An ordered tree is a rooted tree where the children are ordered.

4 / 120

Some previous definitions

Free Tree
A free tree is a connected acyclic undirected graph.

Rooted Tree
A rooted tree is a free tree in which one of the nodes is a root.

Ordered Tree
An ordered tree is a rooted tree where the children are ordered.

4 / 120

Some previous definitions

Free Tree
A free tree is a connected acyclic undirected graph.

Rooted Tree
A rooted tree is a free tree in which one of the nodes is a root.

Ordered Tree
An ordered tree is a rooted tree where the children are ordered.

4 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

5 / 120

Ordered Tree

Definition
An ordered tree is an oriented tree in which the children of a node are
somehow "ordered."

Example

Thus
If T1 and T2 are ordered trees then T1 6= T2 else T1 = T2.

6 / 120

Ordered Tree

Definition
An ordered tree is an oriented tree in which the children of a node are
somehow "ordered."

Example
a

b c

a

bc

Thus
If T1 and T2 are ordered trees then T1 6= T2 else T1 = T2.

6 / 120

Ordered Tree

Definition
An ordered tree is an oriented tree in which the children of a node are
somehow "ordered."

Example
a

b c

a

bc

Thus
If T1 and T2 are ordered trees then T1 6= T2 else T1 = T2.

6 / 120

Some previous definitions

Types of Ordered Trees
There are several types of ordered trees:

k-ary tree
Binomial tree
Fibonacci tree

Binomial Tree
A binomial tree is an ordered tree defined recursively.

7 / 120

Some previous definitions

Types of Ordered Trees
There are several types of ordered trees:

k-ary tree
Binomial tree
Fibonacci tree

Binomial Tree
A binomial tree is an ordered tree defined recursively.

7 / 120

Some previous definitions

Types of Ordered Trees
There are several types of ordered trees:

k-ary tree
Binomial tree
Fibonacci tree

Binomial Tree
A binomial tree is an ordered tree defined recursively.

7 / 120

Some previous definitions

Types of Ordered Trees
There are several types of ordered trees:

k-ary tree
Binomial tree
Fibonacci tree

Binomial Tree
A binomial tree is an ordered tree defined recursively.

7 / 120

Some previous definitions

Types of Ordered Trees
There are several types of ordered trees:

k-ary tree
Binomial tree
Fibonacci tree

Binomial Tree
A binomial tree is an ordered tree defined recursively.

7 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

8 / 120

Examples

Recursive Structure

1

2

3

4

0

9 / 120

This can be seen too as

Recursive Structure

10 / 120

Properties of binomial trees

Lemma 19.1
For the binomial tree Bk :

1 There are 2k nodes.
2 The height of the tree is k.
3 There are exactly

(k
i
)
nodes at depth i for i = 0, 1, ..., k.

4 The root has degree k, which is greater than that of any other node;
moreover if the children of the root are numbered from left to right
by k − 1, k − 2, ..., 0 child i is the root of a subtree Bi .

Proof!
Look at the white-board.

11 / 120

Properties of binomial trees

Lemma 19.1
For the binomial tree Bk :

1 There are 2k nodes.
2 The height of the tree is k.
3 There are exactly

(k
i
)
nodes at depth i for i = 0, 1, ..., k.

4 The root has degree k, which is greater than that of any other node;
moreover if the children of the root are numbered from left to right
by k − 1, k − 2, ..., 0 child i is the root of a subtree Bi .

Proof!
Look at the white-board.

11 / 120

Properties of binomial trees

Lemma 19.1
For the binomial tree Bk :

1 There are 2k nodes.
2 The height of the tree is k.
3 There are exactly

(k
i
)
nodes at depth i for i = 0, 1, ..., k.

4 The root has degree k, which is greater than that of any other node;
moreover if the children of the root are numbered from left to right
by k − 1, k − 2, ..., 0 child i is the root of a subtree Bi .

Proof!
Look at the white-board.

11 / 120

Properties of binomial trees

Lemma 19.1
For the binomial tree Bk :

1 There are 2k nodes.
2 The height of the tree is k.
3 There are exactly

(k
i
)
nodes at depth i for i = 0, 1, ..., k.

4 The root has degree k, which is greater than that of any other node;
moreover if the children of the root are numbered from left to right
by k − 1, k − 2, ..., 0 child i is the root of a subtree Bi .

Proof!
Look at the white-board.

11 / 120

Properties of binomial trees

Lemma 19.1
For the binomial tree Bk :

1 There are 2k nodes.
2 The height of the tree is k.
3 There are exactly

(k
i
)
nodes at depth i for i = 0, 1, ..., k.

4 The root has degree k, which is greater than that of any other node;
moreover if the children of the root are numbered from left to right
by k − 1, k − 2, ..., 0 child i is the root of a subtree Bi .

Proof!
Look at the white-board.

11 / 120

Properties of binomial trees

Lemma 19.1
For the binomial tree Bk :

1 There are 2k nodes.
2 The height of the tree is k.
3 There are exactly

(k
i
)
nodes at depth i for i = 0, 1, ..., k.

4 The root has degree k, which is greater than that of any other node;
moreover if the children of the root are numbered from left to right
by k − 1, k − 2, ..., 0 child i is the root of a subtree Bi .

Proof!
Look at the white-board.

11 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

12 / 120

Mergeable Heap Operations

The Fibonacci heap data structure is used to support the operations
“meargeable heap” operations
1. MAKE -HEAP() creates and returns a new heap containing no

elements.
2. INSERT(H , x) inserts element x, whose key has already been filled in,

into heap H .
3. MINIMUM(H) returns a pointer to the element in heap H whose key

is minimum.
4. EXTRACT-MIN(H) deletes the element from heap H whose key is

minimum, returning a pointer to the element.

13 / 120

Mergeable Heap Operations

The Fibonacci heap data structure is used to support the operations
“meargeable heap” operations
1. MAKE -HEAP() creates and returns a new heap containing no

elements.
2. INSERT(H , x) inserts element x, whose key has already been filled in,

into heap H .
3. MINIMUM(H) returns a pointer to the element in heap H whose key

is minimum.
4. EXTRACT-MIN(H) deletes the element from heap H whose key is

minimum, returning a pointer to the element.

13 / 120

Mergeable Heap Operations

The Fibonacci heap data structure is used to support the operations
“meargeable heap” operations
1. MAKE -HEAP() creates and returns a new heap containing no

elements.
2. INSERT(H , x) inserts element x, whose key has already been filled in,

into heap H .
3. MINIMUM(H) returns a pointer to the element in heap H whose key

is minimum.
4. EXTRACT-MIN(H) deletes the element from heap H whose key is

minimum, returning a pointer to the element.

13 / 120

Mergeable Heap Operations

The Fibonacci heap data structure is used to support the operations
“meargeable heap” operations
1. MAKE -HEAP() creates and returns a new heap containing no

elements.
2. INSERT(H , x) inserts element x, whose key has already been filled in,

into heap H .
3. MINIMUM(H) returns a pointer to the element in heap H whose key

is minimum.
4. EXTRACT-MIN(H) deletes the element from heap H whose key is

minimum, returning a pointer to the element.

13 / 120

Mergeable Heap Operations

The Fibonacci heap data structure is used to support the operations
“meargeable heap” operations
5. UNION(H1, H2) creates and returns a new heap that contains all the

elements of heaps H1 and H2. Heaps are “destroyed” by this
operation.

6. DECREASE-KEY(H , x, k) assigns to element x within heap H the
new key value k.

7. DELETE(H , x) deletes element x from heap H .

14 / 120

Mergeable Heap Operations

The Fibonacci heap data structure is used to support the operations
“meargeable heap” operations
5. UNION(H1, H2) creates and returns a new heap that contains all the

elements of heaps H1 and H2. Heaps are “destroyed” by this
operation.

6. DECREASE-KEY(H , x, k) assigns to element x within heap H the
new key value k.

7. DELETE(H , x) deletes element x from heap H .

14 / 120

Mergeable Heap Operations

The Fibonacci heap data structure is used to support the operations
“meargeable heap” operations
5. UNION(H1, H2) creates and returns a new heap that contains all the

elements of heaps H1 and H2. Heaps are “destroyed” by this
operation.

6. DECREASE-KEY(H , x, k) assigns to element x within heap H the
new key value k.

7. DELETE(H , x) deletes element x from heap H .

14 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

15 / 120

Fibonacci Heap

Definition
A Fibonacci heap is a collection of rooted trees that are min-heap ordered.

Meaning
Each tree obeys the min-heap property:

The key of a node is greater than or equal to the key of its parent.
It is an almost unordered binomial tree is the same as a binomial
tree except that the root of one tree is made any child of the root of
the other.

16 / 120

Fibonacci Heap

Definition
A Fibonacci heap is a collection of rooted trees that are min-heap ordered.

Meaning
Each tree obeys the min-heap property:

The key of a node is greater than or equal to the key of its parent.
It is an almost unordered binomial tree is the same as a binomial
tree except that the root of one tree is made any child of the root of
the other.

16 / 120

Fibonacci Heap

Definition
A Fibonacci heap is a collection of rooted trees that are min-heap ordered.

