
Analysis of Algorithms
Amortized Analysis

Andres Mendez-Vazquez

February 26, 2018

1 / 91



Outline
1 Introduction

History

2 What is this all about amortized analysis?
The Methods

3 The Aggregate Method
Introduction
The Binary Counter

Example

4 The Accounting Method
Introduction
Binary Counter

5 The Potential Method
Introduction
Stack Operations

6 Real Life Examples
Move-To-Front (MTF)
Dynamic Tables

Table Expansion
Aggegated Analysis
Potential Method
Table Expansions and Contractions

2 / 91



Outline
1 Introduction

History

2 What is this all about amortized analysis?
The Methods

3 The Aggregate Method
Introduction
The Binary Counter

Example

4 The Accounting Method
Introduction
Binary Counter

5 The Potential Method
Introduction
Stack Operations

6 Real Life Examples
Move-To-Front (MTF)
Dynamic Tables

Table Expansion
Aggegated Analysis
Potential Method
Table Expansions and Contractions

3 / 91



History

Long Ago in a Faraway Land... too much The Hobbit
Aho, Ullman and Hopcroft in their book “Data Structures and
Algorithms” (1983)

They described a new complex analysis technique based in looking at
the sequence of operations in a given data structure.
They used it for describing the set operations under a binary tree data
structure.

Robert Tarjan
Later on in the paper “Amortized Computational Complexity,” Robert
Trajan formalized the accounting and potential techniques of amortized
analysis.
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Aggregate Analysis

Aggregate Analysis
The methods tries to determine an upper bound cost T (n) for a
sequence of n operations.
Then, it calculates the amortized cost by using T (n)

n .
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Accounting Method

Accounting Method
The accounting method determines the individual cost of each
operation, combining its immediate execution time and its influence
on the running time of future operations by using a credit.

Operation real cost + credit

7 / 91



Accounting Method

Accounting Method
The accounting method determines the individual cost of each
operation, combining its immediate execution time and its influence
on the running time of future operations by using a credit.

Operation real cost + credit

7 / 91



Potential Method

Potential Method
The potential method is like the accounting method, but overcharges
operations early to compensate for undercharges later.

Potential Energy
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Aggregate Analysis

Stack with an extra Operation: Multipops
To begin exemplifying the aggregate analysis, let us add the following
operation to the stack Data Structure.

1 Multipops(S, k)
2 while not Stack-Empty(S) and k > 0
3 POP(S)
4 k = k − 1
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Aggregate Analysis

Case I Worst Case without Amortized Analysis
Multipops is bounded by min (s, k), where s =number of elements in
the stack.
The worst case is n− 1 pushes followed by a multipop with k = n− 1.
Then, we have that the worst complexity for an operation can be
O(n).
Thus, for n operations we have O(n2) complexity.
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Aggregate Analysis

Case II Now, we use the aggregate analysis
Multipops depends on pops and pushes done before it.
Then, any sequence of n pushes, pops and multipops on an initial
empty stack cost at most O(n)

I Because pop or multipops can be called in a non-empty stack is at
most the number of pushes.

Finally, the average cost for each operation is O(n)
n = O(1).
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Example Binary Counter

We have something like this
0 0 0 .. .. 0 0
an an−1 an−2 a1 a0

Basically
The Binary Counter is an array of bits to be used as a counter:
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Example Binary Counter
Binary Counter
To begin exemplifying the aggregate method, let use the binary counter
code.

A is an array of bits to be used as a counter. Each bit is a coefficient of
the radix representation x =

∑n
i=0 ai2i, where x is the counter.

1 Increment(A)
2 i = 0
3 while i < A.length and A[i] == 1
4 A[i] = 0
5 i = i+ 1
6 if i < A.length

7 A[i] = 1
15 / 91
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Example

Adding bits to a counter of size k = 9
k = 9︷ ︸︸ ︷

——Bits in the Counter—–
0 0 0 0 0 0 0 0 0
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Example

Adding to the counter
1st Count 0 0 0 0 0 0 0 0 1
2nd Count 0 0 0 0 0 0 0 1 0
3rd Count 0 0 0 0 0 0 0 1 1
4th Count 0 0 0 0 0 0 1 0 0

