
The Greedy Method

February 26, 2018

Contents

1 Introduction 2

2 The Basics of the Greedy Method 2

3 Greedy Method Vs. Dynamic Programming 2

4 The Problems 5

4.1 The Activity Selection Problem 5
4.1.1 The Optimal Substructure 5
4.1.2 The Greedy Choice . 5

4.2 Hu�man Codes . 6
4.2.1 Pre�x Codes . 6
4.2.2 Properties of the Binary Tree Representation 7
4.2.3 Constructing the Hu�man Code 8
4.2.4 Correctness of Hu�man's algorithm 9

1

1 Introduction

All the optimization problems are solved through a series of steps and decisions.
There is a class of optimization problems where the multiple decision problem
can be reduced to only one, the greedy option. This basically is telling us that
the greedy method will be faster than dynamic programming. Examples where
the greedy strategy can be applied are:

1. Minimum Spanning Tree problems.

2. Shortest paths from a single source.

3. Set Covering (Chvátal's Heuristic).

2 The Basics of the Greedy Method

Then, the basic steps of the greedy method are:

1. Determine the optimal substructure

2. Develop a recursive solution

3. Prove that the greedy choice is possible, then only one subproblem needs
to be solved.

4. Prove that it is always safe to make the greedy choice.

5. Develop a recursive greedy algorithm.

6. Convert to an iterative version

It is clear that it looks quite similar to the dynamic programming.

3 Greedy Method Vs. Dynamic Programming

Therefore, you could mistakenly think that the it is possible to solve dynamic
programming problems using greedy strategies. It can be dangerous to think
that way because the although greedy problems can be solved by dynamic pro-
gramming (This being an overkill). Dynamic programming where there is not a
greedy property cannot be solved by greedy methods. Look at this two problems
to understand this

1. The 0-1 knapsack problem. You have a thief trying to robber a store.
He uses a knapsack to carry the items, where each item i is worth vi
and has a weight wi. The thief can carry an item or not to carry it (0-1
choice). It needs to decide which ones are worth their time, knowing that
the knapsack can only withstand a W total weight.

2. The fractional knapsack has the same setup, but the thief can carry a
fraction of each item.

2

Both problems show optimal-substructure:

1. If W is the most optimal valuable load that can be carry in the 0-1 prob-
lem. If we remove j from this load, the remaining load is the most valuable
load for a weightW−wj knapsack when considering n−1 items (Excluding
j) by the cut-and paste strategy.

2. In the fractional problem, now if we remove a weight w, the remaining
load must be the most valuable load weighing at most W − w from the
n − 1 original item plus the wj − w remaining weight from which the w
weight was subtracted.

The �rst one cannot be solved by greedy choice by simply showing the following
counterexample:

With respect to the fractional knapsack, we have the following:

• The Greedy Choice: sort the items by using the values vi
wi
. Then use this

sorting to put fractional stu� in the knapsack beginning at the maximal
element in the sorting.

Theorem

The greedy choice, which always selects the object with better ratio value/weight,
always �nds an optimal solution to the Fractional Knapsack problem.

Proof:

Let X = (x1, ..., xn) be the solution computed by the greedy algorithm.

Case 1

If xi = 1 for all i, the solution is optimal.

Case 2

Otherwise, let j be the smallest value for which xj < 1 . It is more, according
with the algorithm we have:

• If i < j then xi = 1,

• If i = j then xi ≤ 1

• if i > j then xi = 0.

3

Note: We need to try to prove that the value is optimal under greedy choice.

Furthermore,
∑n

i=1 xiwi = W . Now, let Y = (y1, ..., yn) be any feasible solution,
we have that:

n∑
i=1

yiwi ≤W =

n∑
i=1

xiwi

Therefore

n∑
i=1

xiwi −
n∑

i=1

yiwi =

n∑
i=1

(xi − yi)wi ≥ 0.

Let V (Y) denote the total value of a feasible solution, thus we have

V (X)− V (Y) =

n∑
i=1

(xi − yi) vi =

n∑
i=1

(xi − yi)wi
vi
wi

.

If i < j, xi = 1 and yi ≥ 1, then xi − yi ≥ 0. Additionally, we have that

vi
wi
≥ vj

wj
(1)

because i < j. Thus, we have

(xi − yi)
vi
wi
≥ (xi − yi)

vj
wj

(2)

if i = j , then xi < 1 and yi ≤ xi ⇒ xi − yi ≥ 0 (If it was no like that we
will not have the

∑n
i=1 xiwi −

∑n
i=1 yiwi ≥ 0.), thus

(xi − yi)
vi
wi
≥ (xi − yi)

vj
wj

(3)

If i > j, xi = 0 and yi =0 or yi 6=0, then

xi − yi ≤ 0,
vi
wi
≤ vj

wj
(4)

Therefore, we have

(xi − yi)
vi
wi
≥ (xi − yi)

vj
wj

(5)

Finally,

V (X)− V (Y) =

n∑
i=1

(xi − yi)wi
vi
wi
≥

n∑
i=1

(xi − yi)wi
vj
wj

=
vj
wj

n∑
i=1

(xi − yi)wi

(6)
Now,

4

vj
wj
≥ 0

n∑
i=1

(xi − yi)wi ≥ 0

Thus, V (X) ≥ V (Y) for all Y . Therefore X is an optimal solution. Q.E.D.

