Analysis of Algorithms
 Skip Lists

Andres Mendez-Vazquez

November 6, 2020

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.
- Course records.

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.
- Course records.
- Symbol table (with duplicates).

Dictionaries

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.
- Course records.
- Symbol table (with duplicates).
- Language dictionary (Webster, RAE, Oxford).

Example: Course records

Dictionary with member records

key ID	Student Name	HW1		
123	Stan Smith	49	\cdots	
125	Sue Margolin	45	\cdots	
128	Billie King	24	\cdots	
\vdots				
	\vdots			
190	Roy Miller	36	\cdots	

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

The dictionary ADT operations

Some operations on dictionaries

- size(): Returns the size of the dictionary.

The dictionary ADT operations

Some operations on dictionaries

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.

The dictionary ADT operations

Some operations on dictionaries

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findltem(key): Locates the item with the specified key.

The dictionary ADT operations

Some operations on dictionaries

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findltem(key): Locates the item with the specified key.
- findAllltems(key): Locates all items with the specified key.

The dictionary ADT operations

Some operations on dictionaries

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findltem(key): Locates the item with the specified key.
- findAllltems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.

The dictionary ADT operations

Some operations on dictionaries

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findltem(key): Locates the item with the specified key.
- findAllltems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllltems(key): Removes all items with the specified key.

The dictionary ADT operations

Some operations on dictionaries

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findltem(key): Locates the item with the specified key.
- findAllltems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllltems(key): Removes all items with the specified key.
- insertltem(key,element): Inserts a new key-element pair.

Example of unordered dictionary

Example

Consider an empty unordered dictionary, we have then...

Operation	Dictionary	Output
Insertltem $(5, A)$	$\{(5, A)\}$	
Insertltem $(7, B)$	$\{(5, A),(7, B)\}$	
findItem (7)	$\{(5, A),(7, B)\}$	B
findltem (4)	$\{(5, A),(7, B)\}$	No Such Key
size ()	$\{(5, A),(7, B)\}$	2
removeltem(5)	$\{(7, B)\}$	A
findltem (4)	$\{(7, B)\}$	No Such Key

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

How to implement a dictionary?

There are many ways of implementing a dictionary

- Sequences / Arrays
- Ordered
- Unordered

How to implement a dictionary?

There are many ways of implementing a dictionary

- Sequences / Arrays
- Ordered
- Unordered
- Binary search trees

How to implement a dictionary?

There are many ways of implementing a dictionary

- Sequences / Arrays
- Ordered
- Unordered
- Binary search trees
- Skip lists

How to implement a dictionary?

There are many ways of implementing a dictionary

- Sequences / Arrays
- Ordered
- Unordered
- Binary search trees
- Skip lists
- Hash tables

Recall Arrays...

Unordered array

34	14	12	22	18

Recall Arrays...

Unordered array

34	14	12	22	18

Complexity

- Searching and removing takes $O(n)$.

Recall Arrays...

Unordered array

34	14	12	22	18

Complexity

- Searching and removing takes $O(n)$.
- Inserting takes $O(1)$.

Recall Arrays...

Unordered array

34	14	12	22	18

Complexity

- Searching and removing takes $O(n)$.
- Inserting takes $O(1)$.

Applications

This approach is good for log files where insertions are frequent but searches and removals are rare.

More Arrays

Ordered array

12	14	18	22	34

More Arrays

Ordered array

12	14	18	22	34

Complexity

- Searching takes $O(\log n)$ time (binary search).

More Arrays

Ordered array

12	14	18	22	34

Complexity

- Searching takes $O(\log n)$ time (binary search).
- Insert and removing takes $\mathrm{O}(\mathrm{n})$ time.

More Arrays

Ordered array

12	14	18	22	34

Complexity

- Searching takes $O(\log n)$ time (binary search).
- Insert and removing takes $\mathrm{O}(\mathrm{n})$ time.

Applications

This aproach is good for look-up tables where searches are frequent but insertions and removals are rare.

Binary searches

Features

- Narrow down the search range in stages
- "High-low" game.

Binary searches

Example find Element(22)

2	4	5	7	8	9	12	14	17	19	22	25	27	28	33
\uparrow	\uparrow													
$L O W$														

Binary searches

Example find Element(22)

Binary searches

Example find Element(22)

Binary searches

Example find Element(22)

Recall binary search trees

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

Recall binary search trees

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

- Each internal node stores an item (k, e) of a dictionary.

Recall binary search trees

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

- Each internal node stores an item (k, e) of a dictionary.
- Keys stored at nodes in the left subtree of v are less than or equal to k.

Recall binary search trees

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

- Each internal node stores an item (k, e) of a dictionary.
- Keys stored at nodes in the left subtree of v are less than or equal to k.
- Keys stored at nodes in the right subtree of v are greater than or equal to k.

Binary searches Trees

Problem!!! Keeping a Well Balanced Binary Search Tree can be difficult!!!

Not only that...

Binary Search Trees

- They are not so well suited for parallel environments.
- Unless a heavy modifications are done

Not only that...

Binary Search Trees

- They are not so well suited for parallel environments.
- Unless a heavy modifications are done

In addition

We want to have a

Not only that...

Binary Search Trees

- They are not so well suited for parallel environments.
- Unless a heavy modifications are done

In addition

We want to have a

- Compact Data Structure.