5th 0 0 0 0 0 0 1 0 1
6th 0 0 0 0 0 0 1 1 0
7th 0 0 0 0 0 0 1 1 1
8th 0 0 0 0 0 1 0 0 0
9th 0 0 0 0 0 1 0 0 1
10th 0 0 0 0 0 1 0 1 0
11th 0 0 0 0 0 1 0 1 1
12th 0 0 0 0 0 1 1 0 0
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Operations

We have
1 At the start of each iteration of the while loop in lines 2–4, we wish

to add a 1 into position i.
2 If A[i] == 1, then adding 1 flips the bit to 0 in position i and a carry

of 1 for i+ 1 on the next iteration of the loop.
3 If A[i] == 0 stop.
4 If i < A.length, we know that A[i] == 0 , so flip to a 1.

Complexity
1 The cost of each INCREMENT operation is linear in the number of

bits flipped.
2 The worst case is Θ (k) in the worst case!!! Thus, for n operations we

have O(kn).
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Better Analysis

Did you notice the following...
1 A[0] flips bn/20c time
2 A[1] flips bn/21c time
3 etc

The total work is...
Look at the Board...
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Accounting Method

The use of credit
When an operation, with an amortized cost ĉi (operation i), exceeds
its actual cost, we give the difference to a credit.

I This is to be stored in the data structure.

We have that
As long as the charges are set so that it is impossible to go into debt.

I one can show that there will never be an operation whose actual cost is
greater than the sum of its charge plus the previously accumulated
credit.

22 / 91
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More Formally

Something Notable
Actual cost of the ith operation is ci.
The amortized (charge) of the ith operation is ĉi.

Properties
If ĉi > ci the ith operation leaves some positive amount of credit,
credit = ĉi − ci.
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Therefore

And as long
n∑

i=1
ĉi ≥

n∑
i=1

ci (1)

Then
The total available credit will always be nonnegative, and the sum of
amortized costs will be an upper bound on the actual cost.
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Example Binary Counter II
Binary Counter Cost Operations

1 We charge 2 units of cost to flip a bit to 1.
1 One for the actual set of the bit to one.
2 Another for the flipping back to 0.

2 We do not charge anything to reset the bit to 0 because we use the
credit stored at it.

Observation
The numbers of 1 at the bit counter never becomes negative.
The Binary counter never charges a 0 flip if the bit was never changed
to 1.

Thus
The credit never becomes negative, or ∑n

i=1 ĉi ≥
∑n

i=1 ci.
Amortized cost of n operations is O(n).
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The Potential Method
Basics

1 n operations are performed in initial data structure D0.
2 ci be the actual cost and Di the data structure resulting of that

operation.
3 Potential function Φ : {D0, D1, ..., Dn} → R that describe the

potential energy on each data structure Di.
4 Then, we have an amortized cost: ĉi = ci + Φ (Di)− Φ (Di−1).

Telescopic Sum

n∑
i=1

ĉi =
n∑

i=1
(ci + Φ (Di)− Φ (Di−1))

=
n∑

i=1
ci + Φ (Dn)− Φ (D0) .
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Observations

Observation
Because we do not know the number of operations:

We ask for Φ(Di) ≥ Φ (D0) for all i or if Φ (D0) = 0 then Φ (Di) ≥ 0.

Note
If Φ (Di)− Φ (Di−1) is positive, then

I ĉi represents an overcharge to the ith operation.
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Example Stack Operations I

Potential Function
Φ on stack as the number of elements in the stack. Then:

I Φ (D0) = 0.
I Φ (Di) ≥ 0 = Φ (D0) .

Case “PUSH”
If the ith operation on a stack containing s objects is a push:

ĉi = ci + Φ (Di)− Φ (Di−1)
= ci + s+ 1− s
= 1 + 1 = 2
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ĉi = ci + Φ (Di)− Φ (Di−1)
= ci + s+ 1− s
= 1 + 1 = 2

31 / 91



Example Stack Operations I

Potential Function
Φ on stack as the number of elements in the stack. Then:

I Φ (D0) = 0.
I Φ (Di) ≥ 0 = Φ (D0) .

Case “PUSH”
If the ith operation on a stack containing s objects is a push:
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Example Stack Operations II
Case “MULTIPOP”

The ith operation on the stack with s elements is a multipop, thus
k′ = min (k, s):

ĉi = ci + Φ (Di)− Φ (Di−1)
= ci + s− k′ + s

= k′ − k′ = 0

Case “POP”
It is similar to multipop, 0.

