
Analysis of Algorithms
Greedy Methods

Andres Mendez-Vazquez

February 19, 2018

1 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

2 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

3 / 70

Steps of the greedy method

Proceed as follows
Determine the optimal substructure.
Develop a recursive solution.
Prove that at any stage of recursion, one of the optimal choices is the
greedy choice.
Show that all but one of the sub-problems resulting from the greedy
choice are empty.
Develop a recursive greedy algorithm.
Convert it to an iterative algorithm.

4 / 70

Steps of the greedy method

Proceed as follows
Determine the optimal substructure.
Develop a recursive solution.
Prove that at any stage of recursion, one of the optimal choices is the
greedy choice.
Show that all but one of the sub-problems resulting from the greedy
choice are empty.
Develop a recursive greedy algorithm.
Convert it to an iterative algorithm.

4 / 70

Steps of the greedy method

Proceed as follows
Determine the optimal substructure.
Develop a recursive solution.
Prove that at any stage of recursion, one of the optimal choices is the
greedy choice.
Show that all but one of the sub-problems resulting from the greedy
choice are empty.
Develop a recursive greedy algorithm.
Convert it to an iterative algorithm.

4 / 70

Steps of the greedy method

Proceed as follows
Determine the optimal substructure.
Develop a recursive solution.
Prove that at any stage of recursion, one of the optimal choices is the
greedy choice.
Show that all but one of the sub-problems resulting from the greedy
choice are empty.
Develop a recursive greedy algorithm.
Convert it to an iterative algorithm.

4 / 70

Steps of the greedy method

Proceed as follows
Determine the optimal substructure.
Develop a recursive solution.
Prove that at any stage of recursion, one of the optimal choices is the
greedy choice.
Show that all but one of the sub-problems resulting from the greedy
choice are empty.
Develop a recursive greedy algorithm.
Convert it to an iterative algorithm.

4 / 70

Steps of the greedy method

Proceed as follows
Determine the optimal substructure.
Develop a recursive solution.
Prove that at any stage of recursion, one of the optimal choices is the
greedy choice.
Show that all but one of the sub-problems resulting from the greedy
choice are empty.
Develop a recursive greedy algorithm.
Convert it to an iterative algorithm.

4 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

5 / 70

Dynamic Programming vs Greedy Method

Dynamic Programming
Make a choice at each step
Choice depends on knowing optimal solutions to sub-problems. Solve
sub-problems first.
Solve bottom-up.

Greedy Method
Make a choice at each step.
Make the choice before solving the sub-problems.
Solve top-down.

6 / 70

Dynamic Programming vs Greedy Method

Dynamic Programming
Make a choice at each step
Choice depends on knowing optimal solutions to sub-problems. Solve
sub-problems first.
Solve bottom-up.

Greedy Method
Make a choice at each step.
Make the choice before solving the sub-problems.
Solve top-down.

6 / 70

Dynamic Programming vs Greedy Method

Dynamic Programming
Make a choice at each step
Choice depends on knowing optimal solutions to sub-problems. Solve
sub-problems first.
Solve bottom-up.

Greedy Method
Make a choice at each step.
Make the choice before solving the sub-problems.
Solve top-down.

6 / 70

Dynamic Programming vs Greedy Method

Dynamic Programming
Make a choice at each step
Choice depends on knowing optimal solutions to sub-problems. Solve
sub-problems first.
Solve bottom-up.

Greedy Method
Make a choice at each step.
Make the choice before solving the sub-problems.
Solve top-down.

6 / 70

Dynamic Programming vs Greedy Method

Dynamic Programming
Make a choice at each step
Choice depends on knowing optimal solutions to sub-problems. Solve
sub-problems first.
Solve bottom-up.

Greedy Method
Make a choice at each step.
Make the choice before solving the sub-problems.
Solve top-down.

6 / 70

Dynamic Programming vs Greedy Method

Dynamic Programming
Make a choice at each step
Choice depends on knowing optimal solutions to sub-problems. Solve
sub-problems first.
Solve bottom-up.

Greedy Method
Make a choice at each step.
Make the choice before solving the sub-problems.
Solve top-down.

6 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

7 / 70

You are a thief

You get into a store
With a knapsack/bag

The bag has capacity W

You want to select items to fill the bag...

Question
How do you do it?

8 / 70

You are a thief

You get into a store
With a knapsack/bag

The bag has capacity W

You want to select items to fill the bag...

Question
How do you do it?

8 / 70

You are a thief

You get into a store
With a knapsack/bag

The bag has capacity W

You want to select items to fill the bag...

Question
How do you do it?

8 / 70

Formalization

First
You have n items.
Each item is worth vi and it weights wi pounds.
The knapsack can stand a weight of W .

Second
You need to find a subset of items with total weight ≤W such that
you have the best profit!!!
After all you want to be a successful THIEF!!!

Decisions?
You can actually use a vector to represent your decisions

〈x1, x2, x3, ..., xn〉 (1)

9 / 70

Formalization

First
You have n items.
Each item is worth vi and it weights wi pounds.
The knapsack can stand a weight of W .

Second
You need to find a subset of items with total weight ≤W such that
you have the best profit!!!
After all you want to be a successful THIEF!!!

Decisions?
You can actually use a vector to represent your decisions

〈x1, x2, x3, ..., xn〉 (1)

9 / 70

Formalization

First
You have n items.
Each item is worth vi and it weights wi pounds.
The knapsack can stand a weight of W .

Second
You need to find a subset of items with total weight ≤W such that
you have the best profit!!!
After all you want to be a successful THIEF!!!

Decisions?
You can actually use a vector to represent your decisions

〈x1, x2, x3, ..., xn〉 (1)

9 / 70

Formalization

First
You have n items.
Each item is worth vi and it weights wi pounds.
The knapsack can stand a weight of W .

