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1 Introduction

As indexes in databases started to be counted in the millions, the data struc-
tures to represent those in�xes required a way to have better bounds than the
ones provided, for example, binary trees. In addition, the data structure could
be so huge that it could not be stored in main memory. Therefore, it has
been necessary to build a new type of data structure for handling these type of
problems.

2 Motivation

Assuming that a disk spins at 10000 RPM, one revolution occurs in 0.006 of
a second. Crudely speaking, one disk access (Moving around the disk) takes
about the same time as 106 MIPS in a modern CPU/Core i7.

• Imagine that we decide to use a binary tree with 40 million of records.
Then, under a balanced binary tree, we have lg 40, 000, 000 ≈ 25.

What if... instead of having two children, we decide to have 10 children instead...
log10 40000000 ≈ 7.6. We only require to waste 0.045 second or 805 MIPS. What
if we use more children? A shorter three, but we still need to use a disk access
per key!!! What if we add more keys into each node!!! After all if we use the
idea of locality in a �le you are looking for the next nearby.

3 B-Trees Data Structure

A B-tree T is a rooted tree with properties

• Every node x has the following values:

� x.n= the number of keys stored at x

∗ The keys are stored in nondecreasing order, x.key1 ≤ x.key2 ≤
... ≤ x.keyn.

∗ x.leaf a boolean value.

• Each internal node contains x.n + 1 pointers x.c1, x.c2, ..., x.cx.n+1. Leaf
nodes have no children.

� the keys x.key_i separate ranges of keys: If ki is any key stored in
the subtree with root x.ci, then

k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ ... ≤ x.keyx.n ≤ kx.n+1

• All leaves have the same depth h.

• Nodes have Upper and Lower Bounds. For this, we use an integer t ≥ 2
(Minimum Degree).
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� Every node other than the root must have t−1 keys⇒ every internal
node 6= root has t children i.e.

� Every node must contain at most 2t− 1 keys. Therefore, an internal
node have at most 2t children. Full, if it contains exactly 2t− 1 keys

Figure 1: A B-Tree

3.1 The Height of the B-Tree

There is the following theorem to prove the height of the B-three.

Theorem 18.1

if n ≥ 1, then for any n-key B-Tree T of height h and minimum degree t ≥ 2,
h ≤ logt

n+1
2 .

Proof: In the slides, but look at (Fig. 2)

Figure 2: The Height of a B-Tree

3.2 How to Calculate the t Value when Page Size is a

Given

It is possible to calculate the possible t value by assuming the following:
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• For example, you have 4kb of page size

• Each key requires 32 bits = 4 bytes.

• Each pointers uses 32 bits = 4 bytes

• Each key in the tree has an associated payload of 64 bits = 8 bytes data
structure.

Then, by using the following calculation:

4 · (2t− 1) + 4 · (2t) + 8 · (2t− 1) ≤ 4096

16t− 12 ≤ 4096

t ≤ 255.25

Thus we can select t = 255 as a branching factor.

4 B-Trees Operations

For the following operations at the B-Tree data structure, we assume that:

1. The root of the B-tree is always in main memory:

(a) Disk-Read are never performed on it.

(b) Only When is written, we use a Disk-Write.

2. If a node is passed as parameter, it has already had all the necessary
Disk-Read operations performed on it before hand.

Then, we have the following codes for each of the Basic Operations: Search and
Creation.

4.1 Search

In this operation (Algorithm 1), we have the following costs:

• Worst Case:

� O(h) = O (logt n) disk reads when going through the entire tree.

� x.n < 2t⇒ O(t) for searching the key at each node

� Finally, we have that O(th) = O (t logt n) CPU time.
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Algorithm 1 The Search Operation in the B-Tree

4.2 Creating an Empty Tree

This is done by using the following algorithm (Algorithm 2). It requires O(1)
disk operation and O(1) CPU time.

Algorithm 2 The Create Operation in the B-Tree

4.3 Insertion Operation

Here is where the things become interesting!!! Why? Because we need to take
in account the following.

• Insertions can only be done in non-full nodes.

• The holding data structures for keys and pointers are arrays.

This means that if a node has 2t-1 keys something needs to be done in order to
make space in the node. For this, we follow the next operations:

1. Split the node around the median key.

2. You �nish with two nodes of size t− 1 and the median key y.
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3. Promote the median key to the father node to identify the new ranges.

