Analysis of Algorithms
 Dynamic Programming

Andres Mendez-Vazquez

February 14, 2018

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

History

Dynamic Programming

The dynamic programming was developed in 1940's by Richard Bellman at RAND Corporation to solve problems by taking the best decisions one after another.

History

Dynamic Programming

The dynamic programming was developed in 1940's by Richard Bellman at RAND Corporation to solve problems by taking the best decisions one after another.

You can think as

(1) Sending a recursive function to do different jobs.

History

Dynamic Programming

The dynamic programming was developed in 1940's by Richard Bellman at RAND Corporation to solve problems by taking the best decisions one after another.

You can think as

(1) Sending a recursive function to do different jobs.
(2) Then, at the top of the recursion decide which job is the best one.

History

Dynamic Programming

The dynamic programming was developed in 1940's by Richard Bellman at RAND Corporation to solve problems by taking the best decisions one after another.

You can think as

(1) Sending a recursive function to do different jobs.
(2) Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions

- Dynamic was chosen by Bellman to capture the temporal part of the problem.

History

Dynamic Programming

The dynamic programming was developed in 1940's by Richard Bellman at RAND Corporation to solve problems by taking the best decisions one after another.

You can think as

(1) Sending a recursive function to do different jobs.
(2) Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions

- Dynamic was chosen by Bellman to capture the temporal part of the problem.
- Programming referred to finding the optimal program in military logistic.

Outline

（1）Dynamic Programming
－Bellman Equation
－Elements of Dynamic Programming
－Rod Cutting
（2）Elements of Dynamic Programming
－Optimal Substructure
－Overlapping Subproblems
－Reconstruction of Subproblems
－Common Subproblems
（3）Examples
－Longest Increasing Subsequence
－Matrix Multiplication
－Longest Common Subsequence
（4）Exercises

Bellman Equation

Definition

$$
V\left(x_{0}\right)=\max _{a_{0}}\left[F\left(x_{0}\right)+\beta V\left(x_{1}\right)\right]
$$

Bellman Equation

Definition

$$
\begin{aligned}
& V\left(x_{0}\right)=\max _{a_{0}}\left[F\left(x_{0}\right)+\beta V\left(x_{1}\right)\right] \\
& \text { s.t. } a_{0} \in \Gamma\left(x_{0}\right), x_{1}=T\left(x_{0}, a_{0}\right)
\end{aligned}
$$

- Where $\Gamma\left(x_{0}\right)$ is a set of actions depend on the current state.

Bellman Equation

Definition

$$
\begin{aligned}
& V\left(x_{0}\right)=\max _{a_{0}}\left[F\left(x_{0}\right)+\beta V\left(x_{1}\right)\right] \\
& \text { s.t. } a_{0} \in \Gamma\left(x_{0}\right), x_{1}=T\left(x_{0}, a_{0}\right)
\end{aligned}
$$

- Where $\Gamma\left(x_{0}\right)$ is a set of actions depend on the current state.
- $T\left(x_{0}, a_{0}\right)$ is a transition function.

Bellman Equation

Definition

$$
\begin{aligned}
& V\left(x_{0}\right)=\max _{a_{0}}\left[F\left(x_{0}\right)+\beta V\left(x_{1}\right)\right] \\
& \text { s.t. } a_{0} \in \Gamma\left(x_{0}\right), x_{1}=T\left(x_{0}, a_{0}\right)
\end{aligned}
$$

- Where $\Gamma\left(x_{0}\right)$ is a set of actions depend on the current state.
- $T\left(x_{0}, a_{0}\right)$ is a transition function.
- $F\left(x_{0}\right)$ payoff.

Looks Terrifying!!!

However
It is quite simple!!!

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

Elements of Dynamic Programming

Define the Optimal Structure

Characterize the structure of an optimal solution.

Elements of Dynamic Programming

Define the Optimal Structure

Characterize the structure of an optimal solution.

Define the Recursion

Recursively define the value of an optimal solution.