Not only that...

Binary Search Trees

- They are not so well suited for parallel environments.
- Unless a heavy modifications are done

In addition

We want to have a

- Compact Data Structure.
- Using as little memory as possible

Thus, we have the following possibilities
Unordered array complexities
Insertion: $O(1)$ Search: $O(n)$

Thus, we have the following possibilities
Unordered array complexities
Insertion: $O(1)$ Search: $O(n)$

Ordered array complexities

Insertion: $O(n)$
Search: $O(\log n)$

Thus, we have the following possibilities

Unordered array complexities

Insertion: $O(1)$ Search: $O(n)$

Ordered array complexities

Insertion: $O(n)$ Search: $O(\log n)$

Well balanced binary trees complexities
Insertion: $O(\log n)$
Search: $O(\log n)$
Big Drawback - Complex parallel Implementation and waste of memory.

We want something better!!!

For this

We will present a probabilistic data structure known as Skip List!!!

Outline

（1）Dictionaries
－Definitions
－Dictionary operations
－Dictionary implementation
（2）Skip Lists
－Why Skip Lists？
－The Idea Behind All of It！！！
－A Little of Optimization
－Skip List Definition
－Skip list implementation
－Insertion for Skip Lists
－Deletion in Skip Lists
－Properties
－The Height of the Skip List
－Search and Insertion Times
－Applications
－Summary

Starting from Scratch

First

- Imagine that you only require to have searches.

Starting from Scratch

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n)$ search complexity).

Starting from Scratch

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n)$ search complexity).
- Then, using this How do we speed up searches?

Starting from Scratch

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n)$ search complexity).
- Then, using this How do we speed up searches?

Something Notable

- Use two link list, one a subsequence of the other.

Starting from Scratch

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n)$ search complexity).
- Then, using this How do we speed up searches?

Something Notable

- Use two link list, one a subsequence of the other.

Imagine the two lists as a road system

(1) The Bottom is the normal road system, L_{2}.

Starting from Scratch

First

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it $(\Theta(n)$ search complexity).
- Then, using this How do we speed up searches?

Something Notable

- Use two link list, one a subsequence of the other.

Imagine the two lists as a road system

(1) The Bottom is the normal road system, L_{2}.
(2) The Top is the high way system, L_{1}.

Outline

（1）Dictionaries
－Definitions
－Dictionary operations
－Dictionary implementation
（2）Skip Lists
－Why Skip Lists？
－The Idea Behind All of It！！！
－A Little of Optimization
－Skip List Definition
－Skip list implementation
－Insertion for Skip Lists
－Deletion in Skip Lists
－Properties
－The Height of the Skip List
－Search and Insertion Times
－Applications
－Summary

Example

High-Bottom Way System

Thus, we have...

The following rule
To Search first search in the top one $\left(L_{1}\right)$ as far as possible, then go down and search in the bottom one (L_{2}).

We can use a little bit of optimization

We have the following worst cost

Search Cost High-Bottom Way System $=$ Cost Searching Top $+\ldots$
Cost Search Bottom
Or
Search Cost $=$ length $\left(L_{1}\right)+$ Cost Search Bottom

We can use a little bit of optimization

We have the following worst cost

Search Cost High-Bottom Way System $=$ Cost Searching Top $+\ldots$
Cost Search Bottom
Or
Search Cost $=$ length $\left(L_{1}\right)+$ Cost Search Bottom

The interesting part is "Cost Search Bottom"

This can be calculated by the following quotient:

$$
\frac{\text { length }\left(L_{2}\right)}{\text { length }\left(L_{1}\right)}
$$

Why?

If we think we are jumping

Why?

If we think we are jumping

Then cost of searching each of the bottom segments $=2$
Thus the ratio is a "decent" approximation to the worst case search

$$
\frac{\text { length }\left(L_{2}\right)}{\text { length }\left(L_{1}\right)}=\frac{5}{3}=1.66
$$

Outline

（1）Dictionaries
－Definitions
－Dictionary operations
－Dictionary implementation
（2）Skip Lists
－Why Skip Lists？
－The Idea Behind All of It！！！
－A Little of Optimization
－Skip List Definition
－Skip list implementation
－Insertion for Skip Lists
－Deletion in Skip Lists
－Properties
－The Height of the Skip List
－Search and Insertion Times
－Applications
－Summary

Thus, we have...

Then, the cost for a search (when length $\left(L_{2}\right)=n$)

Search Cost $=$ length $\left(L_{1}\right)+\frac{\text { length }\left(L_{2}\right)}{\text { length }\left(L_{1}\right)}=$ length $\left(L_{1}\right)+\frac{n}{\text { length }\left(L_{1}\right)}$

Thus, we have...

