Analysis of Algorithms Amortized Analysis

Andres Mendez-Vazquez

February 26, 2018

Outline

(1) Introduction

- History
(2) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter - Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Outline

(1) Introduction

- History
(2) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

History

Long Ago in a Faraway Land... too much The Hobbit
Aho, Ullman and Hopcroft in their book "Data Structures and Algorithms" (1983)

History

Long Ago in a Faraway Land... too much The Hobbit
Aho, Ullman and Hopcroft in their book "Data Structures and Algorithms" (1983)

- They described a new complex analysis technique based in looking at the sequence of operations in a given data structure.

History

Long Ago in a Faraway Land... too much The Hobbit

Aho, Ullman and Hopcroft in their book "Data Structures and Algorithms" (1983)

- They described a new complex analysis technique based in looking at the sequence of operations in a given data structure.
- They used it for describing the set operations under a binary tree data structure.

History

Long Ago in a Faraway Land... too much The Hobbit

Aho, Ullman and Hopcroft in their book "Data Structures and Algorithms" (1983)

- They described a new complex analysis technique based in looking at the sequence of operations in a given data structure.
- They used it for describing the set operations under a binary tree data structure.

Robert Tarjan

Later on in the paper "Amortized Computational Complexity," Robert Trajan formalized the accounting and potential techniques of amortized analysis.

Outline

Introduction

- History
(2) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example

4) The Accounting Method

- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations

6 Real Life Examples

- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Aggregate Analysis

Aggregate Analysis

- The methods tries to determine an upper bound cost $T(n)$ for a sequence of n operations.

Aggregate Analysis

Aggregate Analysis

- The methods tries to determine an upper bound cost $T(n)$ for a sequence of n operations.
- Then, it calculates the amortized cost by using $\frac{T(n)}{n}$.

Accounting Method

Accounting Method

- The accounting method determines the individual cost of each operation, combining its immediate execution time and its influence on the running time of future operations by using a credit.

Accounting Method

Accounting Method

- The accounting method determines the individual cost of each operation, combining its immediate execution time and its influence on the running time of future operations by using a credit.

Operation real cost + credit

Potential Method

Potential Method

- The potential method is like the accounting method, but overcharges operations early to compensate for undercharges later.

Outline

Introduction

- History
(2) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter

5 The Potential Method

- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Aggregate Analysis

Stack with an extra Operation: Multipops

To begin exemplifying the aggregate analysis, let us add the following operation to the stack Data Structure.
(1) Multipops (S, k)
(2) while not Stack-Empty(S) and $k>0$
©
POP(S)
4

$$
k=k-1
$$

Aggregate Analysis

Case I Worst Case without Amortized Analysis

- Multipops is bounded by $\min (s, k)$, where s =number of elements in the stack.

Aggregate Analysis

Case I Worst Case without Amortized Analysis

- Multipops is bounded by $\min (s, k)$, where s =number of elements in the stack.
- The worst case is $n-1$ pushes followed by a multipop with $k=n-1$.

Aggregate Analysis

Case I Worst Case without Amortized Analysis

- Multipops is bounded by $\min (s, k)$, where s =number of elements in the stack.
- The worst case is $n-1$ pushes followed by a multipop with $k=n-1$.
- Then, we have that the worst complexity for an operation can be $O(n)$.

Aggregate Analysis

Case I Worst Case without Amortized Analysis

- Multipops is bounded by $\min (s, k)$, where s =number of elements in the stack.
- The worst case is $n-1$ pushes followed by a multipop with $k=n-1$.
- Then, we have that the worst complexity for an operation can be $O(n)$.
- Thus, for n operations we have $O\left(n^{2}\right)$ complexity.

Aggregate Analysis

Case II Now, we use the aggregate analysis

- Multipops depends on pops and pushes done before it.

Aggregate Analysis

Case II Now, we use the aggregate analysis

- Multipops depends on pops and pushes done before it.
- Then, any sequence of n pushes, pops and multipops on an initial empty stack cost at most $O(n)$

Aggregate Analysis

Case II Now, we use the aggregate analysis

- Multipops depends on pops and pushes done before it.
- Then, any sequence of n pushes, pops and multipops on an initial empty stack cost at most $O(n)$
- Because pop or multipops can be called in a non-empty stack is at most the number of pushes.

Aggregate Analysis

Case II Now, we use the aggregate analysis

- Multipops depends on pops and pushes done before it.
- Then, any sequence of n pushes, pops and multipops on an initial empty stack cost at most $O(n)$
- Because pop or multipops can be called in a non-empty stack is at most the number of pushes.
- Finally, the average cost for each operation is $\frac{O(n)}{n}=O(1)$.

Outline

Introduction

- History

2. What is this all about amortized analysis?

- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations

6) Real Life Examples

- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Example Binary Counter

We have something like this

0	0	0	0	0
a_{n}	a_{n-1}	a_{n-2}			a_{1}	a_{0}

Example Binary Counter

We have something like this

0	0	0	0	0
a_{n}	a_{n-1}	a_{n-2}			a_{1}	a_{0}

Basically

The Binary Counter is an array of bits to be used as a counter:

Example Binary Counter

Binary Counter

To begin exemplifying the aggregate method, let use the binary counter code.

Example Binary Counter

Binary Counter

To begin exemplifying the aggregate method, let use the binary counter code.
A is an array of bits to be used as a counter. Each bit is a coefficient of the radix representation $x=\sum_{i=0}^{n} a_{i} 2^{i}$, where x is the counter.
(1) Increment (A)

Example Binary Counter

Binary Counter

To begin exemplifying the aggregate method, let use the binary counter code.
A is an array of bits to be used as a counter. Each bit is a coefficient of the radix representation $x=\sum_{i=0}^{n} a_{i} 2^{i}$, where x is the counter.
(1) Increment (A)
(2) $\quad i=0$

Example Binary Counter

Binary Counter

To begin exemplifying the aggregate method, let use the binary counter code.
A is an array of bits to be used as a counter. Each bit is a coefficient of the radix representation $x=\sum_{i=0}^{n} a_{i} 2^{i}$, where x is the counter.
(1) $\operatorname{Increment}(A)$
(2) $\quad i=0$
(3) while $i<$ A.length and $A[i]==1$
(1)

$$
A[i]=0
$$

©

$$
i=i+1
$$

Example Binary Counter

Binary Counter

To begin exemplifying the aggregate method, let use the binary counter code.
A is an array of bits to be used as a counter. Each bit is a coefficient of the radix representation $x=\sum_{i=0}^{n} a_{i} 2^{i}$, where x is the counter.
(1) $\operatorname{Increment}(A)$
(2) $\quad i=0$
(3) while $i<$ A.length and $A[i]==1$
(1)

$$
A[i]=0
$$

(6)

$$
i=i+1
$$

©
if $i<$ A.length
(7)

$$
A[i]=1
$$

Example Binary Counter

Binary Counter

To begin exemplifying the aggregate method, let use the binary counter code.
A is an array of bits to be used as a counter. Each bit is a coefficient of the radix representation $x=\sum_{i=0}^{n} a_{i} 2^{i}$, where x is the counter.
(1) $\operatorname{Increment}(A)$
(2) $\quad i=0$
(3) while $i<$ A.length and $A[i]==1$
(9)

$$
A[i]=0
$$

(6)

$$
i=i+1
$$

©
if $i<$ A.length
(7)

$$
A[i]=1
$$

Outline

Introduction

- History
(2) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter - Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Example

Adding bits to a counter of size $k=9$

Example

Adding to the counter

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline \text { 1st Count } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
$$

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1
6th	0	0	0	0	0	0	1	1	0

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1
6th	0	0	0	0	0	0	1	1	0
7th	0	0	0	0	0	0	1	1	1

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1
6th	0	0	0	0	0	0	1	1	0
7th	0	0	0	0	0	0	1	1	1
8th	0	0	0	0	0	1	0	0	0

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1
6th	0	0	0	0	0	0	1	1	0
7th	0	0	0	0	0	0	1	1	1
8th	0	0	0	0	0	1	0	0	0
9th	0	0	0	0	0	1	0	0	1

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1
6th	0	0	0	0	0	0	1	1	0
7th	0	0	0	0	0	0	1	1	1
8th	0	0	0	0	0	1	0	0	0
9th	0	0	0	0	0	1	0	0	1
10th	0	0	0	0	0	1	0	1	0

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1
6th	0	0	0	0	0	0	1	1	0
7th	0	0	0	0	0	0	1	1	1
8th	0	0	0	0	0	1	0	0	0
9th	0	0	0	0	0	1	0	0	1
10th	0	0	0	0	0	1	0	1	0
11th	0	0	0	0	0	1	0	1	1

Example

Adding to the counter

1st Count	0	0	0	0	0	0	0	0	1
2nd Count	0	0	0	0	0	0	0	1	0
3rd Count	0	0	0	0	0	0	0	1	1
4th Count	0	0	0	0	0	0	1	0	0
5th	0	0	0	0	0	0	1	0	1
6th	0	0	0	0	0	0	1	1	0
7th	0	0	0	0	0	0	1	1	1
8th	0	0	0	0	0	1	0	0	0
9th	0	0	0	0	0	1	0	0	1
10th	0	0	0	0	0	1	0	1	0
11th	0	0	0	0	0	1	0	1	1
12th	0	0	0	0	0	1	1	0	0

Operations

We have

(1) At the start of each iteration of the while loop in lines $2-4$, we wish to add a 1 into position i.

