Analysis of Algorithms
 Greedy Methods

Andres Mendez-Vazquez

February 19, 2018

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

Steps of the greedy method

Proceed as follows

- Determine the optimal substructure.

Steps of the greedy method

Proceed as follows

- Determine the optimal substructure.
- Develop a recursive solution.

Steps of the greedy method

Proceed as follows

- Determine the optimal substructure.
- Develop a recursive solution.
- Prove that at any stage of recursion, one of the optimal choices is the greedy choice.

Steps of the greedy method

Proceed as follows

- Determine the optimal substructure.
- Develop a recursive solution.
- Prove that at any stage of recursion, one of the optimal choices is the greedy choice.
- Show that all but one of the sub-problems resulting from the greedy choice are empty.

Steps of the greedy method

Proceed as follows

- Determine the optimal substructure.
- Develop a recursive solution.
- Prove that at any stage of recursion, one of the optimal choices is the greedy choice.
- Show that all but one of the sub-problems resulting from the greedy choice are empty.
- Develop a recursive greedy algorithm.

Steps of the greedy method

Proceed as follows

- Determine the optimal substructure.
- Develop a recursive solution.
- Prove that at any stage of recursion, one of the optimal choices is the greedy choice.
- Show that all but one of the sub-problems resulting from the greedy choice are empty.
- Develop a recursive greedy algorithm.
- Convert it to an iterative algorithm.

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

Dynamic Programming vs Greedy Method

Dynamic Programming

- Make a choice at each step

Dynamic Programming vs Greedy Method

Dynamic Programming

- Make a choice at each step
- Choice depends on knowing optimal solutions to sub-problems. Solve sub-problems first.

Dynamic Programming vs Greedy Method

Dynamic Programming

- Make a choice at each step
- Choice depends on knowing optimal solutions to sub-problems. Solve sub-problems first.
- Solve bottom-up.

Dynamic Programming vs Greedy Method

Dynamic Programming

- Make a choice at each step
- Choice depends on knowing optimal solutions to sub-problems. Solve sub-problems first.
- Solve bottom-up.

Greedy Method

- Make a choice at each step.

Dynamic Programming vs Greedy Method

Dynamic Programming

- Make a choice at each step
- Choice depends on knowing optimal solutions to sub-problems. Solve sub-problems first.
- Solve bottom-up.

Greedy Method

- Make a choice at each step.
- Make the choice before solving the sub-problems.

Dynamic Programming vs Greedy Method

Dynamic Programming

- Make a choice at each step
- Choice depends on knowing optimal solutions to sub-problems. Solve sub-problems first.
- Solve bottom-up.

Greedy Method

- Make a choice at each step.
- Make the choice before solving the sub-problems.
- Solve top-down.

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

You are a thief

You get into a store
With a knapsack/bag

You are a thief

You get into a store
With a knapsack/bag
The bag has capacity W
You want to select items to fill the bag...

You are a thief

You get into a store
With a knapsack/bag
The bag has capacity W
You want to select items to fill the bag...

Question

 How do you do it?
Formalization

First

- You have n items.

Formalization

First

- You have n items.
- Each item is worth v_{i} and it weights w_{i} pounds.

Formalization

First

- You have n items.
- Each item is worth v_{i} and it weights w_{i} pounds.
- The knapsack can stand a weight of W.

Formalization

First

- You have n items.
- Each item is worth v_{i} and it weights w_{i} pounds.
- The knapsack can stand a weight of W.

Second

- You need to find a subset of items with total weight $\leq W$ such that you have the best profit!!!

Formalization

First

- You have n items.
- Each item is worth v_{i} and it weights w_{i} pounds.
- The knapsack can stand a weight of W.

Second

- You need to find a subset of items with total weight $\leq W$ such that you have the best profit!!!
- After all you want to be a successful THIEF!!!

Formalization

First

- You have n items.
- Each item is worth v_{i} and it weights w_{i} pounds.
- The knapsack can stand a weight of W.

Second

- You need to find a subset of items with total weight $\leq W$ such that you have the best profit!!!
- After all you want to be a successful THIEF!!!

Decisions?

You can actually use a vector to represent your decisions

$$
\begin{equation*}
\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\rangle \tag{1}
\end{equation*}
$$

You have two versions

0-1 knapsack problem

- You have to either take an item or not take it, you cannot take a fraction of it.