Then, the cost for a search (when length $\left(L_{2}\right)=n$)

Search Cost $=$ length $\left(L_{1}\right)+\frac{\text { length }\left(L_{2}\right)}{\text { length }\left(L_{1}\right)}=$ length $\left(L_{1}\right)+\frac{n}{\text { length }\left(L_{1}\right)}$

Taking the derivative with respect to length $\left(L_{1}\right)$ and making the result equal 0

$$
\frac{d \text { Search Cost }}{\text { dlength }\left(L_{1}\right)}=1-\frac{n}{\text { length }^{2}\left(L_{1}\right)}=0
$$

Final Cost

We have that the optimal length for L_{1}

$$
\operatorname{length}\left(L_{1}\right)=\sqrt{n}
$$

Final Cost

We have that the optimal length for L_{1}

$$
\operatorname{length}\left(L_{1}\right)=\sqrt{n}
$$

Plugging back in (Eq. 1)

Search Cost $=\sqrt{n}+\frac{n}{\sqrt{n}}=\sqrt{n}+\sqrt{n}=2 \times \sqrt{n}$

Data structure with a Square Root Relation

Something like this

Now
For a three layer link list data structure
We get a search cost of $3 \times \sqrt[3]{n}$

Now

For a three layer link list data structure
We get a search cost of $3 \times \sqrt[3]{n}$
In general for k layers, we have

$$
k \times \sqrt[k]{n}
$$

Now

For a three layer link list data structure
We get a search cost of $3 \times \sqrt[3]{n}$
In general for k layers, we have

$$
k \times \sqrt[k]{n}
$$

Thus, if we make $k=\log _{2} n$, we get

$$
\begin{aligned}
\text { Search Cost } & =\log _{2} n \times \log _{2} \sqrt[n]{n} \\
& =\log _{2} n \times(n)^{1 / \log _{2} n} \\
& =\log _{2} n \times(n)^{\log _{n} 2} \\
& =\log _{2} n \times 2 \\
& =\Theta\left(\log _{2} n\right)
\end{aligned}
$$

Thus

Something Notable

We get the advantages of the binary search trees with a simpler architecture!!!

Thus

Binary Search Trees

Thus

Binary Search Trees

New Architecture

Problem!!!

If we decided to have a deterministic algorithm

- We need to decide how to do
- Insertion
- Deletions

Problem!!!

If we decided to have a deterministic algorithm

- We need to decide how to do
- Insertion
- Deletions

We can simplify them

- By using probabilities

Thus

We are ready to give a

Definition for Skip List

Outline

（1）Dictionaries
－Definitions
－Dictionary operations
－Dictionary implementation
（2）Skip Lists
－Why Skip Lists？
－The Idea Behind All of It！！！
－A Little of Optimization
－Skip List Definition
－Skip list implementation
－Insertion for Skip Lists
－Deletion in Skip Lists
－Properties
－The Height of the Skip List
－Search and Insertion Times
－Applications
－Summary

A Little Bit of History

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

A Little Bit of History

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.

A Little Bit of History

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.
- He was the co-author of the static code analysis tool FindBugs.

A Little Bit of History

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.
- He was the co-author of the static code analysis tool FindBugs.
- He was highly influential in the development of the current memory model of the Java language together with his PhD student Jeremy Manson.

Skip List Definition

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_{0}, S_{1}, \ldots, S_{h}$ such that:

Skip List Definition

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_{0}, S_{1}, \ldots, S_{h}$ such that:

- Each list S_{i} contains the special keys $+\infty$ and $-\infty$

Skip List Definition

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_{0}, S_{1}, \ldots, S_{h}$ such that:

- Each list S_{i} contains the special keys $+\infty$ and $-\infty$
- List S_{0} contains the keys of S in nondecreasing order

Skip List Definition

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_{0}, S_{1}, \ldots, S_{h}$ such that:

- Each list S_{i} contains the special keys $+\infty$ and $-\infty$
- List S_{0} contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one

Skip List Definition

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_{0}, S_{1}, \ldots, S_{h}$ such that:

- Each list S_{i} contains the special keys $+\infty$ and $-\infty$
- List S_{0} contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one
- $S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \ldots \supseteq S_{h}$

Skip List Definition

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_{0}, S_{1}, \ldots, S_{h}$ such that:

- Each list S_{i} contains the special keys $+\infty$ and $-\infty$
- List S_{0} contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one
- $S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \ldots \supseteq S_{h}$
- List S_{h} contains only the two special keys

Skip List Definition

Example

Skip list search

We search for a key x in a skip list as follows

- We start at the first position of the top list.

Skip list search

We search for a key x in a skip list as follows

- We start at the first position of the top list.
- At the current position p, we compare x with $y==$ p.next.key

Skip list search

We search for a key x in a skip list as follows

- We start at the first position of the top list.
- At the current position p, we compare x with $y==$ p.next.key
- $x==y$: we return p.next.element

Skip list search

We search for a key x in a skip list as follows

- We start at the first position of the top list.
- At the current position p, we compare x with $y==$ p.next.key
- $x==y$: we return p.next.element
- $x>y$: we scan forward

Skip list search

We search for a key x in a skip list as follows

- We start at the first position of the top list.
- At the current position p, we compare x with $y==$ p.next.key
- $x==y$: we return p.next.element
- $x>y$: we scan forward
- $x<y$: we "drop down"

Skip list search

We search for a key x in a skip list as follows

- We start at the first position of the top list.
- At the current position p, we compare x with $y==$ p.next.key
- $x==y$: we return p.next.element
- $x>y$: we scan forward
- $x<y$: we "drop down"
- If we try to drop down past the bottom list, we return null.