Meaning
Each tree obeys the min-heap property:

The key of a node is greater than or equal to the key of its parent.
It is an almost unordered binomial tree is the same as a binomial
tree except that the root of one tree is made any child of the root of
the other.

16 / 120

Fibonacci Heap

Definition
A Fibonacci heap is a collection of rooted trees that are min-heap ordered.

Meaning
Each tree obeys the min-heap property:

The key of a node is greater than or equal to the key of its parent.
It is an almost unordered binomial tree is the same as a binomial
tree except that the root of one tree is made any child of the root of
the other.

16 / 120

Fibonacci Structure

Example

23 7 3 17 24

18 52 38

39 41

30 26 46

35

17 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

18 / 120

Why Fibonacci Heaps?

Fibonacci Heaps facts
Fibonacci heaps are especially desirable when the number of calls to
Extract-Min and Delete is small.
All other operations run in O(1).

Applications
Fibonacci heaps may be used in many applications. Some graph problems,
like minimum spanning tree and single-source-shortest-path.

19 / 120

Why Fibonacci Heaps?

Fibonacci Heaps facts
Fibonacci heaps are especially desirable when the number of calls to
Extract-Min and Delete is small.
All other operations run in O(1).

Applications
Fibonacci heaps may be used in many applications. Some graph problems,
like minimum spanning tree and single-source-shortest-path.

19 / 120

It is more...

We have that
Procedure Binary Heap (Worst Case) Fibonacci Heap (Amortized)
Make-Heap Θ (1) Θ (1)

Insert Θ (log n) Θ (1)
Minimum Θ (1) Θ (1)

Extract-Min Θ (log n) Θ (log n)
Union Θ (n) Θ (1)

Decrease-Key Θ (log n) Θ (1)
Delete Θ (log n) Θ (log n)

20 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

21 / 120

Fields in each node

The Classic Ones
Each node contains a x.parent and x.child field.

The ones for the doubled linked list
The children of each a node x are linked together in a circular double
linked list:

Each child y of x has a y.left and y.right to do this.

22 / 120

Fields in each node

The Classic Ones
Each node contains a x.parent and x.child field.

The ones for the doubled linked list
The children of each a node x are linked together in a circular double
linked list:

Each child y of x has a y.left and y.right to do this.

22 / 120

Thus, we have the following important labels

Field degree
Did you notice that there in no way to find the number of children
unless you have complex exploratory method?
We store the number of children in the child list of node x in x.degree.

The Amortized Label
Each child has the field mark.

IMPORTANT
1 The field mark indicates whether a node has lost a child since the

last time was made the child of another node.
2 Newly created nodes are unmarked (Boolean value FALSE), and a

node becomes unmarked whenever it is made the child of another
node.

23 / 120

Thus, we have the following important labels

Field degree
Did you notice that there in no way to find the number of children
unless you have complex exploratory method?
We store the number of children in the child list of node x in x.degree.

The Amortized Label
Each child has the field mark.

IMPORTANT
1 The field mark indicates whether a node has lost a child since the

last time was made the child of another node.
2 Newly created nodes are unmarked (Boolean value FALSE), and a

node becomes unmarked whenever it is made the child of another
node.

23 / 120

Thus, we have the following important labels

Field degree
Did you notice that there in no way to find the number of children
unless you have complex exploratory method?
We store the number of children in the child list of node x in x.degree.

The Amortized Label
Each child has the field mark.

IMPORTANT
1 The field mark indicates whether a node has lost a child since the

last time was made the child of another node.
2 Newly created nodes are unmarked (Boolean value FALSE), and a

node becomes unmarked whenever it is made the child of another
node.

23 / 120

Thus, we have the following important labels

Field degree
Did you notice that there in no way to find the number of children
unless you have complex exploratory method?
We store the number of children in the child list of node x in x.degree.

The Amortized Label
Each child has the field mark.

IMPORTANT
1 The field mark indicates whether a node has lost a child since the

last time was made the child of another node.
2 Newly created nodes are unmarked (Boolean value FALSE), and a

node becomes unmarked whenever it is made the child of another
node.

23 / 120

Thus, we have the following important labels

Field degree
Did you notice that there in no way to find the number of children
unless you have complex exploratory method?
We store the number of children in the child list of node x in x.degree.

The Amortized Label
Each child has the field mark.

IMPORTANT
1 The field mark indicates whether a node has lost a child since the

last time was made the child of another node.
2 Newly created nodes are unmarked (Boolean value FALSE), and a

node becomes unmarked whenever it is made the child of another
node.

23 / 120

The child list

Circular, doubly linked list have two advantages for use in Fibonacci
heaps:

First, we can remove a node from a circular, doubly linked list in O(1)
time.
Second, given two such lists, we can concatenate them (or “splice”
them together) into one circular, doubly linked list in O(1) time.

Example

24 / 120

The child list

Circular, doubly linked list have two advantages for use in Fibonacci
heaps:

First, we can remove a node from a circular, doubly linked list in O(1)
time.
Second, given two such lists, we can concatenate them (or “splice”
them together) into one circular, doubly linked list in O(1) time.

Example

24 / 120

The child list

Circular, doubly linked list have two advantages for use in Fibonacci
heaps:

First, we can remove a node from a circular, doubly linked list in O(1)
time.
Second, given two such lists, we can concatenate them (or “splice”
them together) into one circular, doubly linked list in O(1) time.

Example

26 3 45 34 12

24 / 120

Additional

First
The roots of all the trees in a Fibonacci heap H are linked together using
their left and right pointers into a circular, doubly linked list called the
root list of the Fibonacci heap.

Second
The pointer H .min of the Fibonacci data structure thus points to the
node in the root list whose key is minimum.
Trees may appear in any order within a root list.

Third
The Fibonacci data structure has the field H .n =the number of nodes
currently in the Fibonacci Heap H .

25 / 120

Additional

First
The roots of all the trees in a Fibonacci heap H are linked together using
their left and right pointers into a circular, doubly linked list called the
root list of the Fibonacci heap.

Second
The pointer H .min of the Fibonacci data structure thus points to the
node in the root list whose key is minimum.
Trees may appear in any order within a root list.

Third
The Fibonacci data structure has the field H .n =the number of nodes
currently in the Fibonacci Heap H .

25 / 120

Additional

First
The roots of all the trees in a Fibonacci heap H are linked together using
their left and right pointers into a circular, doubly linked list called the
root list of the Fibonacci heap.

Second
The pointer H .min of the Fibonacci data structure thus points to the
node in the root list whose key is minimum.
Trees may appear in any order within a root list.

Third
The Fibonacci data structure has the field H .n =the number of nodes
currently in the Fibonacci Heap H .

25 / 120

Additional

First
The roots of all the trees in a Fibonacci heap H are linked together using
their left and right pointers into a circular, doubly linked list called the
root list of the Fibonacci heap.

Second
The pointer H .min of the Fibonacci data structure thus points to the
node in the root list whose key is minimum.
Trees may appear in any order within a root list.

Third
The Fibonacci data structure has the field H .n =the number of nodes
currently in the Fibonacci Heap H .

25 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

26 / 120

Idea behind Fibonacci heaps

Main idea
Fibonacci heaps are called lazy data structures because they delay work as
long as possible using the field mark!!!

27 / 120

Make Heap

Make a heap
You only need the following code:
MakeHeap()

1 min[H] = NIL
2 n(H) = 0

Complexity is as simple as
Cost O(1).

28 / 120

Make Heap

Make a heap
You only need the following code:
MakeHeap()

1 min[H] = NIL
2 n(H) = 0

Complexity is as simple as
Cost O(1).

28 / 120

Insertion

Code for Inserting a node
Fib-Heap-Insert(H , x)

1 x.degree = 0
2 x.p = NIL
3 x.child = NIL
4 x.mark = FALSE
5 if H .min = NIL
6 Create a root list for H containing just x
7 H .min = x
8 else insert x into H ′s root list
9 if x.key < H .min.key
10 H .min = x
11 H .n = H .n + 1

29 / 120

Insertion

Code for Inserting a node
Fib-Heap-Insert(H , x)

1 x.degree = 0
2 x.p = NIL
3 x.child = NIL
4 x.mark = FALSE
5 if H .min = NIL
6 Create a root list for H containing just x
7 H .min = x
8 else insert x into H ′s root list
9 if x.key < H .min.key
10 H .min = x
11 H .n = H .n + 1

29 / 120

Insertion

Code for Inserting a node
Fib-Heap-Insert(H , x)

1 x.degree = 0
2 x.p = NIL
3 x.child = NIL
4 x.mark = FALSE
5 if H .min = NIL
6 Create a root list for H containing just x
7 H .min = x
8 else insert x into H ′s root list
9 if x.key < H .min.key
10 H .min = x
11 H .n = H .n + 1

29 / 120

Insertion

Code for Inserting a node
Fib-Heap-Insert(H , x)

1 x.degree = 0
2 x.p = NIL
3 x.child = NIL
4 x.mark = FALSE
5 if H .min = NIL
6 Create a root list for H containing just x
7 H .min = x
8 else insert x into H ′s root list
9 if x.key < H .min.key
10 H .min = x
11 H .n = H .n + 1

29 / 120

Inserting a node

Example

23 7 3 17 24

18 52 38

39 41

30 26 46

35 51

30 / 120

Inserting a node

Example

23 7 3 17 24

18 52 38 30 26 46

39 41 35 51

21

31 / 120

Minimum

Finding the Minimum
Simply return the key of min(H).
The amortized cost is simply O (1).