Operations

We have

(1) At the start of each iteration of the while loop in lines $2-4$, we wish to add a 1 into position i.
(2) If $A[i]==1$, then adding 1 flips the bit to 0 in position i and a carry of 1 for $i+1$ on the next iteration of the loop.

Operations

We have

(1) At the start of each iteration of the while loop in lines $2-4$, we wish to add a 1 into position i.
(2) If $A[i]==1$, then adding 1 flips the bit to 0 in position i and a carry of 1 for $i+1$ on the next iteration of the loop.
(3) If $A[i]==0$ stop.

Operations

We have

(1) At the start of each iteration of the while loop in lines $2-4$, we wish to add a 1 into position i.
(2) If $A[i]==1$, then adding 1 flips the bit to 0 in position i and a carry of 1 for $i+1$ on the next iteration of the loop.
(3) If $A[i]==0$ stop.
(9) If $\mathrm{i}<\mathrm{A}$.length, we know that $A[i]==0$, so flip to a 1 .

Operations

We have

(1) At the start of each iteration of the while loop in lines $2-4$, we wish to add a 1 into position i.
(2) If $A[i]==1$, then adding 1 flips the bit to 0 in position i and a carry of 1 for $i+1$ on the next iteration of the loop.
(3) If $A[i]==0$ stop.
(4) If $\mathrm{i}<\mathrm{A}$.length, we know that $A[i]==0$, so flip to a 1 .

Complexity

(1) The cost of each INCREMENT operation is linear in the number of bits flipped.

Operations

We have

(1) At the start of each iteration of the while loop in lines $2-4$, we wish to add a 1 into position i.
(2) If $A[i]==1$, then adding 1 flips the bit to 0 in position i and a carry of 1 for $i+1$ on the next iteration of the loop.
(3) If $A[i]==0$ stop.
(1) If $\mathrm{i}<\mathrm{A}$.length, we know that $A[i]==0$, so flip to a 1 .

Complexity

(1) The cost of each INCREMENT operation is linear in the number of bits flipped.
(2) The worst case is $\Theta(k)$ in the worst case!!! Thus, for n operations we have $O(k n)$.

Better Analysis

Did you notice the following...
(1) $A[0]$ flips $\left\lfloor n / 2^{0}\right\rfloor$ time

Better Analysis

Did you notice the following...
(1) $A[0]$ flips $\left\lfloor n / 2^{0}\right\rfloor$ time
(2) $A[1]$ flips $\left\lfloor n / 2^{1}\right\rfloor$ time

Better Analysis

Did you notice the following...
(1) $A[0]$ flips $\left\lfloor n / 2^{0}\right\rfloor$ time
(2) $A[1]$ flips $\left\lfloor n / 2^{1}\right\rfloor$ time
(3) etc

Better Analysis

Did you notice the following...
(1) $A[0]$ flips $\left\lfloor n / 2^{0}\right\rfloor$ time
(2) $A[1]$ flips $\left\lfloor n / 2^{1}\right\rfloor$ time
(3) etc

The total work is...
Look at the Board...

Outline

（1）Introduction

－History
b．What is this all about amortized analysis？
－The Methods
（3）The Aggregate Method
－Introduction
－The Binary Counter
－Example
（4）The Accounting Method
－Introduction
－Binary Counter
5 The Potential Method
－Introduction
－Stack Operations
（6）Real Life Examples
－Move－To－Front（MTF）
－Dynamic Tables
－Table Expansion
－Aggegated Analysis
－Potential Method
－Table Expansions and Contractions

Accounting Method

The use of credit

- When an operation, with an amortized cost \widehat{c}_{i} (operation i), exceeds its actual cost, we give the difference to a credit.

Accounting Method

The use of credit

- When an operation, with an amortized cost \widehat{c}_{i} (operation i), exceeds its actual cost, we give the difference to a credit.
- This is to be stored in the data structure.

Accounting Method

The use of credit

- When an operation, with an amortized cost \widehat{c}_{i} (operation i), exceeds its actual cost, we give the difference to a credit.
- This is to be stored in the data structure.

We have that

- As long as the charges are set so that it is impossible to go into debt.

Accounting Method

The use of credit

- When an operation, with an amortized cost \widehat{c}_{i} (operation i), exceeds its actual cost, we give the difference to a credit.
- This is to be stored in the data structure.

We have that

- As long as the charges are set so that it is impossible to go into debt.
- one can show that there will never be an operation whose actual cost is greater than the sum of its charge plus the previously accumulated credit.

More Formally

Something Notable

- Actual cost of the $i^{t h}$ operation is c_{i}.

More Formally

Something Notable

- Actual cost of the $i^{t h}$ operation is c_{i}.
- The amortized (charge) of the $i^{t h}$ operation is \widehat{c}_{i}.

More Formally

Something Notable

- Actual cost of the $i^{t h}$ operation is c_{i}.
- The amortized (charge) of the $i^{t h}$ operation is \widehat{c}_{i}.

Properties

- If $\widehat{c}_{i}>c_{i}$ the $i^{\text {th }}$ operation leaves some positive amount of credit, credit $=\widehat{c}_{i}-c_{i}$.

Therefore

And as long

$$
\begin{equation*}
\sum_{i=1}^{n} \widehat{c}_{i} \geq \sum_{i=1}^{n} c_{i} \tag{1}
\end{equation*}
$$

Therefore

And as long

$$
\begin{equation*}
\sum_{i=1}^{n} \widehat{c}_{i} \geq \sum_{i=1}^{n} c_{i} \tag{1}
\end{equation*}
$$

Then

The total available credit will always be nonnegative, and the sum of amortized costs will be an upper bound on the actual cost.

Outline

Introduction

- History
(2) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter

5) The Potential Method

- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .
(1) One for the actual set of the bit to one.

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .
(1) One for the actual set of the bit to one.
(2) Another for the flipping back to 0 .

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .
(1) One for the actual set of the bit to one.
(2) Another for the flipping back to 0 .
(2) We do not charge anything to reset the bit to 0 because we use the credit stored at it.

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .
(1) One for the actual set of the bit to one.
(2) Another for the flipping back to 0 .
(2) We do not charge anything to reset the bit to 0 because we use the credit stored at it.

Observation

- The numbers of 1 at the bit counter never becomes negative.

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .
(1) One for the actual set of the bit to one.
(2) Another for the flipping back to 0 .
(2) We do not charge anything to reset the bit to 0 because we use the credit stored at it.

Observation

- The numbers of 1 at the bit counter never becomes negative.
- The Binary counter never charges a 0 flip if the bit was never changed to 1.

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .
(1) One for the actual set of the bit to one.
(2) Another for the flipping back to 0 .
(2) We do not charge anything to reset the bit to 0 because we use the credit stored at it.

Observation

- The numbers of 1 at the bit counter never becomes negative.
- The Binary counter never charges a 0 flip if the bit was never changed to 1.

Thus

- The credit never becomes negative, or $\sum_{i=1}^{n} \widehat{c}_{i} \geq \sum_{i=1}^{n} c_{i}$.

Example Binary Counter II

Binary Counter Cost Operations

(1) We charge 2 units of cost to flip a bit to 1 .
(1) One for the actual set of the bit to one.
(2) Another for the flipping back to 0 .
(2) We do not charge anything to reset the bit to 0 because we use the credit stored at it.

Observation

- The numbers of 1 at the bit counter never becomes negative.
- The Binary counter never charges a 0 flip if the bit was never changed to 1.

Thus

- The credit never becomes negative, or $\sum_{i=1}^{n} \widehat{c}_{i} \geq \sum_{i=1}^{n} c_{i}$.
- Amortized cost of n operations is $O(n)$.

Outline

Introduction

- History
- What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

The Potential Method

Basics

(1) n operations are performed in initial data structure D_{0}.

The Potential Method

Basics

(1) n operations are performed in initial data structure D_{0}.
(2) c_{i} be the actual cost and D_{i} the data structure resulting of that operation.

The Potential Method

Basics

(1) n operations are performed in initial data structure D_{0}.
(2) c_{i} be the actual cost and D_{i} the data structure resulting of that operation.
(3) Potential function $\Phi:\left\{D_{0}, D_{1}, \ldots, D_{n}\right\} \rightarrow \mathbb{R}$ that describe the potential energy on each data structure D_{i}.

The Potential Method

Basics

(1) n operations are performed in initial data structure D_{0}.
(2) c_{i} be the actual cost and D_{i} the data structure resulting of that operation.
(3) Potential function $\Phi:\left\{D_{0}, D_{1}, \ldots, D_{n}\right\} \rightarrow \mathbb{R}$ that describe the potential energy on each data structure D_{i}.
(9) Then, we have an amortized cost: $\widehat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$.

The Potential Method

Basics

(1) n operations are performed in initial data structure D_{0}.
(2) c_{i} be the actual cost and D_{i} the data structure resulting of that operation.
(3) Potential function $\Phi:\left\{D_{0}, D_{1}, \ldots, D_{n}\right\} \rightarrow \mathbb{R}$ that describe the potential energy on each data structure D_{i}.
(9) Then, we have an amortized cost: $\widehat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$.