Elements of Dynamic Programming

Define the Optimal Structure

Characterize the structure of an optimal solution.

Define the Recursion

Recursively define the value of an optimal solution.

Compute the Solution

Compute the value of an optimal solution, typically bottom-up.

Elements of Dynamic Programming

Define the Optimal Structure

Characterize the structure of an optimal solution.

Define the Recursion

Recursively define the value of an optimal solution.

Compute the Solution

Compute the value of an optimal solution, typically bottom-up.

IMPORTANT!!!

We use an extra memory to stop the recursion!!!

Elements of Dynamic Programming

Finally Rebuild the Optimal Solution

Construct an optimal solution from computed information.

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting

2) Elements of Dynamic Programming

- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

Rod cutting

Problem

Given a rod of length n inches and a table of prices p_{i} for $i=1,2, \ldots, n$, determine the maximum revenue r_{n} obtainable by cutting up the rod and selling the pieces.

Rod cutting

Problem

Given a rod of length n inches and a table of prices p_{i} for $i=1,2, \ldots, n$, determine the maximum revenue r_{n} obtainable by cutting up the rod and selling the pieces.

Rod Cutting table

length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30

Characterize the structure of an optimal solution

Example

For example for a rod of size 10, we could cut the rod in 3 parts, $10=4+3+3$.

Characterize the structure of an optimal solution

Example

For example for a rod of size 10, we could cut the rod in 3 parts, $10=4+3+3$.

Thus

Then, we can assume that an optimal solution cuts the rod in k pieces, $1 \leq k \leq n$ i.e. $k-1$ cuts.

Characterize the structure of an optimal solution

Example

For example for a rod of size 10, we could cut the rod in 3 parts, $10=4+3+3$.

Thus

Then, we can assume that an optimal solution cuts the rod in k pieces, $1 \leq k \leq n$ i.e. $k-1$ cuts.

Then
What?

Thus

The length of each piece can be numbered as i_{j} with $1 \leq j \leq k$

Thus

The length of each piece can be numbered as

$$
i_{j} \text { with } 1 \leq j \leq k
$$

The total size of the rod is then

$$
n=i_{1}+i_{2}+\ldots+i_{k}
$$

Thus

The length of each piece can be numbered as

$$
i_{j} \text { with } 1 \leq j \leq k
$$

The total size of the rod is then

$$
n=i_{1}+i_{2}+\ldots+i_{k}
$$

Thus, the max revenue

$$
r_{n}=p_{i_{1}}+p_{i_{2}}+\ldots+p_{i_{k}}
$$

Example

For length $n=4$ by brute force approach

(1) \square price equal to 9

Example

For length $n=4$ by brute force approach

(1) | | | price equal to 9 |
| :--- | :--- | :--- |

(2) $\square \square \square$ price equal to $1+8$

Example

For length $n=4$ by brute force approach

(1) | | | |
| :--- | :--- | :--- |
| price equal to 9 | | |

(2) $\square \square \square$ price equal to $1+8$
(3) $\square \square \square$ price equal to $8+1$

Example

For length $n=4$ by brute force approach

(1) | | | |
| :--- | :--- | :--- |
| price equal to 9 | | |

(2) $\square \square \square$ price equal to $1+8$
(3) $\square \square$ price equal to $8+1$
(9) $\square \square \square \square$ price equal to $1+1+5$

Example

For length $n=4$ by brute force approach

(1) \square price equal to 9
(2) \square price equal to $1+8$

3 \square price equal to $8+1$
© \square price equal to $1+1+5$
© \square price equal to $1+5+1$

Example

For length $n=4$ by brute force approach

(1) \square price equal to 9
(2) \square price equal to $1+8$
© \square price equal to $8+1$
(1) \square price equal to $1+1+5$
© \square price equal to $1+5+1$

- $\square \square \square$ price equal to $5+1+1$

Example

For length $n=4$ by brute force approach
(1) \square price equal to 9
(2) \square price equal to $1+8$
© \square price equal to $8+1$
(9) \square price equal to $1+1+5$
© price equal to $1+5+1$

- $\square \square \square$ price equal to $5+1+1$
\square price equal to $1+1+1+1$

Example

For length $n=4$ by brute force approach
(1) \square price equal to 9
(2) \square price equal to $1+8$
© \square price equal to $8+1$
(9)
 price equal to $1+1+5$
© \square price equal to $1+5+1$
© \square price equal to $5+1+1$

0 \square price equal to $1+1+1+1$

B \square price equal to $5+5$ Optimal!!!