Second
You need to find a subset of items with total weight ≤W such that
you have the best profit!!!
After all you want to be a successful THIEF!!!

Decisions?
You can actually use a vector to represent your decisions

〈x1, x2, x3, ..., xn〉 (1)

9 / 70

Formalization

First
You have n items.
Each item is worth vi and it weights wi pounds.
The knapsack can stand a weight of W .

Second
You need to find a subset of items with total weight ≤W such that
you have the best profit!!!
After all you want to be a successful THIEF!!!

Decisions?
You can actually use a vector to represent your decisions

〈x1, x2, x3, ..., xn〉 (1)

9 / 70

Formalization

First
You have n items.
Each item is worth vi and it weights wi pounds.
The knapsack can stand a weight of W .

Second
You need to find a subset of items with total weight ≤W such that
you have the best profit!!!
After all you want to be a successful THIEF!!!

Decisions?
You can actually use a vector to represent your decisions

〈x1, x2, x3, ..., xn〉 (1)

9 / 70

You have two versions

0-1 knapsack problem
You have to either take an item or not take it, you cannot take a
fraction of it.
Thus, elements in the vector are xi ∈ {0, 1} with i = 1, ..., n.

Fractional knapsack problem
Like the 0-1 knapsack problem, but you can take a fraction of an item.
Thus, elements in the vector are xi ∈ [0, 1] with i = 1, ..., n.

10 / 70

You have two versions

0-1 knapsack problem
You have to either take an item or not take it, you cannot take a
fraction of it.
Thus, elements in the vector are xi ∈ {0, 1} with i = 1, ..., n.

Fractional knapsack problem
Like the 0-1 knapsack problem, but you can take a fraction of an item.
Thus, elements in the vector are xi ∈ [0, 1] with i = 1, ..., n.

10 / 70

You have two versions

0-1 knapsack problem
You have to either take an item or not take it, you cannot take a
fraction of it.
Thus, elements in the vector are xi ∈ {0, 1} with i = 1, ..., n.

Fractional knapsack problem
Like the 0-1 knapsack problem, but you can take a fraction of an item.
Thus, elements in the vector are xi ∈ [0, 1] with i = 1, ..., n.

10 / 70

You have two versions

0-1 knapsack problem
You have to either take an item or not take it, you cannot take a
fraction of it.
Thus, elements in the vector are xi ∈ {0, 1} with i = 1, ..., n.

Fractional knapsack problem
Like the 0-1 knapsack problem, but you can take a fraction of an item.
Thus, elements in the vector are xi ∈ [0, 1] with i = 1, ..., n.

10 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

11 / 70

Greedy Process for 0-1 Knapsack

First, You choose an ordering
What about per price of each item?

If we have the following situation

12 / 70

Greedy Process for 0-1 Knapsack

First, You choose an ordering
What about per price of each item?

If we have the following situation

 item 1

 item 2

 item 3

KNAPSACK

$120

30 kg

50 kg

20 kg10 kg

$100$80

ORDER OF SELECTION

12 / 70

Thus

It works fine

 item 1

KNAPSACK50 kg

10 kg

$100+$120=$220$80

30 kg

20 kg

What about this?

13 / 70

Thus
It works fine

 item 1

KNAPSACK50 kg

10 kg

$100+$120=$220$80

30 kg

20 kg

What about this?

 item 1 item 2
 item 3

KNAPSACK

$120

30 kg

50 kg

25 kg

$100$80

ORDER OF SELECTION

25 kg

13 / 70

Thus, we need a better way to select elements!!!

Actually
Why not to use the price of kg?

Thus, we have this!!!

14 / 70

Thus, we need a better way to select elements!!!

Actually
Why not to use the price of kg?

Thus, we have this!!!

 item 1 item 2
 item 3

KNAPSACK

$120

30 kg

50 kg

20 kg

$100$80

ORDER OF SELECTION?

20 kg

14 / 70

Did you notice this?

First

 item 1

KNAPSACK

$100+$120=220

50 kg

$80

20 kg

30 kg

20 kg

Second

15 / 70

Did you notice this?
First

 item 1

KNAPSACK

$100+$120=220

50 kg

$80

20 kg

30 kg

20 kg

Second
KNAPSACK

$40+$80+$100=220

50 kg

$80

20 kg

20 kg 20 kg

10 kg

15 / 70

However!!!

Even with an order based in v
w
0-1 Knapsack fails!!!

 item 1 item 2 item 3

KNAPSACK

$120

30 kg

50 kg

25 kg

$75$75

ORDER OF SELECTION?

25 kg

16 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

17 / 70

Definition of Fractional Process

First
Push object indexes into a max heap using the key vi

wi
for i = 1, ..., n.

Then
Extract index at the top of the max heap.
Take the element represented by the index at the top of the max heap
and push it into the knapsack.
Reduce the remaining carry weight by the weight of the element

Finally
If a fraction of space exist, push the next element fraction sorted by key
into the knapsack.

18 / 70

Definition of Fractional Process

First
Push object indexes into a max heap using the key vi

wi
for i = 1, ..., n.

Then
Extract index at the top of the max heap.
Take the element represented by the index at the top of the max heap
and push it into the knapsack.
Reduce the remaining carry weight by the weight of the element

Finally
If a fraction of space exist, push the next element fraction sorted by key
into the knapsack.

18 / 70

Definition of Fractional Process

First
Push object indexes into a max heap using the key vi

wi
for i = 1, ..., n.

Then
Extract index at the top of the max heap.
Take the element represented by the index at the top of the max heap
and push it into the knapsack.
Reduce the remaining carry weight by the weight of the element

Finally
If a fraction of space exist, push the next element fraction sorted by key
into the knapsack.