Telescopic Sum

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)
$$

The Potential Method

Basics

(1) n operations are performed in initial data structure D_{0}.
(2) c_{i} be the actual cost and D_{i} the data structure resulting of that operation.
(3) Potential function $\Phi:\left\{D_{0}, D_{1}, \ldots, D_{n}\right\} \rightarrow \mathbb{R}$ that describe the potential energy on each data structure D_{i}.
(9) Then, we have an amortized cost: $\widehat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$.

Telescopic Sum

$$
\begin{aligned}
\sum_{i=1}^{n} \widehat{c}_{i} & =\sum_{i=1}^{n}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right) \\
& =\sum_{i=1}^{n} c_{i}+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)
\end{aligned}
$$

Observations

Observation

Because we do not know the number of operations:

Observations

Observation

Because we do not know the number of operations:

- We ask for $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$ for all i or if $\Phi\left(D_{0}\right)=0$ then $\Phi\left(D_{i}\right) \geq 0$.

Observations

Observation

Because we do not know the number of operations:

- We ask for $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$ for all i or if $\Phi\left(D_{0}\right)=0$ then $\Phi\left(D_{i}\right) \geq 0$.

Note

- If $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ is positive, then

Observations

Observation

Because we do not know the number of operations:

- We ask for $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$ for all i or if $\Phi\left(D_{0}\right)=0$ then $\Phi\left(D_{i}\right) \geq 0$.

Note

- If $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ is positive, then
- \widehat{c}_{i} represents an overcharge to the i th operation.

Outline

（1）Introduction

－History
（b）What is this all about amortized analysis？
－The Methods
（3）The Aggregate Method
－Introduction
－The Binary Counter
－Example
（4）The Accounting Method
－Introduction
－Binary Counter
（5）The Potential Method
－Introduction
－Stack Operations
（6）Real Life Examples
－Move－To－Front（MTF）
－Dynamic Tables
－Table Expansion
－Aggegated Analysis
－Potential Method
－Table Expansions and Contractions

Example Stack Operations I

Potential Function

- Φ on stack as the number of elements in the stack. Then:
- $\Phi\left(D_{0}\right)=0$.

Example Stack Operations I

Potential Function

- Φ on stack as the number of elements in the stack. Then:
- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0=\Phi\left(D_{0}\right)$.

Example Stack Operations I

Potential Function

- Φ on stack as the number of elements in the stack. Then:
- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0=\Phi\left(D_{0}\right)$.

Case "PUSH"

- If the i th operation on a stack containing s objects is a push:

Example Stack Operations I

Potential Function

- Φ on stack as the number of elements in the stack. Then:
- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0=\Phi\left(D_{0}\right)$.

Case "PUSH"

- If the i th operation on a stack containing s objects is a push:

$$
\widehat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

Example Stack Operations I

Potential Function

- Φ on stack as the number of elements in the stack. Then:
- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0=\Phi\left(D_{0}\right)$.

Case "PUSH"

- If the i th operation on a stack containing s objects is a push:

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =c_{i}+s+1-s
\end{aligned}
$$

Example Stack Operations I

Potential Function

- Φ on stack as the number of elements in the stack. Then:
- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0=\Phi\left(D_{0}\right)$.

Case "PUSH"

- If the i th operation on a stack containing s objects is a push:

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =c_{i}+s+1-s \\
& =1+1=2
\end{aligned}
$$

Example Stack Operations II

Case "MULTIPOP"

- The i th operation on the stack with s elements is a multipop, thus $k^{\prime}=\min (k, s)$:

Example Stack Operations II

Case "MULTIPOP"

- The i th operation on the stack with s elements is a multipop, thus $k^{\prime}=\min (k, s)$:

$$
\widehat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

Example Stack Operations II

Case "MULTIPOP"

- The i th operation on the stack with s elements is a multipop, thus $k^{\prime}=\min (k, s)$:

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =c_{i}+s-k^{\prime}+s
\end{aligned}
$$

Example Stack Operations II

Case "MULTIPOP"

- The i th operation on the stack with s elements is a multipop, thus $k^{\prime}=\min (k, s)$:

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =c_{i}+s-k^{\prime}+s \\
& =k^{\prime}-k^{\prime}=0
\end{aligned}
$$

Case "POP"

Example Stack Operations II

Case "MULTIPOP"

- The i th operation on the stack with s elements is a multipop, thus

$$
k^{\prime}=\min (k, s):
$$

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =c_{i}+s-k^{\prime}+s \\
& =k^{\prime}-k^{\prime}=0
\end{aligned}
$$

Case "POP"

- It is similar to multipop, 0 .

Finally

Example Stack Operations II

Case "MULTIPOP"

- The i th operation on the stack with s elements is a multipop, thus

$$
k^{\prime}=\min (k, s):
$$

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =c_{i}+s-k^{\prime}+s \\
& =k^{\prime}-k^{\prime}=0
\end{aligned}
$$

Case "POP"

- It is similar to multipop, 0 .

Finally

- The amortized cost for all the three operations is $O(1)$.

Example Stack Operations II

Case "MULTIPOP"

- The i th operation on the stack with s elements is a multipop, thus $k^{\prime}=\min (k, s)$:

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =c_{i}+s-k^{\prime}+s \\
& =k^{\prime}-k^{\prime}=0
\end{aligned}
$$

Case "POP"

- It is similar to multipop, 0 .

Finally

- The amortized cost for all the three operations is $O(1)$.
- The worst-case cost of n operations is $O(n)$.

Outline

（1）Introduction

－History
（2）What is this all about amortized analysis？
－The Methods
（3）The Aggregate Method
－Introduction
－The Binary Counter
－Example
（4）The Accounting Method
－Introduction
－Binary Counter
（5）The Potential Method
－Introduction
－Stack Operations
6）Real Life Examples
－Move－To－Front（MTF）
－Dynamic Tables
－Table Expansion
－Aggegated Analysis
－Potential Method
－Table Expansions and Contractions

We have the following

Definition

- Consider a linear list of items (such as a singly-linked list).

We have the following

Definition

- Consider a linear list of items (such as a singly-linked list).
- To access the item in the i th position requires time i.

We have the following

Definition

- Consider a linear list of items (such as a singly-linked list).
- To access the item in the i th position requires time i.

Constraints

Also, any two contiguous items can be swapped in constant time

We have the following

Definition

- Consider a linear list of items (such as a singly-linked list).
- To access the item in the i th position requires time i.

Constraints

Also, any two contiguous items can be swapped in constant time

Goal

- The goal is to allow access to a sequence of n items in a minimal amount of time

We have the following

Definition

- Consider a linear list of items (such as a singly-linked list).
- To access the item in the i th position requires time i.

Constraints

Also, any two contiguous items can be swapped in constant time

Goal

- The goal is to allow access to a sequence of n items in a minimal amount of time
- One item may be accessed many times within a sequence

We have the following

Definition

－Consider a linear list of items（such as a singly－linked list）．
－To access the item in the i th position requires time i ．

Constraints

Also，any two contiguous items can be swapped in constant time

Goal

－The goal is to allow access to a sequence of n items in a minimal amount of time
－One item may be accessed many times within a sequence
－Starting from some set initial list configuration．

Thus, we have two cases

First

If the sequence of accesses is known in advance, one can design an optimal algorithm for swapping items to rearrange the list according to how often items are accessed, and when.

Thus, we have two cases

First

If the sequence of accesses is known in advance, one can design an optimal algorithm for swapping items to rearrange the list according to how often items are accessed, and when.

Second

However, if the sequence is not known in advance, a heuristic method for swapping items may be desirable.

MTF Heuristic

Reality!!!

If item i is accessed at time t, it is likely to be accessed again soon after time t (i.e., there is locality of reference).

MTF Heuristic Example

Example Heuristic Bring to the front

Figure: To access ' c ' in the original list (left), walk down from 'a', then move ' c ' to front by swapping with ' b ' then 'a' (right)

MTF Heuristic Example

Example Heuristic Bring to the front

Figure: To access ' c ' in the original list (left), walk down from 'a', then move ' c ' to front by swapping with 'b' then 'a' (right)

MTF Heuristic Example

Example Heuristic Bring to the front

Figure: To access ' c ' in the original list (left), walk down from 'a', then move ' c ' to front by swapping with 'b' then 'a' (right)

MTF Heuristic Example

Example Heuristic Bring to the front

Figure: To access ' c ' in the original list (left), walk down from 'a', then move ' c ' to front by swapping with 'b' then 'a' (right)

MTF Heuristic Example

Example Heuristic Bring to the front

Figure: To access ' c ' in the original list (left), walk down from 'a', then move ' c ' to front by swapping with 'b' then 'a' (right)

MTF Heuristic Example

Example Heuristic Bring to the front

Figure: To access ' c ' in the original list (left), walk down from 'a', then move ' c ' to front by swapping with 'b' then 'a' (right)

MTF Heuristic Example

Example Heuristic Bring to the front

Figure: To access ' c ' in the original list (left), walk down from 'a', then move ' c ' to front by swapping with 'b' then 'a' (right)

Why does this work?!

Imagine the following

Figure: Here, we have the following situation: Swapping inside a block does not change the block itself!!!