4. If the father is full recursively split the father to make room.

The code for the operations Insertion and Split is in the slides. It works as
follow:

1. Insert at the root of T and the key k to be inserted.

(a) Use a a temporary variable r to look at the root

(b) If r.n == 2t − 1 Then prepare to split by creating an alternate s
father node (Look at the Slides).

i. Then Split the node s using Split-Child

ii. Inger using the Insert-Non full operation.

(c) else Insert using the Insert-Non full operation.

2. Split-Child using a non-full node x (Assumed to be in main memory), an
index i such that y = x.ci is a full child (Again assumed to be in main
memory).

(a) The code works as follow the element y has 2t children (2t− 1 keys)
but is reduced to t children. For this, the new node z takes the t
largest children from y, and z becomes a new child of x. The code's
lines work as follow:

i. Lines 1-11 creates node z and it gives the largest t− 1 keys and
corresponding t children of y.

ii. Lines 12-21 insert z as child of x.

A. In lines 13-16 space is made in the array of pointers to insert
the pointer x.ci+1 toward z.

B. In lines 18-20 space is made in the array of keys to insert
the key y.keyt (The one being promoted toward x when y is
splitted) in x.

iii. Last lines writes everything into the disk.

3. Insert-Non full using a node x to insert into the key k. The code's lines
work as follow:

(a) Lines 2-9 deals with the case that x is a leaf (Do not worry the codes
before entering these lines will never allow to insert into a full node).

(b) Line 11-21 deals with the case of x is not a leaf:

i. Lines 11-14 gets the correct child to insert the key k.

ii. Then x.ci is read into main memory.

iii. Line 15 checks if the child is full:

A. If that happens the child is split!!!

B. In line 17 the code checks where the key should be in y or z.

iv. Finally in line 21 the key k is inserted into x.ci.
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4.4 Deletion of a key

The main idea is to descend through the B-Tree to ensure that any not x that
is considered has at least t keys. For this, it could be necessary to move a key
down from parent. The code for deletion works as follow:

1. Empty root - make root s only child the new root.

Figure 3: Remove Root.

2. If the key k is in node x and x is a leaf, delete the key k from x.

Figure 4: Deleting x from leaf.

3. If the key k is in node x and x is an internal node, do the following:

(a) If the child y that precedes k in node x has at least t keys, then �nd
the predecessor k′ of k in the subtree rooted at y. Recursively delete
k′ , and replace k by k′ in x. (We can �nd k′ and delete it in a single
downward pass.)
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Figure 5: Deleting x from internal node, case 2.a.

(b) If y has fewer than t keys, then, symmetrically, examine the child
z that follows k in node x. If z has at least t keys, then �nd the
successor k′ of k in the subtree rooted at z. Recursively delete k′,
and replace k by k′ in x. (We can �nd k′ and delete it in a single
downward pass.)

Figure 6: Deleting x from internal node, case 2.b.

(c) Otherwise, if both y and z have only t − 1 keys, merge k and all of
into y, so that x loses both k and the pointer to z, and y now contains
2t− 1 keys. Then free z and recursively delete k from y.

Figure 7: Deleting x from internal node, case 2.c.
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4. If the key k is not present in internal node x, determine the root x.ci of the
appropriate subtree that must contain k, if k is in the tree at all. If x.ci
has only t − 1 keys, execute step 3a or 3b as necessary to guarantee that
we descend to a node containing at least t keys. Then �nish by recursing
on the appropriate child of x.

(a) If x.ci has only t− 1 keys but has an immediate sibling with at least
t keys, give x.ci an extra key by moving a key from x down into x.ci
, moving a key from x.ci's immediate left or right sibling up into x,
and moving the appropriate child pointer from the sibling into x.ci.

Figure 8: Deleting x from internal node, case 3.a.

(b) If x.ci and both of x.ci's immediate siblings have t − 1 keys, merge
x.ci with one sibling, which involves moving a key from x down into
the new merged node to become the median key for that node.

Figure 9: Deleting x from internal node, case 3.b.
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APPENDIX - PSEUDO-CODE for

Delete

Algorithm 3 B_Tree_Delete

Algorithm 4 remove
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Algorithm 5 copy_predecessor

Algorithm 6 Restore
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Algorithm 7 move_left

Algorithm 8 move_right
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Algorithm 9 combine
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