Example search for 78

$x<$ p.next.key: "drop down"

Example search for 78

$x>$ p.next.key: "scan forward"

Example search for 78

$x<$ p.next.key: "drop down"

Example search for 78

$x>$ p.next.key: "scan forward"

Example search for 78

$x>$ p.next.key: "scan forward"

Example search for 78

$x<$ p.next.key: "drop down"

Example search for 78

$x==y:$ we return $p . n e x t . e l e m e n t$

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

Also we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

Example

Quad-Node Example

Skip lists uses Randomization

Use of randomization
We use a randomized algorithm to insert items into a skip list.

Skip lists uses Randomization

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

Skip lists uses Randomization

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.

Skip lists uses Randomization

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Skip lists uses Randomization

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

Skip lists uses Randomization

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

- e.g. It occurs when all the coin tosses give "heads."

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Insertion

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

Insertion

To insert

To insert an entry (key,object) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails:

Insertion

To insert

To insert an entry (key,object) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails:
- We denote with i the number of times the coin came up heads.

We have two cases

If $i \geq h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1}

- Each containing only the two special keys.

We have two cases

If $i \geq h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1}

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i}$.

We have two cases

If $i \geq h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1}

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i}$.
- For $j \leftarrow 0, \ldots, i$, we insert item (key,object) into list S_{j} after position p_{j}.

We have two cases

If $i \geq h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1}

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i}$.
- For $j \leftarrow 0, \ldots, i$, we insert item (key,object) into list S_{j} after position p_{j}.

If $i<h$, we do not insert new lists

- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i-1}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i-1}$.

We have two cases

If $i \geq h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1}

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i}$.
- For $j \leftarrow 0, \ldots, i$, we insert item (key,object) into list S_{j} after position p_{j}.

If $i<h$, we do not insert new lists

- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i-1}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i-1}$.
- For $j \leftarrow 0, \ldots, i-1$, we insert item (key,object) into list S_{j} after position p_{j}.

We have two cases

If $i \geq h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1}

- Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i}$.
- For $j \leftarrow 0, \ldots, i$, we insert item (key,object) into list S_{j} after position p_{j}.

If $i<h$, we do not insert new lists

- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i-1}$ of the items with largest key less than x in each lists $S_{0}, S_{1}, \ldots, S_{i-1}$.
- For $j \leftarrow 0, \ldots, i-1$, we insert item (key,object) into list S_{j} after position p_{j}.

Example: Insertion of 15 in the skip list

First, we use $i=2$ to insert S_{3} into the skip list

Example: Insertion of 15 in the skip list

Clearly, you first search for the predecessor key!!!

Example: Insertion of 15 in the skip list

Insert the necessary Quad-Nodes and necessary information

Example: Insertion of 15 in the skip list

Insert the necessary Quad-Nodes and necessary information

Example: Insertion of 15 in the skip list

Insert the necessary Quad-Nodes and necessary information

Example: Insertion of 15 in the skip list

Finally!!!

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Deletion

To remove an entry with key x from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with key x, where position p_{j} is in list S_{j}.

Deletion

To remove an entry with key x from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with key x, where position p_{j} is in list S_{j}.
- We remove positions $p_{0}, p_{1}, \ldots, p_{i}$ from the lists $S_{0}, S_{1}, \ldots, S_{i}$.

Deletion

To remove an entry with key x from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with key x, where position p_{j} is in list S_{j}.
- We remove positions $p_{0}, p_{1}, \ldots, p_{i}$ from the lists $S_{0}, S_{1}, \ldots, S_{i}$.
- We remove all but one list containing only the two special keys

Example: Delete of 34 in the skip list

We search for 34 in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{2}$ of the items with key 34

Example: Delete of 34 in the skip list

We search for 34 in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{2}$ of the items with key 34

Example: Delete of 34 in the skip list

We start doing the deletion!!!

Example: Delete of 34 in the skip list

One Quad-Node after another

Example: Delete of 34 in the skip list

One Quad-Node after another

Example: Delete of 34 in the skip list

One Quad-Node after another

Example: Delete of 34 in the skip list

Remove One Level

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Space usage

Space usage

The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.

Space: $O(n)$
Theorem
The expected space usage of a skip list with n items is $O(n)$.

Space : $O(n)$

Theorem

The expected space usage of a skip list with n items is $O(n)$.

Proof

We use the following two basic probabilistic facts:

Space: $O(n)$

Theorem

The expected space usage of a skip list with n items is $O(n)$.

Proof

We use the following two basic probabilistic facts:
(1) Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^{2}}$.

Space：$O(n)$

Theorem

The expected space usage of a skip list with n items is $O(n)$ ．

Proof

We use the following two basic probabilistic facts：
（1）Fact 1：The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^{i}}$ ．
（2）Fact 2：If each of n entries is present in a set with probability p ，the expected size of the set is $n p$ ．

Space: $O(n)$

Theorem

The expected space usage of a skip list with n items is $O(n)$.

Proof

We use the following two basic probabilistic facts:
(1) Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^{i}}$.
(2) Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is $n p$.
(1) How? Remember $X=X_{1}+X_{2}+\ldots+X_{n}$ where X_{i} is an indicator function for event $A_{i}=$ the i element is present in the set. Thus:

Space: $O(n)$

Theorem

The expected space usage of a skip list with n items is $O(n)$.

