
Amortized Analysis

Andres Mendez-Vazquez

February 26, 2018

Contents

1 Introduction 2

2 The Basic Methods 2

2.1 Aggregate Analysis Basics . 2
2.1.1 Binary Counter . 3

2.2 Accounting Method Basics . 4
2.2.1 The Binary Counter . 5

2.3 Potential Method Basics . 5
2.3.1 Stack Operations . 6

3 Example: Dynamic Tables 7

1

1 Introduction

The amortized analysis method originally emerged as aggregated analysis (Ull-
manm, Aho and Hopcroft used a version of it to analyze set representations)
to analyze basic set operation in binary trees and union operations. The tech-
nique was �rst formally introduced by Robert Tarjan in his paper Amortized

Computational Complexity. It was used to study balanced binary trees and the
operation for set representations.

2 The Basic Methods

We have the following methods:

• Aggregate analysis determines the upper bound T(n) on the total cost
of a sequence of n operations. Then calculates the amortized cost to be
T (n)/n.

• The accounting method determines the individual cost of each operation,
combining its immediate execution time and its in�uence on the running
time of future operations.

• The potential method is like the accounting method, but overcharges op-
erations early to compensate for undercharges later.

It is noticeable that the last one was introduced by Cormen et al.

2.1 Aggregate Analysis Basics

The classic example of the for this analysis is the stack with operations:

1. POP

This remove stu� from the top of the stack

2. PUSH

Thus put stu� at the top of the stack

3. MULTIPOP

This pops multiple times using the POP as part of it:

Multipops (S , k)
whi l e not Stack−Empty(S) and k>0

POP(S)
k = k−1

Then, we have two cases

2

1. Worst Case:

Multipops is bounded by min(s, k). Therefore, in the worst case, we could
have at most n − 1 pushes and one multipop with k = n − 1. Thus,
the worst complexity is O(n). Then for n operations, we have that the
complexity is O(n2).

2. The Amortized analysis

Even when the Multipop operation can be expensive, it is clear that de-
pends on the pops and pushes done before it. Therefore, any sequence
of n push, pops and multipop operations on an initially empty stack cost
at most O(n) because of the very nature of multipops. It is more, the
number of times a pop or a multipop can be called on a non-empty stack
is at most the number of push operations.

The average cost is then O(n)
n = O(1), thus each of the operations has an

amortized cost of O(1).

2.1.1 Binary Counter

The Binary Counter is an array of bits to be used as a counter:

0 0 0 0 0

an an−1 an−2 a1 a0

Where

x =

n∑
i=0

ai2
i (1)

So we have the following algorithm to count

Algorithm 1 Binary Counter

1. Increment(A)

2. i = 0

3. while i < A.length and A[i] == 1

4. A[i] = 0

5. i = i + 1

6. if i < A.length

7. A[i] = 1

Thus:

3

1. At the start of each iteration of the while loop in lines 2�4, we wish to
add a 1 into position i.

2. If A[i] == 1, then adding 1 �ips the bit to 0 in position i and a carry of
1 for i + 1 on the next iteration of the loop.

3. If A[i] == 0 stop.

4. If i < A.length, we know that A[i] == 0 , so �ip to a 1.

The cost of each INCREMENT operation is linear in the number of bits �ipped.
The worst case is Θ (k) in the worst case!!! Thus, for n operations we haveO(kn).

So look at this

1st Count 0 0 0 0 0 0 0 0 1

2nd Count 0 0 0 0 0 0 0 1 0

3rd Count 0 0 0 0 0 0 0 1 1

4th Count 0 0 0 0 0 0 1 0 0

5th 0 0 0 0 0 0 1 0 1

6th 0 0 0 0 0 0 1 1 0

7th 0 0 0 0 0 0 1 1 1

8th 0 0 0 0 0 1 0 0 0

Thus, we have that

1. A[0] �ips bn/20c time

2. A[1] �ips bn/21c time

3. etc

Thus, we have for i = 0, 1, 2, ..., k − 1 A[i] �ips bn/2ic for i > k no �ips at all.
Then, the total work is

k−1∑
i=0

bn/2ic < n

∞∑
i=0

1

2i
= 2n (2)

2.2 Accounting Method Basics

In the accounting method, we charge each operation a certain credit using the
following idea:

• When an operation, with an amortized cost ĉi, exceeds its actual cost,
we give the di�erence to a credit (To be stored in the data structure) in
order to pay for later operations whose amortized cost is less than their
actual cost.