18 / 70

Definition of Fractional Process

First
Push object indexes into a max heap using the key vi

wi
for i = 1, ..., n.

Then
Extract index at the top of the max heap.
Take the element represented by the index at the top of the max heap
and push it into the knapsack.
Reduce the remaining carry weight by the weight of the element

Finally
If a fraction of space exist, push the next element fraction sorted by key
into the knapsack.

18 / 70

Definition of Fractional Process

First
Push object indexes into a max heap using the key vi

wi
for i = 1, ..., n.

Then
Extract index at the top of the max heap.
Take the element represented by the index at the top of the max heap
and push it into the knapsack.
Reduce the remaining carry weight by the weight of the element

Finally
If a fraction of space exist, push the next element fraction sorted by key
into the knapsack.

18 / 70

Theorem about Greedy Choice

Theorem
The greedy choice, which always selects the object with better ratio
value/weight, always finds an optimal solution to the Fractional Knapsack
problem.

Proof
Constraints:

xi ∈ [0, 1]

19 / 70

Theorem about Greedy Choice

Theorem
The greedy choice, which always selects the object with better ratio
value/weight, always finds an optimal solution to the Fractional Knapsack
problem.

Proof
Constraints:

xi ∈ [0, 1]

19 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy
FRACTIONAL-KNAPSACK(W, w, v)

1 for i = 1 to n do x [i] = 0
2 weight = 0
3 // Use a Max-Heap
4 T = Build-Max-Heap(v/w)
5 while weight < W do
6 i = T.Heap-Extract-Max()
7 if (weight + w[i] ≤W) do
8 x [i] = 1
9 weight = weight + w[i]
10 else
11 x [i] = W−weight

w[i]
12 weight = W

13 return x

20 / 70

Fractional Greedy

Complexity
Under the fact that this algorithm is using a heap we can get the
complexity O(n log n).
If we assume already an initial sorting or use a linear sorting we get
complexity O(n).

21 / 70

Fractional Greedy

Complexity
Under the fact that this algorithm is using a heap we can get the
complexity O(n log n).
If we assume already an initial sorting or use a linear sorting we get
complexity O(n).

21 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

22 / 70

Activity selection

Problem
Set of activities S = a1, ..., an. The ai activity needs a resource (Class
Room, Machine, Assembly Line, etc) during period [si, fi), which is a
half-open interval, where si is the start time of activity ai and fi is the
finish time of activity ai.

For example
i 1 2 3 4 5 6 7 8 9
si 1 2 4 1 5 8 9 11 13
fi 3 5 7 8 9 10 11 14 16

Goal:
Select the largest possible set of non-overlapping activities.

23 / 70

Activity selection

Problem
Set of activities S = a1, ..., an. The ai activity needs a resource (Class
Room, Machine, Assembly Line, etc) during period [si, fi), which is a
half-open interval, where si is the start time of activity ai and fi is the
finish time of activity ai.

For example
i 1 2 3 4 5 6 7 8 9
si 1 2 4 1 5 8 9 11 13
fi 3 5 7 8 9 10 11 14 16

Goal:
Select the largest possible set of non-overlapping activities.

23 / 70

Activity selection

Problem
Set of activities S = a1, ..., an. The ai activity needs a resource (Class
Room, Machine, Assembly Line, etc) during period [si, fi), which is a
half-open interval, where si is the start time of activity ai and fi is the
finish time of activity ai.

For example
i 1 2 3 4 5 6 7 8 9
si 1 2 4 1 5 8 9 11 13
fi 3 5 7 8 9 10 11 14 16

Goal:
Select the largest possible set of non-overlapping activities.

23 / 70

We have something like this

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TIME

A
C
T
I
V
I
T
Y

Goal:
Select the largest possible set of non-overlapping activities.

24 / 70

We have something like this

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TIME

A
C
T
I
V
I
T
Y

Goal:
Select the largest possible set of non-overlapping activities.

24 / 70

For Example

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
C
T
I
V
I
T
Y

TIME

25 / 70

Thus!!!

First
The Optimal Substructure!!!

Second
We need the recursive solution!!!

Third
The Greedy Choice

Fourth
Prove it is the only one!!!

Fifth
We need the iterative solution!!!

26 / 70

Thus!!!

First
The Optimal Substructure!!!

Second
We need the recursive solution!!!

Third
The Greedy Choice

Fourth
Prove it is the only one!!!

Fifth
We need the iterative solution!!!

26 / 70

Thus!!!

First
The Optimal Substructure!!!

Second
We need the recursive solution!!!

Third
The Greedy Choice

Fourth
Prove it is the only one!!!

Fifth
We need the iterative solution!!!

26 / 70

Thus!!!

First
The Optimal Substructure!!!

Second
We need the recursive solution!!!

Third
The Greedy Choice

Fourth
Prove it is the only one!!!

Fifth
We need the iterative solution!!!

26 / 70

Thus!!!

First
The Optimal Substructure!!!

Second
We need the recursive solution!!!

Third
The Greedy Choice

Fourth
Prove it is the only one!!!

Fifth
We need the iterative solution!!!

26 / 70

How do we discover the Optimal Structure

We know we have the following
S = a1, ..., an, a set of activities.

We can then refine the set of activities in the following way
We define:

Sij = the set of activities that start after activity ai finishes and that
finishes before activity aj start.

27 / 70

How do we discover the Optimal Structure

We know we have the following
S = a1, ..., an, a set of activities.

We can then refine the set of activities in the following way
We define:

Sij = the set of activities that start after activity ai finishes and that
finishes before activity aj start.