You have two versions

0-1 knapsack problem

- You have to either take an item or not take it, you cannot take a fraction of it.
- Thus, elements in the vector are $x_{i} \in\{0,1\}$ with $i=1, \ldots, n$.

You have two versions

0-1 knapsack problem

- You have to either take an item or not take it, you cannot take a fraction of it.
- Thus, elements in the vector are $x_{i} \in\{0,1\}$ with $i=1, \ldots, n$.

Fractional knapsack problem

- Like the 0-1 knapsack problem, but you can take a fraction of an item.

You have two versions

0-1 knapsack problem

- You have to either take an item or not take it, you cannot take a fraction of it.
- Thus, elements in the vector are $x_{i} \in\{0,1\}$ with $i=1, \ldots, n$.

Fractional knapsack problem

- Like the 0-1 knapsack problem, but you can take a fraction of an item.
- Thus, elements in the vector are $x_{i} \in[0,1]$ with $i=1, \ldots, n$.

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

Greedy Process for 0-1 Knapsack

First, You choose an ordering
What about per price of each item?

Greedy Process for 0-1 Knapsack

First, You choose an ordering

What about per price of each item?
If we have the following situation

Thus

It works fine

| | 50 kg KNAPSACK |
| :--- | :--- | :--- |
| item 1 | |
| 10 kg | |
| $\$ 80$ | $\$ 100+\$ 120=\$ 220$ |

Thus

It works fine

	50 kg	KNAPSACK
		20 kg
10 kg		
$\$ 80$	$\$ 100+\$ 120=\$ 220$	

What about this?

Thus, we need a better way to select elements!!!

Actually

Why not to use the price of kg ?

Thus, we need a better way to select elements!!!

Actually

Why not to use the price of kg ?

Thus, we have this!!!

			KNAPSACK
$\frac{80}{20}=4$	$\frac{100}{20}=5$	$\frac{120}{30}=4$	
tem 1	tem 2	tem 3	50 kg
20 kg	20 kg	30 kg	
\$80	\$100	\$120	
ORDE	OF SEL	TION?	

Did you notice this?

First

Did you notice this?

First

	KNAPSACK
$\frac{80}{20}=4$	
item 1	
20 kg	50 kg
$\$ 80$	

Second

KNAPSACK

However!!!

Even with an order based in $\frac{v}{w} 0-1$ Knapsack fails!!!

KNAPSACK

$$
\begin{array}{lll}
\frac{75}{25}=3 & \frac{75}{25}=3 \\
\text { item 1 }
\end{array} \begin{gathered}
\frac{120}{30}=4 \\
\text { item 2 } \\
25 \mathrm{~kg} \\
\hline 25 \mathrm{~kg}
\end{gathered}
$$

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

Definition of Fractional Process

First

Push object indexes into a max heap using the key $\frac{v_{i}}{w_{i}}$ for $i=1, \ldots, n$.

Definition of Fractional Process

First

Push object indexes into a max heap using the key $\frac{v_{i}}{w_{i}}$ for $i=1, \ldots, n$.

Then

- Extract index at the top of the max heap.

Definition of Fractional Process

First

Push object indexes into a max heap using the key $\frac{v_{i}}{w_{i}}$ for $i=1, \ldots, n$.

Then

- Extract index at the top of the max heap.
- Take the element represented by the index at the top of the max heap and push it into the knapsack.

Definition of Fractional Process

First

Push object indexes into a max heap using the key $\frac{v_{i}}{w_{i}}$ for $i=1, \ldots, n$.

Then

- Extract index at the top of the max heap.
- Take the element represented by the index at the top of the max heap and push it into the knapsack.
- Reduce the remaining carry weight by the weight of the element

Definition of Fractional Process

First

Push object indexes into a max heap using the key $\frac{v_{i}}{w_{i}}$ for $i=1, \ldots, n$.

Then

- Extract index at the top of the max heap.
- Take the element represented by the index at the top of the max heap and push it into the knapsack.
- Reduce the remaining carry weight by the weight of the element

Finally

If a fraction of space exist, push the next element fraction sorted by key into the knapsack.

Theorem about Greedy Choice

Theorem

The greedy choice, which always selects the object with better ratio value/weight, always finds an optimal solution to the Fractional Knapsack problem.

Theorem about Greedy Choice

Theorem

The greedy choice, which always selects the object with better ratio value/weight, always finds an optimal solution to the Fractional Knapsack problem.