I We will analyze this later on...

32 / 120

Minimum

Finding the Minimum
Simply return the key of min(H).
The amortized cost is simply O (1).

I We will analyze this later on...

32 / 120

What about Union of two Heaps?

Code for Union of Heaps
Fib-Heap-Union(H1, H2)

1 H =Make-Fib-Heap()
2 H .min = H1.min
3 Concatenate the root list of H2 with the root list of H
4 If (H1.min == NIL) or (H .min 6= NIL and H2.min.key < H1.min.key)
5 H .min = H2.min
6 H .n = H1.n + H2.n
7 return H

33 / 120

What about Union of two Heaps?

Code for Union of Heaps
Fib-Heap-Union(H1, H2)

1 H =Make-Fib-Heap()
2 H .min = H1.min
3 Concatenate the root list of H2 with the root list of H
4 If (H1.min == NIL) or (H .min 6= NIL and H2.min.key < H1.min.key)
5 H .min = H2.min
6 H .n = H1.n + H2.n
7 return H

33 / 120

What about Union of two Heaps?

Code for Union of Heaps
Fib-Heap-Union(H1, H2)

1 H =Make-Fib-Heap()
2 H .min = H1.min
3 Concatenate the root list of H2 with the root list of H
4 If (H1.min == NIL) or (H .min 6= NIL and H2.min.key < H1.min.key)
5 H .min = H2.min
6 H .n = H1.n + H2.n
7 return H

33 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

34 / 120

In order to analyze Union...

We introduce some ideas from...
Our old friend amortized analysis and potential method!!!

35 / 120

Amortized potential function

We have the following function
Φ(H) = t(H) + 2m(H)

Where:
I t(H) is the number of trees in the Fibonacci heap
I m(H) is the number of marked nodes in the tree.

Amortized analysis
The amortized analysis will depend on there being a known bound D(n)
on the maximum degree of any node in an n-node heap.

36 / 120

Amortized potential function

We have the following function
Φ(H) = t(H) + 2m(H)

Where:
I t(H) is the number of trees in the Fibonacci heap
I m(H) is the number of marked nodes in the tree.

Amortized analysis
The amortized analysis will depend on there being a known bound D(n)
on the maximum degree of any node in an n-node heap.

36 / 120

Amortized potential function

We have the following function
Φ(H) = t(H) + 2m(H)

Where:
I t(H) is the number of trees in the Fibonacci heap
I m(H) is the number of marked nodes in the tree.

Amortized analysis
The amortized analysis will depend on there being a known bound D(n)
on the maximum degree of any node in an n-node heap.

36 / 120

Amortized potential function

We have the following function
Φ(H) = t(H) + 2m(H)

Where:
I t(H) is the number of trees in the Fibonacci heap
I m(H) is the number of marked nodes in the tree.

Amortized analysis
The amortized analysis will depend on there being a known bound D(n)
on the maximum degree of any node in an n-node heap.

36 / 120

Amortized potential function

We have the following function
Φ(H) = t(H) + 2m(H)

Where:
I t(H) is the number of trees in the Fibonacci heap
I m(H) is the number of marked nodes in the tree.

Amortized analysis
The amortized analysis will depend on there being a known bound D(n)
on the maximum degree of any node in an n-node heap.

36 / 120

Observations about D(n)

About the known bound D(n)
D(n) is the maximum degree of any node in the binomial heap.
It is more if the Fibonacci heap is a collection of unordered trees, then
D(n) = log n.

I We will prove this latter!!!

37 / 120

Observations about D(n)

About the known bound D(n)
D(n) is the maximum degree of any node in the binomial heap.
It is more if the Fibonacci heap is a collection of unordered trees, then
D(n) = log n.

I We will prove this latter!!!

37 / 120

Observations about D(n)

About the known bound D(n)
D(n) is the maximum degree of any node in the binomial heap.
It is more if the Fibonacci heap is a collection of unordered trees, then
D(n) = log n.

I We will prove this latter!!!

37 / 120

Back to Insertion

First
If H ′ is the Fibonacci heap after inserting, and H before that:

t(H ′) = t(H) + 1

Second
m(H ′) = m(H)

Then the change of potential is
Φ(H ′)− Φ(H) = 1 then complexity analysis results in O(1) + 1 = O

38 / 120

Back to Insertion

First
If H ′ is the Fibonacci heap after inserting, and H before that:

t(H ′) = t(H) + 1

Second
m(H ′) = m(H)

Then the change of potential is
Φ(H ′)− Φ(H) = 1 then complexity analysis results in O(1) + 1 = O

38 / 120

Back to Insertion

First
If H ′ is the Fibonacci heap after inserting, and H before that:

t(H ′) = t(H) + 1

Second
m(H ′) = m(H)

Then the change of potential is
Φ(H ′)− Φ(H) = 1 then complexity analysis results in O(1) + 1 = O

38 / 120

Other operations: Find Min

It is possible to rephrase this in terms of potential cost
By using the pointer min[H] potential cost is 0 then O(1).

39 / 120

Other operations: Union

Union of two Fibonacci heaps
Fib-Heap-Union(H1, H2)

1 H =Make-Fib-Heap()
2 H .min = H1.min
3 Concatenate the root list of H2 with the root list of H
4 If (H1.min == NIL) or (H .min 6= NIL and H2.min.key < H1.min.key)
5 H .min = H2.min
6 H .n = H1.n + H2.n
7 return H

40 / 120

Other operations: Union

Union of two Fibonacci heaps
Fib-Heap-Union(H1, H2)

1 H =Make-Fib-Heap()
2 H .min = H1.min
3 Concatenate the root list of H2 with the root list of H
4 If (H1.min == NIL) or (H .min 6= NIL and H2.min.key < H1.min.key)
5 H .min = H2.min
6 H .n = H1.n + H2.n
7 return H

40 / 120

Cost of uniting two Fibonacci heaps

First
t(H) = t (H1) + t (H2) and m(H) = m (H1) + m (H2).

Second
ci = O(1) this is because the number of steps to make the union
operations is a constant.

Potential analysis
ĉi = ci + Φ (H)− [Φ (H1) + Φ (H2)] = O(1) + 0 = O(1).

We have then a complexity of O(1).

41 / 120

Cost of uniting two Fibonacci heaps

First
t(H) = t (H1) + t (H2) and m(H) = m (H1) + m (H2).

Second
ci = O(1) this is because the number of steps to make the union
operations is a constant.

Potential analysis
ĉi = ci + Φ (H)− [Φ (H1) + Φ (H2)] = O(1) + 0 = O(1).

We have then a complexity of O(1).

41 / 120

Cost of uniting two Fibonacci heaps

First
t(H) = t (H1) + t (H2) and m(H) = m (H1) + m (H2).

Second
ci = O(1) this is because the number of steps to make the union
operations is a constant.

Potential analysis
ĉi = ci + Φ (H)− [Φ (H1) + Φ (H2)] = O(1) + 0 = O(1).

We have then a complexity of O(1).

41 / 120

Extract min
Extract min
Fib-Heap-Extract-Min(H)

1 z = H .min
2 if z 6= NIL
3 for each child x of z
4 add x to the root list of H
5 x.p = NIL
6 remove z from the root list of H
7 if z == z.right
8 H .min = NIL
9 else H .min = z.right
10 Consolidate(H)
11 H .n = H .n − 1
12 return z

42 / 120

Extract min
Extract min
Fib-Heap-Extract-Min(H)

1 z = H .min
2 if z 6= NIL
3 for each child x of z
4 add x to the root list of H
5 x.p = NIL
6 remove z from the root list of H
7 if z == z.right
8 H .min = NIL
9 else H .min = z.right
10 Consolidate(H)
11 H .n = H .n − 1
12 return z

42 / 120

Extract min
Extract min
Fib-Heap-Extract-Min(H)

1 z = H .min
2 if z 6= NIL
3 for each child x of z
4 add x to the root list of H
5 x.p = NIL
6 remove z from the root list of H
7 if z == z.right
8 H .min = NIL
9 else H .min = z.right
10 Consolidate(H)
11 H .n = H .n − 1
12 return z

42 / 120

Extract min
Extract min
Fib-Heap-Extract-Min(H)

1 z = H .min
2 if z 6= NIL
3 for each child x of z
4 add x to the root list of H
5 x.p = NIL
6 remove z from the root list of H
7 if z == z.right
8 H .min = NIL
9 else H .min = z.right
10 Consolidate(H)
11 H .n = H .n − 1
12 return z

42 / 120

Extract min
Extract min
Fib-Heap-Extract-Min(H)

1 z = H .min
2 if z 6= NIL
3 for each child x of z
4 add x to the root list of H
5 x.p = NIL
6 remove z from the root list of H
7 if z == z.right
8 H .min = NIL
9 else H .min = z.right
10 Consolidate(H)
11 H .n = H .n − 1
12 return z

42 / 120

Extract min
Extract min
Fib-Heap-Extract-Min(H)

1 z = H .min
2 if z 6= NIL
3 for each child x of z
4 add x to the root list of H
5 x.p = NIL
6 remove z from the root list of H
7 if z == z.right
8 H .min = NIL
9 else H .min = z.right
10 Consolidate(H)
11 H .n = H .n − 1
12 return z

42 / 120

What is happening here?