27 / 70

The Optimal Substructure

Thus, we have

Activity time from less to more

28 / 70

The Optimal Substructure

Second
Suppose that the set Aij denotes the maximum set of compatible
activities for Sij

29 / 70

For Example

Thus, we have

Activity time from less to more

30 / 70

Then

Third
In addition assume that Aij includes some activity ak.
Then, imagine that ak belongs to some optimal solution.

31 / 70

Then

Third
In addition assume that Aij includes some activity ak.
Then, imagine that ak belongs to some optimal solution.

31 / 70

What do we need?

We need to find the optimal solutions for Sik and Skj.

Activity time from less to more

32 / 70

The Optimal Substructure

Then
We need to prove the optimal substructure:

For this we will use
I The Cut-and-Paste Argument
I Contradiction

First
We have that Aik = Sik ∩Aij and similarly Akj = Skj ∩Aij .

Then
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1

33 / 70

The Optimal Substructure

Then
We need to prove the optimal substructure:

For this we will use
I The Cut-and-Paste Argument
I Contradiction

First
We have that Aik = Sik ∩Aij and similarly Akj = Skj ∩Aij .

Then
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1

33 / 70

The Optimal Substructure

Then
We need to prove the optimal substructure:

For this we will use
I The Cut-and-Paste Argument
I Contradiction

First
We have that Aik = Sik ∩Aij and similarly Akj = Skj ∩Aij .

Then
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1

33 / 70

The Optimal Substructure

Then
We need to prove the optimal substructure:

For this we will use
I The Cut-and-Paste Argument
I Contradiction

First
We have that Aik = Sik ∩Aij and similarly Akj = Skj ∩Aij .

Then
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1

33 / 70

The Optimal Substructure

Then
We need to prove the optimal substructure:

For this we will use
I The Cut-and-Paste Argument
I Contradiction

First
We have that Aik = Sik ∩Aij and similarly Akj = Skj ∩Aij .

Then
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1

33 / 70

The Optimal Substructure

Then
We need to prove the optimal substructure:

For this we will use
I The Cut-and-Paste Argument
I Contradiction

First
We have that Aik = Sik ∩Aij and similarly Akj = Skj ∩Aij .

Then
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1

33 / 70

For Example

We need to find the optimal solutions for Sik and Skj.

Activity time from less to more

34 / 70

The Optimal Substructure: Using Contradictions

Use Cut-and-Paste Argument
How? Assume that exist A

′
ik such that

∣∣∣A′
ik

∣∣∣ > |Aik|.

Meaning
We assume that we cannot construct the large answer using the small
answers!!!
The Basis of Contradiction (S ∪ {¬P} ` F) =⇒ (S ` P)

35 / 70

The Optimal Substructure: Using Contradictions

Use Cut-and-Paste Argument
How? Assume that exist A

′
ik such that

∣∣∣A′
ik

∣∣∣ > |Aik|.

Meaning
We assume that we cannot construct the large answer using the small
answers!!!
The Basis of Contradiction (S ∪ {¬P} ` F) =⇒ (S ` P)

35 / 70

The Optimal Substructure: Using Contradictions

Use Cut-and-Paste Argument
How? Assume that exist A

′
ik such that

∣∣∣A′
ik

∣∣∣ > |Aik|.

Meaning
We assume that we cannot construct the large answer using the small
answers!!!
The Basis of Contradiction (S ∪ {¬P} ` F) =⇒ (S ` P)

35 / 70

Important

Here
¬P =exist A

′
ik such that

∣∣∣A′
ik

∣∣∣ > |Aik|.

36 / 70

Then

This means that A
′
ij has more activities than Aij

Then
∣∣∣A′

ij

∣∣∣ =
∣∣∣A′

ik

∣∣∣+ |Akj |+ 1 > |Aik|+ |Akj |+ 1 = |Aij | , which is a
contradiction.

Finally
We have the optimal-substructure.

37 / 70

Then

This means that A
′
ij has more activities than Aij

Then
∣∣∣A′

ij

∣∣∣ =
∣∣∣A′

ik

∣∣∣+ |Akj |+ 1 > |Aik|+ |Akj |+ 1 = |Aij | , which is a
contradiction.

Finally
We have the optimal-substructure.

37 / 70

Then

Given
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1.

Question
Can anybody give me the recursion?

38 / 70

Then

Given
Aij = Aik ∪ {ak} ∪Akj or |Aij | = |Aik|+ |Akj |+ 1.

Question
Can anybody give me the recursion?

38 / 70

Recursive Formulation

Recursive Formulation

c[i, j] =

0 if Sij = ∅
max
i<k<j
ak∈Sij

c[i, k] + c[k, j] + 1 if Sij 6= ∅

Did you notice that you can use Dynamic Programming?

39 / 70

Recursive Formulation

Recursive Formulation

c[i, j] =

0 if Sij = ∅
max
i<k<j
ak∈Sij

c[i, k] + c[k, j] + 1 if Sij 6= ∅

Did you notice that you can use Dynamic Programming?

39 / 70

We have our Goal?

Thus
Any Ideas to obtain the largest possible set using Greedy Choice?

What about?
Early Starting Time?
Early Starting + Less Activity Length?

Me!!!
Do we have something that combines both things?

40 / 70

We have our Goal?

Thus
Any Ideas to obtain the largest possible set using Greedy Choice?

What about?
Early Starting Time?
Early Starting + Less Activity Length?

Me!!!
Do we have something that combines both things?

40 / 70

We have our Goal?

Thus
Any Ideas to obtain the largest possible set using Greedy Choice?

What about?
Early Starting Time?
Early Starting + Less Activity Length?

Me!!!
Do we have something that combines both things?

40 / 70

We have our Goal?

Thus
Any Ideas to obtain the largest possible set using Greedy Choice?

What about?
Early Starting Time?
Early Starting + Less Activity Length?

Me!!!
Do we have something that combines both things?

40 / 70

Which Greedy Choice?