Finally
The amortized cost for all the three operations is O(1).
The worst-case cost of n operations is O(n).
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We have the following

Definition
Consider a linear list of items (such as a singly-linked list).
To access the item in the ith position requires time i.

Constraints
Also, any two contiguous items can be swapped in constant time

Goal
The goal is to allow access to a sequence of n items in a minimal
amount of time

I One item may be accessed many times within a sequence
I Starting from some set initial list configuration.
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Thus, we have two cases

First
If the sequence of accesses is known in advance, one can design an optimal
algorithm for swapping items to rearrange the list according to how often
items are accessed, and when.

Second
However, if the sequence is not known in advance, a heuristic method for
swapping items may be desirable.
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MTF Heuristic

Reality!!!
If item i is accessed at time t, it is likely to be accessed again soon after
time t (i.e., there is locality of reference).
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MTF Heuristic Example
Example Heuristic Bring to the front

a

b

c

x

e

f

Original List

Temp=a

Figure: To access ’c’ in the original list (left), walk down from ’a’, then move ’c’
to front by swapping with ’b’ then ’a’ (right)
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MTF Heuristic Example

Example Heuristic Bring to the front
a

b

c

x

e

f

Temp=b

Figure: To access ’c’ in the original list (left), walk down from ’a’, then move ’c’
to front by swapping with ’b’ then ’a’ (right)
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MTF Heuristic Example

Example Heuristic Bring to the front
a

b

c

x

e

f

Temp=c

Figure: To access ’c’ in the original list (left), walk down from ’a’, then move ’c’
to front by swapping with ’b’ then ’a’ (right)
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MTF Heuristic Example

Example Heuristic Bring to the front
a

b

c

x

e

f

Temp=x

Figure: To access ’c’ in the original list (left), walk down from ’a’, then move ’c’
to front by swapping with ’b’ then ’a’ (right)
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MTF Heuristic Example

Example Heuristic Bring to the front

a

b

c

x

e

f

Figure: To access ’c’ in the original list (left), walk down from ’a’, then move ’c’
to front by swapping with ’b’ then ’a’ (right)
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Why does this work?!
Imagine the following

a

b

c

x

e

f

Main Memory

a

b

c

x

e

f

CPU Registers

Cache Memory Blocks

Prefetching

Figure: Here, we have the following situation: Swapping inside a block does not
change the block itself!!!
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Complexity of the Heuristic
Cost
It the ith item was accessed the cost is

1 i to access the item
2 i− 1 for the swaps

Now, assume that
You have an optimal algorithm A that knows the access sequence in
advance.

Potential of MTF at time t
As the 2 × {the number of pairs of items whose order in the MTF’s list
differs from their order in A’s list at time t} or

φ (Dt) = 2× {the number of pairs of items whose order differs} (2)
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Complexity of the Heuristic

For example
For example, if MTF’s list is ordered (a, b, c, e, d) and A’s list is ordered
(a, b, c, d, e), then the potential for MTF will be equal to 2, because one
pair of items (d and e) differ in their ordering between A’s list and MTF’s
list.

In addition
The potential at t = 0 is 0, as both algorithms begin with the same
list by definition.
Also, it is impossible for the potential to be negative.
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Thus, we have that

First
Let x be at position k in MTF’s list
Let x be at position i in A’s list
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Case I

We can have this i− 1 > k − 1

a

b

c

x

xe

f

a

b

c

e

f

MTF A

a

b

c

x

e

f
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Case II

We can have this i− 1 < k − 1

a

b

c

x

x

e

f

a

b

c

e

f

MTF A

a

b

c

x

e

f
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Cost

Then, the cost is for the MTF’s list

ci = 2 (k − 1) (3)

Because the swapping can be done by putting you at position k − 1
and doing k − 1 swaps.

The cost for the A′s list

ci = i (4)
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Then

Why?
Note that moving x to the front of the list reverses the ordering of all
pairs including x and an item originally in location 1 to k–1

I i.e., k–1 pairs in total.

In addition
The relative positions of all other pairs are unchanged by the move.
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What is φ (Dt)− φ (Dt−1)?

We have that
In A’s list, there are i–1 items ahead of x.
All of these will be behind x in MTF’s list once x is moved to the
front.

