
Analysis of Algorithms
B-Trees

Andres Mendez-Vazquez

November 5, 2018

1 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

2 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

3 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Disk-based Environments

Something Notable
We have the following hierarchy of data access speed

1 CPU
2 Cache
3 Main Memory
4 Secondary Storage: Magnetic Disks and SSD
5 Tertiary Storage: Tapes

We know the following
Data is stored on disk in units called blocks or pages.
Every disk access has to read/write one or multiple blocks.
Even if we need to access a single integer stored in a disk block which
contains thousands of integers, we need to read the whole block in.

4 / 111

Now, What if you use a binary tree

In this structure the nodes are disk blocks
Disk Block 1

Disk Block 2 Disk Block 3

Disk Block 4 Disk Block 5 Disk Block 6

Still, We have the following problem
If a disk block is 8K (8192 bytes)
Problem the necessary information for a node is

I A key = 4 bytes
I A value = 4 bytes
I Two Children = 8 bytes

5 / 111

Now, What if you use a binary tree

In this structure the nodes are disk blocks
Disk Block 1

Disk Block 2 Disk Block 3

Disk Block 4 Disk Block 5 Disk Block 6

Still, We have the following problem
If a disk block is 8K (8192 bytes)
Problem the necessary information for a node is

I A key = 4 bytes
I A value = 4 bytes
I Two Children = 8 bytes

5 / 111

Now, What if you use a binary tree

In this structure the nodes are disk blocks
Disk Block 1

Disk Block 2 Disk Block 3

Disk Block 4 Disk Block 5 Disk Block 6

Still, We have the following problem
If a disk block is 8K (8192 bytes)
Problem the necessary information for a node is

I A key = 4 bytes
I A value = 4 bytes
I Two Children = 8 bytes

5 / 111

Problem!!!

Then
We use only 0.2% of the block is full

Even
If we store multiple tree nodes in a disk!!!

6 / 111

Problem!!!

Then
We use only 0.2% of the block is full

Even
If we store multiple tree nodes in a disk!!!

6 / 111

However

The query and update need to access O (log2 n) nodes

Block i

Block i+1

Block i+2

Block i+3

Worst Case O (log2 n) accesses to disk!!!

7 / 111

Increase the branching

With a large B

logB n� log2n (1)

Ok
We can minimize the number of disk access by increasing the
branching!!!
We need a way to access elements in the new branching.

8 / 111

Increase the branching

With a large B

logB n� log2n (1)

Ok
We can minimize the number of disk access by increasing the
branching!!!
We need a way to access elements in the new branching.

8 / 111

Motivation for B-Trees

Some facts!
Index structures for large datasets cannot be stored in main memory
(Actually, not anymore the case!!!).
Storing it on disk requires different approach to efficiency.
Assuming that a disk spins at 3600 RPM, one revolution occurs in
1/60 of a second, or 16.7 ms.
Crudely speaking, one disk access takes about the same time as
200,000 instructions!

9 / 111

Motivation for B-Trees

Some facts!
Index structures for large datasets cannot be stored in main memory
(Actually, not anymore the case!!!).
Storing it on disk requires different approach to efficiency.
Assuming that a disk spins at 3600 RPM, one revolution occurs in
1/60 of a second, or 16.7 ms.
Crudely speaking, one disk access takes about the same time as
200,000 instructions!

9 / 111

Motivation for B-Trees

Some facts!
Index structures for large datasets cannot be stored in main memory
(Actually, not anymore the case!!!).
Storing it on disk requires different approach to efficiency.
Assuming that a disk spins at 3600 RPM, one revolution occurs in
1/60 of a second, or 16.7 ms.
Crudely speaking, one disk access takes about the same time as
200,000 instructions!

9 / 111

Motivation for B-Trees

Some facts!
Index structures for large datasets cannot be stored in main memory
(Actually, not anymore the case!!!).
Storing it on disk requires different approach to efficiency.
Assuming that a disk spins at 3600 RPM, one revolution occurs in
1/60 of a second, or 16.7 ms.
Crudely speaking, one disk access takes about the same time as
200,000 instructions!

9 / 111

Motivation for B-Trees

Now
Assume that we use a binary tree to store about 20 million records.
We end up with a very deep binary tree with lots of different disk
accesses; log2 20× 106 is about 24, so this takes about 0.2 seconds.
We know we can’t improve on the log2 n lower bound on search for a
binary tree.
However, the solution is to use more branches and thus reduce the
height of the tree! As branching increases, depth decreases.

10 / 111

Motivation for B-Trees

Now
Assume that we use a binary tree to store about 20 million records.
We end up with a very deep binary tree with lots of different disk
accesses; log2 20× 106 is about 24, so this takes about 0.2 seconds.
We know we can’t improve on the log2 n lower bound on search for a
binary tree.
However, the solution is to use more branches and thus reduce the
height of the tree! As branching increases, depth decreases.

10 / 111

Motivation for B-Trees

Now
Assume that we use a binary tree to store about 20 million records.
We end up with a very deep binary tree with lots of different disk
accesses; log2 20× 106 is about 24, so this takes about 0.2 seconds.
We know we can’t improve on the log2 n lower bound on search for a
binary tree.
However, the solution is to use more branches and thus reduce the
height of the tree! As branching increases, depth decreases.

10 / 111

Motivation for B-Trees

Now
Assume that we use a binary tree to store about 20 million records.
We end up with a very deep binary tree with lots of different disk
accesses; log2 20× 106 is about 24, so this takes about 0.2 seconds.
We know we can’t improve on the log2 n lower bound on search for a
binary tree.
However, the solution is to use more branches and thus reduce the
height of the tree! As branching increases, depth decreases.

10 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

11 / 111

B-Trees definition

Example
34

15 20

5 10 17 19 21 25 30 35 40 48 55 61 75 95 105

45 60 90

Note: Leaves at the same level

Definitions
Every node x has the following attributes:

I x.n number of keys stored at node x.
F Each key has an associated payload (Pointer, values, etc).

I The keys are sorted key1 ≤ key2 ≤ ... ≤ keyx.n .
I x.leaf is a boolean value and denotes a leaf when is set to TRUE.

12 / 111

B-Trees definition

Example
34

15 20

5 10 17 19 21 25 30 35 40 48 55 61 75 95 105

45 60 90

Note: Leaves at the same level

Definitions
Every node x has the following attributes:

I x.n number of keys stored at node x.
F Each key has an associated payload (Pointer, values, etc).

I The keys are sorted key1 ≤ key2 ≤ ... ≤ keyx.n .
I x.leaf is a boolean value and denotes a leaf when is set to TRUE.

12 / 111

B-Trees definition

Example
34

15 20

5 10 17 19 21 25 30 35 40 48 55 61 75 95 105

45 60 90

Note: Leaves at the same level

Definitions
Every node x has the following attributes:

I x.n number of keys stored at node x.
F Each key has an associated payload (Pointer, values, etc).

I The keys are sorted key1 ≤ key2 ≤ ... ≤ keyx.n .
I x.leaf is a boolean value and denotes a leaf when is set to TRUE.