Did you notice the following

Active

Finishing
Time

41 / 70

The Early Finishing Time

Yes!!!
The Greedy Choice = Select by earliest finishing time.

42 / 70

Greedy solution

Theorem 16.1
Consider any nonempty subproblem Sk = {ai ∈ S|si > fk}, and let am be
an activity in Sk with the earliest finish time. Then am is included in some
maximum-size subset of mutually compatible activities of Sk .

43 / 70

Thus

We can do the following
We can repeatedly choose the activity that finishes first.
Remove all activities incompatible with this activity
Then repeat

Not only that
Because we always choose the activity with the earliest finish time.

I Then, finish times of the activities we choose must strictly increase.

44 / 70

Thus

We can do the following
We can repeatedly choose the activity that finishes first.
Remove all activities incompatible with this activity
Then repeat

Not only that
Because we always choose the activity with the earliest finish time.

I Then, finish times of the activities we choose must strictly increase.

44 / 70

Thus

We can do the following
We can repeatedly choose the activity that finishes first.
Remove all activities incompatible with this activity
Then repeat

Not only that
Because we always choose the activity with the earliest finish time.

I Then, finish times of the activities we choose must strictly increase.

44 / 70

Thus

We can do the following
We can repeatedly choose the activity that finishes first.
Remove all activities incompatible with this activity
Then repeat

Not only that
Because we always choose the activity with the earliest finish time.

I Then, finish times of the activities we choose must strictly increase.

44 / 70

Thus

We can do the following
We can repeatedly choose the activity that finishes first.
Remove all activities incompatible with this activity
Then repeat

Not only that
Because we always choose the activity with the earliest finish time.

I Then, finish times of the activities we choose must strictly increase.

44 / 70

Top-Down Approach

Something Notable
An algorithm to solve the activity-selection problem does not need to work
bottom-up!!!

Instead
It can work top-down, choosing an activity to put into the optimal solution
and then solving the subproblem of choosing activities from those that are
compatible with those already chosen.

Important
Greedy algorithms typically have this top-down design:

They make a choice and then solve one subproblem.

45 / 70

Top-Down Approach

Something Notable
An algorithm to solve the activity-selection problem does not need to work
bottom-up!!!

Instead
It can work top-down, choosing an activity to put into the optimal solution
and then solving the subproblem of choosing activities from those that are
compatible with those already chosen.

Important
Greedy algorithms typically have this top-down design:

They make a choice and then solve one subproblem.

45 / 70

Top-Down Approach

Something Notable
An algorithm to solve the activity-selection problem does not need to work
bottom-up!!!

Instead
It can work top-down, choosing an activity to put into the optimal solution
and then solving the subproblem of choosing activities from those that are
compatible with those already chosen.

Important
Greedy algorithms typically have this top-down design:

They make a choice and then solve one subproblem.

45 / 70

Then

First
The activities are already sorted by finishing time

In addition
There are dummy activities:

a0= fictitious activity, f0 = 0.

46 / 70

Then

First
The activities are already sorted by finishing time

In addition
There are dummy activities:

a0= fictitious activity, f0 = 0.

46 / 70

Recursive Activity Selector

REC-ACTIVITY-SELECTOR(s, f, k, n) - Entry Point (s, f, 0, n)
1 m = k + 1
2 // find the first activity in Sk to finish
3 while m ≤ n and s [m] < f [k]
4 m = m + 1
5 if m ≤ n
6 return {am}∪REC-ACTIVITY-SELECTOR(s, f, m, n)
7 else return ∅

47 / 70

Recursive Activity Selector

REC-ACTIVITY-SELECTOR(s, f, k, n) - Entry Point (s, f, 0, n)
1 m = k + 1
2 // find the first activity in Sk to finish
3 while m ≤ n and s [m] < f [k]
4 m = m + 1
5 if m ≤ n
6 return {am}∪REC-ACTIVITY-SELECTOR(s, f, m, n)
7 else return ∅

47 / 70

Recursive Activity Selector

REC-ACTIVITY-SELECTOR(s, f, k, n) - Entry Point (s, f, 0, n)
1 m = k + 1
2 // find the first activity in Sk to finish
3 while m ≤ n and s [m] < f [k]
4 m = m + 1
5 if m ≤ n
6 return {am}∪REC-ACTIVITY-SELECTOR(s, f, m, n)
7 else return ∅

47 / 70

Recursive Activity Selector

REC-ACTIVITY-SELECTOR(s, f, k, n) - Entry Point (s, f, 0, n)
1 m = k + 1
2 // find the first activity in Sk to finish
3 while m ≤ n and s [m] < f [k]
4 m = m + 1
5 if m ≤ n
6 return {am}∪REC-ACTIVITY-SELECTOR(s, f, m, n)
7 else return ∅

47 / 70

Recursive Activity Selector

REC-ACTIVITY-SELECTOR(s, f, k, n) - Entry Point (s, f, 0, n)
1 m = k + 1
2 // find the first activity in Sk to finish
3 while m ≤ n and s [m] < f [k]
4 m = m + 1
5 if m ≤ n
6 return {am}∪REC-ACTIVITY-SELECTOR(s, f, m, n)
7 else return ∅

47 / 70

Do we need the recursion?

Did you notice?
We remove all the activities before fk!!!

48 / 70

We can do more...
GREEDY-ACTIVITY-SELECTOR(s, f, n)

1 n = s.length
2 A={a1}
3 k = 1
4 for m = 2 to n

5 if s [m] ≥ f [k]
6 A=A∪{am}
7 k = m

8 return A

Complexity of the algorithm
Θ(n)

Note: Clearly, we are not taking into account the sorting of the
activities.