Proof

We use the following two basic probabilistic facts:
(1) Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^{i}}$.
(2) Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is $n p$.
(1) How? Remember $X=X_{1}+X_{2}+\ldots+X_{n}$ where X_{i} is an indicator function for event $A_{i}=$ the i element is present in the set. Thus:

$$
E[X]=\underbrace{\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left\{A_{i}\right\}}_{\text {Equivalence } E\left[X_{A}\right] \text { and } \operatorname{Pr}\{A\}}=\sum_{i=1}^{n} p=n p
$$

Proof

Now consider a skip list with n entries
Using Fact 1, an element is inserted in list S_{i} with a probability of

$$
P\left[x \in S_{i}\right]=\frac{1}{2^{i}}
$$

Proof

Now consider a skip list with n entries
Using Fact 1, an element is inserted in list S_{i} with a probability of

$$
P\left[x \in S_{i}\right]=\frac{1}{2^{i}}
$$

Now by Fact 2

The expected size of list S_{i} is

$$
E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}
$$

Proof

The expected number of nodes used by the skip list with height h

$$
E[\text { Size Skip List }]=\sum_{i=0}^{h} \frac{n}{2^{i}}=n \sum_{i=0}^{h} \frac{1}{2^{i}}
$$

Here, we have a problem!!! What is the value of h ?

Height h

First

The running time of the search and insertion algorithms is affected by the height h of the skip list.

Height h

First

The running time of the search and insertion algorithms is affected by the height h of the skip list.

Second

We show that with high probability, a skip list with n items has height $O(\log n)$.

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l\left(x_{i}\right)=\max \left\{j \mid\right.$ where $\left.x_{i} \in S_{j}\right\}$ of the elements in the skip list as the following random variable

$$
X_{i}=l\left(x_{i}\right)
$$

for each element x_{i} in the skip list.

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l\left(x_{i}\right)=\max \left\{j \mid\right.$ where $\left.x_{i} \in S_{j}\right\}$ of the elements in the skip list as the following random variable

$$
X_{i}=l\left(x_{i}\right)
$$

for each element x_{i} in the skip list.

And this is a random variable!!!

- Remember the insertions!!! Using an unbiased coin!!

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l\left(x_{i}\right)=\max \left\{j \mid\right.$ where $\left.x_{i} \in S_{j}\right\}$ of the elements in the skip list as the following random variable

$$
X_{i}=l\left(x_{i}\right)
$$

for each element x_{i} in the skip list.

And this is a random variable!!!

- Remember the insertions!!! Using an unbiased coin!!
- Thus, all X_{i} have a geometric distribution.

Example for $l\left(x_{i}\right)$

We have

BTW What is the geometric distribution?

k failures where

$$
k=\{1,2,3, \ldots\}
$$

BTW What is the geometric distribution?
k failures where

$$
k=\{1,2,3, \ldots\}
$$

Probability mass function

$$
\operatorname{Pr}(X=k)=(1-p)^{k-1} p
$$

Probability Mass Function

For Different Probabilities

Then

We have the following inequality for the geometric variables

$$
\operatorname{Pr}\left[X_{i}>t\right] \leq(1-p)^{t} \forall i=1,2, \ldots, n
$$

- If we assume we have a fair coin $p=\frac{1}{2}$

We have the following inequality for the geometric variables

$$
\operatorname{Pr}\left[X_{i}>t\right] \leq(1-p)^{t} \forall i=1,2, \ldots, n
$$

- If we assume we have a fair coin $p=\frac{1}{2}$

This is because

$$
F(t)=P\left[X_{i} \leq t\right]=\sum_{i=1}^{t}(1-p)^{i-1} p
$$

Then, we have

Then, we have that

$$
\operatorname{Pr}\left[X_{i}>t\right]=\sum_{i=t+1}^{\infty}(1-p)^{i-1} p=1
$$

Then, we have
Then, we have that

$$
\operatorname{Pr}\left[X_{i}>t\right]=\sum_{i=t+1}^{\infty}(1-p)^{i-1} p=1
$$

Thus, we have that

$$
\sum_{i=t+1}^{\infty}(1-p)^{i-1} p=p \sum_{i=t+1}^{\infty}(1-p)^{i-1}
$$

Then, we have
Then, we have that

$$
\operatorname{Pr}\left[X_{i}>t\right]=\sum_{i=t+1}^{\infty}(1-p)^{i-1} p=1
$$

Thus, we have that

$$
\begin{aligned}
\sum_{i=t+1}^{\infty}(1-p)^{i-1} p & =p \sum_{i=t+1}^{\infty}(1-p)^{i-1} \\
& =p \sum_{k=1, k=i-t}^{\infty}(1-p)^{k+t-1}
\end{aligned}
$$

Then, we have
Then, we have that

$$
\operatorname{Pr}\left[X_{i}>t\right]=\sum_{i=t+1}^{\infty}(1-p)^{i-1} p=1
$$

Thus, we have that

$$
\begin{aligned}
\sum_{i=t+1}^{\infty}(1-p)^{i-1} p & =p \sum_{i=t+1}^{\infty}(1-p)^{i-1} \\
& =p \sum_{k=1, k=i-t}^{\infty}(1-p)^{k+t-1} \\
& =p(1-p)^{t} \sum_{k=1, k=i-t}^{\infty}(1-p)^{k-1}
\end{aligned}
$$