4 The Problems

4.1 The Activity Selection Problem

In the activity selection problem, we have a set of possible activities S =
{a1, a2, ..., an} where each activity is such that ai = [si, fi). We say that two
activities ai, aj are overlapping, if [si, fi) and [sj , fj) are not overlapping. In
the activity selection problem, we want the biggest subset of activities that can
use certain resource without overlapping. For this, we will assume that

f1 ≤ f2 ≤ ... ≤ fn.

4.1.1 The Optimal Substructure

Lets to denote Sij the set of activities that start after activity ai �nishes and
that �nishes before activity aj start. Now suppose that the set Aij denotes
the maximum set of compatible activities for Sij . In addition assume that Aij

includes some activity ak. Then imagine that akbelong to some optimal solution.
Then, we need to �nd the optimal solutions for Sik and Skj .

Proof

For the sake of consistency then we have that Aik = Sik ∩ Aij and similarly
Akj = Skj ∩ Aij . Then Aij = Aik ∪ {ak} ∪ Akj or |Aij | = |Aik| + |Akj | + 1.
Then, we can use the cut-and-paste arguments to prove that there is an optimal
sub-structure:

• Assume that exist A
′

ik such that
∣∣∣A′

ik

∣∣∣ > |Aik|. Then
∣∣∣A′

ik

∣∣∣+ |Akj |+ 1 >

|Aik|+ |Akj |+ 1 = |Aij |, which is a contradiction.

Therefore, we have the optimal-substructure.

4.1.2 The Greedy Choice

Now, the greedy choice is the following one:

• Choose activities for the solution with the earliest �nishing time.

This can be proved using:

5

Theorem 16.1

Consider any nonempty subproblem Sk = {ai ∈ S|si > fk}, and let am
be an activity in Sk with the earliest �nish time. Then am is included in
some maximum-size subset of mutually compatible activities of Sk .

Proof Let Ak be a maximum-size subset of mutually compatible activities in
Sk , and let a j be the activity in Ak with the earliest �nish time. If
aj = am , we are done, since we have shown that am is in some maximum-
size subset of mutually compatible activities of Sk. If aj 6= am, let the set

A
′

k = Ak − {aj} ∪ {am} be Ak but substituting am for aj . The activities

in A
′

k are disjoint, which follows because kthe activities in Ak are disjoint,

aj is the �rst activity in Ak to �nish, and fm ≤ fj . Since|A′

k| = |Ak|,
we conclude that A

′

k is a maximum-size subset of mutually compatible
activities of Sk , and it includes am .

4.2 Hu�man Codes

This is an e�ective way of compressing text information. Imagine having 1,000,000-
character data �le, and we want to store it compactly. In addition, we have the
following distribution of character in the hundred of thousands (Table 1). Be-
cause we only have six di�erent characters, we could decide to use a �x-length
character code after all we can represent 23 di�erent characters with a �xed one
(Third row in the table 1). When seeing how many bits are required to store
all the characters:

1, 000, 000× 3 = 3, 000, 000 bits .

a b c d e f

Frequency 450,000 130,000 120,000 160,000 90,000 50,000
Fixed-Leng cw 000 001 010 011 100 101
Vari Leng cw 0 101 100 111 1101 1100

Table 1: Distribution of characters in the text and their codewords.

Then, it is clear that using a �x-length code is not a good idea. Therefore,
we require a variable one. An example of that one is in (Fourth row table 1):

(45× 1 + 13× 3C + 12× 3 + 16× 3 + 94 + 5× 4)× 10, 000 = 2, 240, 000 bits .

4.2.1 Pre�x Codes

It has been show that pre�x codes:

• Codes in which no codeword is also a pre�x of some other codeword.

6

using pre�x code can always achieve the optimal data compression among any
character code. Therefore, we will restrict our study to the generation of pre�x
codes. In addition, they have the following nice properties

• Easy to decode.

• They are unambiguous. For example in our example the string 001011101
transform as 0 ◦ 0 ◦ 101 ◦ 1101 = aabe.

We require a nice representation for picking up the pre�x code. Binary trees are
perfect in that regard because once a branch is picked, we never go back until
we have the decoded character. Example of this is in (Fig. 1).

Figure 1: Binary tree for the variable pre�x code in table 1

4.2.2 Properties of the Binary Tree Representation

As we can prove (Exercise 16.3-2) an optimal code for a text is always repre-
sented by a full binary tree (Each non-leaf node has two children). An example
of a non optimal representation is in (Fig.).

Figure 2: No optimal tree in our problem.

7

Now, given that we will concentrate our attention for the pre�x codes to full
binary tree, it is possible to say the following: Given that C is the alphabet for
the text �le

1. The tree for the optimal pre�x code has |C| leaves.

2. The number of internal leaves is |C| − 1.

3. Each character x at the leaves has a depth dT (x) which is the length of
the codeword.

Knowing the frequency of each character and the tree T representing the optimal
pre�x encoding, we can de�ne the number of bits necessary to encode the text
�le:

B(T) =
∑
c∈C

c.freq × dT (c).