49 / 70

We can do more...
GREEDY-ACTIVITY-SELECTOR(s, f, n)

1 n = s.length
2 A={a1}
3 k = 1
4 for m = 2 to n

5 if s [m] ≥ f [k]
6 A=A∪{am}
7 k = m

8 return A

Complexity of the algorithm
Θ(n)

Note: Clearly, we are not taking into account the sorting of the
activities.

49 / 70

We can do more...
GREEDY-ACTIVITY-SELECTOR(s, f, n)

1 n = s.length
2 A={a1}
3 k = 1
4 for m = 2 to n

5 if s [m] ≥ f [k]
6 A=A∪{am}
7 k = m

8 return A

Complexity of the algorithm
Θ(n)

Note: Clearly, we are not taking into account the sorting of the
activities.

49 / 70

We can do more...
GREEDY-ACTIVITY-SELECTOR(s, f, n)

1 n = s.length
2 A={a1}
3 k = 1
4 for m = 2 to n

5 if s [m] ≥ f [k]
6 A=A∪{am}
7 k = m

8 return A

Complexity of the algorithm
Θ(n)

Note: Clearly, we are not taking into account the sorting of the
activities.

49 / 70

We can do more...
GREEDY-ACTIVITY-SELECTOR(s, f, n)

1 n = s.length
2 A={a1}
3 k = 1
4 for m = 2 to n

5 if s [m] ≥ f [k]
6 A=A∪{am}
7 k = m

8 return A

Complexity of the algorithm
Θ(n)

Note: Clearly, we are not taking into account the sorting of the
activities.

49 / 70

Outline

1 Greedy Method
Steps of the greedy method
Dynamic programming vs Greedy Method

2 Greedy Method Examples
Knapsack Problem
Greedy Process
Fractional Knapsack
Activity selection

Optimal Substructure
Greedy Solution

Huffman codes
Representation
Greedy Choice
Some lemmas

3 Exercises

50 / 70

Huffman codes

Use
Huffman codes are widely used and very effective technique for
compressing.

Advantages
Savings of 20% to 90% are typical, depending on the characteristics of the
data being compressed.

Idea
Huffman codes are based on the idea of prefix codes:

Codes in which no codeword is also a prefix of some other codeword.
It is possible to show that the optimal data compression achievable by
a character code can always be achieved with a prefix code.

51 / 70

Huffman codes

Use
Huffman codes are widely used and very effective technique for
compressing.

Advantages
Savings of 20% to 90% are typical, depending on the characteristics of the
data being compressed.

Idea
Huffman codes are based on the idea of prefix codes:

Codes in which no codeword is also a prefix of some other codeword.
It is possible to show that the optimal data compression achievable by
a character code can always be achieved with a prefix code.

51 / 70

Huffman codes

Use
Huffman codes are widely used and very effective technique for
compressing.

Advantages
Savings of 20% to 90% are typical, depending on the characteristics of the
data being compressed.

Idea
Huffman codes are based on the idea of prefix codes:

Codes in which no codeword is also a prefix of some other codeword.
It is possible to show that the optimal data compression achievable by
a character code can always be achieved with a prefix code.

51 / 70

Huffman codes

Use
Huffman codes are widely used and very effective technique for
compressing.

Advantages
Savings of 20% to 90% are typical, depending on the characteristics of the
data being compressed.

Idea
Huffman codes are based on the idea of prefix codes:

Codes in which no codeword is also a prefix of some other codeword.
It is possible to show that the optimal data compression achievable by
a character code can always be achieved with a prefix code.

51 / 70

Huffman codes

Use
Huffman codes are widely used and very effective technique for
compressing.

Advantages
Savings of 20% to 90% are typical, depending on the characteristics of the
data being compressed.

Idea
Huffman codes are based on the idea of prefix codes:

Codes in which no codeword is also a prefix of some other codeword.
It is possible to show that the optimal data compression achievable by
a character code can always be achieved with a prefix code.

51 / 70

Imagine the following

We have the following
Imagine having 100,000-character data file, and we want to store it
compactly.
In addition, we have the following distribution of character in the
hundred of thousands.

Table
a b c d e f

Frequency 45,000 13,000 12,000 16,000 9,000 5,000
Fixed-Leng cw 000 001 010 011 100 101
Vari Leng cw 0 101 100 111 1101 1100

Table: Distribution of characters in the text and their codewords.

52 / 70

Imagine the following

We have the following
Imagine having 100,000-character data file, and we want to store it
compactly.
In addition, we have the following distribution of character in the
hundred of thousands.

Table
a b c d e f

Frequency 45,000 13,000 12,000 16,000 9,000 5,000
Fixed-Leng cw 000 001 010 011 100 101
Vari Leng cw 0 101 100 111 1101 1100

Table: Distribution of characters in the text and their codewords.

52 / 70

Imagine the following

We have the following
Imagine having 100,000-character data file, and we want to store it
compactly.
In addition, we have the following distribution of character in the
hundred of thousands.

Table
a b c d e f

Frequency 45,000 13,000 12,000 16,000 9,000 5,000
Fixed-Leng cw 000 001 010 011 100 101
Vari Leng cw 0 101 100 111 1101 1100

Table: Distribution of characters in the text and their codewords.

52 / 70

We have the following representations for the previous
codes

Fix Code: No optimal tree in our problem

100

86

28

0 1

14

14

0 1 0

0 0 01 1 1

58

a:45 b:13 c:12 d:16 e:9 f:5

53 / 70

We have the following representations for the previous
codes

Prefix Code: Binary tree for the variable prefix code in table

100

0 1

55

25

0

0

0

0

1 1

1

a:45

b:13c:12 d:16

e:9 f:5

30

14

54 / 70

Cost in the number of bits to represent the text

Fix Code

3× 100, 000 = 300, 000 bits (2)

Variable Code

[45× 1 + 13× 3 + 12× 3 + 16× 3 + ...