Then, we have
Then, we have that

$$
\operatorname{Pr}\left[X_{i}>t\right]=\sum_{i=t+1}^{\infty}(1-p)^{i-1} p=1
$$

Thus, we have that

$$
\begin{aligned}
\sum_{i=t+1}^{\infty}(1-p)^{i-1} p & =p \sum_{i=t+1}^{\infty}(1-p)^{i-1} \\
& =p \sum_{k=1, k=i-t}^{\infty}(1-p)^{k+t-1} \\
& =p(1-p)^{t} \sum_{k=1, k=i-t}^{\infty}(1-p)^{k-1} \\
& =(1-p)^{t} \frac{p}{1-p} \leq(1-p)^{t} \text { Given the fair coin }
\end{aligned}
$$

Then, we have

Using our original formula

$$
\operatorname{Pr}\left[X_{i}>t\right] \leq(1-p)^{t}
$$

In this way, we have

Then, we have

$$
\operatorname{Pr}\left\{\max _{i} X_{i}>t\right\} \leq n(1-p)^{t}
$$

We have that

$$
\begin{aligned}
\operatorname{Pr}\left\{\max _{i} X_{i}>t\right\} & =\operatorname{Pr}\left\{\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}>t\right\} \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left\{X_{i}>t \text { and } X_{i}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right\}
\end{aligned}
$$

We have that

$$
\begin{aligned}
\operatorname{Pr}\left\{\max _{i} X_{i}>t\right\} & =\operatorname{Pr}\left\{\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}>t\right\} \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left\{X_{i}>t \text { and } X_{i}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right\}
\end{aligned}
$$

How?

- That one of the elements becomes the maximum in height and a height greater than t

Why?

Because the height of an element depends on independent event

- Each toss coin until tails is independent of the others!!!

Example

When having two lists

$\left\{\max \left(X_{1}, X_{2}\right)>t\right\}=\left\{X_{1}>t\right.$ and $X_{1}>X_{2}$ or exclusive $X_{2}>t$ and $\left.X_{2}>X_{1}\right\}$

- Yes, you need to remember that the max is a single element not both...

Therefore

Then

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{1}>t \text { and } X_{1}>X_{2} \text { or exclusive } X_{2}>t\right\}= & \operatorname{Pr}\left\{X_{1}>t \text { and } X_{1}>X_{2}\right\}+\ldots \\
& \operatorname{Pr}\left\{X_{2}>t \text { and } X_{2}>X_{1}\right\}
\end{aligned}
$$

Therefore

Then

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{1}>t \text { and } X_{1}>X_{2} \text { or exclusive } X_{2}>t\right\}= & \operatorname{Pr}\left\{X_{1}>t \text { and } X_{1}>X_{2}\right\}+\ldots \\
& \operatorname{Pr}\left\{X_{2}>t \text { and } X_{2}>X_{1}\right\}
\end{aligned}
$$

Assuming exclusivity between phenomena $X_{i}>X_{j}$ and $X_{i}>t$

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{1}>t \text { and } X_{1}>X_{2} \text { or exclusive } X_{2}>t\right\}= & P\left(X_{1}>t\right) P\left(X_{1}>X_{2}\right)+\ldots \\
& P\left(X_{2}>t\right) P\left(X_{2}>X_{1}\right) \\
\leq & P\left(X_{1}>t\right)+P\left(X_{2}>t\right)
\end{aligned}
$$

This gives us something

We have that

$$
\operatorname{Pr}\left\{X_{i}>t \text { and } X_{i}=\max \left\{X_{i}\right\}_{i=1}^{n}\right\}=\operatorname{Pr}\left\{X_{i}>t\right\} P\left\{X_{i}=\max \left\{X_{i}\right\}_{i=1}^{n}\right\}
$$

This gives us something

We have that

$\operatorname{Pr}\left\{X_{i}>t\right.$ and $\left.X_{i}=\max \left\{X_{i}\right\}_{i=1}^{n}\right\}=\operatorname{Pr}\left\{X_{i}>t\right\} P\left\{X_{i}=\max \left\{X_{i}\right\}_{i=1}^{n}\right\}$
Then, we can say that

$$
\operatorname{Pr}\left\{X_{i}>t \text { and } X_{i}=\max \left\{X_{i}\right\}_{i=1}^{n}\right\} \leq \operatorname{Pr}\left\{X_{i}>t\right\}
$$

Finally, using this fact

We have when summing over all events X_{i}

$$
\sum_{i=1}^{n} \operatorname{Pr}\left\{X_{i}>t\right\} \leq \sum_{i=1}^{n}(1-p)^{t}=n(1-p)^{t}
$$

An Observation

The $\max _{i} X_{i}$

It represents the list with the one entry apart from the special keys.

Another One

Also REMEMBER!!!

We are talking about a fair coin, thus $p=\frac{1}{2}$.

