
Dynamic Programming

February 14, 2018

Contents
1 Introduction 2

2 Steps in Dynamic Programming 2

3 Rod cutting 2
3.1 Top-down with memoization. 5
3.2 Bottom-Up . 6
3.3 How to See Everything: Subproblem Graphs 6
3.4 Reconstructing the Solution . 7

4 The Elements of Dynamic Programming 7
4.1 Optimal Substructure . 7
4.2 Subtleties of the proofs . 8
4.3 Overlapping Sub-problems . 8

5 Matrix Multiplication 8
5.1 The Optimal Substructure . 9
5.2 The Recursive Solution . 10
5.3 The Bottom-Up Approach and the Reconstruction 10

6 Longest Common Subsequence (LCS) 10
6.1 Characterizing the LCS . 11

1

1 Introduction
The dynamic programming was developed in 1940’s by Richard Bellman at
RAND Corporation to solve problems by taking the best decisions one after
another. You can think as

1. Sending a recursive function to do different jobs.

2. Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions:

• Dynamic was chosen by Bellman to capture the temporal part of the
problem.

• Programming referred to finding the optimal program in military logis-
tic.

2 Steps in Dynamic Programming
Dynamic programming follows a series of four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fash-
ion.

4. Construct an optimal solution from computed information.

We will use the following rod cutting problem to exemplify the four steps.

3 Rod cutting
Given a rod of length n inches and a table of prices pi (Example table 1) for
i = 1, 2, ..., n, determine the maximum revenue rn obtainable by cutting up the
rod and selling the pieces. Clearly, we can cut the rod in 2n−1 different ways
starting at the left end with distance i = 1, 2, ..., n− 1.

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Table 1: Rod Cutting table

For example for a rod of size 10, we could cut the rod in 3 parts, 10=4+3+3.
Then, we can assume that an optimal solution cuts the rod in k pieces, 1 ≤ k ≤
n, then

2

n = i1, + i2 + ... + ik

gives the maximum revenue

rn = pi1 + pi2 + ... + pik
.

For length n = 4, we have the following ways of partitioning the rood:

1. price equal to 9

2. price equal to 1+8

3. price equal to 8+1

4. price equal to 5+5

5. price equal to 1+1+5

6. price equal to 1+5+1

7. price equal to 5+1+1

8. price equal to 1+1+1+1

Note Can you device a recursion for the process? And which is the base case?

For n = 4, we have that it is possible, using a brute force approach, to obtain
the solution. This brute force approach tells us that no so small pieces can be
cut to obtain more revenue. Still, the problem become intractable by brute force
once n become larger.

However, we can use the recursion property that we observed during the
brute force approach to frame the final revenue by a series of decisions

rn = max {pn, r1 + rn−1, r2 + rn−2, ..., rn−1 + r1} .

In this solution, we have the following parts:

• pn corresponds to making no cuts at all.

• The other n− 1 arguments correspond to cut the rod in two pieces of size
i and n− i.

This means that we need to solve smaller problems if we want to be able to solve
the larger one. This means that the optimal solution incorporates the solutions
of two related sub-problems. This means that the rod cut problem exhibits a
optimal substructure:

• Optimal solutions to a problem incorporate optimal solutions to related
subproblems, which we may solve independently.

3

Therefore, we can rewrite the previous equation as (Assuming r0 = 0)

rn = max
1≤i≤n

(pi + rn−i)

This can be implemented as (fig. 1).

Figure 1: Cut Rod Code

This code has the following recursion:

T (n) =
{

1 if n = 0
1 +

∑n−1
j=0 T (j) if n > 0

It can be proved by induction that T (n) = 2n. Not so surprising when you
consider that CUT-ROD is considering all the 2n−1ways of cutting the rod. The
recursive tree (fig.) for n = 4 shows those possible ways in the form of leaves.

Figure 2: Recursion Tree for n = 4

Now, once we observed that the naive solution is clearly inefficient, we decide
to use a dynamic programming approach. This is done by computing each sub-

4

problem only once and storing its solution in some way. This is known as
time-memory trade-off, and the savings may be dramatic. It is more, a
dynamic-programming solution runs in polynomial time when the number of
distinct subproblems involved is polynomial in the input size and they can be
solved in polynomial time.

We have two ways of solving the problem:
• Top-down with memoization.

• Bottom-up.
These are the classical ways of solving dynamic programming problems.

3.1 Top-down with memoization.
Here, the solution is written in a recursive way, but before entering the recursion,
it checks if the solution already exists. This is know as memoization. The cut
rod solution for this is in (fig. 3).

Figure 3: Top-down solution for cut rod

This code has the following properties:
• It solves each subproblem just once. It solves subproblems for sizes i =

0, 1, ..., n

• To solve a problem of size i the for loop in line 6 of MEMOIZED-CUT-
ROD-AUX iterates i times.

Then, we have the total number of steps is 0 + 1 + 2 + ... + n = n(n+1)
2 . Then,

the code has complexity Θ
(
n2).

5

3.2 Bottom-Up
The solution is even simpler (fig. 4).

Figure 4: Bottom-Up Solution

From the two nested loop we realize that the complexity is Θ(n).