Proof

Constraints:

- $x_{i} \in[0,1]$

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=\operatorname{Build}-\mathrm{Max}-\mathrm{Heap}(\boldsymbol{v} / \boldsymbol{w})$

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=$ Build-Max-Heap $(\boldsymbol{v} / \boldsymbol{w})$
(0) while weight $<W$ do

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=\operatorname{Build}-\mathrm{Max}-\mathrm{Heap}(\boldsymbol{v} / \boldsymbol{w})$
(6) while weight $<W$ do
(0) $\mathrm{i}=$ T.Heap-Extract-Max()

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=\operatorname{Build}-\mathrm{Max}-\mathrm{Heap}(\boldsymbol{v} / \boldsymbol{w})$
(6) while weight $<W$ do
(0) $\mathrm{i}=$ T.Heap-Extract-Max()
(3) if (weight $+w[i] \leq W)$ do
(8) $x[i]=1$

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=\operatorname{Build}-\mathrm{Max}-\mathrm{Heap}(\boldsymbol{v} / \boldsymbol{w})$
(6) while weight $<W$ do
(0) $\mathrm{i}=$ T.Heap-Extract-Max()
(3) if (weight $+w[i] \leq W)$ do
(8) $x[i]=1$
(9) weight $=$ weight $+w[i]$
(10) else

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=$ Build-Max-Heap $(\boldsymbol{v} / \boldsymbol{w})$
(5) while weight $<W$ do
(0) $\mathrm{i}=$ T.Heap-Extract-Max()
(3) if (weight $+w[i] \leq W)$ do
(8) $x[i]=1$
(9) weight $=$ weight $+w[i]$
(10) else
(1) $x[i]=\frac{W-\text { weight }}{w[i]}$

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=$ Build-Max-Heap $(\boldsymbol{v} / \boldsymbol{w})$
(5) while weight $<W$ do
(0) $\mathrm{i}=$ T.Heap-Extract-Max()
(3) if (weight $+w[i] \leq W)$ do
(8) $x[i]=1$
(9) weight $=$ weight $+w[i]$
(10) else
(1) $x[i]=\frac{W-\text { weight }}{w[i]}$
(1) weight $=W$

Fractional Greedy

FRACTIONAL-KNAPSACK (W, w, v)

(1) for $i=1$ to n do $x[i]=0$
(2) weight $=0$
(3) // Use a Max-Heap
(9) $\mathrm{T}=$ Build-Max-Heap $(\boldsymbol{v} / \boldsymbol{w})$
(5) while weight $<W$ do
(0) $\mathrm{i}=$ T.Heap-Extract-Max()
(3) if (weight $+w[i] \leq W)$ do

B
(9) weight $=$ weight $+w[i]$
(10) else
(1) $x[i]=\frac{W-\text { weight }}{w[i]}$
(12) weight $=W$
(3) return x

Fractional Greedy

Complexity

- Under the fact that this algorithm is using a heap we can get the complexity $O(n \log n)$.

Fractional Greedy

Complexity

- Under the fact that this algorithm is using a heap we can get the complexity $O(n \log n)$.
- If we assume already an initial sorting or use a linear sorting we get complexity $O(n)$.

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

Activity selection

Problem

Set of activities $S=a_{1}, \ldots, a_{n}$. The a_{i} activity needs a resource (Class Room, Machine, Assembly Line, etc) during period [s_{i}, f_{i}), which is a half-open interval, where s_{i} is the start time of activity a_{i} and f_{i} is the finish time of activity a_{i}.

Activity selection

Problem

Set of activities $S=a_{1}, \ldots, a_{n}$. The a_{i} activity needs a resource (Class Room, Machine, Assembly Line, etc) during period [s_{i}, f_{i}), which is a half-open interval, where s_{i} is the start time of activity a_{i} and f_{i} is the finish time of activity a_{i}.

For example

i	1	2	3	4	5	6	7	8	9
s_{i}	1	2	4	1	5	8	9	11	13
f_{i}	3	5	7	8	9	10	11	14	16

Activity selection

Problem

Set of activities $S=a_{1}, \ldots, a_{n}$. The a_{i} activity needs a resource (Class Room, Machine, Assembly Line, etc) during period [s_{i}, f_{i}), which is a half-open interval, where s_{i} is the start time of activity a_{i} and f_{i} is the finish time of activity a_{i}.