How can you obtain the recursion?

What about taking a decision each time?
In how to cut the rod!

How can you obtain the recursion?

What about taking a decision each time?

In how to cut the rod!
For example

$15 / 125$

It looks like what?

One more cut

It looks like what?

One more cut

Yes

Recursion

Thus, What can we do next?

We need to take decisions

One cut at each step.

Thus, What can we do next?

We need to take decisions

One cut at each step.

For example

(1) No cut $n \Longrightarrow p_{n}$

Thus, What can we do next?

We need to take decisions

One cut at each step.

For example

(1) No cut $n \Longrightarrow p_{n}$
(2) $n=i_{1}+i_{n-1} \Longrightarrow r_{n}=r_{1}+r_{n-1}$

Thus, What can we do next?

We need to take decisions

One cut at each step.

For example

(1) No cut $n \Longrightarrow p_{n}$
(2) $n=i_{1}+i_{n-1} \Longrightarrow r_{n}=r_{1}+r_{n-1}$
(3) $n=i_{2}+i_{n-2} \Longrightarrow r_{n}=r_{2}+r_{n-2}$

Thus, What can we do next?

We need to take decisions

One cut at each step.

For example

(1) No cut $n \Longrightarrow p_{n}$
(2) $n=i_{1}+i_{n-1} \Longrightarrow r_{n}=r_{1}+r_{n-1}$
(3) $n=i_{2}+i_{n-2} \Longrightarrow r_{n}=r_{2}+r_{n-2}$
(4) \cdots

In general

$$
n=i_{j}+i_{n-j} \Longrightarrow r=r_{j}+r_{n-1} \text { for } j=1,2, \ldots, n-1
$$

Thus, we take a final decision!!!

Thus
Which One?

Thus, we take a final decision!!!

Thus

Which One?
The Largest One

$$
r_{n}=\max \left\{p_{n}, r_{1}+r_{n-1}, r_{2}+r_{n-2}, \ldots, r_{n-1}+r_{1}\right\}
$$

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!!
The sub-solutions are optimal
Why?

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction

(1) Imagine that a sub-solution has a better solution...

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction

(1) Imagine that a sub-solution has a better solution...
(2) Then, you can substitute it in the original sub-solution.

Some stuff about the optimal solution

Did you notice the following?

Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction

(1) Imagine that a sub-solution has a better solution...
(2) Then, you can substitute it in the original sub-solution.
(3) Thus, you get something better than the original one.

Formally: Cut and Paste

Given

$n=i_{1}+i_{2}+\ldots+i_{k}$

Formally: Cut and Paste

Given

$n=i_{1}+i_{2}+\ldots+i_{k}$
Imagine, we split the problem in two parts
$A_{1}=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$ and $A_{2}=\left\{i_{l+1}, i_{2}, \ldots, i_{k}\right\}$

Formally: Cut and Paste

Given

$n=i_{1}+i_{2}+\ldots+i_{k}$
Imagine, we split the problem in two parts
$A_{1}=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$ and $A_{2}=\left\{i_{l+1}, i_{2}, \ldots, i_{k}\right\}$

Properties

Now imagine that exist a $A_{1}^{\prime}=\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{l}\right\}$ such that:

$$
r_{n}^{\prime}=p_{i_{1}^{\prime}}+p_{i_{2}^{\prime}}^{\prime}+\ldots+p_{i_{l^{\prime}}}>r_{n}=p_{i_{1}}+p_{i_{2}}+\ldots+p_{i_{l}}
$$

Then

Then, we have a set of cuts
$A_{1}^{\prime} \cup A_{2}$ with better revenue than the original cut-set!!!!