First
Here, the code in lines 3-6 remove the node z and adds the children of z
to the root list of H .

Next
If the Fibonacci Heap is not empty a consolidation code is triggered.

43 / 120

What is happening here?

First
Here, the code in lines 3-6 remove the node z and adds the children of z
to the root list of H .

Next
If the Fibonacci Heap is not empty a consolidation code is triggered.

43 / 120

What is happening here?

Thus
The consolidate code is used to eliminate subtrees that have the
same root degree by linking them.
It repeatedly executes the following steps:

1 Find two roots x and y in the root list with the same degree. Without
loss of generality, let x.key ≤ y.key.

2 Link y to x: remove y from the root list, and make y a child of x by
calling the FIB-HEAP-LINK procedure.

F This procedure increments the attribute x.degree and clears the mark
on y.

44 / 120

What is happening here?

Thus
The consolidate code is used to eliminate subtrees that have the
same root degree by linking them.
It repeatedly executes the following steps:

1 Find two roots x and y in the root list with the same degree. Without
loss of generality, let x.key ≤ y.key.

2 Link y to x: remove y from the root list, and make y a child of x by
calling the FIB-HEAP-LINK procedure.

F This procedure increments the attribute x.degree and clears the mark
on y.

44 / 120

What is happening here?

Thus
The consolidate code is used to eliminate subtrees that have the
same root degree by linking them.
It repeatedly executes the following steps:

1 Find two roots x and y in the root list with the same degree. Without
loss of generality, let x.key ≤ y.key.

2 Link y to x: remove y from the root list, and make y a child of x by
calling the FIB-HEAP-LINK procedure.

F This procedure increments the attribute x.degree and clears the mark
on y.

44 / 120

What is happening here?

Thus
The consolidate code is used to eliminate subtrees that have the
same root degree by linking them.
It repeatedly executes the following steps:

1 Find two roots x and y in the root list with the same degree. Without
loss of generality, let x.key ≤ y.key.

2 Link y to x: remove y from the root list, and make y a child of x by
calling the FIB-HEAP-LINK procedure.

F This procedure increments the attribute x.degree and clears the mark
on y.

44 / 120

What is happening here?

Thus
The consolidate code is used to eliminate subtrees that have the
same root degree by linking them.
It repeatedly executes the following steps:

1 Find two roots x and y in the root list with the same degree. Without
loss of generality, let x.key ≤ y.key.

2 Link y to x: remove y from the root list, and make y a child of x by
calling the FIB-HEAP-LINK procedure.

F This procedure increments the attribute x.degree and clears the mark
on y.

44 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

45 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Consolidate Code
Consolidate(H)

1. Let A (0...D (H .n)) be a new array
2. for i = 0 to D (H .n)

3. A [i] = NIL
4. for each w in the root list of H
5. x = w

6. d = x.degree
7. while A [d] 6= NIL

8. y = A [d]
9. if x.key > y.key

10. exchange x with y
11. Fib-Heap-Link(H , y, x)
12. A [d] = NIL

13. d = d + 1

14. A [d] = x

15. H .min = NIL
16. for i = 0 to D (H .n)

17. if A [i] 6= NIL
18. if H .min == NIL
19. create a root list for H

containing just A [i]

20. H .min = A [i]
21. else
22. insert A [i] into H ′s

root list
24. if A [i] .key < H .min.key
25. H .min = A [i]

46 / 120

Fib-Heap-Link Code

Fib-Heap-Link(H , y, x)
1 Remove y from the root list of H
2 Make y a child of x, incrementing x.degree
3 y.mark = FALSE

47 / 120

Fib-Heap-Link Code

Fib-Heap-Link(H , y, x)
1 Remove y from the root list of H
2 Make y a child of x, incrementing x.degree
3 y.mark = FALSE

47 / 120

Fib-Heap-Link Code

Fib-Heap-Link(H , y, x)
1 Remove y from the root list of H
2 Make y a child of x, incrementing x.degree
3 y.mark = FALSE

47 / 120

Auxiliary Array

The Consolidate uses
An auxiliary pointer array A [0...D (H .n)]

It keeps track of
The roots according the degree

48 / 120

Auxiliary Array

The Consolidate uses
An auxiliary pointer array A [0...D (H .n)]

It keeps track of
The roots according the degree

48 / 120

Code Process

A while loop inside of the for loop - lines 1-15
Using a w variable to go through the root list
This is used to fill the pointers in A [0...D (H .n)]
Then you link both trees using who has a larger key
Then you add a pointer to the new min-heap, with new degree, in A.

Then - lines 15-23
Lines 15-23 clean the original Fibonacci Heap, then using the pointers at
the array A, each subtree is inserted into the root list of H .

49 / 120

Code Process

A while loop inside of the for loop - lines 1-15
Using a w variable to go through the root list
This is used to fill the pointers in A [0...D (H .n)]
Then you link both trees using who has a larger key
Then you add a pointer to the new min-heap, with new degree, in A.

Then - lines 15-23
Lines 15-23 clean the original Fibonacci Heap, then using the pointers at
the array A, each subtree is inserted into the root list of H .

49 / 120

Code Process

A while loop inside of the for loop - lines 1-15
Using a w variable to go through the root list
This is used to fill the pointers in A [0...D (H .n)]
Then you link both trees using who has a larger key
Then you add a pointer to the new min-heap, with new degree, in A.

Then - lines 15-23
Lines 15-23 clean the original Fibonacci Heap, then using the pointers at
the array A, each subtree is inserted into the root list of H .

49 / 120

Code Process

A while loop inside of the for loop - lines 1-15
Using a w variable to go through the root list
This is used to fill the pointers in A [0...D (H .n)]
Then you link both trees using who has a larger key
Then you add a pointer to the new min-heap, with new degree, in A.

Then - lines 15-23
Lines 15-23 clean the original Fibonacci Heap, then using the pointers at
the array A, each subtree is inserted into the root list of H .

49 / 120

Code Process

A while loop inside of the for loop - lines 1-15
Using a w variable to go through the root list
This is used to fill the pointers in A [0...D (H .n)]
Then you link both trees using who has a larger key
Then you add a pointer to the new min-heap, with new degree, in A.

Then - lines 15-23
Lines 15-23 clean the original Fibonacci Heap, then using the pointers at
the array A, each subtree is inserted into the root list of H .

49 / 120

Loop Invariance

We have the following Loop Invariance
At the start of each iteration of the while loop, d = x.degree.

Init
Line 6 ensures that the loop invariant holds the first time we enter the
loop.

Maintenance
We have two nodes x and y such that they have the same degree then

We link them together and increase the d to d + 1 adding a new tree
pointer to A with degree d + 1

50 / 120

Loop Invariance

We have the following Loop Invariance
At the start of each iteration of the while loop, d = x.degree.

Init
Line 6 ensures that the loop invariant holds the first time we enter the
loop.

Maintenance
We have two nodes x and y such that they have the same degree then

We link them together and increase the d to d + 1 adding a new tree
pointer to A with degree d + 1

50 / 120

Loop Invariance

We have the following Loop Invariance
At the start of each iteration of the while loop, d = x.degree.

Init
Line 6 ensures that the loop invariant holds the first time we enter the
loop.

Maintenance
We have two nodes x and y such that they have the same degree then

We link them together and increase the d to d + 1 adding a new tree
pointer to A with degree d + 1

50 / 120

Loop Invariance

Termination
We repeat the while loop until A [d] = NIL, in which case there is no
other root with the same degree as x.

51 / 120

Example of consolidation

We remove H .min == 3

23 7 3 17 24

18 52 38 30 26 46

39 41 35 51

21

52 / 120

Example of consolidation

The children are moved to the root’s list

23 7 17 2418 52 38

30 26 4639 41

35 51

21

53 / 120

Example of consolidation

Now, you get Consolidation running beginning A [1]→ 17

23 7 17 2418 52 38

30 26 4639 41

35 51

21

0 1 2 3

54 / 120

Example of consolidation

Now, A [2]→ 24

23 7 17 2418 52 38

30 26 4639 41

35 51

21

0 1 2 3

55 / 120

Example of consolidation

We have a pointer to a node with degree = 0

23 7 17 2418 52 38

30 26 4639 41

35 51

21

0 1 2 3

56 / 120

Example of consolidation

We don’t do an exchange

23 7 17 2418 52 38

30 26 4639 41

35 51

21

0 1 2 3

57 / 120

Example of consolidation

Remove y from the root’s list

23

7 17 2418 52 38

30 26 4639 41

35 51

21

0 1 2 3

58 / 120

Example of consolidation

Make y a child of x

23

7 17 2418 52 38

30 26 4639 41

35 51

21

0 1 2 3

59 / 120

Example of consolidation

Remove y from the root list

23

7

17

2418 52 38

30

26 4639 41

35 51

21

0 1 2 3

60 / 120

Example of consolidation

Make y a child of x

23

7

17

2418 52 38

30

26 4639 41

35 51

21

0 1 2 3

61 / 120

Example of consolidation

and we point to the the element with degree = 3

23

7

1724

18 52 38

3026 46

39 41

35 51

21

0 1 2 3

62 / 120

Example of consolidation

We move to the next root’s child and point to it from A

23

7

1724

18 52 38

3026 46

39 41

35 51

21

0 1 2 3

63 / 120

Example of consolidation

We move to the next root’s child and point to it from A

23

7

1724

18 52 38

3026 46

39 41

35 51

21

0 1 2 3

64 / 120

Example of consolidation

We move to the next root’s child and point to it from A

23

7

1724

18 52 38

3026 46

39 41

35 51

21

0 1 2 3

65 / 120

Example of consolidation

We point y = A [0] then do the exchange between x ←→ y

23

7

1724

18 52 38

3026 46

39 41

35 51

21

0 1 2 3

66 / 120

Example of consolidation

Link x and y

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

67 / 120

Example of consolidation

Make A [d] = NIL

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

68 / 120

Example of consolidation

We make y = A [1]