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Height: $3 \log _{2} n$ with probability at least $1-\frac{1}{n^{2}}$

Theorem
A skip list with n entries has height at most $3 \log _{2} n$ with probability at least $1-\frac{1}{n^{2}}$

Proof

Consider a skip list with n entires

By Fact 3, the probability that list S_{t} has at least one item (The $\left.\max _{i} X_{i}>t\right)$ is at most $\frac{n}{2^{t}}$.

$$
P\left(\left|S_{t}\right| \geq 1\right)=P\left(\max _{i} X_{i}>t\right) \leq \frac{n}{2^{t}} .
$$

Proof

Consider a skip list with n entires

By Fact 3, the probability that list S_{t} has at least one item (The $\left.\max _{i} X_{i}>t\right)$ is at most $\frac{n}{2^{t}}$.

$$
P\left(\left|S_{t}\right| \geq 1\right)=P\left(\max _{i} X_{i}>t\right) \leq \frac{n}{2^{t}}
$$

By picking $t=3 \log n$
We have that the probability that $S_{3 \log _{2} n}$ has at least one entry is at most:

$$
\frac{n}{2^{3 \log _{2} n}}=\frac{n}{n^{3}}=\frac{1}{n^{2}}
$$

Look at we want to model

We want to model

- The height of the Skip List is at most $t=3 \log _{2} n$

Look at we want to model

We want to model

- The height of the Skip List is at most $t=3 \log _{2} n$
- Equivalent to the negation of having list $S_{3 \log _{2} n}$

Look at we want to model

We want to model

- The height of the Skip List is at most $t=3 \log _{2} n$
- Equivalent to the negation of having list $S_{3 \log _{2} n}$

Then, the probability that the height $h=3 \log _{2} n$ of the skip list is

$$
P\left(\text { Skip List height } 3 \log _{2} n\right)=1-\frac{1}{n^{2}}
$$

Finally

The expected number of nodes used by the skip list with height h

- Given that $h=3 \log _{2} n$

$$
\sum_{i=0}^{3 \log _{2} n} \frac{n}{2^{i}}=n \sum_{i=0}^{3 \log _{2} n} \frac{1}{2^{i}}
$$

Finally

The expected number of nodes used by the skip list with height h

- Given that $h=3 \log _{2} n$

$$
\sum_{i=0}^{3 \log _{2} n} \frac{n}{2^{i}}=n \sum_{i=0}^{3 \log _{2} n} \frac{1}{2^{i}}
$$

Given the geometric sum

$$
S_{m}=\sum_{k=0}^{m} r^{k}=\frac{1-r^{m+1}}{1-r}
$$

We have finally

The Upper Bound on the number of nodes

$$
n \sum_{i=0}^{3 \log _{2} n} \frac{1}{2^{i}}=n\left(\frac{1-\left(\frac{1}{2}\right)^{3 \log _{2} n+1}}{1-1 / 2}\right)
$$

We have finally

The Upper Bound on the number of nodes

$$
\begin{aligned}
n \sum_{i=0}^{3 \log _{2} n} \frac{1}{2^{i}} & =n\left(\frac{1-\left(\frac{1}{2}\right)^{3 \log _{2} n+1}}{1-1 / 2}\right) \\
& =n\left(\frac{1-\frac{1}{2^{3 \log _{2} n+1}}}{1 / 2}\right)
\end{aligned}
$$

We have finally

The Upper Bound on the number of nodes

$$
\begin{aligned}
n \sum_{i=0}^{3 \log _{2} n} \frac{1}{2^{i}} & =n\left(\frac{1-\left(\frac{1}{2}\right)^{3 \log _{2} n+1}}{1-1 / 2}\right) \\
& =n\left(\frac{1-\frac{1}{2^{3 \log _{2} n+1}}}{1 / 2}\right) \\
& =n\left(\frac{1-\frac{1}{\left(2^{\left.\log _{2} n\right)^{3} 2}\right.}}{1 / 2}\right)
\end{aligned}
$$

We have finally
The Upper Bound on the number of nodes

$$
\begin{aligned}
n \sum_{i=0}^{3 \log _{2} n} \frac{1}{2^{i}} & =n\left(\frac{1-\left(\frac{1}{2}\right)^{3 \log _{2} n+1}}{1-1 / 2}\right) \\
& =n\left(\frac{1-\frac{1}{2^{3 \log _{2} n+1}}}{1 / 2}\right) \\
& =n\left(\frac{1-\frac{1}{\left(2^{\left.\log _{2} n\right)^{3} 2}\right.}}{1 / 2}\right) \\
& =n\left(\frac{1-\frac{1}{2 n^{3}}}{1 / 2}\right)=n\left(\frac{2\left[2 n^{3}-1\right]}{2 n^{3}}\right)
\end{aligned}
$$

Finally

We have

$$
\left(\frac{2 n^{3}-1}{n^{2}}\right)=2 n-\frac{1}{n^{2}} \leq 2 n
$$

Finally

We have

$$
\left(\frac{2 n^{3}-1}{n^{2}}\right)=2 n-\frac{1}{n^{2}} \leq 2 n
$$

The Upper Bound with probability $1-\frac{1}{n^{2}}$

$$
2 n-\frac{1}{n^{2}} \leq 2 n=O(n)
$$

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Search and Insertion Times

Fact 4

The expected number of coin tosses required in order to get tails is 2 :

$$
\text { Given that } x \sim G\left(\frac{1}{2}\right) \Longrightarrow E[x]=\frac{1}{p}=2 \text { (Fair Coin Assumption) }
$$

Search and Insertion Times

Fact 4

The expected number of coin tosses required in order to get tails is 2:

Given that $x \sim G\left(\frac{1}{2}\right) \Longrightarrow E[x]=\frac{1}{p}=2$ (Fair Coin Assumption)

We use this

To prove that a search in a skip list takes $O(\log n)$ expected time.