Complexity of the Heuristic

Cost
It the i th item was accessed the cost is

Complexity of the Heuristic

Cost
It the ith item was accessed the cost is
(1) i to access the item

Complexity of the Heuristic

Cost
It the $i t h$ item was accessed the cost is
(1) i to access the item
(2) $i-1$ for the swaps

Complexity of the Heuristic

Cost

It the ith item was accessed the cost is
(1) i to access the item
(2) $i-1$ for the swaps

Now, assume that

You have an optimal algorithm A that knows the access sequence in advance.

Complexity of the Heuristic

Cost

It the $i t h$ item was accessed the cost is
(1) i to access the item
(2) $i-1$ for the swaps

Now, assume that

You have an optimal algorithm A that knows the access sequence in advance.

Potential of MTF at time t

As the $2 \times$ \{the number of pairs of items whose order in the MTF's list differs from their order in A's list at time $t\}$ or

$$
\begin{equation*}
\phi\left(D_{t}\right)=2 \times\{\text { the number of pairs of items whose order differs }\} \tag{2}
\end{equation*}
$$

Complexity of the Heuristic

For example

For example, if MTF's list is ordered (a, b, c, e, d) and A's list is ordered (a, b, c, d, e), then the potential for MTF will be equal to 2 , because one pair of items (d and e) differ in their ordering between A's list and MTF's list.

Complexity of the Heuristic

For example

For example, if MTF's list is ordered (a, b, c, e, d) and A's list is ordered (a, b, c, d, e), then the potential for MTF will be equal to 2 , because one pair of items (d and e) differ in their ordering between A's list and MTF's list.

In addition

- The potential at $t=0$ is 0 , as both algorithms begin with the same list by definition.

Complexity of the Heuristic

For example

For example, if MTF's list is ordered (a, b, c, e, d) and A's list is ordered (a, b, c, d, e), then the potential for MTF will be equal to 2 , because one pair of items (d and e) differ in their ordering between A's list and MTF's list.

In addition

- The potential at $t=0$ is 0 , as both algorithms begin with the same list by definition.
- Also, it is impossible for the potential to be negative.

Thus, we have that

First

- Let x be at position k in MTF's list

Thus, we have that

First

- Let x be at position k in MTF's list
- Let x be at position i in A's list

Case I

We can have this $i-1>k-1$

Case II

We can have this $i-1<k-1$

MTF

A

Cost

Then, the cost is for the MTF's list

$$
\begin{equation*}
c_{i}=2(k-1) \tag{3}
\end{equation*}
$$

Because the swapping can be done by putting you at position $k-1$ and doing $k-1$ swaps.

Cost

Then, the cost is for the MTF's list

$$
\begin{equation*}
c_{i}=2(k-1) \tag{3}
\end{equation*}
$$

Because the swapping can be done by putting you at position $k-1$ and doing $k-1$ swaps.

The cost for the $A^{\prime} s$ list

$$
\begin{equation*}
c_{i}=i \tag{4}
\end{equation*}
$$

Then

Why?

- Note that moving x to the front of the list reverses the ordering of all pairs including x and an item originally in location 1 to $k-1$

Then

Why?

- Note that moving x to the front of the list reverses the ordering of all pairs including x and an item originally in location 1 to $k-1$
- i.e., $k-1$ pairs in total.

Then

Why?

- Note that moving x to the front of the list reverses the ordering of all pairs including x and an item originally in location 1 to $k-1$
- i.e., $k-1$ pairs in total.

In addition

- The relative positions of all other pairs are unchanged by the move.

What is $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$?

We have that

- In A 's list, there are $i-1$ items ahead of x.

What is $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$?

We have that

- In A 's list, there are $i-1$ items ahead of x.
- All of these will be behind x in MTF's list once x is moved to the front.

What is $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$?

We have that

- In A 's list, there are $i-1$ items ahead of x.
- All of these will be behind x in MTF's list once x is moved to the front.

Thus

- There are at most $\min \{k-1, i-1\}$ pair inversions that are added by the move to the front of x

What is $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$?

We have that

- In A 's list, there are $i-1$ items ahead of x.
- All of these will be behind x in MTF's list once x is moved to the front.

Thus

- There are at most $\min \{k-1, i-1\}$ pair inversions that are added by the move to the front of x
- i.e., disagreements in pair order between MTF's list and A 's list.

What is $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$?

We have that

- In A 's list, there are $i-1$ items ahead of x.
- All of these will be behind x in MTF's list once x is moved to the front.

Thus

- There are at most $\min \{k-1, i-1\}$ pair inversions that are added by the move to the front of x
- i.e., disagreements in pair order between MTF's list and A 's list.

Thus, we have that the added inversions after x is moved to the front to be

$$
\begin{equation*}
\min \{k-1, i-1\} \tag{5}
\end{equation*}
$$

Now, What about?

We have

All other ordering reversals must result in pair inversion removals or the places where MTF and A agree:

$$
\begin{equation*}
\text { At least } k-1-\min \{k-1, i-1\} \tag{6}
\end{equation*}
$$

Example

We can have this

Then

We have that

We have that $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$ can be seen as twice the difference of inversions between D_{t} and D_{t-1}

- i.e. the potential change

Then

We have that

We have that $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$ can be seen as twice the difference of inversions between D_{t} and D_{t-1}

- i.e. the potential change

The maximum number of inversion that exist after moving x to the front is

$$
\min \{k-1, i-1\}-(k-1-\min \{k-1, i-1\})
$$

Then

We have that

We have that $\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)$ can be seen as twice the difference of inversions between D_{t} and D_{t-1}

- i.e. the potential change

The maximum number of inversion that exist after moving x to the front is

$$
\min \{k-1, i-1\}-(k-1-\min \{k-1, i-1\})
$$

The potential change incurred in this single access and move to front is bounded above by

$$
2(\min \{k-1, i-1\}-(k-1-\min \{k-1, i-1\}))=4 \min \{k-1, i-1\}-2(k-1) .
$$

Using the Upper Bound of the Potential Change

And Taking in account that the real cost of swapping is

$$
c=2(k-1)
$$

Using the Upper Bound of the Potential Change

And Taking in account that the real cost of swapping is

$$
c=2(k-1)
$$

We have the Upper bound for the Potential Cost

$$
\hat{c}=c+\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right)
$$

Using the Upper Bound of the Potential Change

And Taking in account that the real cost of swapping is

$$
c=2(k-1)
$$

We have the Upper bound for the Potential Cost

$$
\begin{aligned}
\hat{c} & =c+\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right) \\
& \leq 2(k-1)+4 \min \{k-1, i-1\}-2(k-1)
\end{aligned}
$$

Using the Upper Bound of the Potential Change

And Taking in account that the real cost of swapping is

$$
c=2(k-1)
$$

We have the Upper bound for the Potential Cost

$$
\begin{aligned}
\hat{c} & =c+\phi\left(D_{t}\right)-\phi\left(D_{t-1}\right) \\
& \leq 2(k-1)+4 \min \{k-1, i-1\}-2(k-1) \\
& \leq 4 \min \{k-1, i-1\}
\end{aligned}
$$

Potential Change

If $\min \{k-1, i-1\}=k-1$
Then $\hat{c}=c+\Delta \Phi \leq 4(k-1) \leq 4(i-1) \leq 4 i$

Potential Change

If $\min \{k-1, i-1\}=k-1$
Then $\hat{c}=c+\Delta \Phi \leq 4(k-1) \leq 4(i-1) \leq 4 i$
Similarly, if $\min \{k-1, i-1\}=i-1$
Then $\hat{c}=c+\Delta \Phi \leq 4(i-1) \leq 4 i$

Potential Change

If $\min \{k-1, i-1\}=k-1$
Then $\hat{c}=c+\Delta \Phi \leq 4(k-1) \leq 4(i-1) \leq 4 i$
Similarly, if $\min \{k-1, i-1\}=i-1$
Then $\hat{c}=c+\Delta \Phi \leq 4(i-1) \leq 4 i$

The Total Amortized Cost

Therefore, the total amortized cost is an upper bound on the total actual cost of any access sequence.

Finally

We have then

The amortized cost of a single access and movetofront by MTF is bounded above by four times the cost of the access by A.

Finally

We have then

The amortized cost of a single access and movetofront by MTF is bounded above by four times the cost of the access by A.

BTW

A might independently perform swaps in response to a new access request.

For example

If A does swap in response to an access request.

- This incurs no additional actual cost on the part of MTF.

For example

If A does swap in response to an access request.

- This incurs no additional actual cost on the part of MTF.
- But it will increase or decrease the new potential by 2 and the cost access of A will increase by 1 .

For example

If A does swap in response to an access request.

- This incurs no additional actual cost on the part of MTF.
- But it will increase or decrease the new potential by 2 and the cost access of A will increase by 1 .
- The bound on MTF's amortized cost still holds because

For example

If A does swap in response to an access request.

- This incurs no additional actual cost on the part of MTF.
- But it will increase or decrease the new potential by 2 and the cost access of A will increase by 1 .
- The bound on MTF's amortized cost still holds because
- The amortized cost is increased by at most 2
- but the bound is increased by 4 (Remember the multiplication by 2)

Not only that

This is true no matter how many swap operations A performs.