3.3 How to See Everything: Subproblem Graphs
In dynamic programing, it is necessary to understand how subproblems depend
on each other. This information can be found in the subproblem graph (Example
fig. 5). In it, a directed edge from subproblem x to subproblem y signify that
in order to solve x, it is necessary to consider the solution of y.

Figure 5: Subproblem Graph for n = 4

The fact that dynamic programming solves each problem once means that
the total running time is the sum of the times needed to solve each subproblem.
It is more, the time to compute the solution to a subproblem is proportional
to the degree (number of outgoing edges) of the corresponding vertex in the

6

subproblem graph, and the number of subproblems is equal to the number of
vertices in the subproblem graph.

3.4 Reconstructing the Solution
Now, because we are already storing the solution of each subproblem, we store
the path of solutions for the problem too. This can bee seen in (fig. 6).

Figure 6: Extended Version of Bottom-Up

With code in (fig.) to rebuild the stored solution

Figure 7: Print Solution

Now, we are ready too look for more interesting problems.

4 The Elements of Dynamic Programming
4.1 Optimal Substructure
As a first step toward the solution, in dynamic programming, is characteriz-
ing the problem and finding the optimal substructure. For this, we have the
following steps

1. The problem consists in making choices.

2. Given each problem, you are given a choice that leads to a solution.

7

3. Each solution allows us to determine which subproblems need to be solved,
and how to best characterize the resulting space of subproblems.

4. Use cut-and-paste to prove by contradiction that the optimal subproblem
structure exists.

4.2 Subtleties of the proofs
For example, we have that

1. Unweighted shortest path has an optimal substructure:

(a) Given an optimal shortest path t between p and q. Then, assume
an intermediate point z such that there are two paths t1 and t2,
t = t1 ∪ t2. Thus, by contradiction, assume that there is a shorter
path between z and q, t1

2. Then,
∣∣t1 ∪ t1

2
∣∣ < t⊥ QED.

2. But the longest unweighted path does not have the optimal substructure
by the simpler counter-example.

This last part happens because the problems are not independent. This
means that the problems are sharing resources in order to find a solution,
in this case nodes.

4.3 Overlapping Sub-problems
This happens because the recursive solution revisits the same subproblem mul-
tiple times. Then, dynamic programming takes advantage of this by solving and
storing the solution. This can be done in two fashions:

1. Bottom-Up - This takes the inefficient recursive solution and adds a mem-
ory to improve efficiency.

2. Top-Down with Memoization.

5 Matrix Multiplication
In this kind of problems, we are given a sequence of matrices:

Input 〈A1, A2, ..., An〉

8

Output, we want a fully parenthesized product, where the final result is a
single matrix or the product of two fully parenthesized matrix products.

Now, consider the cost of the product of two matrices:

This algorithm has a cost of, A is a matrix of pxq and B is a matrix of qxr,
pqr operations.

Now, given the original problem, if we count the parenthezization using

P (n) =
{

1 if n = 1∑n
k=1 P (k)P (n− k) if n ≥ 2

Solving this recursion, we get Ω
(

4n

n
3
2

)
lower bound.

5.1 The Optimal Substructure
Use the cut-and paste approach, by simple looking at one the full parentheza-
tions and assume that you have something better. Then, by cut-and paste you
find a contradiction.

1. Give Ai, Ai+2, ..., Ak, Ak+1, ..., Aj

2. Then, assume an optimal solution that is composed of two full parenthez-
izations for Ai, Ai+2, ..., Ak and Ak+1, ..., Aj .

3. Then, assume that you can find something better for Ak+1, ..., Aj .

4. Use that to build a more optimal solution.

5. This is a contradiction.

9

5.2 The Recursive Solution
When looking at the problem, we realized that we have

1. m[i, k] cost to solve one side of the problem.

2. m[k + 1, j] for the other

3. pi−1pkpj to multiply the resulting matrices

Therefore, we have the following cost m[i, k] + m[k + 1, j] + pi−1pkpj . The final
recursive solution is in the slides, and an initial recursive solution is the following
one:

This yields the following bounded recurrence.

T (1) ≥ 1

T (n) ≥ 1 +
n−1∑
k=1

[T (n− k) + T (k) + 1] for n > 1.

Which can be proved by substitution to be really bad, T (n) = Ω (2n).
Better if we look at the Bottom-Up Approach!!!

5.3 The Bottom-Up Approach and the Reconstruction
They are at the slides in the class.

6 Longest Common Subsequence (LCS)
In Biological Sciences, we want to compare strands of DNA to see how similar
they are. A measure of similarity is one is a substring of the other one. In our
case, we look at the longest common between to strings under an alphabet.

10

6.1 Characterizing the LCS
For this, we have the proof for Theorem 15.1

Proof:

1. if zk 6= xm, then we could append xm = ynto Z to build a longest se-
quence of k + 1 elements. This contradict that Z is the longest sequence.
Therefore, xm = yn = zk and Zk−1is a common subsequence of Xm−1 and
Yn−1. We prove by contradiction that Zk−1. This is done by assuming a
W sequence with at least k elements on it, and again we create a longer
subsequence than Z by appending xm = yn to it, which is a contradiction.

2. If zk 6= xm then Z is a common subsequence of Xm−1 and Y . Again by
contradiction, if there a W longest than Z, this contradict that Z is LCS
of Y and X.

3. By Symmetry with 2.

The rest is at the slides.

11