Thus
There are at most min{k–1, i–1} pair inversions that are added by
the move to the front of x

I i.e., disagreements in pair order between MTF’s list and A’s list.

Thus, we have that the added inversions after x is moved to the front
to be

min{k–1, i–1} (5)
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Now, What about ?

We have
All other ordering reversals must result in pair inversion removals or the
places where MTF and A agree:

At least k–1–min {k–1, i–1} (6)
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Example
We can have this
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Then

We have that
We have that φ (Dt)− φ (Dt−1) can be seen as twice the difference of
inversions between Dt and Dt−1

i.e. the potential change

The maximum number of inversion that exist after moving x to the
front is

min{k–1, i–1}–(k–1–min{k–1, i–1})

The potential change incurred in this single access and move to front
is bounded above by

2(min{k–1, i–1}–(k–1–min{k–1, i–1})) = 4 min {k–1, i–1} –2(k–1).
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Using the Upper Bound of the Potential Change

And Taking in account that the real cost of swapping is

c = 2 (k − 1)

We have the Upper bound for the Potential Cost

ĉ = c+ φ (Dt)− φ (Dt−1)
≤ 2 (k − 1) + 4 min {k–1, i–1} –2(k–1)
≤ 4 min {k−1, i−1}
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Potential Change

If min {k−1, i−1} = k − 1
Then ĉ = c+ ∆Φ ≤ 4(k − 1) ≤ 4(i− 1) ≤ 4i

Similarly, if min {k−1, i−1} = i− 1
Then ĉ = c+ ∆Φ ≤ 4(i− 1) ≤ 4i

The Total Amortized Cost
Therefore, the total amortized cost is an upper bound on the total actual
cost of any access sequence.
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Finally

We have then
The amortized cost of a single access and movetofront by MTF is bounded
above by four times the cost of the access by A.

BTW
A might independently perform swaps in response to a new access request.
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For example

If A does swap in response to an access request.
This incurs no additional actual cost on the part of MTF.
But it will increase or decrease the new potential by 2 and the cost
access of A will increase by 1.
The bound on MTF’s amortized cost still holds because

I The amortized cost is increased by at most 2
I but the bound is increased by 4 (Remember the multiplication by 2)

Not only that
This is true no matter how many swap operations A performs.

59 / 91



For example

If A does swap in response to an access request.
This incurs no additional actual cost on the part of MTF.
But it will increase or decrease the new potential by 2 and the cost
access of A will increase by 1.
The bound on MTF’s amortized cost still holds because

I The amortized cost is increased by at most 2
I but the bound is increased by 4 (Remember the multiplication by 2)

Not only that
This is true no matter how many swap operations A performs.

59 / 91



For example

If A does swap in response to an access request.
This incurs no additional actual cost on the part of MTF.
But it will increase or decrease the new potential by 2 and the cost
access of A will increase by 1.
The bound on MTF’s amortized cost still holds because

I The amortized cost is increased by at most 2
I but the bound is increased by 4 (Remember the multiplication by 2)

Not only that
This is true no matter how many swap operations A performs.

59 / 91



For example

If A does swap in response to an access request.
This incurs no additional actual cost on the part of MTF.
But it will increase or decrease the new potential by 2 and the cost
access of A will increase by 1.
The bound on MTF’s amortized cost still holds because

I The amortized cost is increased by at most 2
I but the bound is increased by 4 (Remember the multiplication by 2)

Not only that
This is true no matter how many swap operations A performs.

59 / 91



Final words

Using a MTF is more efficient
Because in order to device A, it will require complex statistic
estimators
Against a simple MTF algorithm...
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Dynamic Tables

Definition
A Dynamic Table T is basically a table where the following operations
are supported:

I TABLE-INSERT and TABLE-DELETE for individual elements.
I Expansions: when more space is needed.
I Contractions: when it is necessary to save memory.

Possible Data Structures to Support Dynamic Tables
Stack
Heap
Hash Tables
Arrays
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Dynamic Tables

Load Factor α (T )
Case I Empty Table

I α (T ) = 1

Case II Non-Empty Table
I α (T ) is the number of item stored at the table T divided by the size

(number of slots) in the table T :

α (T ) = T.num

T.size

Observation
If the load factor of a dynamic table is bounded by a constant, the
unused space in the table is never more than a constant fraction of
the total amount of space.
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Table Expansion
Heuristic
Allocate a new table with twice the size when T.num = T.size.