12 / 111

B-Trees definition

Example
34

15 20

5 10 17 19 21 25 30 35 40 48 55 61 75 95 105

45 60 90

Note: Leaves at the same level

Definitions
Every node x has the following attributes:

I x.n number of keys stored at node x.
F Each key has an associated payload (Pointer, values, etc).

I The keys are sorted key1 ≤ key2 ≤ ... ≤ keyx.n .
I x.leaf is a boolean value and denotes a leaf when is set to TRUE.

12 / 111

B-Trees definition

Example
34

15 20

5 10 17 19 21 25 30 35 40 48 55 61 75 95 105

45 60 90

Note: Leaves at the same level

13 / 111

B-Trees definition

In addition
Every node x has the following attributes:

I It contains x.n + 1 pointers to its children:

x.c1, x.c2, ..., x.cn+1

F Leaf nodes do not have children then they leave this field undefined.
F The keys are used to separate the keys stored at the B-Tree. For

example, if ki is any key stored in the subtree stored at tree with root
x.ci then

k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ ... ≤ x.keyn ≤ kx.n+1

14 / 111

B-Trees definition

In addition
Every node x has the following attributes:

I It contains x.n + 1 pointers to its children:

x.c1, x.c2, ..., x.cn+1

F Leaf nodes do not have children then they leave this field undefined.
F The keys are used to separate the keys stored at the B-Tree. For

example, if ki is any key stored in the subtree stored at tree with root
x.ci then

k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ ... ≤ x.keyn ≤ kx.n+1

14 / 111

B-Trees definition

In addition
Every node x has the following attributes:

I It contains x.n + 1 pointers to its children:

x.c1, x.c2, ..., x.cn+1

F Leaf nodes do not have children then they leave this field undefined.
F The keys are used to separate the keys stored at the B-Tree. For

example, if ki is any key stored in the subtree stored at tree with root
x.ci then

k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ ... ≤ x.keyn ≤ kx.n+1

14 / 111

B-Trees definition

In addition
Every node x has the following attributes:

I It contains x.n + 1 pointers to its children:

x.c1, x.c2, ..., x.cn+1

F Leaf nodes do not have children then they leave this field undefined.
F The keys are used to separate the keys stored at the B-Tree. For

example, if ki is any key stored in the subtree stored at tree with root
x.ci then

k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ ... ≤ x.keyn ≤ kx.n+1

14 / 111

B-Trees definition

Example
34

15 20

5 10 17 19 21 25 30 35 40 48 55 61 75 95 105

45 60 90

Note: Leaves at the same level

Minimum Degree
A fixed integer t ≥ 2 is called the minimum degree or branching of
the tree:

I if x 6= root→ t− 1 ≤ x.n ≤ 2t− 1
I If x = root→ 1 ≤ x.n ≤ 2t− 1

15 / 111

B-Trees definition

Example
34

15 20

5 10 17 19 21 25 30 35 40 48 55 61 75 95 105

45 60 90

Note: Leaves at the same level

Minimum Degree
A fixed integer t ≥ 2 is called the minimum degree or branching of
the tree:

I if x 6= root→ t− 1 ≤ x.n ≤ 2t− 1
I If x = root→ 1 ≤ x.n ≤ 2t− 1

15 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

16 / 111

We want to store large sets of indexes

First
We assume that the set is so voluminous that only a small part can be
kept in main memory!!!

Thus
We want to minimize the number of access to hard drive by using the
locality principle!!!

17 / 111

We want to store large sets of indexes

First
We assume that the set is so voluminous that only a small part can be
kept in main memory!!!

Thus
We want to minimize the number of access to hard drive by using the
locality principle!!!

17 / 111

Application: Minimizing disk access when looking for
indexes in databases

Each node is stored as a page
Page size determines t. Since t is usually large, this implies a large
branching factor, so height is small.

Example with t = 1001, we have 1000 (key, elements) per node

18 / 111

Application: Minimizing disk access when looking for
indexes in databases

Each node is stored as a page
Page size determines t. Since t is usually large, this implies a large
branching factor, so height is small.

Example with t = 1001, we have 1000 (key, elements) per node

1000

1000 1000 1000

1000 1000 1000

Branching 1001

18 / 111

Application: Minimizing disk access when looking for
indexes in databases

Example with (2t− 1) + 1 = 1001, we have 1000 (key, elements) per
node

1000

1000 1000 1000

1000 1000 1000

Branching 1001

19 / 111

Application: Minimizing disk access when looking for
indexes in databases

The example above
It can hold over one billion keys.

I the height is only 2 (Assuming root at height 0), so we can find any
key with only two disk accesses (Compared to red-black trees, where
the branching factor is 2).

I Then, disk accesses are minimal!!!

20 / 111

Application: Minimizing disk access when looking for
indexes in databases

The example above
It can hold over one billion keys.

I the height is only 2 (Assuming root at height 0), so we can find any
key with only two disk accesses (Compared to red-black trees, where
the branching factor is 2).

I Then, disk accesses are minimal!!!

20 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

21 / 111

Height of a B-Tree

Theorem 18.1
Let n be the number of keys in T , n ≥ 1, t ≥ 2, and h be the height of T .
Then h ≤ logt

n+1
2

Proof
The root of a B-tree T contains at least one key, and all other nodes
contain at least t− 1 keys.
Thus, T , whose height is h,

I It has at least 2 nodes at depth 1.
I At least 2t nodes at depth 2.
I At least 2t2 nodes at depth 3.
I Then, depth h has at least 2th−1 nodes.

22 / 111

Height of a B-Tree

Theorem 18.1
Let n be the number of keys in T , n ≥ 1, t ≥ 2, and h be the height of T .
Then h ≤ logt

n+1
2

Proof
The root of a B-tree T contains at least one key, and all other nodes
contain at least t− 1 keys.
Thus, T , whose height is h,

I It has at least 2 nodes at depth 1.
I At least 2t nodes at depth 2.
I At least 2t2 nodes at depth 3.
I Then, depth h has at least 2th−1 nodes.

22 / 111

Height of a B-Tree

Theorem 18.1
Let n be the number of keys in T , n ≥ 1, t ≥ 2, and h be the height of T .
Then h ≤ logt

n+1
2

Proof
The root of a B-tree T contains at least one key, and all other nodes
contain at least t− 1 keys.
Thus, T , whose height is h,

I It has at least 2 nodes at depth 1.
I At least 2t nodes at depth 2.
I At least 2t2 nodes at depth 3.
I Then, depth h has at least 2th−1 nodes.

22 / 111

Height of a B-Tree

Theorem 18.1
Let n be the number of keys in T , n ≥ 1, t ≥ 2, and h be the height of T .
Then h ≤ logt

n+1
2

Proof
The root of a B-tree T contains at least one key, and all other nodes
contain at least t− 1 keys.
Thus, T , whose height is h,

I It has at least 2 nodes at depth 1.
I At least 2t nodes at depth 2.
I At least 2t2 nodes at depth 3.
I Then, depth h has at least 2th−1 nodes.