Here is where the analysis becomes some what complex because we need to keep
the following property:

4

• We must ensure that the total amortized cost of a sequence of operations
provides an upper bound on the total actual cost of the sequence, i.e. :

n∑
i=1

ĉi ≥
n∑

i=1

ci

Therefore, the credit stored in the data structure is:

n∑
i=1

ĉi −
n∑

i=1

ci.

2.2.1 The Binary Counter

For the amortized analysis, we have the following cost distribution:

1. We charge 2 units of cost to �ip a bit to 1. One to pay the setting of the
bit to 1, and 1 to pay to �ip the bit to 0.

2. We do not charge nothing to �ip the bit to zero because we use the credit
stored at the bit for this.

The cost of resetting the bits within the while loop in the code is paid for by
the credit stored at the reseted bits. In addition, the increment procedure set
at most one bit in the last two lines, thus the amortized cost of the increment

operation is at most 2 units. Finally:

• The numbers of 1 at the bit counter never becomes negative.

• The Binary counter never charges a 0 �ip if the bit was never changed to
1.

Therefore, the credit never becomes negative, or
∑n

i=1 ĉi ≥
∑n

i=1 ci. Thus the
amortized cost of n operations is O(n).

2.3 Potential Method Basics

We have the following steps for the potential method:

1. n operations are performed in initial data structure D0.

2. ci be the actual cost of the ith operation and Di the data structure re-
sulting of that operation for i = 1, 2, ..., n, when ciis applied to Di−1.

3. We have a potential function Φ : {D0, D1, ..., Dn} → R that describe the
potential energy on each data structure Di, for i = 1, 2, ..., n.

4. Then, we have an amortized cost: ĉi = ci + Φ (Di)− Φ (Di−1).

5

Then, the total amortized cost of the n operations is

n∑
i=1

ĉi =

n∑
i=1

(ci + Φ (Di)− Φ (Di−1))

=

n∑
i=1

ci + Φ (Dn)− Φ (D0) .

Important

If we can de�ne a potential function Φ such that Φ (Dn) ≥ Φ (D0), then the
total amortized cost is such that

∑n
i=1 ĉi ≥

∑n
i=1 ci. However, we do not know

how many operations might be performed. Therefore, we will require that

• Φ(Di) ≥ Φ (D0) for all i or if Φ (D0) = 0 then Φ (Di) ≥ 0.

Note

If the potential di�erence Φ (Di)−Φ (Di−1) is positive, then the amortized cost
ĉi represents an overcharge to the ith operation.

2.3.1 Stack Operations

We will de�ne the potential function Φ on stack as the number of elements in
the stack. For an empty stack, Φ (D0) = 0, and because that number is never
negative

Φ (Di) ≥ 0 = Φ (D0) .

We have three cases to analyze:

Case �Push�

Thus, if the ith operation on a stack containing s objects is a push, then
the potential di�erence is

Φ (Di)− Φ (Di−1) = (s + 1)− s

= 1.

Then:

ĉi = ci + Φ (Di)− Φ (Di−1)

= 1 + 1

= 2.

6

Case �Multipop�

Here, the ith operation on the stack is a multipop, thus k′ = min (k, s).
Then, the actual potential di�erence is Φ (Di) − Φ (Di−1) = −k′. Then,
the amortized cost of the multipop is

ĉi = ci + Φ (Di)− Φ (Di−1)

= k′ − k′

= 0.

Case �Pop�

It is similar to mulipop, 0.

The amortized cost for all the three operations is O(1). Therefore, the total
amortized cost of n operations is an upper bound of the total cost. The worst-
case cost of n operations is therefore O(n).

3 Example: Dynamic Tables

In the Slides.

7