We have only insertions:
I The Load Factor is always ≥ 1

2 .
I Wasted space is never more than half the space.

Code
Table-Insert(T, x)

1 if T.size == 0
2 allocate T.table with 1 slot

3 T.size = 1
4 if T.size == T.num

5 allocate new − table with 2 · T.size slots
6 insert items in T.table into new − table

7 free T.table, T.table = new − table and T.size = 2 · T.size

8 insert x into T.table

9 T.num = T.num + 1 65 / 91
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Aggregated Analysis
Only Insertions in the table T

Case Table is not full:
I ci = 1

Case Table is full:
I Table is expanded then

F i− 1 elements are copied, 1 for inserting the element i.
F Thus ci = i

Observation
The worst case of an operation is O(n) when you need to

Expand
Copy

Thus, for n operations the upper bound is O
(
n2) which is not a thigh

bound!!!
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Aggregated Analysis

When expansions are done?
The ith insertion can only cause an expansion of i− 1 is a power of 2.

Example
i = 1 start the table. Then, T.size =1.
i = 2 expand table and i− 1 = 20. Then, T.size =2.
i = 3 expand table and i− 1 = 2. Then, T.size =4.
i = 4, table do not expand and T.size =4.
i = 5, expand table and i− 1 = 22 and T.size = 8.

Final Cost

ci =
{
i if i− 1 = 2k

1 otherwise

68 / 91
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Aggregated Analysis

Total Cost of n Table-Insert operations is

n∑
i=1

ci ≤ number of insertions + number of copies

= n+
blg nc∑
j=1

2j

= n+

(
1− 2× 2blg nc

)
1− 2

= n+ 2× 2blg nc − 1
< n+ 2× 2blg nc

= n+ 2nlg 2 = 3n
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Potential Method

Potential Function
We require potential Φ equal to 0 after expansion and builds after T
is full.
Then, Φ (T ) = 2× T.num− T.size.

I After expansion T.num = T.size
2 ⇒ Φ (T ) = 0.

I Before expansion T.num = T.size⇒ Φ (T ) = T.num

Observations
The initial Potential Value is 0 because T.num = 0 and T.size = 0.
T.num ≥ T.size

2 always!!!.
Therefore, Φ (T ) ≥ 0
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Potential Method

Notation for Analysis
numi =Number of items stored at T after the ith operation.
sizei =The size of the table T after the ith operation.
Φi =The potential after the ith operation.
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Potential Method

The ith Table-Insert operation does not trigger expansion
Then, sizei = sizei−1.

Thus

ĉi = ci + Φi − Φi−1

= 1 + (2 · numi − sizei)− (2 · numi−1 − sizei−1)
= 1 + (2 · numi − sizei)− (2 · (numi − 1)− sizei)
= 3
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ĉi = ci + Φi − Φi−1

= numi + (2 · numi − sizei)− (2 · numi−1 − sizei−1)
= numi + (2 · numi − 2 · (numi − 1))− ...

(2 · (numi − 1)− (numi − 1))
= numi + (2 · numi − 2 · numi − 2)− (numi − 1)
= numi + 2− (numi − 1)
= 3

74 / 91



Potential Under Table Expansions
The expansions generate the following graph for Φ

8 16

8

16

32

32

24

0
0 24

Figure: The Comparison between different quantities in the Dynamic Table.
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Table Expansions and Contractions

Properties to be maintained
The load factor of the dynamic table is bounded below by a positive
constant.
The amortized cost of a table operation is bounded above by a
constant.

Possible Heuristic, but not the correct one
You double the table when inserting an item into a full table.
You halve the table size, when deleting an item causes the table to
become less than half full.
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Table Expansions and Contractions

Problem!!!
You could have n = 2t insertions and deletions in a sequence in the
following sequence:

First n
2 operations are insertions, thus T.num = T.size = n

2 .
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First n
2 operations are insertions, thus T.num = T.size = n

2 .

Example 

Full Array

Full Bucket
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Then

For the second n
2 operations, the following sequence is performed

I,D,D,I,I,D,D,I,I,D,D,I,I,D,D,...