9× 4 + 5× 4]× 1000 = 224, 000 bits

55 / 70

Cost in the number of bits to represent the text

Fix Code

3× 100, 000 = 300, 000 bits (2)

Variable Code

[45× 1 + 13× 3 + 12× 3 + 16× 3 + ...

9× 4 + 5× 4]× 1000 = 224, 000 bits

55 / 70

Prefix Codes

Something Notable
It has been show that prefix codes:

Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties
Easy to decode.
They are unambiguous.

I For example in our example the string 001011101 transform as
0 ◦ 0 ◦ 101 ◦ 1101 = aabe.

Properties
As we can prove an optimal code for a text is always represented by a full
binary tree!!!

56 / 70

Prefix Codes

Something Notable
It has been show that prefix codes:

Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties
Easy to decode.
They are unambiguous.

I For example in our example the string 001011101 transform as
0 ◦ 0 ◦ 101 ◦ 1101 = aabe.

Properties
As we can prove an optimal code for a text is always represented by a full
binary tree!!!

56 / 70

Prefix Codes

Something Notable
It has been show that prefix codes:

Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties
Easy to decode.
They are unambiguous.

I For example in our example the string 001011101 transform as
0 ◦ 0 ◦ 101 ◦ 1101 = aabe.

Properties
As we can prove an optimal code for a text is always represented by a full
binary tree!!!

56 / 70

Prefix Codes

Something Notable
It has been show that prefix codes:

Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties
Easy to decode.
They are unambiguous.

I For example in our example the string 001011101 transform as
0 ◦ 0 ◦ 101 ◦ 1101 = aabe.

Properties
As we can prove an optimal code for a text is always represented by a full
binary tree!!!

56 / 70

Prefix Codes

Something Notable
It has been show that prefix codes:

Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties
Easy to decode.
They are unambiguous.

I For example in our example the string 001011101 transform as
0 ◦ 0 ◦ 101 ◦ 1101 = aabe.

Properties
As we can prove an optimal code for a text is always represented by a full
binary tree!!!

56 / 70

It is more...

Given that we will concentrate our attention for the prefix codes to
full binary tree.
Given that C is the alphabet for the text file.

We have that
1 The tree for the optimal prefix code has |C| leaves.
2 The number of internal leaves is |C| − 1.
3 Each character x at the leaves has a depth dT (x) which is the length

of the codeword.

Thus
Knowing the frequency of each character and the tree T representing
the optimal prefix encoding.
We can define the number of bits necessary to encode the text file.

57 / 70

It is more...

Given that we will concentrate our attention for the prefix codes to
full binary tree.
Given that C is the alphabet for the text file.

We have that
1 The tree for the optimal prefix code has |C| leaves.
2 The number of internal leaves is |C| − 1.
3 Each character x at the leaves has a depth dT (x) which is the length

of the codeword.

Thus
Knowing the frequency of each character and the tree T representing
the optimal prefix encoding.
We can define the number of bits necessary to encode the text file.

57 / 70

It is more...

Given that we will concentrate our attention for the prefix codes to
full binary tree.
Given that C is the alphabet for the text file.

We have that
1 The tree for the optimal prefix code has |C| leaves.
2 The number of internal leaves is |C| − 1.
3 Each character x at the leaves has a depth dT (x) which is the length

of the codeword.

Thus
Knowing the frequency of each character and the tree T representing
the optimal prefix encoding.
We can define the number of bits necessary to encode the text file.

57 / 70

It is more...

Given that we will concentrate our attention for the prefix codes to
full binary tree.
Given that C is the alphabet for the text file.

We have that
1 The tree for the optimal prefix code has |C| leaves.
2 The number of internal leaves is |C| − 1.
3 Each character x at the leaves has a depth dT (x) which is the length

of the codeword.

Thus
Knowing the frequency of each character and the tree T representing
the optimal prefix encoding.
We can define the number of bits necessary to encode the text file.

57 / 70

It is more...

Given that we will concentrate our attention for the prefix codes to
full binary tree.
Given that C is the alphabet for the text file.

We have that
1 The tree for the optimal prefix code has |C| leaves.
2 The number of internal leaves is |C| − 1.
3 Each character x at the leaves has a depth dT (x) which is the length

of the codeword.

Thus
Knowing the frequency of each character and the tree T representing
the optimal prefix encoding.
We can define the number of bits necessary to encode the text file.

57 / 70

It is more...

Given that we will concentrate our attention for the prefix codes to
full binary tree.
Given that C is the alphabet for the text file.

We have that
1 The tree for the optimal prefix code has |C| leaves.
2 The number of internal leaves is |C| − 1.
3 Each character x at the leaves has a depth dT (x) which is the length

of the codeword.

Thus
Knowing the frequency of each character and the tree T representing
the optimal prefix encoding.
We can define the number of bits necessary to encode the text file.

57 / 70

Cost of Trees for Coding

Cost in the number of bits for a text

B(T) =
∑
c∈C

c.freq × dT (c).

58 / 70

Now, Which Greedy Choice?

I leave this to you
The optimal substructure

Greedy Choice
Ideas?

59 / 70

Now, Which Greedy Choice?

I leave this to you
The optimal substructure

Greedy Choice
Ideas?

59 / 70

Now, Which Greedy Choice?

I leave this to you
The optimal substructure

Greedy Choice
Ideas?

59 / 70

What about this?

Prefix Code: Binary tree for the variable prefix code in table

100

0 1

55

25

0

0

0

0

1 1

1

a:45

b:13c:12 d:16

e:9 f:5

30

14

60 / 70

Greedy Process for Huffman Codes

Process
You start with an alphabet C with an associated frequency for each
element in it.
Use the frequencies to build a min priority queue.
Subtract the two least frequent elements (Greedy Choice).
Build a three using as children the two nodes of the subtrees
extracted from the min priority queue. The new root holds the sum of
frequencies of the two subtrees.
Put it back into the Priority Queue.