For example

i	1	2	3	4	5	6	7	8	9
s_{i}	1	2	4	1	5	8	9	11	13
f_{i}	3	5	7	8	9	10	11	14	16

Goal:

Select the largest possible set of non-overlapping activities.

We have something like this

Example

We have something like this

Example

Goal:

Select the largest possible set of non-overlapping activities.

For Example

Example

Thus!!!

First

The Optimal Substructure!!!

Thus!!!

First

The Optimal Substructure!!!

Second

We need the recursive solution!!!

Thus!!!

First

The Optimal Substructure!!!

Second

We need the recursive solution!!!

Third
 The Greedy Choice

Thus!!!

First

The Optimal Substructure!!!

Second

We need the recursive solution!!!
Third
The Greedy Choice

Fourth

Prove it is the only one!!!

Thus!!!

First

The Optimal Substructure!!!

Second

We need the recursive solution!!!

Third
 The Greedy Choice

Fourth

Prove it is the only one!!!

Fifth

We need the iterative solution!!!

How do we discover the Optimal Structure

We know we have the following
$S=a_{1}, \ldots, a_{n}$, a set of activities.

How do we discover the Optimal Structure

We know we have the following

$S=a_{1}, \ldots, a_{n}$, a set of activities.
We can then refine the set of activities in the following way
We define:

- $S_{i j}=$ the set of activities that start after activity a_{i} finishes and that finishes before activity a_{j} start.

The Optimal Substructure
Thus, we have

The Optimal Substructure

Second

- Suppose that the set $A_{i j}$ denotes the maximum set of compatible activities for $S_{i j}$

For Example

Thus, we have

Then

Third

- In addition assume that $A_{i j}$ includes some activity a_{k}.

Then

Third

- In addition assume that $A_{i j}$ includes some activity a_{k}.
- Then, imagine that a_{k} belongs to some optimal solution.

What do we need?

We need to find the optimal solutions for $S_{i k}$ and $S_{k j}$.

The Optimal Substructure

Then

We need to prove the optimal substructure:

The Optimal Substructure

Then

We need to prove the optimal substructure:

- For this we will use

The Optimal Substructure

Then

We need to prove the optimal substructure:

- For this we will use
- The Cut-and-Paste Argument

The Optimal Substructure

Then

We need to prove the optimal substructure:

- For this we will use
- The Cut-and-Paste Argument
- Contradiction

The Optimal Substructure

Then

We need to prove the optimal substructure:

- For this we will use
- The Cut-and-Paste Argument
- Contradiction

First

We have that $A_{i k}=S_{i k} \cap A_{i j}$ and similarly $A_{k j}=S_{k j} \cap A_{i j}$.

The Optimal Substructure

Then

We need to prove the optimal substructure:

- For this we will use
- The Cut-and-Paste Argument
- Contradiction

First

We have that $A_{i k}=S_{i k} \cap A_{i j}$ and similarly $A_{k j}=S_{k j} \cap A_{i j}$.

> Then
> $A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}$ or $\left|A_{i j}\right|=\left|A_{i k}\right|+\left|A_{k j}\right|+1$

For Example

We need to find the optimal solutions for $S_{i k}$ and $S_{k j}$.

The Optimal Substructure: Using Contradictions

Use Cut-and-Paste Argument

How? Assume that exist $A_{i k}^{\prime}$ such that $\left|A_{i k}^{\prime}\right|>\left|A_{i k}\right|$.

The Optimal Substructure: Using Contradictions

Use Cut-and-Paste Argument

 How? Assume that exist $A_{i k}^{\prime}$ such that $\left|A_{i k}^{\prime}\right|>\left|A_{i k}\right|$.
Meaning

- We assume that we cannot construct the large answer using the small answers!!!

The Optimal Substructure: Using Contradictions

Use Cut-and-Paste Argument

 How? Assume that exist $A_{i k}^{\prime}$ such that $\left|A_{i k}^{\prime}\right|>\left|A_{i k}\right|$.
Meaning

- We assume that we cannot construct the large answer using the small answers!!!
- The Basis of Contradiction $(S \cup\{\neg P\} \vdash \boldsymbol{F}) \Longrightarrow(S \vdash P)$

Important

Here

$\neg P=$ exist $A_{i k}^{\prime}$ such that $\left|A_{i k}^{\prime}\right|>\left|A_{i k}\right|$.