22 / 111

Height of a B-Tree

Theorem 18.1
Let n be the number of keys in T , n ≥ 1, t ≥ 2, and h be the height of T .
Then h ≤ logt

n+1
2

Proof
The root of a B-tree T contains at least one key, and all other nodes
contain at least t− 1 keys.
Thus, T , whose height is h,

I It has at least 2 nodes at depth 1.
I At least 2t nodes at depth 2.
I At least 2t2 nodes at depth 3.
I Then, depth h has at least 2th−1 nodes.

22 / 111

For example

We have the following

Depth
Number
Of Nodes

23 / 111

Height of a B-Tree

We have at least
1 Depth 0 - One key
2 Depth 1 - 2t0(t− 1)
3 Depth 2 - 2t1(t− 1)
4 Depth 3 - 2t2(t− 1)
5 ...

Thus

n ≥ 1 + (t− 1)
h∑

i=1
2ti−1 (2)

24 / 111

Height of a B-Tree

We have at least
1 Depth 0 - One key
2 Depth 1 - 2t0(t− 1)
3 Depth 2 - 2t1(t− 1)
4 Depth 3 - 2t2(t− 1)
5 ...

Thus

n ≥ 1 + (t− 1)
h∑

i=1
2ti−1 (2)

24 / 111

Height of a B-Tree

We have at least
1 Depth 0 - One key
2 Depth 1 - 2t0(t− 1)
3 Depth 2 - 2t1(t− 1)
4 Depth 3 - 2t2(t− 1)
5 ...

Thus

n ≥ 1 + (t− 1)
h∑

i=1
2ti−1 (2)

24 / 111

Height of a B-Tree

We have at least
1 Depth 0 - One key
2 Depth 1 - 2t0(t− 1)
3 Depth 2 - 2t1(t− 1)
4 Depth 3 - 2t2(t− 1)
5 ...

Thus

n ≥ 1 + (t− 1)
h∑

i=1
2ti−1 (2)

24 / 111

Height of a B-Tree

We have at least
1 Depth 0 - One key
2 Depth 1 - 2t0(t− 1)
3 Depth 2 - 2t1(t− 1)
4 Depth 3 - 2t2(t− 1)
5 ...

Thus

n ≥ 1 + (t− 1)
h∑

i=1
2ti−1 (2)

24 / 111

Height of a B-Tree

Finally

n ≥ 1 + 2(t− 1)
(

th − 1
t− 1

)
= 2th − 1 (3)

Therefore

th ≤ n + 1
2 (4)

25 / 111

Height of a B-Tree

Finally

n ≥ 1 + 2(t− 1)
(

th − 1
t− 1

)
= 2th − 1 (3)

Therefore

th ≤ n + 1
2 (4)

25 / 111

Height of a B-Tree

Finally

h ≤ logt

n + 1
2 (5)

26 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

27 / 111

Constraints on the Operations

The root of the B-tree is always in main memory
1 Disk-Read are never performed on it.
2 Only When is written, we use a Disk-Write.

If a node is passed as parameter
It has already had all the necessary Disk-Read operations performed on it
before hand.

In the code that follows, we use:
Disk-Read: To move node from disk to memory.
Disk-Write: To move node from memory to disk.

28 / 111

Constraints on the Operations

The root of the B-tree is always in main memory
1 Disk-Read are never performed on it.
2 Only When is written, we use a Disk-Write.

If a node is passed as parameter
It has already had all the necessary Disk-Read operations performed on it
before hand.

In the code that follows, we use:
Disk-Read: To move node from disk to memory.
Disk-Write: To move node from memory to disk.

28 / 111

Constraints on the Operations

The root of the B-tree is always in main memory
1 Disk-Read are never performed on it.
2 Only When is written, we use a Disk-Write.

If a node is passed as parameter
It has already had all the necessary Disk-Read operations performed on it
before hand.

In the code that follows, we use:
Disk-Read: To move node from disk to memory.
Disk-Write: To move node from memory to disk.

28 / 111

Constraints on the Operations

The root of the B-tree is always in main memory
1 Disk-Read are never performed on it.
2 Only When is written, we use a Disk-Write.

If a node is passed as parameter
It has already had all the necessary Disk-Read operations performed on it
before hand.

In the code that follows, we use:
Disk-Read: To move node from disk to memory.
Disk-Write: To move node from memory to disk.

28 / 111

Constraints on the Operations

The root of the B-tree is always in main memory
1 Disk-Read are never performed on it.
2 Only When is written, we use a Disk-Write.

If a node is passed as parameter
It has already had all the necessary Disk-Read operations performed on it
before hand.

In the code that follows, we use:
Disk-Read: To move node from disk to memory.
Disk-Write: To move node from memory to disk.

28 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

29 / 111

Search operation

Pseudo-Code
B-Tree-Search(x, k)

1 i = 1
2 while i ≤ x.n and k > x.key [i]
3 i = i + 1
4 if i ≤ x.n and k == x.key [i]
5 return (x, i)
6 elseif x.leaf

7 return NIL
8 else Disk-Read(x.c [i])
9 return B-Tree-Search(x.c [i] , k)

30 / 111

Search operation

Pseudo-Code
B-Tree-Search(x, k)

1 i = 1
2 while i ≤ x.n and k > x.key [i]
3 i = i + 1
4 if i ≤ x.n and k == x.key [i]
5 return (x, i)
6 elseif x.leaf

7 return NIL
8 else Disk-Read(x.c [i])
9 return B-Tree-Search(x.c [i] , k)

30 / 111

Search operation

Pseudo-Code
B-Tree-Search(x, k)

1 i = 1
2 while i ≤ x.n and k > x.key [i]
3 i = i + 1
4 if i ≤ x.n and k == x.key [i]
5 return (x, i)
6 elseif x.leaf

7 return NIL
8 else Disk-Read(x.c [i])
9 return B-Tree-Search(x.c [i] , k)

30 / 111

Search operation

Pseudo-Code
B-Tree-Search(x, k)

1 i = 1
2 while i ≤ x.n and k > x.key [i]
3 i = i + 1
4 if i ≤ x.n and k == x.key [i]
5 return (x, i)
6 elseif x.leaf

7 return NIL
8 else Disk-Read(x.c [i])
9 return B-Tree-Search(x.c [i] , k)

30 / 111

Search operation

Pseudo-Code
B-Tree-Search(x, k)

1 i = 1
2 while i ≤ x.n and k > x.key [i]
3 i = i + 1
4 if i ≤ x.n and k == x.key [i]
5 return (x, i)
6 elseif x.leaf

7 return NIL
8 else Disk-Read(x.c [i])
9 return B-Tree-Search(x.c [i] , k)

30 / 111

Using recursion to make the search easier

So, we use line 1 to 5
1 Move to the key x.key [i] such that k ≤ x.key [i]
2 To return the value if stored at the node by the sorted keys!!!

If the node is a leaf
Return NIL == “That key is not in the B-Tree”

The key could be in the next level
Then, Disk-Read(x.c [i]) and call the recursion in the children node already
in memory.

31 / 111

Using recursion to make the search easier

So, we use line 1 to 5
1 Move to the key x.key [i] such that k ≤ x.key [i]
2 To return the value if stored at the node by the sorted keys!!!