Which can be de�ned as the cost of the tree.

4.2.3 Constructing the Hu�man Code

Basically, before proving the correctness of the greedy choice, we will comment
on it and talk about the greedy algorithm generated using it. The greedy choice
is as follow:

• You start with an alphabet C with an associated frequency for each ele-
ment in it.

• Use the frequencies to build a min priority queue.

• Subtract the two least frequent elements (Greedy Choice)

• Build a three using as children the two nodes of the subtrees extracted
from the min priority queue. The new root holds the sum of frequencies
of the two subtrees.

• Put it back into the Priority Queue.

The �nal algorithm looks like

8

Algorithm 1 The Hu�man code algorithm

Huffman (C)
n=|C|
Q = C
f o r i = 1 to n−1

a l l o c a t e new node z
z . l e f t = x = Extract−Min(Q)
z . r i g h t = y = Extract−Min(Q)
z . f r e q = x . f r e q+y . f r e q
I n s e r t (Q, z)

re turn Extract−Min(Q) // return root o f the Huffman Tree

In the following example (Fig.), we can see the construction of a Hu�man
tree.

Figure 3: Example Hu�man Tree

4.2.4 Correctness of Hu�man's algorithm

From the following lemmas, we can prove the correctness of the algorithm.

Lemma 16.2

Let C be an alphabet in which each character c ∈ C has frequency c.freq.
Let x and y be two characters in C having the lowest frequencies. Then

9

there exists an optimal pre�x code for C in which the codewords for x and
y have the same length and di�er only in the last bit.

Proof We want something like this:

Given a and b characters at sibling leaves of maximum depth in an opti-
mal pre�x code tree T . Without loss of generality, we can assume that
a.freq ≤ b.freq and x.freq ≤ y.freq. Then, x.freq ≤ a.freq and
y.freq ≤ b.freq. Thus, we have two case

Case I

if x.freq = b.freq, then a.freq = b.freq = x.freq = y.freq the
lemma would be trivially true.

Case II

if x.freq 6= b.freq (i.e. x 6= b). Now, we exchange nodes a and x to
produce a new tree T ′. Then, we use the equation of cost to measure
the di�erence between T and T ′:

B(T)−B(T ′) =
∑
c∈C

c.freq × dT (c)−
∑
c∈C

c.freq × dT ′(c)

= x.freq × dT (x) + a.freq × dT (a)− ...

... x.freq × dT (a)− a.freq × dT (x)

= (a.freq − x.freq) (dT (a)− dT (x))

≥ 0.

In a similar way we can create T ′′ from T ′ by exchanging y and
b. Thus B(T ′) − B(T ′′) ≥ 0. Following these inequalities, we have
that B(T ′′) ≤ B(T ′) ≤ B(T) and B(T) ≤ B(T ′′), this means that
B(T ′′) = B(T).

Now, given this lemma, we can prove that the merging of nodes into trees using
the least frequent trees has a sub-optimal structure.

Lemma 16.3

Let C be a given alphabet with frequency c:freq de�ned for each character
c ∈ C . Let x and y be two characters in C with minimum frequency.
Let C ′ be the alphabet C with the characters x and y removed and a new
character z added, so that C ′ = C−{x, y}∪{z}. De�ne f for C ′ as for C,
except that z.freq = x.freq+ y.freq. Let T ′ be any tree representing an
optimal pre�x code for the alphabet C ′. Then the tree T , obtained from

10

T ′ by replacing the leaf node for z with an internal node having x and y
as children, represents an optimal pre�x code for the alphabet C.

Proof: For each character c ∈ C−{x, y}, we have that dT (c) = dT ′(c)⇒
c.freq × dT (c) = c.freq × dT ′(c), but dT (x) = dT (y) = dT ′(z) + 1,
thus

x.freq

x.freq × dT (x) + y.freq × dT (y) = (x.freq + y.freq) (dT ′(z) + 1)

= z.freq × dT ′(z) + (x.freq + y.freq)

Using this we can conclude B(T ′) = B(T)− (x.freq + y.freq). Now
use a contradiction to prove the lemma:

1. First assume that T does not represent an optimal pre�x code
for C.

2. Then, there is a tree T ′′ such that B(T ′′) ≤ B(T), where (By
Lemma 16.2) x and y are siblings.

3. Now, we build T ′′′ by substituting x and y by z assigning the
sum of frequencies at x and y to it.

4. Finally, we have that

B(T ′′′) = B(T ′′)− x.freq − y.freq

< B(T)− x.freq − y.freq

= B(T ′)

A contradiction because T ′′′ and T ′ represents trees for C ′, in addi-
tion that T ′ is optimal. Thus, T represents an optimal pre�x code
for C.

Theorem 16.4

Procedure HUFFMAN produce an optimal pre�x code.

Proof: Directly from the previous lemmas.

11