Then

This means that $A_{i j}^{\prime}$ has more activities than $A_{i j}$
Then $\left|A_{i j}^{\prime}\right|=\left|A_{i k}^{\prime}\right|+\left|A_{k j}\right|+1>\left|A_{i k}\right|+\left|A_{k j}\right|+1=\left|A_{i j}\right|$, which is a contradiction.

Then

This means that $A_{i j}^{\prime}$ has more activities than $A_{i j}$
Then $\left|A_{i j}^{\prime}\right|=\left|A_{i k}^{\prime}\right|+\left|A_{k j}\right|+1>\left|A_{i k}\right|+\left|A_{k j}\right|+1=\left|A_{i j}\right|$, which is a contradiction.

Finally

We have the optimal-substructure.

Then

Given
 $A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}$ or $\left|A_{i j}\right|=\left|A_{i k}\right|+\left|A_{k j}\right|+1$.

Then

Given

$A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}$ or $\left|A_{i j}\right|=\left|A_{i k}\right|+\left|A_{k j}\right|+1$.
Question
Can anybody give me the recursion?

Recursive Formulation

Recursive Formulation
$c[i, j]= \begin{cases}0 & \text { if } S_{i j}=\varnothing \\ \max _{\substack{i<k<j \\ a_{k} \in S_{i j}}} c[i, k]+c[k, j]+1 & \text { if } S_{i j} \neq \varnothing\end{cases}$

Recursive Formulation

Recursive Formulation

$c[i, j]= \begin{cases}0 & \text { if } S_{i j}=\varnothing \\ \max _{\substack{i<k<j \\ a_{k} \in S_{i j}}} c[i, k]+c[k, j]+1 & \text { if } S_{i j} \neq \varnothing\end{cases}$

Did you notice that you can use Dynamic Programming?

We have our Goal?

Thus

Any Ideas to obtain the largest possible set using Greedy Choice?

We have our Goal?

Thus

Any Ideas to obtain the largest possible set using Greedy Choice?

What about?

- Early Starting Time?

We have our Goal?

Thus

Any Ideas to obtain the largest possible set using Greedy Choice?

What about?

- Early Starting Time?
- Early Starting + Less Activity Length?

We have our Goal?

Thus

Any Ideas to obtain the largest possible set using Greedy Choice?

What about?

- Early Starting Time?
- Early Starting + Less Activity Length?

Me!!!

- Do we have something that combines both things?

Which Greedy Choice?

Did you notice the following

Finishing Time

The Early Finishing Time

Yes!!!
The Greedy Choice = Select by earliest finishing time.

Greedy solution

Theorem 16.1

Consider any nonempty subproblem $S_{k}=\left\{a_{i} \in S \mid s_{i}>f_{k}\right\}$, and let a_{m} be an activity in S_{k} with the earliest finish time. Then a_{m} is included in some maximum-size subset of mutually compatible activities of S_{k}.

Thus

We can do the following

- We can repeatedly choose the activity that finishes first.

Thus

We can do the following

- We can repeatedly choose the activity that finishes first.
- Remove all activities incompatible with this activity

Thus

We can do the following

- We can repeatedly choose the activity that finishes first.
- Remove all activities incompatible with this activity
- Then repeat

Thus

We can do the following

- We can repeatedly choose the activity that finishes first.
- Remove all activities incompatible with this activity
- Then repeat

Not only that

- Because we always choose the activity with the earliest finish time.

Thus

We can do the following

- We can repeatedly choose the activity that finishes first.
- Remove all activities incompatible with this activity
- Then repeat

Not only that

- Because we always choose the activity with the earliest finish time.
- Then, finish times of the activities we choose must strictly increase.

Top-Down Approach

Something Notable

An algorithm to solve the activity-selection problem does not need to work bottom-up!!!

Top-Down Approach

Something Notable

An algorithm to solve the activity-selection problem does not need to work bottom-up!!!

Instead

It can work top-down, choosing an activity to put into the optimal solution and then solving the subproblem of choosing activities from those that are compatible with those already chosen.

Top-Down Approach

Something Notable

An algorithm to solve the activity-selection problem does not need to work bottom-up!!!

Instead

It can work top-down, choosing an activity to put into the optimal solution and then solving the subproblem of choosing activities from those that are compatible with those already chosen.