Final words

Using a MTF is more efficient

- Because in order to device A, it will require complex statistic estimators

Final words

Using a MTF is more efficient

- Because in order to device A, it will require complex statistic estimators
- Against a simple MTF algorithm...

Outline

（1）Introduction

－History
（2）What is this all about amortized analysis？
－The Methods
（3）The Aggregate Method
－Introduction
－The Binary Counter
－Example
（4）The Accounting Method
－Introduction
－Binary Counter
（5）The Potential Method
－Introduction
－Stack Operations
（6）Real Life Examples
－Move－To－Front（MTF）
－Dynamic Tables
－Table Expansion
－Aggegated Analysis
－Potential Method
－Table Expansions and Contractions

Dynamic Tables

Definition

- A Dynamic Table T is basically a table where the following operations are supported:

Dynamic Tables

Definition

- A Dynamic Table T is basically a table where the following operations are supported:
- TABLE-INSERT and TABLE-DELETE for individual elements.

Dynamic Tables

Definition

- A Dynamic Table T is basically a table where the following operations are supported:
- TABLE-INSERT and TABLE-DELETE for individual elements.
- Expansions: when more space is needed.

Dynamic Tables

Definition

- A Dynamic Table T is basically a table where the following operations are supported:
- TABLE-INSERT and TABLE-DELETE for individual elements.
- Expansions: when more space is needed.
- Contractions: when it is necessary to save memory.

Dynamic Tables

Definition

- A Dynamic Table T is basically a table where the following operations are supported:
- TABLE-INSERT and TABLE-DELETE for individual elements.
- Expansions: when more space is needed.
- Contractions: when it is necessary to save memory.

Possible Data Structures to Support Dynamic Tables

- Stack
- Heap
- Hash Tables
- Arrays

Dynamic Tables

Load Factor α (T)

- Case I Empty Table
- $\alpha(T)=1$

Dynamic Tables

Load Factor $\alpha(T)$

- Case I Empty Table
- $\alpha(T)=1$
- Case II Non-Empty Table
- $\alpha(T)$ is the number of item stored at the table T divided by the size (number of slots) in the table T :

Dynamic Tables

Load Factor $\alpha(T)$

- Case I Empty Table
- $\alpha(T)=1$
- Case II Non-Empty Table
- $\alpha(T)$ is the number of item stored at the table T divided by the size (number of slots) in the table T :

$$
\alpha(T)=\frac{\text { T.num }}{\text { T.size }}
$$

Dynamic Tables

Load Factor $\alpha(T)$

- Case I Empty Table
- $\alpha(T)=1$
- Case II Non-Empty Table
- $\alpha(T)$ is the number of item stored at the table T divided by the size (number of slots) in the table T :

$$
\alpha(T)=\frac{\text { T.num }}{\text { T.size }}
$$

Observation

- If the load factor of a dynamic table is bounded by a constant, the unused space in the table is never more than a constant fraction of the total amount of space.

Outline

Introduction

- History
(b) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Table Expansion

Heuristic
Allocate a new table with twice the size when $T . n u m=T$.size.

Table Expansion

Heuristic

Allocate a new table with twice the size when $T . n u m=T$.size.

- We have only insertions:

Table Expansion

Heuristic

Allocate a new table with twice the size when $T . n u m=T$.size.

- We have only insertions:
- The Load Factor is always $\geq \frac{1}{2}$.

Table Expansion

Heuristic

Allocate a new table with twice the size when $T . n u m=T$.size.

- We have only insertions:
- The Load Factor is always $\geq \frac{1}{2}$.
- Wasted space is never more than half the space.

Table Expansion

Heuristic

Allocate a new table with twice the size when $T . n u m=T . s i z e$.

- We have only insertions:
- The Load Factor is always $\geq \frac{1}{2}$.
- Wasted space is never more than half the space.

Code

Table-Insert (T, x)

$$
\text { if } T . \text { size }==0
$$

allocate T.table with $\mathbf{1}$ slot
(3)

$$
\text { T.size }=1
$$

Table Expansion

Heuristic

Allocate a new table with twice the size when $T . n u m=T$.size.

- We have only insertions:
- The Load Factor is always $\geq \frac{1}{2}$.
- Wasted space is never more than half the space.

Code

Table-Insert (T, x)
(1) if T.size $==0$
(2)
allocate T.table with 1 slot
B
T.size $=1$
(7
if T.size == T.num
allocate new - table with $2 \cdot T$.size slots
insert items in T.table into new - table
free T.table, T.table $=$ new - table and T.size $=2 \cdot$ T.size

Table Expansion

Heuristic

Allocate a new table with twice the size when $T . n u m=T$.size.

- We have only insertions:
- The Load Factor is always $\geq \frac{1}{2}$.
- Wasted space is never more than half the space.

Code

Table-Insert (T, x)
(1) if T.size $==0$
allocate T.table with 1 slot
T.size $=1$
insert x into T.table
(9)
$T . n u m=T . n u m+1$

Outline

Introduction

- History
(2) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Aggregated Analysis

Only Insertions in the table T

- Case Table is not full:
- $c_{i}=1$

Aggregated Analysis

Only Insertions in the table T

- Case Table is not full:
- $c_{i}=1$
- Case Table is full:
- Table is expanded then

Aggregated Analysis

Only Insertions in the table T

- Case Table is not full:
- $c_{i}=1$
- Case Table is full:
- Table is expanded then
$\star i-1$ elements are copied, 1 for inserting the element i.

Aggregated Analysis

Only Insertions in the table T

- Case Table is not full:
- $c_{i}=1$
- Case Table is full:
- Table is expanded then
$\star i-1$ elements are copied, 1 for inserting the element i.
\star Thus $c_{i}=i$

Aggregated Analysis

Only Insertions in the table T

- Case Table is not full:
- $c_{i}=1$
- Case Table is full:
- Table is expanded then
$\star i-1$ elements are copied, 1 for inserting the element i.
\star Thus $c_{i}=i$

Observation

The worst case of an operation is $O(n)$ when you need to

- Expand

Aggregated Analysis

Only Insertions in the table T

- Case Table is not full:
- $c_{i}=1$
- Case Table is full:
- Table is expanded then
$\star i-1$ elements are copied, 1 for inserting the element i.
\star Thus $c_{i}=i$

Observation

The worst case of an operation is $O(n)$ when you need to

- Expand
- Copy

Aggregated Analysis

Only Insertions in the table T

- Case Table is not full:
- $c_{i}=1$
- Case Table is full:
- Table is expanded then
$\star i-1$ elements are copied, 1 for inserting the element i.
\star Thus $c_{i}=i$

Observation

The worst case of an operation is $O(n)$ when you need to

- Expand
- Copy

Thus, for n operations the upper bound is $O\left(n^{2}\right)$ which is not a thigh bound!!!

Aggregated Analysis

When expansions are done?

- The i th insertion can only cause an expansion of $i-1$ is a power of 2 .

Aggregated Analysis

When expansions are done?

- The i th insertion can only cause an expansion of $i-1$ is a power of 2 .

Example

- $i=1$ start the table. Then, T.size $=1$.

Aggregated Analysis

When expansions are done?

- The i th insertion can only cause an expansion of $i-1$ is a power of 2 .

Example

- $i=1$ start the table. Then, T.size $=1$.
- $i=2$ expand table and $i-1=2^{0}$. Then, T.size $=2$.

Aggregated Analysis

When expansions are done?

- The i th insertion can only cause an expansion of $i-1$ is a power of 2 .

Example

- $i=1$ start the table. Then, T.size $=1$.
- $i=2$ expand table and $i-1=2^{0}$. Then, T.size $=2$.
- $i=3$ expand table and $i-1=2$. Then, T.size $=4$.

Aggregated Analysis

When expansions are done?

- The i th insertion can only cause an expansion of $i-1$ is a power of 2 .

Example

- $i=1$ start the table. Then, T.size $=1$.
- $i=2$ expand table and $i-1=2^{0}$. Then, T.size $=2$.
- $i=3$ expand table and $i-1=2$. Then, T.size $=4$.
- $i=4$, table do not expand and T.size $=4$.

Aggregated Analysis

When expansions are done?

- The i th insertion can only cause an expansion of $i-1$ is a power of 2 .

Example

- $i=1$ start the table. Then, T.size $=1$.
- $i=2$ expand table and $i-1=2^{0}$. Then, T.size $=2$.
- $i=3$ expand table and $i-1=2$. Then, T.size $=4$.
- $i=4$, table do not expand and T.size $=4$.
- $i=5$, expand table and $i-1=2^{2}$ and T.size $=8$.

Aggregated Analysis

When expansions are done?

- The i th insertion can only cause an expansion of $i-1$ is a power of 2 .

Example

- $i=1$ start the table. Then, T.size $=1$.
- $i=2$ expand table and $i-1=2^{0}$. Then, T.size $=2$.
- $i=3$ expand table and $i-1=2$. Then, T.size $=4$.
- $i=4$, table do not expand and T.size $=4$.
- $i=5$, expand table and $i-1=2^{2}$ and T.size $=8$.