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

69 / 120

Example of consolidation

Do an exchange between x ←→ y

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

70 / 120

Example of consolidation

Remove y from the root’s list

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

71 / 120

Example of consolidation

Make y a child of x

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

72 / 120

Example of consolidation

Make A [1] = NIL, then we make d = d + 1

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

73 / 120

Example of consolidation

Because A [2] = NIL, then A [2] = x

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

74 / 120

Example of consolidation

We move to the next w and make x = w

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

75 / 120

Example of consolidation

Because A [1] = NIL, then jump over the while loop and make
A [1] = x

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

76 / 120

Example of consolidation

Because A [1] 6= NIL insert into the root’s list and because
H .min = NIL, it is the first node in it

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

77 / 120

Example of consolidation

Because A [2] 6= NIL insert into the root’s list no exchange of min
because A [2] .key > H .min.key

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

78 / 120

Example of consolidation

Because A [3] 6= NIL insert into the root’s list no exchange of min
because A [3] .key > H .min.key

23

7

1724

18

52

38

3026 46

39 41

35 51

21

0 1 2 3

79 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

80 / 120

Cost of Extract-min

Amortized analysis observations
The cost of FIB-EXTRACT-MIN contributes at most O (D (n)) because

1 The for loop at lines 3 to 5 in the code FIB-EXTRACT-MIN.
2 for loop at lines 2-3 and 16-23 of CONSOLIDATE.

81 / 120

Cost of Extract-min

Amortized analysis observations
The cost of FIB-EXTRACT-MIN contributes at most O (D (n)) because

1 The for loop at lines 3 to 5 in the code FIB-EXTRACT-MIN.
2 for loop at lines 2-3 and 16-23 of CONSOLIDATE.

81 / 120

Cost of Extract-min

Amortized analysis observations
The cost of FIB-EXTRACT-MIN contributes at most O (D (n)) because

1 The for loop at lines 3 to 5 in the code FIB-EXTRACT-MIN.
2 for loop at lines 2-3 and 16-23 of CONSOLIDATE.

81 / 120

Cost of Extract-min

Amortized analysis observations
The cost of FIB-EXTRACT-MIN contributes at most O (D (n)) because

1 The for loop at lines 3 to 5 in the code FIB-EXTRACT-MIN.
2 for loop at lines 2-3 and 16-23 of CONSOLIDATE.

81 / 120

Next

We have that
The size of the root list when calling Consolidate is at most

D(n) + t(H)− 1 (1)

because the min root was extracted an it has at most D(n) children.

82 / 120

Next

We have that
The size of the root list when calling Consolidate is at most

D(n) + t(H)− 1 (1)

because the min root was extracted an it has at most D(n) children.

82 / 120

Next

We have that
The size of the root list when calling Consolidate is at most

D(n) + t(H)− 1 (1)

because the min root was extracted an it has at most D(n) children.

82 / 120

Next

Then
At lines 4 to 14 in the CONSOLIDATE code:

The amount of work done by the for and the while loop is
proportional to D(n) + t(H) because each time we go through an
element in the root list (for loop).
The while loop consolidate the tree pointed by the pointer to a tree x
with same degree.

The Actual Cost is
Then, the actual cost is ci = O (D (n) + t (H)).

83 / 120

Next

Then
At lines 4 to 14 in the CONSOLIDATE code:

The amount of work done by the for and the while loop is
proportional to D(n) + t(H) because each time we go through an
element in the root list (for loop).
The while loop consolidate the tree pointed by the pointer to a tree x
with same degree.

The Actual Cost is
Then, the actual cost is ci = O (D (n) + t (H)).

83 / 120

Next

Then
At lines 4 to 14 in the CONSOLIDATE code:

The amount of work done by the for and the while loop is
proportional to D(n) + t(H) because each time we go through an
element in the root list (for loop).
The while loop consolidate the tree pointed by the pointer to a tree x
with same degree.

The Actual Cost is
Then, the actual cost is ci = O (D (n) + t (H)).

83 / 120

Next

Then
At lines 4 to 14 in the CONSOLIDATE code:

The amount of work done by the for and the while loop is
proportional to D(n) + t(H) because each time we go through an
element in the root list (for loop).
The while loop consolidate the tree pointed by the pointer to a tree x
with same degree.

The Actual Cost is
Then, the actual cost is ci = O (D (n) + t (H)).

83 / 120

Potential cost

Thus, assuming that H ’ is the new heap and H is the old one
Φ (H) = t (H) + 2 ·m (H).
Φ (H ′) = D (n) + 1 + 2 ·m (H) because

I H ’ has at most D(n) + 1 elements after consolidation
I No node is marked in the process.

84 / 120

Potential cost

Thus, assuming that H ’ is the new heap and H is the old one
Φ (H) = t (H) + 2 ·m (H).
Φ (H ′) = D (n) + 1 + 2 ·m (H) because

I H ’ has at most D(n) + 1 elements after consolidation
I No node is marked in the process.

84 / 120

Potential cost

Thus, assuming that H ’ is the new heap and H is the old one
Φ (H) = t (H) + 2 ·m (H).
Φ (H ′) = D (n) + 1 + 2 ·m (H) because

I H ’ has at most D(n) + 1 elements after consolidation
I No node is marked in the process.

84 / 120

Potential cost

Thus, assuming that H ’ is the new heap and H is the old one
Φ (H) = t (H) + 2 ·m (H).
Φ (H ′) = D (n) + 1 + 2 ·m (H) because

I H ’ has at most D(n) + 1 elements after consolidation
I No node is marked in the process.

84 / 120

Potential cost

The Final Potential Cost is

ĉi = ci + Φ
(
H ′
)
− Φ (H)

= O (D (n) + t (H)) + D (n) + 1 + 2 ·m (H)− t (H)− 2 ·m (H)
= O (D (n) + t (H))− t (H)
= O (D (n)) ,

We shall see that
D(n) = O(log n)

85 / 120

Potential cost

The Final Potential Cost is

ĉi = ci + Φ
(
H ′
)
− Φ (H)

= O (D (n) + t (H)) + D (n) + 1 + 2 ·m (H)− t (H)− 2 ·m (H)
= O (D (n) + t (H))− t (H)
= O (D (n)) ,

We shall see that
D(n) = O(log n)

85 / 120

Potential cost

The Final Potential Cost is

ĉi = ci + Φ
(
H ′
)
− Φ (H)

= O (D (n) + t (H)) + D (n) + 1 + 2 ·m (H)− t (H)− 2 ·m (H)
= O (D (n) + t (H))− t (H)
= O (D (n)) ,

We shall see that
D(n) = O(log n)

85 / 120

Potential cost

The Final Potential Cost is

ĉi = ci + Φ
(
H ′
)
− Φ (H)

= O (D (n) + t (H)) + D (n) + 1 + 2 ·m (H)− t (H)− 2 ·m (H)
= O (D (n) + t (H))− t (H)
= O (D (n)) ,

We shall see that
D(n) = O(log n)

85 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

86 / 120

Decreasing a key

Fib-Heap-Decrease-Key(H , x , k)
1 if k > x.key
2 error “new key is greater than current key”
3 x.key = k
4 y = x.p
5 if y 6= NIL and x.key < y.key
6 CUT(H , x, y)
7 Cascading-Cut(H , y)
8 if x.key < H .min.key
9 H .min = x

87 / 120

Decreasing a key

Fib-Heap-Decrease-Key(H , x , k)
1 if k > x.key
2 error “new key is greater than current key”
3 x.key = k
4 y = x.p
5 if y 6= NIL and x.key < y.key
6 CUT(H , x, y)
7 Cascading-Cut(H , y)
8 if x.key < H .min.key
9 H .min = x

87 / 120

Decreasing a key

Fib-Heap-Decrease-Key(H , x , k)
1 if k > x.key
2 error “new key is greater than current key”
3 x.key = k
4 y = x.p
5 if y 6= NIL and x.key < y.key
6 CUT(H , x, y)
7 Cascading-Cut(H , y)
8 if x.key < H .min.key
9 H .min = x

87 / 120

Decreasing a key

Fib-Heap-Decrease-Key(H , x , k)
1 if k > x.key
2 error “new key is greater than current key”
3 x.key = k
4 y = x.p
5 if y 6= NIL and x.key < y.key
6 CUT(H , x, y)
7 Cascading-Cut(H , y)
8 if x.key < H .min.key
9 H .min = x

87 / 120

Explanation

First
1 Lines 1–3 ensure that the new key is no greater than the current key

of x and then assign the new key to x.
2 If x is not a root and if x.key ≤ y.key, where y is x’s parent, then

CUT and CASCADING-CUT are triggered.