Important

Greedy algorithms typically have this top-down design:

- They make a choice and then solve one subproblem.

Then

First

The activities are already sorted by finishing time

Then

First

The activities are already sorted by finishing time

In addition

There are dummy activities:

- $a_{0}=$ fictitious activity, $f_{0}=0$.

Recursive Activity Selector

REC-ACTIVITY-SELECTOR (s, f, k, n) - Entry Point $(s, f, 0, n)$

(1) $m=k+1$

Recursive Activity Selector

REC-ACTIVITY-SELECTOR (s, f, k, n) - Entry Point $(s, f, 0, n)$

(1) $m=k+1$
(2) // find the first activity in S_{k} to finish

Recursive Activity Selector

REC-ACTIVITY-SELECTOR (s, f, k, n) - Entry Point $(s, f, 0, n)$

(1) $m=k+1$
(2) $/ /$ find the first activity in S_{k} to finish
(3) while $m \leq n$ and $s[m]<f[k]$
(4) $m=m+1$

Recursive Activity Selector

REC-ACTIVITY-SELECTOR (s, f, k, n) - Entry Point $(s, f, 0, n)$

(1) $m=k+1$
(2) $/ /$ find the first activity in S_{k} to finish
(3) while $m \leq n$ and $s[m]<f[k]$
(4) $m=m+1$
(5) if $m \leq n$
(6) return $\left\{a_{m}\right\} \cup R E C-A C T I V I T Y-S E L E C T O R(s, f, m, n)$

Recursive Activity Selector

REC-ACTIVITY-SELECTOR (s, f, k, n) - Entry Point $(s, f, 0, n)$

(1) $m=k+1$
(2) $/ /$ find the first activity in S_{k} to finish
(3) while $m \leq n$ and $s[m]<f[k]$
(4) $m=m+1$
(5) if $m \leq n$
(6) return $\left\{a_{m}\right\} \cup R E C-A C T I V I T Y-S E L E C T O R(s, f, m, n)$
((else return \emptyset

Do we need the recursion?

Did you notice?

We remove all the activities before $f_{k}!!!$

We can do more...

GREEDY-ACTIVITY-SELECTOR (s, f, n)

(1) $n=$ s.length

We can do more...

GREEDY-ACTIVITY-SELECTOR (s, f, n)

(1) $n=s$.length
(2) $A=\left\{a_{1}\right\}$

We can do more...

GREEDY-ACTIVITY-SELECTOR (s, f, n)

(1) $n=s$.length
(c) $A=\left\{a_{1}\right\}$

- $k=1$

We can do more...

GREEDY-ACTIVITY-SELECTOR (s, f, n)

(1) $n=s$.length
(c) $A=\left\{a_{1}\right\}$
(0) $k=1$
(0) for $m=2$ to n

- if $s[m] \geq f[k]$
- $A=\mathrm{A} \cup\left\{a_{m}\right\}$
- $\quad k=m$

We can do more...

GREEDY-ACTIVITY-SELECTOR (s, f, n)

(1) $n=$ s.length
(2) $A=\left\{a_{1}\right\}$
(3) $k=1$
(4) for $m=2$ to n
(5) if $s[m] \geq f[k]$
(6) $A=\mathrm{A} \cup\left\{a_{m}\right\}$
(7)

$$
k=m
$$

(8) return A

Complexity of the algorithm

$$
\Theta(n)
$$

Note: Clearly, we are not taking into account the sorting of the activities.

Outline

(1) Greedy Method

- Steps of the greedy method
- Dynamic programming vs Greedy Method
(2) Greedy Method Examples
- Knapsack Problem
- Greedy Process
- Fractional Knapsack
- Activity selection
- Optimal Substructure
- Greedy Solution
- Huffman codes
- Representation
- Greedy Choice
- Some lemmas
(3) Exercises

Huffman codes

Use

Huffman codes are widely used and very effective technique for compressing.

Huffman codes

Use

Huffman codes are widely used and very effective technique for compressing.

Advantages

Savings of 20% to 90% are typical, depending on the characteristics of the data being compressed.

Huffman codes

Use

Huffman codes are widely used and very effective technique for compressing.

Advantages

Savings of 20% to 90% are typical, depending on the characteristics of the data being compressed.

Idea

Huffman codes are based on the idea of prefix codes:

Huffman codes

Use

Huffman codes are widely used and very effective technique for compressing.