- After all insertions require searches!!!

Search and Insertions times

Search time

The search time in skip list is proportional to
the number of drop-down steps + the number of scan-forward steps

Search and Insertions times

Search time

The search time in skip list is proportional to
the number of drop-down steps + the number of scan-forward steps
Drop-down steps
The drop-down steps are bounded by the height of the skip list and thus are $O\left(\log _{2} n\right)$ with high probability.

Search and Insertions times

Search time

The search time in skip list is proportional to
the number of drop-down steps + the number of scan-forward steps

Drop-down steps

The drop-down steps are bounded by the height of the skip list and thus are $O\left(\log _{2} n\right)$ with high probability.

Theorem

A search in a skip list takes $O\left(\log _{2} n\right)$ expected time.

Proof

First

- When we scan forward in a list, the destination key does not belong to a higher list.

Proof

First

- When we scan forward in a list, the destination key does not belong to a higher list.

A scan-forward step is associated with a former coin toss that gave tails
 - By Fact 4, in each list the expected number of scan-forward steps is 2.

Why?

Given the list S_{i}

- Then, the scan-forward intervals (Jumps between x_{i} and x_{i+1}) to the right of S_{i} are

$$
I_{1}=\left[x_{1}, x_{2}\right], I_{2}=\left[x_{2}, x_{3}\right] \ldots I_{k}=\left[x_{k},+\infty\right]
$$

Why?

Given the list S_{i}

- Then, the scan-forward intervals (Jumps between x_{i} and x_{i+1}) to the right of S_{i} are

$$
I_{1}=\left[x_{1}, x_{2}\right], I_{2}=\left[x_{2}, x_{3}\right] \ldots I_{k}=\left[x_{k},+\infty\right]
$$

Then

These interval exist at level i if and only if all $x_{1}, x_{2}, \ldots, x_{k}$ belong to S_{i}.

We introduce the following concept based on these intervals

Scan-forward siblings

These are element that you find in the search path before finding an element in the upper list.

Now

Given that a search is being done, S_{i} contains l forward siblings
It must be the case that given x_{1}, \ldots, x_{l} scan-forward siblings, we have that

$$
x_{1}, \ldots, x_{l} \notin S_{i+1}
$$

and $x_{l+1} \in S_{i+1}$

Thus

We have

Since each element of S_{i} is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}$.

Thus

We have

Since each element of S_{i} is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}$.

We have

The number of scan-forward siblings is bounded by a geometric random variable X_{i} with parameter $p=\frac{1}{2}$.

- Imagine the fact that you have multiple fails... then $x_{1}, \ldots, x_{l} \notin S_{i+1}$ is modeled by X_{i}

Thus

We have

Since each element of S_{i} is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}$.

We have

The number of scan-forward siblings is bounded by a geometric random variable X_{i} with parameter $p=\frac{1}{2}$.

- Imagine the fact that you have multiple fails... then $x_{1}, \ldots, x_{l} \notin S_{i+1}$ is modeled by X_{i}

Thus, we have that

The expected number of scan-forward siblings is bounded by $2!!!$

$$
\text { Expected \# Scan-Fordward Siblings at } i \leq \underbrace{E\left[X_{i}\right]=\frac{1}{1 / 2}}_{\text {Mean }}=2
$$

Then

In the worst case scenario
A search is bounded by $O\left(\log _{2} n\right)+2 \log _{2} n=O\left(\log _{2} n\right)$

Then

In the worst case scenario

A search is bounded by $O\left(\log _{2} n\right)+2 \log _{2} n=O\left(\log _{2} n\right)$
An given that a insertion is a (search) + (deletion bounded by the height)

Thus, an insertion is bounded by $2 \log _{2} n+3 \log _{2} n=O\left(\log _{2} n\right)$

Outline

(1) Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
(2) Skip Lists
- Why Skip Lists?
- The Idea Behind All of It!!!
- A Little of Optimization
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- The Height of the Skip List
- Search and Insertion Times
- Applications
- Summary

Applications

We have

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.

Applications

We have

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.

Applications

We have

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.

Applications

We have

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.

Applications

We have

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.
- Skip lists are used for efficient statistical computations of running medians.

Outline

（1）Dictionaries
－Definitions
－Dictionary operations
－Dictionary implementation
（2）Skip Lists
－Why Skip Lists？
－The Idea Behind All of It！！！
－A Little of Optimization
－Skip List Definition
－Skip list implementation
－Insertion for Skip Lists
－Deletion in Skip Lists
－Properties
－The Height of the Skip List
－Search and Insertion Times
－Applications
－Summary

Summary

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.

Summary

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:

Summary

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
- The expected space used is $O(n)$

Summary

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
- The expected space used is $O(n)$
- The expected search, insertion and deletion time is $O(\log n)$

Summary

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
- The expected space used is $O(n)$
- The expected search, insertion and deletion time is $O(\log n)$

Summary

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
- The expected space used is $O(n)$
- The expected search, insertion and deletion time is $O(\log n)$
- Skip list are fast and simple to implement in practice.

Thanks

Questions?