Then

Then, we have a set of cuts
$A_{1}^{\prime} \cup A_{2}$ with better revenue than the original cut-set!!!

Clearly

Contradiction!!!

Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable $r_{0}=0$

Rewrite the equation to simplify recursion

Did you notice that?

We can add a dummy variable $r_{0}=0$

In addition, we have that

$$
r_{i}=p_{i} \text { for } i=1,2, \ldots, n
$$

Rewrite the equation to simplify recursion

Did you notice that?

We can add a dummy variable $r_{0}=0$

In addition, we have that

$$
r_{i}=p_{i} \text { for } i=1,2, \ldots, n
$$

We can then apply this...
(1) $p_{n}=p_{n}+r_{0}$

Rewrite the equation to simplify recursion

Did you notice that?

We can add a dummy variable $r_{0}=0$

In addition, we have that

$$
r_{i}=p_{i} \text { for } i=1,2, \ldots, n
$$

We can then apply this...
(1) $p_{n}=p_{n}+r_{0}$
(2) $r_{1}+r_{n-1}=p_{1}+r_{n-1}$

Rewrite the equation to simplify recursion

Did you notice that?

We can add a dummy variable $r_{0}=0$

In addition, we have that

$$
r_{i}=p_{i} \text { for } i=1,2, \ldots, n
$$

We can then apply this...
(1) $p_{n}=p_{n}+r_{0}$
(2) $r_{1}+r_{n-1}=p_{1}+r_{n-1}$
(3) $r_{2}+r_{n-2}=p_{2}+r_{n-2}$

Rewrite the equation to simplify recursion

Did you notice that?

We can add a dummy variable $r_{0}=0$

In addition, we have that

$$
r_{i}=p_{i} \text { for } i=1,2, \ldots, n
$$

We can then apply this...
(1) $p_{n}=p_{n}+r_{0}$
(2) $r_{1}+r_{n-1}=p_{1}+r_{n-1}$
(3) $r_{2}+r_{n-2}=p_{2}+r_{n-2}$
(9)

Then

We have that

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

Then

We have that

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

So we need to convert this into something more programmable

 You can define Cut-Rod $(p, n-i)$ where
Then

We have that

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

So we need to convert this into something more programmable

 You can define Cut-Rod $(p, n-i)$ where- p is an array with the table values.

Then

We have that

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

So we need to convert this into something more programmable

 You can define Cut-Rod $(p, n-i)$ where- p is an array with the table values.
- $n-i$ is the size of the rod when going into the recursion.

Then

We have that

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

So we need to convert this into something more programmable

 You can define Cut-Rod $(p, n-i)$ where- p is an array with the table values.
- $n-i$ is the size of the rod when going into the recursion.

Finally

Code

Cut-Rod (p, n)
(1) if $n==0$
(2) return 0
(3) $q=-\infty$
(c) for $i=1$ to n
(6) $q=\max \{q, p[i]+\operatorname{Cut}-\operatorname{Rod}(p, n-i)\}$
(6) return q

How the recursion tree for this code looks like?

First, Did you notice this?

Recursion

We have finally

$$
T(n)= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 1+\sum_{j=0}^{n-1} T(j) & \text { if } n>0\end{cases}
$$

Recursion

We have finally

$$
T(n)= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 1+\sum_{j=0}^{n-1} T(j) & \text { if } n>0\end{cases}
$$

- 1 for calling into the root of the tree.

Recursion

We have finally

$$
T(n)= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 1+\sum_{j=0}^{n-1} T(j) & \text { if } n>0\end{cases}
$$

- 1 for calling into the root of the tree.
- $T(j)$ counts the number of call (Recursive included)

Recursion

We have finally

$$
T(n)= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 1+\sum_{j=0}^{n-1} T(j) & \text { if } n>0\end{cases}
$$

- 1 for calling into the root of the tree.
- $T(j)$ counts the number of call (Recursive included)

How many possible decisions are being considered when cutting?