88 / 120

Explanation

First
1 Lines 1–3 ensure that the new key is no greater than the current key

of x and then assign the new key to x.
2 If x is not a root and if x.key ≤ y.key, where y is x’s parent, then

CUT and CASCADING-CUT are triggered.

88 / 120

Decreasing a key (continuation - cascade cutting)

Be lazy to remove keys!
Cut(H , x, y)

1 Remove x from the child list of y,
decreasing y.degree

2 Add x to the root list of H
3 x.p = NIL
4 x.mark = FALSE

Cascading-Cut(H , y)

1 z = y.p
2 if z 6= NIL
3 if y.mark == FALSE
4 y.mark=TRUE
5 else
6 Cut(H , y, z)
7 Cascading-Cut(H , y)(H , z)

89 / 120

Decreasing a key (continuation - cascade cutting)

Be lazy to remove keys!
Cut(H , x, y)

1 Remove x from the child list of y,
decreasing y.degree

2 Add x to the root list of H
3 x.p = NIL
4 x.mark = FALSE

Cascading-Cut(H , y)

1 z = y.p
2 if z 6= NIL
3 if y.mark == FALSE
4 y.mark=TRUE
5 else
6 Cut(H , y, z)
7 Cascading-Cut(H , y)(H , z)

89 / 120

Explanation

Second
Then CUT simply removes x from the child-list of y.

Thus
The CASCADING-CUT uses the mark attributes to obtain the desired
time bounds.

90 / 120

Explanation

Second
Then CUT simply removes x from the child-list of y.

Thus
The CASCADING-CUT uses the mark attributes to obtain the desired
time bounds.

90 / 120

Explanation

The mark label records the following events that happened to y:
1 At some time, y was converted into an element of the root list.
2 Then, y was linked to (made the child of) another node.
3 Then, two children of y were removed by cuts.

As soon as the second child has been lost, we cut y from its parent,
making it a new root.

The attribute y.mark is TRUE if steps 1 and 2 have occurred and
one child of y has been cut.
The CUT procedure, therefore, clears y.mark in line 4, since it
performs step 1.
We can now see why line 3 of FIB-HEAP-LINK clears y.mark.

91 / 120

Explanation

The mark label records the following events that happened to y:
1 At some time, y was converted into an element of the root list.
2 Then, y was linked to (made the child of) another node.
3 Then, two children of y were removed by cuts.

As soon as the second child has been lost, we cut y from its parent,
making it a new root.

The attribute y.mark is TRUE if steps 1 and 2 have occurred and
one child of y has been cut.
The CUT procedure, therefore, clears y.mark in line 4, since it
performs step 1.
We can now see why line 3 of FIB-HEAP-LINK clears y.mark.

91 / 120

Explanation

The mark label records the following events that happened to y:
1 At some time, y was converted into an element of the root list.
2 Then, y was linked to (made the child of) another node.
3 Then, two children of y were removed by cuts.

As soon as the second child has been lost, we cut y from its parent,
making it a new root.

The attribute y.mark is TRUE if steps 1 and 2 have occurred and
one child of y has been cut.
The CUT procedure, therefore, clears y.mark in line 4, since it
performs step 1.
We can now see why line 3 of FIB-HEAP-LINK clears y.mark.

91 / 120

Explanation

The mark label records the following events that happened to y:
1 At some time, y was converted into an element of the root list.
2 Then, y was linked to (made the child of) another node.
3 Then, two children of y were removed by cuts.

As soon as the second child has been lost, we cut y from its parent,
making it a new root.

The attribute y.mark is TRUE if steps 1 and 2 have occurred and
one child of y has been cut.
The CUT procedure, therefore, clears y.mark in line 4, since it
performs step 1.
We can now see why line 3 of FIB-HEAP-LINK clears y.mark.

91 / 120

Explanation

The mark label records the following events that happened to y:
1 At some time, y was converted into an element of the root list.
2 Then, y was linked to (made the child of) another node.
3 Then, two children of y were removed by cuts.

As soon as the second child has been lost, we cut y from its parent,
making it a new root.

The attribute y.mark is TRUE if steps 1 and 2 have occurred and
one child of y has been cut.
The CUT procedure, therefore, clears y.mark in line 4, since it
performs step 1.
We can now see why line 3 of FIB-HEAP-LINK clears y.mark.

91 / 120

Explanation

The mark label records the following events that happened to y:
1 At some time, y was converted into an element of the root list.
2 Then, y was linked to (made the child of) another node.
3 Then, two children of y were removed by cuts.

As soon as the second child has been lost, we cut y from its parent,
making it a new root.

The attribute y.mark is TRUE if steps 1 and 2 have occurred and
one child of y has been cut.
The CUT procedure, therefore, clears y.mark in line 4, since it
performs step 1.
We can now see why line 3 of FIB-HEAP-LINK clears y.mark.

91 / 120

Explanation

Now we have a new problem
x might be the second child cut from its parent y to another node.

I Therefore, in line 7 of FIB-HEAP-DECREASE attempts to perform a
cascading-cut on y.

We have three cases:
1 If y is a root return.
2 if y is not a root and it is unmarked then y is marked.
3 If y is not a root and it is marked, then y is CUT and a cascading cut

is performed in its parent z.

Once all the cascading cuts are done
the H .min is updated if necessary

92 / 120

Explanation

Now we have a new problem
x might be the second child cut from its parent y to another node.

I Therefore, in line 7 of FIB-HEAP-DECREASE attempts to perform a
cascading-cut on y.

We have three cases:
1 If y is a root return.
2 if y is not a root and it is unmarked then y is marked.
3 If y is not a root and it is marked, then y is CUT and a cascading cut

is performed in its parent z.

Once all the cascading cuts are done
the H .min is updated if necessary

92 / 120

Explanation

Now we have a new problem
x might be the second child cut from its parent y to another node.

I Therefore, in line 7 of FIB-HEAP-DECREASE attempts to perform a
cascading-cut on y.

We have three cases:
1 If y is a root return.
2 if y is not a root and it is unmarked then y is marked.
3 If y is not a root and it is marked, then y is CUT and a cascading cut

is performed in its parent z.

Once all the cascading cuts are done
the H .min is updated if necessary

92 / 120

Explanation

Now we have a new problem
x might be the second child cut from its parent y to another node.

I Therefore, in line 7 of FIB-HEAP-DECREASE attempts to perform a
cascading-cut on y.

We have three cases:
1 If y is a root return.
2 if y is not a root and it is unmarked then y is marked.
3 If y is not a root and it is marked, then y is CUT and a cascading cut

is performed in its parent z.

Once all the cascading cuts are done
the H .min is updated if necessary

92 / 120

Explanation

Now we have a new problem
x might be the second child cut from its parent y to another node.

I Therefore, in line 7 of FIB-HEAP-DECREASE attempts to perform a
cascading-cut on y.

We have three cases:
1 If y is a root return.
2 if y is not a root and it is unmarked then y is marked.
3 If y is not a root and it is marked, then y is CUT and a cascading cut

is performed in its parent z.

Once all the cascading cuts are done
the H .min is updated if necessary

92 / 120

Explanation

Now we have a new problem
x might be the second child cut from its parent y to another node.

I Therefore, in line 7 of FIB-HEAP-DECREASE attempts to perform a
cascading-cut on y.

We have three cases:
1 If y is a root return.
2 if y is not a root and it is unmarked then y is marked.
3 If y is not a root and it is marked, then y is CUT and a cascading cut

is performed in its parent z.

Once all the cascading cuts are done
the H .min is updated if necessary

92 / 120

Example

46 is decreased to 15

23

7

1724

18

52

38

3026 46

39 41

35 51

21

93 / 120

Example

46 is decreased to 15

23

7

1724

18

52

38

3026

39 41

35 51

21

15

94 / 120

Example

Cut 15 to the root’s list

23

7

1724

18

52

38

3026

39 41

35

51 21

15

95 / 120

Example

Mark 24 to True

23

7

1724

18

52

38

3026

39 41

35

51 21

15

96 / 120

Example

Then 35 is decreased to 5

23

7

1724

18

52

38

3026

39 41

5

51 21

15

97 / 120

Example

Cut 15 to the root’s list

23

7

1724

18

52

38

3026

39 41

5

51 21

15

98 / 120

Example

Initiate cascade cutting

23

7

1724

18

52

38

3026

39 41

5

51 21

15

99 / 120

Example

Initiate cascade cutting moving 26 to the root’s list

23

7

1724

18

52

38

30

26

39 41

5

51 21

15

100 / 120

Example

Mark 26 to false

23

7

1724

18

52

38

30

26

39 41

5

51 21

15

101 / 120

Example

Move 24 to root’s list

23

7

17

24 18

52

38

30

26

39 41

5

51 21

15

102 / 120

Example

Mark 26 to false

23

7

17

24 18

52

38

30

26

39 41

5

51 21

15

103 / 120

Example

Change the H .min

23

7

17

24 18

52

38

30

26

39 41

5

51 21

15

104 / 120

Potential cost

The procedure Decrease-Key takes
ci = O(1)+the cascading-cuts

Assume that you require c calls to cascade CASCADING-CUT
One for the line 6 at the code FIB-HEAP-DECREASE-KEY followed
by c − 1 others

I The cost of it will take ci = O(c).