Advantages

Savings of 20% to 90% are typical, depending on the characteristics of the data being compressed.

Idea

Huffman codes are based on the idea of prefix codes:

- Codes in which no codeword is also a prefix of some other codeword.

Huffman codes

Use

Huffman codes are widely used and very effective technique for compressing.

Advantages

Savings of 20% to 90% are typical, depending on the characteristics of the data being compressed.

Idea

Huffman codes are based on the idea of prefix codes:

- Codes in which no codeword is also a prefix of some other codeword.
- It is possible to show that the optimal data compression achievable by a character code can always be achieved with a prefix code.

Imagine the following

We have the following

- Imagine having 100,000-character data file, and we want to store it compactly.

Imagine the following

We have the following

- Imagine having 100,000-character data file, and we want to store it compactly.
- In addition, we have the following distribution of character in the hundred of thousands.

Imagine the following

We have the following

- Imagine having 100,000-character data file, and we want to store it compactly.
- In addition, we have the following distribution of character in the hundred of thousands.

Table

	a	b	c	d	e	f
Frequency	45,000	13,000	12,000	16,000	9,000	5,000
Fixed-Leng cw	000	001	010	011	100	101
Vari Leng cw	0	101	100	111	1101	1100

Table: Distribution of characters in the text and their codewords.

We have the following representations for the previous codes

Fix Code: No optimal tree in our problem

We have the following representations for the previous codes

Prefix Code: Binary tree for the variable prefix code in table

Cost in the number of bits to represent the text

Fix Code

$$
\begin{equation*}
3 \times 100,000=300,000 \text { bits } \tag{2}
\end{equation*}
$$

Cost in the number of bits to represent the text

Fix Code

$$
\begin{equation*}
3 \times 100,000=300,000 \text { bits } \tag{2}
\end{equation*}
$$

Variable Code

$$
\begin{aligned}
& {[45 \times 1+13 \times 3+12 \times 3+16 \times 3+\ldots} \\
& 9 \times 4+5 \times 4] \times 1000=224,000 \text { bits }
\end{aligned}
$$

Prefix Codes

Something Notable

It has been show that prefix codes:

Prefix Codes

Something Notable

It has been show that prefix codes:

- Codes in which no codeword is also a prefix of some other codeword.

Prefix Codes

Something Notable

It has been show that prefix codes:

- Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties

- Easy to decode.

Prefix Codes

Something Notable

It has been show that prefix codes:

- Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties

- Easy to decode.
- They are unambiguous.
- For example in our example the string 001011101 transform as

$$
0 \circ 0 \circ 101 \circ 1101=\text { aabe. }
$$

Prefix Codes

Something Notable

It has been show that prefix codes:

- Codes in which no codeword is also a prefix of some other codeword.

They have the following nice properties

- Easy to decode.
- They are unambiguous.
- For example in our example the string 001011101 transform as

$$
0 \circ 0 \circ 101 \circ 1101=\text { aabe. }
$$

Properties

As we can prove an optimal code for a text is always represented by a full binary tree!!!

It is more...

Given that we will concentrate our attention for the prefix codes to full binary tree.

Given that C is the alphabet for the text file.

It is more...

Given that we will concentrate our attention for the prefix codes to full binary tree.
Given that C is the alphabet for the text file.

We have that

(1) The tree for the optimal prefix code has $|C|$ leaves.

It is more...

Given that we will concentrate our attention for the prefix codes to full binary tree.
Given that C is the alphabet for the text file.

We have that

(1) The tree for the optimal prefix code has $|C|$ leaves.
(2) The number of internal leaves is $|C|-1$.

It is more...

Given that we will concentrate our attention for the prefix codes to full binary tree.
Given that C is the alphabet for the text file.

We have that

(1) The tree for the optimal prefix code has $|C|$ leaves.
(2) The number of internal leaves is $|C|-1$.
(3) Each character x at the leaves has a depth $d_{T}(x)$ which is the length of the codeword.

It is more...

Given that we will concentrate our attention for the prefix codes to full binary tree.
Given that C is the alphabet for the text file.

We have that

(1) The tree for the optimal prefix code has $|C|$ leaves.
(2) The number of internal leaves is $|C|-1$.
(3) Each character x at the leaves has a depth $d_{T}(x)$ which is the length of the codeword.

Thus

- Knowing the frequency of each character and the tree T representing the optimal prefix encoding.