If the node is a leaf
Return NIL == “That key is not in the B-Tree”

The key could be in the next level
Then, Disk-Read(x.c [i]) and call the recursion in the children node already
in memory.

31 / 111

Using recursion to make the search easier

So, we use line 1 to 5
1 Move to the key x.key [i] such that k ≤ x.key [i]
2 To return the value if stored at the node by the sorted keys!!!

If the node is a leaf
Return NIL == “That key is not in the B-Tree”

The key could be in the next level
Then, Disk-Read(x.c [i]) and call the recursion in the children node already
in memory.

31 / 111

Using recursion to make the search easier

So, we use line 1 to 5
1 Move to the key x.key [i] such that k ≤ x.key [i]
2 To return the value if stored at the node by the sorted keys!!!

If the node is a leaf
Return NIL == “That key is not in the B-Tree”

The key could be in the next level
Then, Disk-Read(x.c [i]) and call the recursion in the children node already
in memory.

31 / 111

Search operation

Note
Search(root[t], k) returns (x, i) or NIL if no such key.

32 / 111

Cost of Search

Worst Cost
O(h) = O (logt n) disk reads when going through the entire tree.
x.n < 2t⇒ O(t) for searching the key at each node
Finally, we have that O(th) = O (t logt n) CPU time.

33 / 111

Cost of Search

Worst Cost
O(h) = O (logt n) disk reads when going through the entire tree.
x.n < 2t⇒ O(t) for searching the key at each node
Finally, we have that O(th) = O (t logt n) CPU time.

33 / 111

Cost of Search

Worst Cost
O(h) = O (logt n) disk reads when going through the entire tree.
x.n < 2t⇒ O(t) for searching the key at each node
Finally, we have that O(th) = O (t logt n) CPU time.

33 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

34 / 111

Creating an empty tree

Pseudo-Code
B-Tree-Create(T)

1 x =Allocate-Node()
2 x.leaf =TRUE
3 x.n = 0
4 Disk-Write(x)
5 T.root = x

Note
To create a nonempty tree, first create an empty tree and then insert
nodes.

35 / 111

Creating an empty tree

Pseudo-Code
B-Tree-Create(T)

1 x =Allocate-Node()
2 x.leaf =TRUE
3 x.n = 0
4 Disk-Write(x)
5 T.root = x

Note
To create a nonempty tree, first create an empty tree and then insert
nodes.

35 / 111

Cost of Create

Worst Cost
O(1) disk accesses.
O(1) CPU time.

36 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

37 / 111

Insertion
Something Notable
Here is where the things become interesting!!!

Insertions can only be done in non-full nodes.
The holding data structures for keys and pointers are arrays!!!

What?
This means that if a node has 2t− 1 keys, something needs to be done in
order to make space in the node.

Process
1 Split the node around the median key.
2 You finish with two nodes of size t− 1 and the median key y.
3 Promote the median key to the father node to identify the new

ranges.
4 If the father is full recursively split the father to make room.

38 / 111

Insertion
Something Notable
Here is where the things become interesting!!!

Insertions can only be done in non-full nodes.
The holding data structures for keys and pointers are arrays!!!

What?
This means that if a node has 2t− 1 keys, something needs to be done in
order to make space in the node.

Process
1 Split the node around the median key.
2 You finish with two nodes of size t− 1 and the median key y.
3 Promote the median key to the father node to identify the new

ranges.
4 If the father is full recursively split the father to make room.

38 / 111

Insertion
Something Notable
Here is where the things become interesting!!!

Insertions can only be done in non-full nodes.
The holding data structures for keys and pointers are arrays!!!

What?
This means that if a node has 2t− 1 keys, something needs to be done in
order to make space in the node.

Process
1 Split the node around the median key.
2 You finish with two nodes of size t− 1 and the median key y.
3 Promote the median key to the father node to identify the new

ranges.
4 If the father is full recursively split the father to make room.

38 / 111

Insertion
Something Notable
Here is where the things become interesting!!!

Insertions can only be done in non-full nodes.
The holding data structures for keys and pointers are arrays!!!

What?
This means that if a node has 2t− 1 keys, something needs to be done in
order to make space in the node.

Process
1 Split the node around the median key.
2 You finish with two nodes of size t− 1 and the median key y.
3 Promote the median key to the father node to identify the new

ranges.
4 If the father is full recursively split the father to make room.

38 / 111

Insertion
Something Notable
Here is where the things become interesting!!!

Insertions can only be done in non-full nodes.
The holding data structures for keys and pointers are arrays!!!

What?
This means that if a node has 2t− 1 keys, something needs to be done in
order to make space in the node.

Process
1 Split the node around the median key.
2 You finish with two nodes of size t− 1 and the median key y.
3 Promote the median key to the father node to identify the new

ranges.
4 If the father is full recursively split the father to make room.

38 / 111

Insertion
Something Notable
Here is where the things become interesting!!!

Insertions can only be done in non-full nodes.
The holding data structures for keys and pointers are arrays!!!

What?
This means that if a node has 2t− 1 keys, something needs to be done in
order to make space in the node.

Process
1 Split the node around the median key.
2 You finish with two nodes of size t− 1 and the median key y.
3 Promote the median key to the father node to identify the new

ranges.
4 If the father is full recursively split the father to make room.

38 / 111

Insertion
Something Notable
Here is where the things become interesting!!!

Insertions can only be done in non-full nodes.
The holding data structures for keys and pointers are arrays!!!

What?
This means that if a node has 2t− 1 keys, something needs to be done in
order to make space in the node.

Process
1 Split the node around the median key.
2 You finish with two nodes of size t− 1 and the median key y.
3 Promote the median key to the father node to identify the new

ranges.
4 If the father is full recursively split the father to make room.

38 / 111

Important!!!

We always insert at...
THE LEAF LEVEL!!!

Therefore
What if the leaf child becomes full?

39 / 111

Important!!!

We always insert at...
THE LEAF LEVEL!!!

Therefore
What if the leaf child becomes full?

39 / 111

Splitting

Splitting
Applied to a full child of a non-full parent when full≡ 2t− 1 keys.

Example with t = 4

40 / 111

Splitting

Splitting
Applied to a full child of a non-full parent when full≡ 2t− 1 keys.

Example with t = 4

20 24 2920 29

21 22 23 24 25 26 27 21 22 23 25 26 27

40 / 111

Split-Child

Algorithm
B-Tree-Split-Child(x, i)

1. z = Allocate-Node()
2. y = x.ci

3. z.leaf = y.leaf

4. z.n = t− 1
5. for j = 1 and t− 1
6. z.key [j] = y.key [j + t]
7. if not y.leaf
8. for j = 1 to t

9. z.c [j] = y.c [j + t]
10. y.n = t− 1

11. for j = x.n + 1 downto i + 1
12. x.c [j + 1] = x.c [j]
13. x.c [i + 1] = z

14. for j = x.n downto i

15. x.key [j + 1] = x.key [j]
16. x.key [i] = y.key [t]
17. x.n = x.n + 1
18. Disk-Write(y)
19. Disk-Write(z)
20. Disk-Write(x)

41 / 111

Explanation

First
The code works as follow:

I the element y has 2t children (2t− 1 keys) but is reduced to t children.
I For this, the new node z takes the t largest children from y, and z

becomes a new child of x.