105 / 120

Potential cost

The procedure Decrease-Key takes
ci = O(1)+the cascading-cuts

Assume that you require c calls to cascade CASCADING-CUT
One for the line 6 at the code FIB-HEAP-DECREASE-KEY followed
by c − 1 others

I The cost of it will take ci = O(c).

105 / 120

Potential cost

The procedure Decrease-Key takes
ci = O(1)+the cascading-cuts

Assume that you require c calls to cascade CASCADING-CUT
One for the line 6 at the code FIB-HEAP-DECREASE-KEY followed
by c − 1 others

I The cost of it will take ci = O(c).

105 / 120

Potential cost

Finally, assuming H ′ is the new Fibonacci Heap and H the old one

Φ
(
H ′
)

= (t (H) + c) + 2 (m (H)− (c − 1) + 1) (2)

Where:
t (H) + c

I The # original trees + the ones created by the c calls.

m (H)− (c − 1) + 1
I The original marks - (c − 1) cleared marks by Cut + the

branch to y.mark == FALSE true.

106 / 120

Potential cost

Finally, assuming H ′ is the new Fibonacci Heap and H the old one

Φ
(
H ′
)

= (t (H) + c) + 2 (m (H)− (c − 1) + 1) (2)

Where:
t (H) + c

I The # original trees + the ones created by the c calls.

m (H)− (c − 1) + 1
I The original marks - (c − 1) cleared marks by Cut + the

branch to y.mark == FALSE true.

106 / 120

Potential cost

Finally, assuming H ′ is the new Fibonacci Heap and H the old one

Φ
(
H ′
)

= (t (H) + c) + 2 (m (H)− (c − 1) + 1) (2)

Where:
t (H) + c

I The # original trees + the ones created by the c calls.

m (H)− (c − 1) + 1
I The original marks - (c − 1) cleared marks by Cut + the

branch to y.mark == FALSE true.

106 / 120

Potential cost

Finally, assuming H ′ is the new Fibonacci Heap and H the old one

Φ
(
H ′
)

= (t (H) + c) + 2 (m (H)− (c − 1) + 1) (2)

Where:
t (H) + c

I The # original trees + the ones created by the c calls.

m (H)− (c − 1) + 1
I The original marks - (c − 1) cleared marks by Cut + the

branch to y.mark == FALSE true.

106 / 120

Final change in potential
Thus

Φ
(
H ′
)

= t (H) + c + 2(m(H)− c + 2) = t (H) + 2m (H)− c + 4 (3)

Then, we have that the amortized cost is

ĉi = ci + t (H) + 2m (H)− c + 4− t (H)− 2m (H)
= ci + 4− c = O(c) + 4− c = O(1)

Observation
Now we can see why the term 2m(H):

One unit to pay for the cut and clearing the marking.
One unit for making of a node a root.

107 / 120

Final change in potential
Thus

Φ
(
H ′
)

= t (H) + c + 2(m(H)− c + 2) = t (H) + 2m (H)− c + 4 (3)

Then, we have that the amortized cost is

ĉi = ci + t (H) + 2m (H)− c + 4− t (H)− 2m (H)
= ci + 4− c = O(c) + 4− c = O(1)

Observation
Now we can see why the term 2m(H):

One unit to pay for the cut and clearing the marking.
One unit for making of a node a root.

107 / 120

Final change in potential
Thus

Φ
(
H ′
)

= t (H) + c + 2(m(H)− c + 2) = t (H) + 2m (H)− c + 4 (3)

Then, we have that the amortized cost is

ĉi = ci + t (H) + 2m (H)− c + 4− t (H)− 2m (H)
= ci + 4− c = O(c) + 4− c = O(1)

Observation
Now we can see why the term 2m(H):

One unit to pay for the cut and clearing the marking.
One unit for making of a node a root.

107 / 120

Final change in potential
Thus

Φ
(
H ′
)

= t (H) + c + 2(m(H)− c + 2) = t (H) + 2m (H)− c + 4 (3)

Then, we have that the amortized cost is

ĉi = ci + t (H) + 2m (H)− c + 4− t (H)− 2m (H)
= ci + 4− c = O(c) + 4− c = O(1)

Observation
Now we can see why the term 2m(H):

One unit to pay for the cut and clearing the marking.
One unit for making of a node a root.

107 / 120

Final change in potential
Thus

Φ
(
H ′
)

= t (H) + c + 2(m(H)− c + 2) = t (H) + 2m (H)− c + 4 (3)

Then, we have that the amortized cost is

ĉi = ci + t (H) + 2m (H)− c + 4− t (H)− 2m (H)
= ci + 4− c = O(c) + 4− c = O(1)

Observation
Now we can see why the term 2m(H):

One unit to pay for the cut and clearing the marking.
One unit for making of a node a root.

107 / 120

Final change in potential
Thus

Φ
(
H ′
)

= t (H) + c + 2(m(H)− c + 2) = t (H) + 2m (H)− c + 4 (3)

Then, we have that the amortized cost is

ĉi = ci + t (H) + 2m (H)− c + 4− t (H)− 2m (H)
= ci + 4− c = O(c) + 4− c = O(1)

Observation
Now we can see why the term 2m(H):

One unit to pay for the cut and clearing the marking.
One unit for making of a node a root.

107 / 120

Delete a node

It is easy to delete a node in the Fibonacci heap following the next
code

Fib-Heap-Delete(H , x)
1 Fib-Heap-Decrease-Key(H , x,−∞)
2 Fib-Heap-Extract-Min(H)

Again, the cost is O(D(n))

108 / 120

Proving the D (n) bound!!!

Let’s define the following
We define a quantity size(x)= the number of nodes at subtree rooted at
x, x itself.

The key to the analysis is as follows:
We shall show that size (x) is exponential in x.degree.
x.degree is always maintained as an accurate count of the degree of x.

109 / 120

Proving the D (n) bound!!!

Let’s define the following
We define a quantity size(x)= the number of nodes at subtree rooted at
x, x itself.

The key to the analysis is as follows:
We shall show that size (x) is exponential in x.degree.
x.degree is always maintained as an accurate count of the degree of x.

109 / 120

Proving the D (n) bound!!!

Let’s define the following
We define a quantity size(x)= the number of nodes at subtree rooted at
x, x itself.

The key to the analysis is as follows:
We shall show that size (x) is exponential in x.degree.
x.degree is always maintained as an accurate count of the degree of x.

109 / 120

Now...
Lemma 19.1
Let x be any node in a Fibonacci heap, and suppose that x.degree = k.
Let y1, y2, ..., yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then y1.degree ≥ 0 and
yi .degree ≥ i − 2 for i = 2, 3, ..., k.

Proof
1 Obviously, y1.degree ≥ 0.
2 For i ≥ 2, yi was linked to x, all of y1, y2, ..., yi−1were children of x,

so we must have had x.degree ≥ i − 1.
3 Node yi is linked to x only if we had x.degree = yi .degree, so we

must have also had yi .degree ≥ i − 1 when node yi was linked to x.
4 Since then, node yi has lost at most one child.

I Note: It would have been cut from x if it had lost two children.
5 We conclude that yi .degree ≥ i − 2.

110 / 120

Now...
Lemma 19.1
Let x be any node in a Fibonacci heap, and suppose that x.degree = k.
Let y1, y2, ..., yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then y1.degree ≥ 0 and
yi .degree ≥ i − 2 for i = 2, 3, ..., k.

Proof
1 Obviously, y1.degree ≥ 0.
2 For i ≥ 2, yi was linked to x, all of y1, y2, ..., yi−1were children of x,

so we must have had x.degree ≥ i − 1.
3 Node yi is linked to x only if we had x.degree = yi .degree, so we

must have also had yi .degree ≥ i − 1 when node yi was linked to x.
4 Since then, node yi has lost at most one child.

I Note: It would have been cut from x if it had lost two children.
5 We conclude that yi .degree ≥ i − 2.

110 / 120

Now...
Lemma 19.1
Let x be any node in a Fibonacci heap, and suppose that x.degree = k.
Let y1, y2, ..., yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then y1.degree ≥ 0 and
yi .degree ≥ i − 2 for i = 2, 3, ..., k.

Proof
1 Obviously, y1.degree ≥ 0.
2 For i ≥ 2, yi was linked to x, all of y1, y2, ..., yi−1were children of x,

so we must have had x.degree ≥ i − 1.
3 Node yi is linked to x only if we had x.degree = yi .degree, so we

must have also had yi .degree ≥ i − 1 when node yi was linked to x.
4 Since then, node yi has lost at most one child.