Final Cost

$$
c_{i}= \begin{cases}i & \text { if } i-1=2^{k} \\ 1 & \text { otherwise }\end{cases}
$$

Aggregated Analysis

Total Cost of n Table-Insert operations is

$$
\sum_{i=1}^{n} c_{i} \leq \text { number of insertions }+ \text { number of copies }
$$

Aggregated Analysis

Total Cost of n Table-Insert operations is

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} & \leq \text { number of insertions }+ \text { number of copies } \\
& =n+\sum_{j=1}^{\lfloor\lg n\rfloor} 2^{j}
\end{aligned}
$$

Aggregated Analysis

Total Cost of n Table-Insert operations is

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} & \leq \text { number of insertions }+ \text { number of copies } \\
& =n+\sum_{j=1}^{\lfloor\lg n\rfloor} 2^{j} \\
& =n+\frac{\left(1-2 \times 2^{\lfloor\lg n\rfloor}\right)}{1-2}
\end{aligned}
$$

Aggregated Analysis

Total Cost of n Table-Insert operations is

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} & \leq \text { number of insertions }+ \text { number of copies } \\
& =n+\sum_{j=1}^{\lfloor\lg n\rfloor} 2^{j} \\
& =n+\frac{\left(1-2 \times 2^{\lfloor\lg n\rfloor}\right)}{1-2} \\
& =n+2 \times 2^{\lfloor\lg n\rfloor}-1
\end{aligned}
$$

Aggregated Analysis

Total Cost of n Table-Insert operations is

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} & \leq \text { number of insertions }+ \text { number of copies } \\
& =n+\sum_{j=1}^{\lfloor\lg n\rfloor} 2^{j} \\
& =n+\frac{\left(1-2 \times 2^{\lfloor\lg n\rfloor}\right)}{1-2} \\
& =n+2 \times 2^{\lfloor\lg n\rfloor}-1 \\
& <n+2 \times 2^{\lfloor\lg n\rfloor}
\end{aligned}
$$

Aggregated Analysis

Total Cost of n Table-Insert operations is

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} & \leq \text { number of insertions }+ \text { number of copies } \\
& =n+\sum_{j=1}^{\lfloor\lg n\rfloor} 2^{j} \\
& =n+\frac{\left(1-2 \times 2^{\lfloor\lg n\rfloor}\right)}{1-2} \\
& =n+2 \times 2^{\lfloor\lg n\rfloor}-1 \\
& <n+2 \times 2^{\lfloor\lg n\rfloor} \\
& =n+2 n^{\lg 2}=3 n
\end{aligned}
$$

Outline

(1) Introduction

- History
(1) What is this all about amortized analysis?
- The Methods
(3) The Aggregate Method
- Introduction
- The Binary Counter
- Example
(4) The Accounting Method
- Introduction
- Binary Counter
(5) The Potential Method
- Introduction
- Stack Operations
(6) Real Life Examples
- Move-To-Front (MTF)
- Dynamic Tables
- Table Expansion
- Aggegated Analysis
- Potential Method
- Table Expansions and Contractions

Potential Method

Potential Function

- We require potential Φ equal to $\mathbf{0}$ after expansion and builds after T is full.

Potential Method

Potential Function

- We require potential Φ equal to $\mathbf{0}$ after expansion and builds after T is full.
- Then, $\Phi(T)=2 \times$ T.num - T.size.

Potential Method

Potential Function

- We require potential Φ equal to $\mathbf{0}$ after expansion and builds after T is full.
- Then, $\Phi(T)=2 \times$ T.num - T.size.
- After expansion T.num $=\frac{T . s i z e}{2} \Rightarrow \Phi(T)=0$.

Potential Method

Potential Function

- We require potential Φ equal to $\mathbf{0}$ after expansion and builds after T is full.
- Then, $\Phi(T)=2 \times$ T.num - T.size.
- After expansion T.num $=\frac{T . s i z e}{2} \Rightarrow \Phi(T)=0$.
- Before expansion $T . n u m=$ T.size $\Rightarrow \Phi(T)=$ T.num

Potential Method

Potential Function

- We require potential Φ equal to $\mathbf{0}$ after expansion and builds after T is full.
- Then, $\Phi(T)=2 \times$ T.num - T.size.
- After expansion T.num $=\frac{T . s i z e}{2} \Rightarrow \Phi(T)=0$.
- Before expansion $T . n u m=$ T.size $\Rightarrow \Phi(T)=$ T.num

Observations

- The initial Potential Value is $\mathbf{0}$ because T.num $=0$ and T.size $=0$.

Potential Method

Potential Function

- We require potential Φ equal to $\mathbf{0}$ after expansion and builds after T is full.
- Then, $\Phi(T)=2 \times$ T.num - T.size.
- After expansion T.num $=\frac{T . s i z e}{2} \Rightarrow \Phi(T)=0$.
- Before expansion T.num $=$ T.size $\Rightarrow \Phi(T)=$ T.num

Observations

- The initial Potential Value is $\mathbf{0}$ because $T . n u m=0$ and T. size $=0$.
- T.num $\geq \frac{\text { T.size }}{2}$ always!!!.

Potential Method

Potential Function

- We require potential Φ equal to $\mathbf{0}$ after expansion and builds after T is full.
- Then, $\Phi(T)=2 \times$ T.num - T.size.
- After expansion T.num $=\frac{T . s i z e}{2} \Rightarrow \Phi(T)=0$.
- Before expansion T.num $=$ T.size $\Rightarrow \Phi(T)=$ T.num

Observations

- The initial Potential Value is $\mathbf{0}$ because $T . n u m=0$ and T. size $=0$.
- T.num $\geq \frac{\text { T.size }}{2}$ always!!!.
- Therefore, $\Phi(T) \geq 0$

Potential Method

Notation for Analysis

- num $_{i}=$ Number of items stored at T after the i th operation.

Potential Method

Notation for Analysis

- num $_{i}=$ Number of items stored at T after the i th operation.
- $\operatorname{size}_{i}=$ The size of the table T after the i th operation.

Potential Method

Notation for Analysis

- num $_{i}=$ Number of items stored at T after the i th operation.
- size $_{i}=$ The size of the table T after the i th operation.
- $\Phi_{i}=$ The potential after the i th operation.

Potential Method

The i th Table-Insert operation does not trigger expansion

- Then, $s i z e_{i}=s i z e_{i-1}$.

Potential Method

The i th Table-Insert operation does not trigger expansion

- Then, size $_{i}=s i z e_{i-1}$.

Thus

$$
\widehat{c}_{i}=c_{i}+\Phi_{i}-\Phi_{i-1}
$$

Potential Method

The i th Table-Insert operation does not trigger expansion

- Then, $\operatorname{size}_{i}=s i z e_{i-1}$.

Thus

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right)
\end{aligned}
$$

Potential Method

The i th Table-Insert operation does not trigger expansion

- Then, size $_{i}=\operatorname{size}_{i-1}$.

Thus

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right) \\
& =1+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot\left(\text { num }_{i}-1\right)-\text { size }_{i}\right)
\end{aligned}
$$

Potential Method

The i th Table-Insert operation does not trigger expansion

- Then, size $_{i}=\operatorname{size}_{i-1}$.

Thus

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right) \\
& =1+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot\left(\text { num }_{i}-1\right)-\text { size }_{i}\right) \\
& =3
\end{aligned}
$$

Potential Method

The i th Table-Insert operation triggers expansion

- Then, size $_{i}=2 \cdot$ size $_{i-1}$, size $_{i-1}=n u m_{i-1}=n u m_{i}-1$

Potential Method

The i th Table-Insert operation triggers expansion

- Then, size $_{i}=2 \cdot$ size $_{i-1}$, size $_{i-1}=n u m_{i-1}=n u m_{i}-1$

Implying, size $_{i}=2 \cdot\left(\right.$ num $\left._{i}-1\right)$. In addition, $c_{i}=$ num $_{i}$

$$
\widehat{c}_{i}=c_{i}+\Phi_{i}-\Phi_{i-1}
$$

Potential Method

The i th Table-Insert operation triggers expansion

- Then, size $_{i}=2 \cdot$ size $_{i-1}$, size $_{i-1}=n u m_{i-1}=n u m_{i}-1$

Implying, size $_{i}=2 \cdot\left(\right.$ num $\left._{i}-1\right)$. In addition, $c_{i}=$ num $_{i}$

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =\text { num }_{i}+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right)
\end{aligned}
$$

Potential Method

The i th Table-Insert operation triggers expansion

- Then, size $_{i}=2 \cdot$ size $_{i-1}$, size $_{i-1}=n u m_{i-1}=n u m_{i}-1$

Implying, size $_{i}=2 \cdot\left(\right.$ num $\left._{i}-1\right)$. In addition, $c_{i}=$ num $_{i}$

$$
\begin{aligned}
\widehat{c}_{i}= & c_{i}+\Phi_{i}-\Phi_{i-1} \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right) \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-2 \cdot\left(\text { num }_{i}-1\right)\right)-\ldots \\
& \left(2 \cdot\left(\text { num }_{i}-1\right)-\left(\text { num }_{i}-1\right)\right)
\end{aligned}
$$