42 / 111

Explanation

First
The code works as follow:

I the element y has 2t children (2t− 1 keys) but is reduced to t children.
I For this, the new node z takes the t largest children from y, and z

becomes a new child of x.

42 / 111

Explanation

First
The code works as follow:

I the element y has 2t children (2t− 1 keys) but is reduced to t children.
I For this, the new node z takes the t largest children from y, and z

becomes a new child of x.

42 / 111

Detailed Explanation
First
Lines 1-4 creates node z

1. z = Allocate-Node()
2. y = x.ci

3. z.leaf = y.leaf

4. z.n = t− 1

Lines 1-4

21 22 23 24 24 26 27

20 2920 29

21 22 23 24 25 26 27

43 / 111

Detailed Explanation

First
Lines 5-6 copies the keys from position j + 1 in the y node to position j in
node z:
5. for j = 1 and t− 1
6. z.key [j] = y.key [j + t]

Lines 5-6

21 22 23 24 26 27 25 21 22 23 24 24 26 27

20 29 20 29

44 / 111

Detailed Explanation

First
Lines 5-6 copies the keys from position j + 1 in the y node to position j in
node z:
5. for j = 1 and t− 1
6. z.key [j] = y.key [j + t]

Lines 5-6

21 22 23 24 25 26 2721 22 23 24 27 25 26

20 29 20 29

45 / 111

Detailed Explanation

Then
Lines 7-8 are used to copy the children if you are not a leaf

7. if not y.leaf
8. for j = 1 to t

9. z.c [j] = y.c [j + t]

Lines 5-6

21 22 23 24 25 26 2721 22 23 24 25 26 27

20 29 20 29

46 / 111

Detailed Explanation

Then
Lines 7-8 are used to copy the children if you are not a leaf

7. if not y.leaf
8. for j = 1 to t

9. z.c [j] = y.c [j + t]

Lines 5-6

21 22 23 24 25 26 2721 22 23 24 25 26 27

20 29 20 29

47 / 111

Detailed Explanation

Then
Lines 7-8 are used to copy the children if you are not a leaf

7. if not y.leaf
8. for j = 1 to t

9. z.c [j] = y.c [j + t]

21 22 23 24 25 26 27

20 29

48 / 111

Detailed Explanation

Then
Line 10 adjust the count for y.
10. y.n = t− 1

49 / 111

Detailed Explanation

Then
Line 11-13 make space to the pointer for the z node
11. for j = x.n + 1 downto i + 1
12. x.c [j + 1] = x.c [j]
13. x.c [i + 1] = z

21 22 23 24 25 26 27

From the Back to
the Front

20 29

50 / 111

Detailed Explanation

Then
Line 11-13 make space to the pointer for the z node
11. for j = x.n + 1 downto i + 1
12. x.c [j + 1] = x.c [j]
13. x.c [i + 1] = z

21 22 23 24 25 26 27

20 29

51 / 111

Detailed Explanation

Then
Line 14-15 make space to key from the z node to the node x

14. for j = x.n downto i

15. x.key [j + 1] = x.key [j]

21 22 23 24 25 26 27

20 29

52 / 111

Detailed Explanation

Then
Line 16-17 copy the key to the correct place and increase the counter of x

16. x.key [i] = y.key [t]
17. x.n = x.n + 1

21 22 23 25 26 27

20 24 29

53 / 111

Detailed Explanation

Then
Line 18-20 Write everything to the hard drive
18. Disk-Write(y)
19. Disk-Write(z)
20. Disk-Write(x)

54 / 111

Cost of Split-Child

Complexity
Θ(t) CPU time the for loop to go through the keys
O(1) disk writes.

55 / 111

Insert

Code
B-Tree-Insert(T, k)

1 r = T.root

2 if r.n == 2t− 1
3 s =Allocate-Node()
4 T.root = s

5 s.leaf =FALSE
6 s.n = 0
7 s.c [1] = r

8 B-Tree-Split-Childs(s, 1)
9 B-Tree-Insert-Nonfull(s, k)
10 else B-Tree-Insert-Nonfull(s, k)

56 / 111

Insert

Code
B-Tree-Insert(T, k)

1 r = T.root

2 if r.n == 2t− 1
3 s =Allocate-Node()
4 T.root = s

5 s.leaf =FALSE
6 s.n = 0
7 s.c [1] = r

8 B-Tree-Split-Childs(s, 1)
9 B-Tree-Insert-Nonfull(s, k)
10 else B-Tree-Insert-Nonfull(s, k)

56 / 111

Insert

Code
B-Tree-Insert(T, k)

1 r = T.root

2 if r.n == 2t− 1
3 s =Allocate-Node()
4 T.root = s

5 s.leaf =FALSE
6 s.n = 0
7 s.c [1] = r

8 B-Tree-Split-Childs(s, 1)
9 B-Tree-Insert-Nonfull(s, k)
10 else B-Tree-Insert-Nonfull(s, k)

56 / 111

Insert

Code
B-Tree-Insert(T, k)

1 r = T.root

2 if r.n == 2t− 1
3 s =Allocate-Node()
4 T.root = s

5 s.leaf =FALSE
6 s.n = 0
7 s.c [1] = r

8 B-Tree-Split-Childs(s, 1)
9 B-Tree-Insert-Nonfull(s, k)
10 else B-Tree-Insert-Nonfull(s, k)

56 / 111

Explanation

First
Insert using the root of T and the key k to be inserted.

Second
1 Use a a temporary variable r to look at the root
2 If r.n == 2t− 1 Then prepare to split by creating an alternate s

father node.
1 Then Split the node s using Split-Child
2 Insert using the Insert-Non full operation.

3 else Insert using the Insert-Non full operation.

57 / 111

Explanation

First
Insert using the root of T and the key k to be inserted.

Second
1 Use a a temporary variable r to look at the root
2 If r.n == 2t− 1 Then prepare to split by creating an alternate s

father node.
1 Then Split the node s using Split-Child
2 Insert using the Insert-Non full operation.

3 else Insert using the Insert-Non full operation.

57 / 111

Explanation

First
Insert using the root of T and the key k to be inserted.

Second
1 Use a a temporary variable r to look at the root
2 If r.n == 2t− 1 Then prepare to split by creating an alternate s

father node.
1 Then Split the node s using Split-Child
2 Insert using the Insert-Non full operation.

3 else Insert using the Insert-Non full operation.

57 / 111

Explanation

First
Insert using the root of T and the key k to be inserted.

Second
1 Use a a temporary variable r to look at the root
2 If r.n == 2t− 1 Then prepare to split by creating an alternate s

father node.
1 Then Split the node s using Split-Child
2 Insert using the Insert-Non full operation.

3 else Insert using the Insert-Non full operation.

57 / 111

Explanation

First
Insert using the root of T and the key k to be inserted.