I Note: It would have been cut from x if it had lost two children.
5 We conclude that yi .degree ≥ i − 2.

110 / 120

Now...
Lemma 19.1
Let x be any node in a Fibonacci heap, and suppose that x.degree = k.
Let y1, y2, ..., yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then y1.degree ≥ 0 and
yi .degree ≥ i − 2 for i = 2, 3, ..., k.

Proof
1 Obviously, y1.degree ≥ 0.
2 For i ≥ 2, yi was linked to x, all of y1, y2, ..., yi−1were children of x,

so we must have had x.degree ≥ i − 1.
3 Node yi is linked to x only if we had x.degree = yi .degree, so we

must have also had yi .degree ≥ i − 1 when node yi was linked to x.
4 Since then, node yi has lost at most one child.

I Note: It would have been cut from x if it had lost two children.
5 We conclude that yi .degree ≥ i − 2.

110 / 120

Now...
Lemma 19.1
Let x be any node in a Fibonacci heap, and suppose that x.degree = k.
Let y1, y2, ..., yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then y1.degree ≥ 0 and
yi .degree ≥ i − 2 for i = 2, 3, ..., k.

Proof
1 Obviously, y1.degree ≥ 0.
2 For i ≥ 2, yi was linked to x, all of y1, y2, ..., yi−1were children of x,

so we must have had x.degree ≥ i − 1.
3 Node yi is linked to x only if we had x.degree = yi .degree, so we

must have also had yi .degree ≥ i − 1 when node yi was linked to x.
4 Since then, node yi has lost at most one child.

I Note: It would have been cut from x if it had lost two children.
5 We conclude that yi .degree ≥ i − 2.

110 / 120

Now...
Lemma 19.1
Let x be any node in a Fibonacci heap, and suppose that x.degree = k.
Let y1, y2, ..., yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then y1.degree ≥ 0 and
yi .degree ≥ i − 2 for i = 2, 3, ..., k.

Proof
1 Obviously, y1.degree ≥ 0.
2 For i ≥ 2, yi was linked to x, all of y1, y2, ..., yi−1were children of x,

so we must have had x.degree ≥ i − 1.
3 Node yi is linked to x only if we had x.degree = yi .degree, so we

must have also had yi .degree ≥ i − 1 when node yi was linked to x.
4 Since then, node yi has lost at most one child.

I Note: It would have been cut from x if it had lost two children.
5 We conclude that yi .degree ≥ i − 2.

110 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

111 / 120

Why Fibonacci?

The kth Fibonacci number is defined by the recurrence

Fk =

0 if k = 0
1 if k = 1
Fk−1 + Fk−2 if k ≥ 2

Lemma 19.2
For al integers k ≥ 0

Fk+2 = 1 +
k∑

i=0
Fi

Proof by induction k = 0....

112 / 120

Why Fibonacci?

The kth Fibonacci number is defined by the recurrence

Fk =

0 if k = 0
1 if k = 1
Fk−1 + Fk−2 if k ≥ 2

Lemma 19.2
For al integers k ≥ 0

Fk+2 = 1 +
k∑

i=0
Fi

Proof by induction k = 0....

112 / 120

The use of the Golden Ratio

Lemma 19.3
Let x be any node in a Fibonacci heap, and let k = x.degree. Then,
Fk+2 ≥ Φk , where Φ = 1+

√
5

2 (The golden ratio).

113 / 120

Golden Ratio

Building the Golden Ratio
1 Construct a unit square.
2 Draw a line from the midpoint of one side to an opposite corner.
3 Use that line as a radius for a circle to define a rectangle.

114 / 120

Golden Ratio

Building the Golden Ratio
1 Construct a unit square.
2 Draw a line from the midpoint of one side to an opposite corner.
3 Use that line as a radius for a circle to define a rectangle.

114 / 120

Golden Ratio
Building the Golden Ratio

1 Construct a unit square.
2 Draw a line from the midpoint of one side to an opposite corner.
3 Use that line as a radius for a circle to define a rectangle.

1

114 / 120

The use of the Golden Ratio

Lemma 19.4
Let x be any node in a Fibonacci Heap, k = x.degree. Then
size(x) ≥ Fk+2 ≥ Φk .

Proof
Let sk denote the minimum value for size(x) over all nodes x such
that x.degree = k.
Restrictions for sk :

I sk ≤ size(x) and sk ≤ sk+1 (monotonically increasing).

As in the previous lemma
y1, y2, ..., yk denote the children of x in the order they were linked to
x.

115 / 120

The use of the Golden Ratio

Lemma 19.4
Let x be any node in a Fibonacci Heap, k = x.degree. Then
size(x) ≥ Fk+2 ≥ Φk .

Proof
Let sk denote the minimum value for size(x) over all nodes x such
that x.degree = k.
Restrictions for sk :

I sk ≤ size(x) and sk ≤ sk+1 (monotonically increasing).

As in the previous lemma
y1, y2, ..., yk denote the children of x in the order they were linked to
x.

115 / 120

The use of the Golden Ratio

Lemma 19.4
Let x be any node in a Fibonacci Heap, k = x.degree. Then
size(x) ≥ Fk+2 ≥ Φk .

Proof
Let sk denote the minimum value for size(x) over all nodes x such
that x.degree = k.
Restrictions for sk :

I sk ≤ size(x) and sk ≤ sk+1 (monotonically increasing).

As in the previous lemma
y1, y2, ..., yk denote the children of x in the order they were linked to
x.

115 / 120

The use of the Golden Ratio

Lemma 19.4
Let x be any node in a Fibonacci Heap, k = x.degree. Then
size(x) ≥ Fk+2 ≥ Φk .

Proof
Let sk denote the minimum value for size(x) over all nodes x such
that x.degree = k.
Restrictions for sk :

I sk ≤ size(x) and sk ≤ sk+1 (monotonically increasing).

As in the previous lemma
y1, y2, ..., yk denote the children of x in the order they were linked to
x.

115 / 120

The use of the Golden Ratio

Lemma 19.4
Let x be any node in a Fibonacci Heap, k = x.degree. Then
size(x) ≥ Fk+2 ≥ Φk .

Proof
Let sk denote the minimum value for size(x) over all nodes x such
that x.degree = k.
Restrictions for sk :

I sk ≤ size(x) and sk ≤ sk+1 (monotonically increasing).

As in the previous lemma
y1, y2, ..., yk denote the children of x in the order they were linked to
x.

115 / 120

Example

For example

Now
Look at the board

116 / 120

Example

For example

Now
Look at the board

116 / 120

The use of the Golden Ratio

Proof continuation
Now, we need to proof that sk ≥ Fk+2

The cases for k = 0→ s0 = 1, and k = 1→ s1 = 2 are trivial because

F2 = F1 + F0 = 1 + 0 = 1 (4)

F3 = F2 + F1 = 1 + 1 = 2 (5)

117 / 120

The use of the Golden Ratio

Proof continuation
Now, we need to proof that sk ≥ Fk+2

The cases for k = 0→ s0 = 1, and k = 1→ s1 = 2 are trivial because

F2 = F1 + F0 = 1 + 0 = 1 (4)

F3 = F2 + F1 = 1 + 1 = 2 (5)

117 / 120

The use of the Golden Ratio

Proof continuation
Now, we need to proof that sk ≥ Fk+2

The cases for k = 0→ s0 = 1, and k = 1→ s1 = 2 are trivial because

F2 = F1 + F0 = 1 + 0 = 1 (4)

F3 = F2 + F1 = 1 + 1 = 2 (5)

117 / 120

Finally

Corollary 19.5
The maximum degree D(n) of any node in an n-node Fibonacci heap is
O(log n).

Proof
Look at the board!

118 / 120

Finally

Corollary 19.5
The maximum degree D(n) of any node in an n-node Fibonacci heap is
O(log n).

Proof
Look at the board!

118 / 120

Outline
1 Introduction

Basic Definitions
Ordered Trees

2 Binomial Trees
Example

3 Fibonacci Heap
Operations
Fibonacci Heap
Why Fibonacci Heaps?
Node Structure
Fibonacci Heaps Operations
Mergeable-Heaps operations - Make Heap
Mergeable-Heaps operations - Insertion
Mergeable-Heaps operations - Minimum
Mergeable-Heaps operations - Union

Complexity Analysis
Consolidate Algorithm
Potential cost
Operation: Decreasing a Key
Why Fibonacci?

4 Exercises
Some Exercises that you can try

119 / 120

Exercises

From Cormen’s book solve the following
20.2-2
20.2-3
20.2-4
20.3-1
20.3-2
20.4-1
20.4-2

120 / 120

	Introduction
	Basic Definitions
	Ordered Trees

	Binomial Trees
	Example

	Fibonacci Heap
	Operations
	Fibonacci Heap
	Why Fibonacci Heaps?
	Node Structure
	Fibonacci Heaps Operations
	Mergeable-Heaps operations - Make Heap
	Mergeable-Heaps operations - Insertion
	Mergeable-Heaps operations - Minimum
	Mergeable-Heaps operations - Union

	Complexity Analysis
	Consolidate Algorithm
	Potential cost
	Operation: Decreasing a Key
	Why Fibonacci?

	Exercises
	Some Exercises that you can try