Potential Method

The i th Table-Insert operation triggers expansion

- Then, size $_{i}=2 \cdot$ size $_{i-1}$, size $_{i-1}=n u m_{i-1}=n u m_{i}-1$

Implying, size $_{i}=2 \cdot\left(\right.$ num $\left._{i}-1\right)$. In addition, $c_{i}=$ num $_{i}$

$$
\begin{aligned}
\widehat{c}_{i}= & c_{i}+\Phi_{i}-\Phi_{i-1} \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right) \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-2 \cdot\left(\text { num }_{i}-1\right)\right)-\ldots \\
& \left(2 \cdot\left(\text { num }_{i}-1\right)-\left(\text { num }_{i}-1\right)\right) \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-2 \cdot \text { num }_{i}-2\right)-\left(\text { num }_{i}-1\right)
\end{aligned}
$$

Potential Method

The i th Table-Insert operation triggers expansion

- Then, size $_{i}=2 \cdot$ size $_{i-1}$, size $_{i-1}=n u m_{i-1}=n u m_{i}-1$

Implying, size $_{i}=2 \cdot\left(\right.$ num $\left._{i}-1\right)$. In addition, $c_{i}=$ num $_{i}$

$$
\begin{aligned}
\widehat{c}_{i}= & c_{i}+\Phi_{i}-\Phi_{i-1} \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right) \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-2 \cdot\left(\text { num }_{i}-1\right)\right)-\ldots \\
& \left(2 \cdot\left(\text { num }_{i}-1\right)-\left(\text { num }_{i}-1\right)\right) \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-2 \cdot \text { num }_{i}-2\right)-\left(\text { num }_{i}-1\right) \\
= & \text { num }_{i}+2-\left(\text { num }_{i}-1\right)
\end{aligned}
$$

Potential Method

The i th Table-Insert operation triggers expansion

- Then, size $_{i}=2 \cdot$ size $_{i-1}$, size $_{i-1}=n u m_{i-1}=n u m_{i}-1$

Implying, size $_{i}=2 \cdot\left(\right.$ num $\left._{i}-1\right)$. In addition, $c_{i}=$ num $_{i}$

$$
\begin{aligned}
\widehat{c}_{i}= & c_{i}+\Phi_{i}-\Phi_{i-1} \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-\text { size }_{i}\right)-\left(2 \cdot \text { num }_{i-1}-\text { size }_{i-1}\right) \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-2 \cdot\left(\text { num }_{i}-1\right)\right)-\ldots \\
& \left(2 \cdot\left(\text { num }_{i}-1\right)-\left(\text { num }_{i}-1\right)\right) \\
= & \text { num }_{i}+\left(2 \cdot \text { num }_{i}-2 \cdot \text { num }_{i}-2\right)-\left(\text { num }_{i}-1\right) \\
= & \text { num }_{i}+2-\left(\text { num }_{i}-1\right) \\
= & 3
\end{aligned}
$$

Potential Under Table Expansions

The expansions generate the following graph for Φ

Figure: The Comparison between different quantities in the Dynamic Table.

Outline

Introduction

－History
（b）What is this all about amortized analysis？
－The Methods
（3）The Aggregate Method
－Introduction
－The Binary Counter
－Example
（4）The Accounting Method
－Introduction
－Binary Counter
（5）The Potential Method
－Introduction
－Stack Operations
（6）Real Life Examples
－Move－To－Front（MTF）
－Dynamic Tables
－Table Expansion
－Aggegated Analysis
－Potential Method
－Table Expansions and Contractions

Table Expansions and Contractions

Properties to be maintained

- The load factor of the dynamic table is bounded below by a positive constant.

Table Expansions and Contractions

Properties to be maintained

- The load factor of the dynamic table is bounded below by a positive constant.
- The amortized cost of a table operation is bounded above by a constant.

Table Expansions and Contractions

Properties to be maintained

- The load factor of the dynamic table is bounded below by a positive constant.
- The amortized cost of a table operation is bounded above by a constant.

Possible Heuristic, but not the correct one

- You double the table when inserting an item into a full table.

Table Expansions and Contractions

Properties to be maintained

- The load factor of the dynamic table is bounded below by a positive constant.
- The amortized cost of a table operation is bounded above by a constant.

Possible Heuristic, but not the correct one

- You double the table when inserting an item into a full table.
- You halve the table size, when deleting an item causes the table to become less than half full.

Table Expansions and Contractions

Problem!!!

You could have $n=2^{t}$ insertions and deletions in a sequence in the following sequence:

Table Expansions and Contractions

Problem!!!

You could have $n=2^{t}$ insertions and deletions in a sequence in the following sequence:

- First $\frac{n}{2}$ operations are insertions, thus T.num $=$ T.size $=\frac{n}{2}$.

$$
\text { Example } \frac{n}{2}=\frac{16}{2}=8
$$

Full Array
\square Full Bucket

Then

For the second $\frac{n}{2}$ operations, the following sequence is performed I,D,D,I,I,D,D,I,I,D,D,I,I,D,D,...

For the second $\frac{n}{2}$ operations, the following sequence is performed I,D,D,I,I,D,D,I,I,D,D,I,I,D,D,...

Thus, the first insertion cause a expansion to T.size $=n$

Expansion

Full Bucket

Next

The two following deletions trigger a contraction back to T.size $=\frac{n}{2}$

Contraction

\square Full Bucket

Next

The two following insertion trigger a expansion back to T.size $=n$

Expansion

\square Full Bucket

Table Expansions and Contractions

Thus, we have that
We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.

Table Expansions and Contractions

Thus, we have that

We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.
- Then, there are $\Theta(n)$ operations.

Table Expansions and Contractions

Thus, we have that

We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.
- Then, there are $\Theta(n)$ operations.
- The total cost of n operations is $\Theta\left(n^{2}\right)$.

Table Expansions and Contractions

Thus, we have that

We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.
- Then, there are $\Theta(n)$ operations.
- The total cost of n operations is $\Theta\left(n^{2}\right)$.

Improvement

- You double the table when inserting an item into a full table.

Table Expansions and Contractions

Thus, we have that

We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.
- Then, there are $\Theta(n)$ operations.
- The total cost of n operations is $\Theta\left(n^{2}\right)$.

Improvement

- You double the table when inserting an item into a full table.
- You halve the table when deleting an item makes $\alpha(T)<\frac{1}{4}$.

Table Expansions and Contractions

Thus, we have that

We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.
- Then, there are $\Theta(n)$ operations.
- The total cost of n operations is $\Theta\left(n^{2}\right)$.

Improvement

- You double the table when inserting an item into a full table.
- You halve the table when deleting an item makes $\alpha(T)<\frac{1}{4}$.

Potential Analysis

- Potential Function:

Table Expansions and Contractions

Thus, we have that

We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.
- Then, there are $\Theta(n)$ operations.
- The total cost of n operations is $\Theta\left(n^{2}\right)$.

Improvement

- You double the table when inserting an item into a full table.
- You halve the table when deleting an item makes $\alpha(T)<\frac{1}{4}$.

Potential Analysis

- Potential Function:
- We require to have a function Φ that is 0 immediately after an expansion or contradiction.

Table Expansions and Contractions

Thus, we have that

We have two meetings one on Thursday at 5:00 PM at my office and another on Oracle at 11:00 AM Thanks... Doc Andrés

- The cost of each expansion and contraction is $\Theta(n)$.
- Then, there are $\Theta(n)$ operations.
- The total cost of n operations is $\Theta\left(n^{2}\right)$.

Improvement

- You double the table when inserting an item into a full table.
- You halve the table when deleting an item makes $\alpha(T)<\frac{1}{4}$.

Potential Analysis

- Potential Function:
- We require to have a function Φ that is 0 immediately after an expansion or contradiction.
- Builds potential as the load factors increases to 1 or decreases to $\frac{1}{4} \cdot 82 / 91$

Table Expansions and Contractions

Final Potential Function

$$
\Phi(T)=\left\{\begin{array}{ll}
2 \cdot \text { T.num }- \text { T.size } & \text { if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text { T.size }}{2}-\text { T.num } & \text { if } \alpha(T)<\frac{1}{2}
\end{array} .\right.
$$

Table Expansions and Contractions

Final Potential Function

$$
\Phi(T)=\left\{\begin{array}{ll}
2 \cdot \text { T.num }- \text { T.size } & \text { if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text { T.size }}{2}-\text { T.num } & \text { if } \alpha(T)<\frac{1}{2}
\end{array} .\right.
$$

Properties of this Function

- Empty table T.num $=$ T.size $=0$, we have that $\alpha(T)=1$.

Table Expansions and Contractions

Final Potential Function

$$
\Phi(T)=\left\{\begin{array}{ll}
2 \cdot \text { T.num }- \text { T.size } & \text { if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text { T.size }}{2}-\text { T.num } & \text { if } \alpha(T)<\frac{1}{2}
\end{array} .\right.
$$

Properties of this Function

- Empty table T.num $=$ T.size $=0$, we have that $\alpha(T)=1$.
- Then, for an empty or not empty table

Table Expansions and Contractions

Final Potential Function

$$
\Phi(T)=\left\{\begin{array}{ll}
2 \cdot \text { T.num }- \text { T.size } & \text { if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text { T.size }}{2}-\text { T.num } & \text { if } \alpha(T)<\frac{1}{2}
\end{array} .\right.
$$

Properties of this Function

- Empty table T.num $=$ T.size $=0$, we have that $\alpha(T)=1$.
- Then, for an empty or not empty table
- we always have T.num $=\alpha(T) \cdot$ T.size.