Second
1 Use a a temporary variable r to look at the root
2 If r.n == 2t− 1 Then prepare to split by creating an alternate s

father node.
1 Then Split the node s using Split-Child
2 Insert using the Insert-Non full operation.

3 else Insert using the Insert-Non full operation.

57 / 111

Insert-Full

Note
First, modify tree (if necessary) to create room for new key. Then, call
Insert-Nonfull()

Example

58 / 111

Insert-Full

Note
First, modify tree (if necessary) to create room for new key. Then, call
Insert-Nonfull()

Example

24

21 22 23 24 25 26 27 21 22 23 25 26 27

58 / 111

Insert-Nonfull

Algorithm
B-Tree-Insert-Nonfull(x, k)

1. i = x.n

2. if x.leaf

3. while i ≥ 1 and k < x.key [i]
4. x.key [i + 1] = x.key [i]
5. i = i− 1
6. x.key [i + 1] = k

7. x.n = x.n + 1
8. Disk-Write(x)

9. else while i ≥ 1 and k < x.key [i]
10. i = i− 1
11. i = i + 1
12. Disk-Read(x.c [i])
13. if x.c [i] .n == 2t− 1
14. B-Tree-Split-Child(x, i)
15. if k > x.key [i]
16. i = i + 1
17. B-Tree-Insert-Nonfull(x.c [i] , k)

59 / 111

Explanation

Line 1
it gets the rightmost key of the B-Tree

1. i = x.n

if x.leaf == TRUE

We make space on the key array because we have space for it.
3. while i ≥ 1 and k < x.key [i]
4. x.key [i + 1] = x.key [i]
5. i = i− 1

60 / 111

Explanation

Line 1
it gets the rightmost key of the B-Tree

1. i = x.n

if x.leaf == TRUE

We make space on the key array because we have space for it.
3. while i ≥ 1 and k < x.key [i]
4. x.key [i + 1] = x.key [i]
5. i = i− 1

60 / 111

Explanation

Insert the key with the payload at the correct position and increase
the counter of x

6. x.key [i + 1] = k

7. x.n = x.n + 1

Write everything to the disk
8. Disk-Write(x)

61 / 111

Explanation

Insert the key with the payload at the correct position and increase
the counter of x

6. x.key [i + 1] = k

7. x.n = x.n + 1

Write everything to the disk
8. Disk-Write(x)

61 / 111

Explanation

if x.leaf ! = TRUE

Get into the correct child and bring it from the hard drive
9. else while i ≥ 1 and k < x.key [i]
10. i = i− 1
11. i = i + 1
12. Disk-Read(x.c [i])

if the child x.c [i] is full split it
13. if x.c [i] .n == 2t− 1
14. B-Tree-Split-Child(x, i)

62 / 111

Explanation

if x.leaf ! = TRUE

Get into the correct child and bring it from the hard drive
9. else while i ≥ 1 and k < x.key [i]
10. i = i− 1
11. i = i + 1
12. Disk-Read(x.c [i])

if the child x.c [i] is full split it
13. if x.c [i] .n == 2t− 1
14. B-Tree-Split-Child(x, i)

62 / 111

Explanation

Now we need to decide
if k == x.key[i]

Then, we take the left child of x.key[i]
If not,

we take the right child of x.key[i]

15. if k > x.key [i]
16. i = i + 1

After that, we insert in a non-full element
17. B-Tree-Insert-Nonfull(x.c [i] , k)

63 / 111

Explanation

Now we need to decide
if k == x.key[i]

Then, we take the left child of x.key[i]
If not,

we take the right child of x.key[i]

15. if k > x.key [i]
16. i = i + 1

After that, we insert in a non-full element
17. B-Tree-Insert-Nonfull(x.c [i] , k)

63 / 111

Explanation

Now we need to decide
if k == x.key[i]

Then, we take the left child of x.key[i]
If not,

we take the right child of x.key[i]

15. if k > x.key [i]
16. i = i + 1

After that, we insert in a non-full element
17. B-Tree-Insert-Nonfull(x.c [i] , k)

63 / 111

Explanation

Now we need to decide
if k == x.key[i]

Then, we take the left child of x.key[i]
If not,

we take the right child of x.key[i]

15. if k > x.key [i]
16. i = i + 1

After that, we insert in a non-full element
17. B-Tree-Insert-Nonfull(x.c [i] , k)

63 / 111

Explanation

Now we need to decide
if k == x.key[i]

Then, we take the left child of x.key[i]
If not,

we take the right child of x.key[i]

15. if k > x.key [i]
16. i = i + 1

After that, we insert in a non-full element
17. B-Tree-Insert-Nonfull(x.c [i] , k)

63 / 111

Cost of Insertion

Worst case
Θ(logt n) disk writes.
Θ(t logt n) CPU time.

64 / 111

Example of Constructing a B-Tree by Insertion

Proceed as follows
Suppose we start with an empty B-Tree and keys arrive in the following
order:

1, 12, 8, 2, 25, 6 ,14, 28, 19, 20, 17, 7, 52, 16, 48, 60, 68, 3, 26, 29,
53, 55, 24, 23, 22, 11.

Something Notable
We want to build a B-Tree with at most 5 keys. Thus:

2t− 1 = 5
2t = 6
t = 3

65 / 111

Example of Constructing a B-Tree by Insertion

Proceed as follows
Suppose we start with an empty B-Tree and keys arrive in the following
order:

1, 12, 8, 2, 25, 6 ,14, 28, 19, 20, 17, 7, 52, 16, 48, 60, 68, 3, 26, 29,
53, 55, 24, 23, 22, 11.

Something Notable
We want to build a B-Tree with at most 5 keys. Thus:

2t− 1 = 5
2t = 6
t = 3

65 / 111

Example of Constructing a B-Tree by Insertion

Proceed as follows
Suppose we start with an empty B-Tree and keys arrive in the following
order:

1, 12, 8, 2, 25, 6 ,14, 28, 19, 20, 17, 7, 52, 16, 48, 60, 68, 3, 26, 29,
53, 55, 24, 23, 22, 11.

Something Notable
We want to build a B-Tree with at most 5 keys. Thus:

2t− 1 = 5
2t = 6
t = 3

65 / 111

Example of Constructing a B-Tree by Insertion

Proceed as follows
Suppose we start with an empty B-Tree and keys arrive in the following
order:

1, 12, 8, 2, 25, 6 ,14, 28, 19, 20, 17, 7, 52, 16, 48, 60, 68, 3, 26, 29,
53, 55, 24, 23, 22, 11.

