
Skip Lists

March 5, 2018

Contents

1 Introduction 2

2 What Kind of Data Structures for a Dictionary? 2

3 Skip Lists 3
3.1 Starting from Scratch . 3

4 The Basic Operations for the Skip Lists 4
4.1 Insertions . 4
4.2 Deletions . 4

5 Space Used by the Skip List 5

6 Height of the Skip List 5

7 Search and Update Times 6

1

1 Introduction

Going back to the past, we always want to be able to support an abstract data
type called dictionary. This can be seen as the following problem

Input: A set of n records, each identi�ed by one or more key �elds

Problem: Build and maintain a data structure to e�ciently locate, insert, or
delete the record associated with any query key.

Basically based in this input and problem, we are looking for data structures
that allow us to have the best performance in a dictionary. However, there is a
precautionary note from �The Algorithm Design Manual� by Steven Skiena:

� �In practice, it is more important to avoid using a bad data structure than

to identify the single best option available.�

Some people will say that this is not essential, but when confronted with million
of records as in many of the massive databases of today, it is essential to have
the best data structure you can have.

2 What Kind of Data Structures for a Dictio-

nary?

There are several types of data structures that can be used in a dictionary. For
example, we can use

1. Ordered and Unordered Arrays.

2. Binary Search Trees.

3. Hash Tables.

As we can noticed, there are some drawbacks to each of data structures:

1. Arrays require a dynamic table support. They require long enough free
memory segments. In addition, we have complexities:

(a) Insertion: Unordered O(1), Ordered O(n).

(b) Search: Unordered O(n), Ordered O(log n).

2. Binary Search Trees require to have a well balanced tree such that the
height is bounded by O(log n), where n is the number of elements stored
in the data structure.

3. Hash Tables require a dynamic table implementation once the load α
crosses a certain threshold, in addition to a new hash function.

Thus, we require a new data structure for supporting dictionary.

2

3 Skip Lists

There is new data structure called skip list which is a good �t for the properties
we are looking for:

� Insertion complexity O(log n).

� Search complexity O(log n).

� No �xed-size structure as with binary search trees.

3.1 Starting from Scratch

Imagine that you only require to have searches. A �rst approximation to it is
the use of a link list for it (Θ(n) search complexity). Then, using this How do
we speed up searches?

� Use two link list, one a subsequence of the other.

Imagine the two lists as a road system (Fig. 1).

1. The Bottom is the normal road system.

2. The Top is the high way system.

We use the top one to as a tra�c diversion for �express� stops.

14

14 23 34 42 47 63

34 42

Figure 1: The two list idea

� To Search �rst search in the top one (L1) as far as possible, then
go down and search in the bottom one (L2).

The Cost for a search is :

len (L1) +
len (L2)

len (L1)
= len (L1) +

n

len (L1)

This is minimized when:

len(LL1) =
n

len(LL1)
⇒ len(LL1) =

√
n

Thus, search cost is equal to 2
√
n. You can do more, you actually can put

a high way to the high way. Then, we get a search cost of 3 3
√
n. In the general

case, after all we can pile high ways on top of each other, k k
√
n. For k = lg n,

we have lg n lg n
√
n = lg n · n

1
lg n = 2 lg n because

3

� y = 1
lgn ⇒ n = 21/y ⇒

(
21/y

)y
= 2

Thus, we have the following de�nition.

De�nition

A skip list for a set S of distinct (key, element) items is a series of lists S0, S1, ..., Sh

such that:

� Each list Si contains keys −∞ and ∞.

� List S0 contains all the keys in nondecreasing order.

� Each list is a subsequence of the previous one, S0 ⊇ S1 ⊇ ... ⊇ Sh.

� List Sh contains only the keys −∞ and ∞.

4 The Basic Operations for the Skip Lists

Here, we add the probabilistic part of the skip list to minimize bad searches by
using the insertions on it.

4.1 Insertions

In order to insert an element (x, o), we do the following

� Flip a fair coin. If head, add element to the next level up and repeat until
tail. Then, add the last empty level.

Thus, in average we have

� We have probability 1/2 the element go up one level.

� We have probability 1/4 the element go up two levels.

� We have probability 1/8 the element go up three levels.

� etc...

4.2 Deletions

To remove an entry with key x from a skip list, we proceed as follows:

� We search for x in the skip list and �nd the positions p0, p1, . . . , pi of the
items with key x, where position pj is in list Sj .

� We remove positions p0, p1, . . . , pi from the lists S0, S1, ..., Si.

� We remove all but one list containing only the two special keys.

4

5 Space Used by the Skip List

First, we prove how much space is used by the skip list.

Theorem The expected space usage of a skip list with n items is O(n).

Proof: We use the following two basic probabilistic facts:

1. The probability of getting i consecutive heads when �ipping a
coin is 1

2i .

2. If each of n entries is present in a set with probability p, the
expected size of the set is np. Remember X = X1 +X2 + ...+Xn

where Xi is an indicator function for event Ai = the i element
is present in the set. Thus:

E [X] =

n∑
i=1

E [Xi] =

n∑
i=1

Pr {Ai} =

n∑
i=1

p = np

Consider a skip list with n entries

� By Fact 1, we insert an entry in list Si with probability 1
2i .

� By Fact 2, the expected size of list Si is
n
2i .

� The expected number of nodes used by the skip list is:

h∑
i=0

n

2i
= n

h∑
i=0

1

2i
< 2n

Thus, the expected space usage of a skip list with n items is O(n).

6 Height of the Skip List

The running time of the search an insertion algorithms is a�ected by the height
h of the skip list: For this:

� We only need to show with high probability, a skip list with n items has
height O(log n)

� Fact 3: We can view the level, l(x) = max {j|x ∈ Sj}, of the elements
in the skip list S as the random variables with geometric distribution
X1, X2, X3,, Xn going from the top to the bottom of the Skip List.Then,

Pr [Xk > i] ≤ (1− p)i ⇒ Pr

{
max

k
Xk > i

}
≤ n(1− p)i.

Given that Pr {maxkXk > i} = Pr {(X1 > i) ∨ (X2 > i) ∨ ∨ (Xn > i)} =∑n
k=1 Pr {(Xk > i)}

� Where the maxkXk represent the list with the one entry apart from
the special keys.

5

� REMEMBER!!! We are talking about a fair coin, thus p = 1
2 .

Theorem A skip list with n entries has height at most 3 log n with probability
at least 1− 1

n2

Proof:

Consider a skip list with n entires. By Fact 3, the probability that list Si

has at least one item is at most n
2i . By picking i = 3 log n, we have that

the probability that S3 logn has at least one entry is at most:

n

23 logn
=

n

n3
=

1

n2
.

Therefore, the probability that the height h = 3 log n of the skip list is
1− 1

n² .

7 Search and Update Times

The search time in a skip list is proportional to the number of drop-down steps,
plus the number of scan-forward steps. The drop-down steps are bounded by the
height of the skip list and thus are O (log n) with high probability. To analyze
the scan-forward steps, we use yet another probabilistic fact:

� Fact 4: The expected number of coin tosses required in order to get tails
is 2.

Theorem A search in a skip list takes O(log n) expected time.

Proof:

When we scan forward in a list, the destination key does not belong to a
higher list. A scan-forward step is associated with a former coin toss that
gave tails. By Fact 4, in each list the expected number of scan-forward
steps is 2. Thus, the expected number of scan-forward steps is O(log n).

The analysis of insertion and deletion gives similar results.

6