It is more...

Given that we will concentrate our attention for the prefix codes to full binary tree.
Given that C is the alphabet for the text file.

We have that

(1) The tree for the optimal prefix code has $|C|$ leaves.
(2) The number of internal leaves is $|C|-1$.
(3) Each character x at the leaves has a depth $d_{T}(x)$ which is the length of the codeword.

Thus

- Knowing the frequency of each character and the tree T representing the optimal prefix encoding.
- We can define the number of bits necessary to encode the text file.

Cost of Trees for Coding

Cost in the number of bits for a text

$$
B(T)=\sum_{c \in C} c . f r e q \times d_{T}(c)
$$

Now, Which Greedy Choice?

I leave this to you
The optimal substructure

Now, Which Greedy Choice?

I leave this to you
The optimal substructure

Now, Which Greedy Choice?

I leave this to you

The optimal substructure

Greedy Choice

 Ideas?
What about this?

Prefix Code: Binary tree for the variable prefix code in table

Greedy Process for Huffman Codes

Process

- You start with an alphabet C with an associated frequency for each element in it.

Greedy Process for Huffman Codes

Process

- You start with an alphabet C with an associated frequency for each element in it.
- Use the frequencies to build a min priority queue.

Greedy Process for Huffman Codes

Process

- You start with an alphabet C with an associated frequency for each element in it.
- Use the frequencies to build a min priority queue.
- Subtract the two least frequent elements (Greedy Choice).

Greedy Process for Huffman Codes

Process

- You start with an alphabet C with an associated frequency for each element in it.
- Use the frequencies to build a min priority queue.
- Subtract the two least frequent elements (Greedy Choice).
- Build a three using as children the two nodes of the subtrees extracted from the min priority queue. The new root holds the sum of frequencies of the two subtrees.

Greedy Process for Huffman Codes

Process

- You start with an alphabet C with an associated frequency for each element in it.
- Use the frequencies to build a min priority queue.
- Subtract the two least frequent elements (Greedy Choice).
- Build a three using as children the two nodes of the subtrees extracted from the min priority queue. The new root holds the sum of frequencies of the two subtrees.
- Put it back into the Priority Queue.

Algorithm

HUFFMAN(C)

(1) $n=|C|$
(2) $\mathrm{Q}=\mathrm{C}$
(0) for $i=1$ to $n-1$

- allocate new node z
- z.left $=x=$ Extract-Min(Q)
- \quad z.right $=y=\operatorname{Extract-Min}(Q)$
- \quad.freq $=x$.freq $+y$.freq
- Insert(Q,z)
- return Extract-Min $(Q) / /$ return root of the Huffman Tree

Algorithm

HUFFMAN(C)

(1) $n=|C|$
(2) $\mathrm{Q}=\mathrm{C}$
(0) for $i=1$ to $n-1$
(9) allocate new node z
(6) z.left $=x=$ Extract-Min(Q)
(6) z.right $=y=$ Extract-Min(Q)
() \quad.freq $=x$.freq $+y$.freq
(3) Insert(Q,z)
(9) return Extract-Min(Q) / / return root of the Huffman Tree

Complexity

$$
\Theta(n \log n)
$$

Example

The Process!!!

Example

The Process!!!

Example

The Process!!!

Example

The Process!!!

Example

The Process!!!

Example

The Process!!!

Lemmas to sustain the claims

Lemma 16.2

Let C be an alphabet in which each character $c \in C$ has frequency c.freq. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Lemmas to sustain the claims

Lemma 16.2

Let C be an alphabet in which each character $c \in C$ has frequency c.freq. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Lemma 16.3

Let C be a given alphabet with frequency c:freq defined for each character $c \in C$. Let x and y be two characters in C with minimum frequency. Let C^{\prime} be the alphabet C with the characters x and y removed and a new character z added, so that $C^{\prime}=C-\{x, y\} \cup\{z\}$. Define f for C^{\prime} as for C, except that $z . f r e q=x . f r e q+y . f r e q$. Let T^{\prime} be any tree representing an optimal prefix code for the alphabet C^{\prime}. Then the tree T, obtained from T^{\prime} by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.

Exercises

From Cormen's book solve the following

- 16.2-1
- 16.2-4
- 16.2-5
- 16.2-7
- 16.1-3
- 16.3-3
- 16.3-5
- 16.3-7