Thus, the first insertion cause a expansion to T.size = n
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Then

For the second n
2 operations, the following sequence is performed

I,D,D,I,I,D,D,I,I,D,D,I,I,D,D,...

Thus, the first insertion cause a expansion to T.size = n

Expansion

Full Bucket
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Next

The two following deletions trigger a contraction back to T.size = n
2

Contraction

Full Bucket
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Next

The two following insertion trigger a expansion back to T.size = n

Expansion

Full Bucket
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Table Expansions and Contractions
Thus, we have that
We have two meetings one on Thursday at 5:00 PM at my office and
another on Oracle at 11:00 AM Thanks... Doc Andrés

The cost of each expansion and contraction is Θ (n).
Then, there are Θ (n) operations.
The total cost of n operations is Θ

(
n2).

Improvement
You double the table when inserting an item into a full table.
You halve the table when deleting an item makes α (T ) < 1

4 .

Potential Analysis
Potential Function:

I We require to have a function Φ that is 0 immediately after an
expansion or contradiction.

I Builds potential as the load factors increases to 1 or decreases to 1
4 .82 / 91
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Table Expansions and Contractions

Final Potential Function

Φ (T ) =
{

2 · T.num− T.size if α (T ) ≥ 1
2

T.size
2 − T.num if α (T ) < 1

2
.

Properties of this Function
Empty table T.num = T.size = 0, we have that α(T ) = 1.
Then, for an empty or not empty table

I we always have T.num = α (T ) · T.size.
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Table Expansions and Contractions

Therfore, we have that
When α (T ) = 1

2 , the potential is 0.
When α (T ) = 1, we have T.size = T.num⇒ Φ (T ) = T.num. It
can pay for an expansion, if an item is inserted.
When α (T ) = 1

4 , we have T.size = 4 · T.num⇒ Φ (T ) = T.num. It
can pay for a contraction, if an item is deleted.
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Table Expansions and Contractions

Initialization
num0 = 0, size0 = 0, α0 = 1 and Φ0 = 0.

Case ith operation is a Table-Insert
If αi−1 ≥ 1

2 , if the table expand or not ĉi = 3.
If αi <

1
2 , then

ĉi = ci + Φi − Φi−1

= 1 +
(
sizei

2 − numi

)
−
(
sizei−1

2 − numi−1

)
= 1 +

(
sizei

2 − numi

)
−
(
sizei

2 − (numi − 1)
)

= 0
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Table Expansions and Contractions

Case ith operation is a Table-Insert
If αi−1 <

1
2 and αi ≥ 1

2 then

ĉi = ci + Φi − Φi−1

= 1 + (2numi − sizei) −
(
sizei−1

2 − numi−1

)
= 1 + (2 (numi−1 + 1) − sizei−1) −

(
sizei−1

2 − numi−1

)
= 3 · αi−1sizei−1 − 3

2sizei−1 + 3

<
3
2sizei−1 − 3

2sizei−1 + 3 = 3
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Table Expansions and Contractions

Case ith operation is a Table-Delete and it does not trigger a
contraction
In this case, numi = numi−1 − 1. Now, if αi−1 <

1
2

ĉi = ci + Φi − Φi−1

= 1 +
(
sizei

2 − numi

)
−
(
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(
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−
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)

= 2
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Table Expansions and Contractions

Case ith operation is a Table-Delete and it does trigger a contraction

αi−1 <
1
2

ci = numi + 1
sizei

2 = sizei−1
4 = numi−1 = numi + 1
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Table Expansions and Contractions

Case ith operation is a Table-Delete and it does trigger a contraction

ĉi = (numi + 1) +
(
sizei

2 − numi

)
−
(
sizei−1

2 − numi−1

)
= (numi + 1) + (numi + 1− numi)− (2 · numi + 2− (numi + 1))
= 1

Case ith operation is a Table-Delete

For αi−1 ≥ 1
2 .

You can do an analysis and the amortized cost is bounded by a
constant.

Therfore, we have that
The Time for any sequence of n operations on a Dynamic Table is O(n).
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Change of Potential Under Expansions and Contractions

The Changes in Potential Φ

Figure: The Comparison between different quantities in the Dynamic Table.
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Exercises

17.1-1
17.1-2
17.1-3
17.2-1
17.2-2
17.2-3
17.3-1
17.3-2
17.3-3
17.3-4
17.3-5
17.3-6
17.3-7
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