Table Expansions and Contractions

Therfore, we have that

- When $\alpha(T)=\frac{1}{2}$, the potential is 0 .

Table Expansions and Contractions

Therfore, we have that

- When $\alpha(T)=\frac{1}{2}$, the potential is 0 .
- When $\alpha(T)=1$, we have T.size $=$ T.num $\Rightarrow \Phi(T)=$ T.num. It can pay for an expansion, if an item is inserted.

Table Expansions and Contractions

Therfore, we have that

- When $\alpha(T)=\frac{1}{2}$, the potential is 0 .
- When $\alpha(T)=1$, we have T.size $=$ T.num $\Rightarrow \Phi(T)=$ T.num. It can pay for an expansion, if an item is inserted.
- When $\alpha(T)=\frac{1}{4}$, we have T. size $=4 \cdot$ T.num $\Rightarrow \Phi(T)=$ T.num. It can pay for a contraction, if an item is deleted.

Table Expansions and Contractions

Initialization

- num $_{0}=0$, size $_{0}=0, \alpha_{0}=1$ and $\Phi_{0}=0$.

Table Expansions and Contractions

Initialization

- num $_{0}=0$, size $_{0}=0, \alpha_{0}=1$ and $\Phi_{0}=0$.

Case i th operation is a Table-Insert

- If $\alpha_{i-1} \geq \frac{1}{2}$, if the table expand or not $\widehat{c}_{i}=3$.

Table Expansions and Contractions

Initialization

- num $_{0}=0$, size $_{0}=0, \alpha_{0}=1$ and $\Phi_{0}=0$.

Case i th operation is a Table-Insert

- If $\alpha_{i-1} \geq \frac{1}{2}$, if the table expand or not $\widehat{c}_{i}=3$.
- If $\alpha_{i}<\frac{1}{2}$, then

Table Expansions and Contractions

Initialization

- num $_{0}=0$, size $_{0}=0, \alpha_{0}=1$ and $\Phi_{0}=0$.

Case i th operation is a Table-Insert

- If $\alpha_{i-1} \geq \frac{1}{2}$, if the table expand or not $\widehat{c}_{i}=3$.
- If $\alpha_{i}<\frac{1}{2}$, then

$$
\widehat{c}_{i}=c_{i}+\Phi_{i}-\Phi_{i-1}
$$

Table Expansions and Contractions

Initialization

- num $_{0}=0$, size $_{0}=0, \alpha_{0}=1$ and $\Phi_{0}=0$.

Case i th operation is a Table-Insert

- If $\alpha_{i-1} \geq \frac{1}{2}$, if the table expand or not $\widehat{c}_{i}=3$.
- If $\alpha_{i}<\frac{1}{2}$, then

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right)
\end{aligned}
$$

Table Expansions and Contractions

Initialization

- num $_{0}=0$, size $_{0}=0, \alpha_{0}=1$ and $\Phi_{0}=0$.

Case i th operation is a Table-Insert

- If $\alpha_{i-1} \geq \frac{1}{2}$, if the table expand or not $\widehat{c}_{i}=3$.
- If $\alpha_{i}<\frac{1}{2}$, then

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =1+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i}}{2}-\left(\text { num }_{i}-1\right)\right)=0
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Insert

- If $\alpha_{i-1}<\frac{1}{2}$ and $\alpha_{i} \geq \frac{1}{2}$ then

$$
\widehat{c}_{i}=c_{i}+\Phi_{i}-\Phi_{i-1}
$$

Table Expansions and Contractions

Case i th operation is a Table-Insert

- If $\alpha_{i-1}<\frac{1}{2}$ and $\alpha_{i} \geq \frac{1}{2}$ then

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(2 \text { num }_{i}-\text { size }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right)
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Insert

- If $\alpha_{i-1}<\frac{1}{2}$ and $\alpha_{i} \geq \frac{1}{2}$ then

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(2 \text { num }_{i}-\text { size }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =1+\left(2\left(\text { num }_{i-1}+1\right)-\text { size }_{i-1}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right)
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Insert

- If $\alpha_{i-1}<\frac{1}{2}$ and $\alpha_{i} \geq \frac{1}{2}$ then

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(2 \text { num }_{i}-\text { size }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =1+\left(2\left(\text { num }_{i-1}+1\right)-\text { size }_{i-1}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =3 \cdot \alpha_{i-1} \text { size }_{i-1}-\frac{3}{2} \text { size }_{i-1}+3
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Insert

- If $\alpha_{i-1}<\frac{1}{2}$ and $\alpha_{i} \geq \frac{1}{2}$ then

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(2 \text { num }_{i}-\text { size }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =1+\left(2\left(\text { num }_{i-1}+1\right)-\text { size }_{i-1}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =3 \cdot \alpha_{i-1} \text { size }_{i-1}-\frac{3}{2} \text { size }_{i-1}+3 \\
& <\frac{3}{2} \text { size }_{i-1}-\frac{3}{2} \text { size }_{i-1}+3=3
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does not trigger a contraction
In this case, num $_{i}=$ num $_{i-1}-1$. Now, if $\alpha_{i-1}<\frac{1}{2}$

$$
\widehat{c}_{i}=c_{i}+\Phi_{i}-\Phi_{i-1}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does not trigger a contraction
In this case, num $_{i}=$ num $_{i-1}-1$. Now, if $\alpha_{i-1}<\frac{1}{2}$

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(\frac{\text { ize }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right)
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does not trigger a contraction
In this case, num $_{i}=$ num $_{i-1}-1$. Now, if $\alpha_{i-1}<\frac{1}{2}$

$$
\begin{aligned}
\widehat{c}_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =1+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =1+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\left(\text { num }_{i}+1\right)\right)=2
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\alpha_{i-1}<\frac{1}{2}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\begin{aligned}
\alpha_{i-1} & <\frac{1}{2} \\
c_{i} & =\text { num }_{i}+1
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\begin{aligned}
\alpha_{i-1} & <\frac{1}{2} \\
c_{i} & =\text { num }_{i}+1 \\
\frac{\text { size }_{i}}{2}=\frac{\operatorname{size}_{i-1}}{4} & =\text { num }_{i-1}=\text { num }_{i}+1
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\widehat{c}_{i}=\left(\text { num }_{i}+1\right)+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right)
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\begin{aligned}
\widehat{c}_{i} & =\left(\text { num }_{i}+1\right)+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =\left(\text { num }_{i}+1\right)+\left(\text { num }_{i}+1-\text { num }_{i}\right)-\left(2 \cdot \text { num }_{i}+2-\left(\text { num }_{i}+1\right)\right)
\end{aligned}
$$

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\begin{aligned}
\widehat{c}_{i} & =\left(\text { num }_{i}+1\right)+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =\left(\text { num }_{i}+1\right)+\left(\text { num }_{i}+1-\text { num }_{i}\right)-\left(2 \cdot \text { num }_{i}+2-\left(\text { num }_{i}+1\right)\right) \\
& =1
\end{aligned}
$$

Case i th operation is a Table-Delete

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\begin{aligned}
\widehat{c}_{i} & =\left(\text { num }_{i}+1\right)+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =\left(\text { num }_{i}+1\right)+\left(\text { num }_{i}+1-\text { num }_{i}\right)-\left(2 \cdot \text { num }_{i}+2-\left(\text { num }_{i}+1\right)\right) \\
& =1
\end{aligned}
$$

Case i th operation is a Table-Delete

- For $\alpha_{i-1} \geq \frac{1}{2}$.

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\begin{aligned}
\widehat{c}_{i} & =\left(\text { num }_{i}+1\right)+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =\left(\text { num }_{i}+1\right)+\left(\text { num }_{i}+1-\text { num }_{i}\right)-\left(2 \cdot \text { num }_{i}+2-\left(\text { num }_{i}+1\right)\right) \\
& =1
\end{aligned}
$$

Case i th operation is a Table-Delete

- For $\alpha_{i-1} \geq \frac{1}{2}$.
- You can do an analysis and the amortized cost is bounded by a constant.

Therfore, we have that

Table Expansions and Contractions

Case i th operation is a Table-Delete and it does trigger a contraction

$$
\begin{aligned}
\widehat{c}_{i} & =\left(\text { num }_{i}+1\right)+\left(\frac{\text { size }_{i}}{2}-\text { num }_{i}\right)-\left(\frac{\text { size }_{i-1}}{2}-\text { num }_{i-1}\right) \\
& =\left(\text { num }_{i}+1\right)+\left(\text { num }_{i}+1-\text { num }_{i}\right)-\left(2 \cdot \text { num }_{i}+2-\left(\text { num }_{i}+1\right)\right) \\
& =1
\end{aligned}
$$

Case i th operation is a Table-Delete

- For $\alpha_{i-1} \geq \frac{1}{2}$.
- You can do an analysis and the amortized cost is bounded by a constant.

Therfore, we have that
The Time for any sequence of n operations on a Dynamic Table is $O(n)$.

Change of Potential Under Expansions and Contractions

The Changes in Potential Φ

Figure: The Comparison between different quantities in the Dynamic Table.

Exercises

- 17.1-1
- 17.1-2
- 17.1-3
- 17.2-1
- 17.2-2
- 17.2-3
- 17.3-1
- 17.3-2
- 17.3-3
- 17.3-4
- 17.3-5
- 17.3-6
- 17.3-7