61 / 70

Greedy Process for Huffman Codes

Process
You start with an alphabet C with an associated frequency for each
element in it.
Use the frequencies to build a min priority queue.
Subtract the two least frequent elements (Greedy Choice).
Build a three using as children the two nodes of the subtrees
extracted from the min priority queue. The new root holds the sum of
frequencies of the two subtrees.
Put it back into the Priority Queue.

61 / 70

Greedy Process for Huffman Codes

Process
You start with an alphabet C with an associated frequency for each
element in it.
Use the frequencies to build a min priority queue.
Subtract the two least frequent elements (Greedy Choice).
Build a three using as children the two nodes of the subtrees
extracted from the min priority queue. The new root holds the sum of
frequencies of the two subtrees.
Put it back into the Priority Queue.

61 / 70

Greedy Process for Huffman Codes

Process
You start with an alphabet C with an associated frequency for each
element in it.
Use the frequencies to build a min priority queue.
Subtract the two least frequent elements (Greedy Choice).
Build a three using as children the two nodes of the subtrees
extracted from the min priority queue. The new root holds the sum of
frequencies of the two subtrees.
Put it back into the Priority Queue.

61 / 70

Greedy Process for Huffman Codes

Process
You start with an alphabet C with an associated frequency for each
element in it.
Use the frequencies to build a min priority queue.
Subtract the two least frequent elements (Greedy Choice).
Build a three using as children the two nodes of the subtrees
extracted from the min priority queue. The new root holds the sum of
frequencies of the two subtrees.
Put it back into the Priority Queue.

61 / 70

Algorithm
HUFFMAN(C)

1 n = |C|
2 Q = C
3 for i = 1 to n-1
4 allocate new node z

5 z.left = x = Extract-Min(Q)
6 z.right = y = Extract-Min(Q)
7 z.freq = x.freq+y.freq
8 Insert(Q,z)
9 return Extract-Min(Q) // return root of the Huffman Tree

Complexity
Θ(n log n)

62 / 70

Algorithm
HUFFMAN(C)

1 n = |C|
2 Q = C
3 for i = 1 to n-1
4 allocate new node z

5 z.left = x = Extract-Min(Q)
6 z.right = y = Extract-Min(Q)
7 z.freq = x.freq+y.freq
8 Insert(Q,z)
9 return Extract-Min(Q) // return root of the Huffman Tree

Complexity
Θ(n log n)

62 / 70

Example

The Process!!!

f:5 e:9 c:12 b:13 a:16 d:45

63 / 70

Example

The Process!!!

f:5 e:9

c:12 b:13 a:16 d:4514

0 1

64 / 70

Example

The Process!!!

f:5 e:9 c:12 b:13

a:16 d:4514 25

0 1 0 1

65 / 70

Example

The Process!!!

f:5 e:9

c:12 b:13 a:16

d:45

14

25 30

0 1

0 1 0 1

66 / 70

Example

The Process!!!

f:5 e:9

c:12 b:13 a:16

d:45

14

25 30

55

0 1

0 1 0 1

0 1

67 / 70

Example

The Process!!!

f:5 e:9

c:12 b:13 a:16

d:45

14

25 30

55

100

0 1

0 1 0 1

0 1

0 1

68 / 70

Lemmas to sustain the claims

Lemma 16.2
Let C be an alphabet in which each character c ∈ C has frequency c.freq.
Let x and y be two characters in C having the lowest frequencies. Then
there exists an optimal prefix code for C in which the codewords for x and
y have the same length and differ only in the last bit.

Lemma 16.3
Let C be a given alphabet with frequency c:freq defined for each character
c ∈ C . Let x and y be two characters in C with minimum frequency. Let
C ′ be the alphabet C with the characters x and y removed and a new
character z added, so that C ′ = C − {x, y} ∪ {z}. Define f for C ′ as for
C, except that z.freq = x.freq + y.freq. Let T ′ be any tree representing
an optimal prefix code for the alphabet C ′. Then the tree T , obtained
from T ′ by replacing the leaf node for z with an internal node having x
and y as children, represents an optimal prefix code for the alphabet C.

69 / 70

Lemmas to sustain the claims

Lemma 16.2
Let C be an alphabet in which each character c ∈ C has frequency c.freq.
Let x and y be two characters in C having the lowest frequencies. Then
there exists an optimal prefix code for C in which the codewords for x and
y have the same length and differ only in the last bit.

Lemma 16.3
Let C be a given alphabet with frequency c:freq defined for each character
c ∈ C . Let x and y be two characters in C with minimum frequency. Let
C ′ be the alphabet C with the characters x and y removed and a new
character z added, so that C ′ = C − {x, y} ∪ {z}. Define f for C ′ as for
C, except that z.freq = x.freq + y.freq. Let T ′ be any tree representing
an optimal prefix code for the alphabet C ′. Then the tree T , obtained
from T ′ by replacing the leaf node for z with an internal node having x
and y as children, represents an optimal prefix code for the alphabet C.

69 / 70

Exercises

From Cormen’s book solve the following
16.2-1
16.2-4
16.2-5
16.2-7
16.1-3
16.3-3
16.3-5
16.3-7

70 / 70

	Greedy Method
	Steps of the greedy method
	Dynamic programming vs Greedy Method

	Greedy Method Examples
	Knapsack Problem
	Greedy Process
	Fractional Knapsack
	Activity selection
	Optimal Substructure
	Greedy Solution

	Huffman codes
	Representation
	Greedy Choice
	Some lemmas

	Exercises