Something Notable
We want to build a B-Tree with at most 5 keys. Thus:

2t− 1 = 5
2t = 6
t = 3

65 / 111

First

We insert the first 5 elements in the root node

1 2 8 12 25

66 / 111

Constructing a B-Tree

Then, we want to insert 6 and for this we split promoting 8

1 2 8 12 25

67 / 111

Constructing a B-Tree

Then, we want to insert 6 and for this we split promoting 8

 8

1 2 12 25

68 / 111

Constructing a B-Tree

6, 14, 28, 19 get added to the leaf nodes

 8

1 2 6 12 14 19 25 28

69 / 111

Constructing a B-Tree

Add 20, Split necessary by promoting 19

8 19

1 2 6 12 14 25 28

70 / 111

Constructing a B-Tree

Add 20 to the leaf node

8 19

1 2 6 12 14 20 25 28

71 / 111

Constructing a B-Tree

Add 17, 7, 52, 16, 48 to the leaf nodes

8 19

1 2 6 7 12 14 16 17 20 25 28 48 52

72 / 111

Constructing a B-Tree

Add 60 to a leaf node, it is necessary to split by promoting 28 to the
root

8 19 28

1 2 6 7 12 14 16 17 20 25 48 52

73 / 111

Constructing a B-Tree

Add 60

8 19 28

1 2 6 7 12 14 16 17 20 25 48 52

74 / 111

Constructing a B-Tree

Add 68, 3, 26, 27, 53 to the leaf nodes

8 19 28

1 2 6 7 12 14 16 17 20 25 48 52 60

75 / 111

Constructing a B-Tree

Add 68, 3, 26, 27, 53 to the leaf nodes

8 19 28

1 2 3 6 7 12 14 16 17 20 25 26 27 48 52 53 60 68

76 / 111

Constructing a B-Tree

Add 55 by splitting a leaf node and promoting 54

8 19 28 53

1 2 3 6 7 12 14 16 17 20 25 26 27 48 52 60 68

77 / 111

Constructing a B-Tree

Add 55 to the leaf

8 19 28 53

1 2 3 6 7 12 14 16 17 20 25 26 27 48 52 55 60 68

78 / 111

Constructing a B-Tree

Add 24 to the leaf

8 19 28 53

1 2 3 6 7 12 14 16 17 20 24 25 26 27 48 52 55 60 68

79 / 111

Constructing a B-Tree

Add 22 by splitting a leaf node and promoting 25

8 19 25 28 53

1 2 3 6 7 12 14 16 17 20 22 24 26 27 48 52 55 60 68

80 / 111

Constructing a B-Tree

Add 11 to the leaf node by adding a empty root node

8 19 25 28 53

1 2 3 6 7 12 14 16 17 20 22 24 26 27 48 52 55 60 68

81 / 111

Constructing a B-Tree

Split the old root by promoting 25

8 19

1 2 3 6 7 20 22 24 26 27 12 14 16 17

25

28 53

48 52 55 60 68

82 / 111

Constructing a B-Tree

Add 11 to the leaf

8 19

1 2 3 6 7 20 22 24 26 27 11 12 14 16 17

25

28 53

48 52 55 60 68

83 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

84 / 111

Deletion

Main idea
Recursively descend the tree.

Ensure
Ensure any non-root node x that is considered for deletion has at least t
keys.

Note that
May have to move a key down from parent.

85 / 111

Deletion

Main idea
Recursively descend the tree.

Ensure
Ensure any non-root node x that is considered for deletion has at least t
keys.

Note that
May have to move a key down from parent.

85 / 111

Deletion

Main idea
Recursively descend the tree.

Ensure
Ensure any non-root node x that is considered for deletion has at least t
keys.

Note that
May have to move a key down from parent.

85 / 111

Deletion Cases

Case 0: You delete the only key at the root ≈ Empty root
Then, you make root’s only child the new root:

Case 1: k in x and x.leaf == TRUE, then delete k from x.

86 / 111

Deletion Cases

Case 0: You delete the only key at the root ≈ Empty root
Then, you make root’s only child the new root:

Case 1: k in x and x.leaf == TRUE, then delete k from x.

leaf

86 / 111

Deletion Cases

Case 2: k in x, x internal

not a
leaf

87 / 111

Deletion Cases

Subcase A: y has at least t keys; find predecessor k′ of k in subtree
rooted at y, recursively delete k′, replace k by k′ in x.

not a
leaf

Predecesor
of k

88 / 111

Deletion Cases

Subcase B: z has at least t keys; find successor k′ in subtree rooted
at z, recursively delete k′, replace k by k′ in x.

not a
leaf

Succesor
of k

89 / 111

Deletion Cases

Subcase C: y and z both have t− 1 keys; merge k and z into y, free
z, recursively delete k from y.

not a
leaf

not a
leaf

90 / 111

Deletion cases

Case 3
If the key k is not present in internal node x, determine the root x.ci

of the appropriate subtree that must contain k, if k is in the tree at
all.
If x.ci has only t− 1 keys, execute step 3a or 3b as necessary to
guarantee that we descend to a node containing at least t keys.
Then finish by recursing on the appropriate child of x.

91 / 111

Deletion cases

Case 3
If the key k is not present in internal node x, determine the root x.ci

of the appropriate subtree that must contain k, if k is in the tree at
all.
If x.ci has only t− 1 keys, execute step 3a or 3b as necessary to
guarantee that we descend to a node containing at least t keys.
Then finish by recursing on the appropriate child of x.

91 / 111

Deletion cases

Case 3
If the key k is not present in internal node x, determine the root x.ci

of the appropriate subtree that must contain k, if k is in the tree at
all.
If x.ci has only t− 1 keys, execute step 3a or 3b as necessary to
guarantee that we descend to a node containing at least t keys.
Then finish by recursing on the appropriate child of x.

91 / 111

Case 3.A

Subcase A
If x.ci has only t− 1 keys but has an immediate sibling with at least t keys, give
x.ci an extra key by moving a key from x down into x.ci , moving a key from
x.ci’s immediate left or right sibling up into x, and moving the appropriate child
pointer from the sibling into x.ci.

not a
leaf

Recursively
Descend

92 / 111

Case 3.B

Subcase B
If x.ci and both of x.ci’s immediate siblings have t− 1 keys, merge x.ci

with one sibling, which involves moving a key from x down into the new
merged node to become the median key for that node.

not a
leaf

Recursively
Descend

93 / 111

Delete Example

Delete 14 - Case 3.B

8 19

1 2 3 6 7 20 22 24 48 52 55 60 6826 27 11 12 14 16 17

25

28 53

94 / 111

Delete Example

Delete 14 - move 25 down from the root and join the children nodes

8 19 25 28 53

1 2 3 6 7 20 22 24 26 27 11 12 14 16 17 48 52 55 60 68

95 / 111

Delete Example

Delete 14

8 19 25 28 53

1 2 3 6 7 20 22 24 26 27 11 12 16 17 48 52 55 60 68

96 / 111

Delete Example

Case 0

8 19 25 28 53

1 2 3 6 7 20 22 24 26 27 11 12 16 17 48 52 55 60 68

97 / 111

Delete Example

Delete 28 - Case 2.C

8 19 25 28 53

1 2 3 6 7 20 22 24 26 27 11 12 16 17 48 52 55 60 68

98 / 111

Delete Example

Join the left and right children of 28 and move it down

8 19 25 53

1 2 3 6 7 20 22 24 26 27 28 48 52 11 12 16 17 55 60 68

99 / 111

Delete Example

Recursively Delete 28

8 19 25 53

1 2 3 6 7 20 22 24 26 27 48 52 11 12 16 17 55 60 68

100 / 111

Delete Example

Delete 25 - Case 2.B

8 19 25 53

1 2 3 6 7 20 22 24 26 27 48 52 11 12 16 17 55 60 68

101 / 111

Delete Example

Move 26 to the position of 25

8 19 25 53

1 2 3 6 7 20 22 24 26 27 48 52 11 12 16 17 55 60 68

102 / 111

Delete Example

Move 26 to the position of 25

8 19 26 53

1 2 3 6 7 20 22 24 27 48 52 11 12 16 17 55 60 68

103 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

104 / 111

Reasons for using B-Trees

Justification
When searching tables held on disc, the cost of each disc transfer is high,
but does not depend much on the amount of data transferred, especially if
consecutive items are transferred.

Example
If we use a B-Tree of order 101, say, we can transfer each node in one
disc read operation.
A B-Tree of order 101 and height 3 can hold 1014 − 1 items
(approximately 100 million) and any item can be accessed with 3 disc
reads (assuming we hold the root in memory).

105 / 111

Reasons for using B-Trees

Justification
When searching tables held on disc, the cost of each disc transfer is high,
but does not depend much on the amount of data transferred, especially if
consecutive items are transferred.

Example
If we use a B-Tree of order 101, say, we can transfer each node in one
disc read operation.
A B-Tree of order 101 and height 3 can hold 1014 − 1 items
(approximately 100 million) and any item can be accessed with 3 disc
reads (assuming we hold the root in memory).

105 / 111

Reasons for using B-Trees

Justification
When searching tables held on disc, the cost of each disc transfer is high,
but does not depend much on the amount of data transferred, especially if
consecutive items are transferred.

Example
If we use a B-Tree of order 101, say, we can transfer each node in one
disc read operation.
A B-Tree of order 101 and height 3 can hold 1014 − 1 items
(approximately 100 million) and any item can be accessed with 3 disc
reads (assuming we hold the root in memory).

105 / 111

Comparing trees

Binary trees
They can become unbalanced and lose their good time complexity
(big O).
AVL trees are strict binary trees that overcome the balance problem.
Heaps remain balanced, but only prioritize (not order) the keys.

Multi-way trees
B-Trees can be m-way, they have any even number of children.
The 2-3 (or 3 way) approximates a permanently balanced binary tree.

106 / 111

Comparing trees

Binary trees
They can become unbalanced and lose their good time complexity
(big O).
AVL trees are strict binary trees that overcome the balance problem.
Heaps remain balanced, but only prioritize (not order) the keys.

Multi-way trees
B-Trees can be m-way, they have any even number of children.
The 2-3 (or 3 way) approximates a permanently balanced binary tree.

106 / 111

Comparing trees

Binary trees
They can become unbalanced and lose their good time complexity
(big O).
AVL trees are strict binary trees that overcome the balance problem.
Heaps remain balanced, but only prioritize (not order) the keys.

Multi-way trees
B-Trees can be m-way, they have any even number of children.
The 2-3 (or 3 way) approximates a permanently balanced binary tree.

106 / 111

Comparing trees

Binary trees
They can become unbalanced and lose their good time complexity
(big O).
AVL trees are strict binary trees that overcome the balance problem.
Heaps remain balanced, but only prioritize (not order) the keys.

Multi-way trees
B-Trees can be m-way, they have any even number of children.
The 2-3 (or 3 way) approximates a permanently balanced binary tree.

106 / 111

Comparing trees

Binary trees
They can become unbalanced and lose their good time complexity
(big O).
AVL trees are strict binary trees that overcome the balance problem.
Heaps remain balanced, but only prioritize (not order) the keys.

Multi-way trees
B-Trees can be m-way, they have any even number of children.
The 2-3 (or 3 way) approximates a permanently balanced binary tree.

106 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

107 / 111

Extending the B-Tree Structure: B+ Trees

B+ Tree
A B+ Tree is like a B-tree except that the interior and leaf nodes have a
different structure.

Actually
A B+ tree can be viewed as a B-tree in which each node contains only
keys and pointers to the children.

Finally
At leaves level you have the real data items(They could be pointers to
specific data).

Node
This allows to pack more information in each node.

108 / 111

Extending the B-Tree Structure: B+ Trees

B+ Tree
A B+ Tree is like a B-tree except that the interior and leaf nodes have a
different structure.

Actually
A B+ tree can be viewed as a B-tree in which each node contains only
keys and pointers to the children.

Finally
At leaves level you have the real data items(They could be pointers to
specific data).

Node
This allows to pack more information in each node.

108 / 111

Extending the B-Tree Structure: B+ Trees

B+ Tree
A B+ Tree is like a B-tree except that the interior and leaf nodes have a
different structure.

Actually
A B+ tree can be viewed as a B-tree in which each node contains only
keys and pointers to the children.

Finally
At leaves level you have the real data items(They could be pointers to
specific data).

Node
This allows to pack more information in each node.

108 / 111

Extending the B-Tree Structure: B+ Trees

B+ Tree
A B+ Tree is like a B-tree except that the interior and leaf nodes have a
different structure.

Actually
A B+ tree can be viewed as a B-tree in which each node contains only
keys and pointers to the children.

Finally
At leaves level you have the real data items(They could be pointers to
specific data).

Node
This allows to pack more information in each node.

108 / 111

In the paper

Something Notable
“Modularizing B+-Trees: Three-Level B+-Trees Work Fine” by Shigero
Sasaki and Takuya Araki from NEC

NEC
NEC Corporation (Nippon Denki Kabushiki Gaisha) is a Japanese
multinational provider of information technology (IT) services and
products, with its headquarters in Minato, Tokyo, Japan.NEC provides
information technology (IT) and network solutions to business enterprises,
communications services providers and to government agencies.

109 / 111

In the paper

Something Notable
“Modularizing B+-Trees: Three-Level B+-Trees Work Fine” by Shigero
Sasaki and Takuya Araki from NEC

NEC
NEC Corporation (Nippon Denki Kabushiki Gaisha) is a Japanese
multinational provider of information technology (IT) services and
products, with its headquarters in Minato, Tokyo, Japan.NEC provides
information technology (IT) and network solutions to business enterprises,
communications services providers and to government agencies.

109 / 111

Outline
1 Introduction

Motivation for B-Trees

2 Basic Definitions
B-Trees definition
Application for B-Trees

3 Height of a B-Tree
The Height Property

4 Operations
B-Tree operations
Search
Create
Insertion
Insertion Example

Deletion
Delete Example for t = 3

Reasons for using B-Trees
B+-Trees

5 Exercises
Some Exercises that you can try

110 / 111

Exercises

You can try the following ones
1 18.1-3
2 18.1-4
3 18.2-3
4 18.2-5
5 18.2-4
6 18.2-6
7 18.2-7
8 18.3-1

111 / 111

	Introduction
	Motivation for B-Trees

	Basic Definitions
	B-Trees definition
	Application for B-Trees

	Height of a B-Tree
	The Height Property

	Operations
	B-Tree operations
	Search
	Create
	Insertion
	Insertion Example

	Deletion
	Delete Example for t=3

	Reasons for using B-Trees
	B+-Trees

	Exercises
	Some Exercises that you can try