Decision	cut at 1	cut at 2	\cdots	cut at $\mathrm{n}-1$
Which One?	0 or 1	0 or 1	\cdots	0 or 1

What the tree is telling us?

The number of possible paths is equal to the number of leaves

- We have 2^{n-1} paths, which is equal to the number of leaves

What the tree is telling us?

The number of possible paths is equal to the number of leaves

- We have 2^{n-1} paths, which is equal to the number of leaves

Then

- The recursion consider explicitly all possible decisions

What the tree is telling us?

The number of possible paths is equal to the number of leaves

- We have 2^{n-1} paths, which is equal to the number of leaves

Then

- The recursion consider explicitly all possible decisions

It is possible to prove by induction that

$$
\begin{equation*}
T(n)=2^{n} \tag{2}
\end{equation*}
$$

How we solve this?

We need something better
 Dynamic programming approach!!!

How we solve this?

We need something better
 Dynamic programming approach!!!

How?

- This is done by computing each sub-problem only once and storing its solution in some way.

How we solve this?

We need something better

Dynamic programming approach!!!

How?

- This is done by computing each sub-problem only once and storing its solution in some way.
- This is known as time-memory trade-off, and the savings may be dramatic.

How we solve this?

We need something better

Dynamic programming approach!!!

How?

- This is done by computing each sub-problem only once and storing its solution in some way.
- This is known as time-memory trade-off, and the savings may be dramatic.

How and Why

- Dynamic programming solution runs in polynomial time when the number of distinct subproblems involved is polynomial in the input size and they can be solved in polynomial time.

First Approach: Top-down with Memoization

Basics in this approach

(1) We write the procedure recursively in a natural manner.

First Approach: Top-down with Memoization

Basics in this approach

(1) We write the procedure recursively in a natural manner.
(2) However, we save the result of each subproblem (Usually in an array or hash table)

First Approach: Top-down with Memoization

Basics in this approach

(1) We write the procedure recursively in a natural manner.
(2) However, we save the result of each subproblem (Usually in an array or hash table)

Then

Each time the procedure tries to solve a subproblem it first checks to see whether it has previously solved this subproblem.

First Approach: Top-down with Memoization

Basics in this approach

(1) We write the procedure recursively in a natural manner.
(2) However, we save the result of each subproblem (Usually in an array or hash table)

Then

Each time the procedure tries to solve a subproblem it first checks to see whether it has previously solved this subproblem.

We can say the following

- We say that the recursive procedure has been Memoized.

First Approach: Top-down with Memoization

Basics in this approach

(1) We write the procedure recursively in a natural manner.
(2) However, we save the result of each subproblem (Usually in an array or hash table)

Then

Each time the procedure tries to solve a subproblem it first checks to see whether it has previously solved this subproblem.

We can say the following

- We say that the recursive procedure has been Memoized.
- it "remembers" what results it has computed previously.

We require an Auxiliary Function to Accomplish this

Code

Memoized-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array

We require an Auxiliary Function to Accomplish this

Code

Memoized-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) for $i=0$ to n

We require an Auxiliary Function to Accomplish this

Code

Memoized-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) for $i=0$ to n
(3) $r[i]=-\infty$

We require an Auxiliary Function to Accomplish this

Code

Memoized-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) for $i=0$ to n

B
$r[i]=-\infty$
(9) return Memoized-Cut-Rod-Aux (p, n, r)

Memoized-Cut-Rod-Aux (p, n, r)

Code
Memoized-Cut-Rod-Aux (p, n, r)
(1) if $r[n] \geq 0$
(2) return $r[n]$

Memoized-Cut-Rod-Aux (p, n, r)

Code

Memoized-Cut-Rod-Aux (p, n, r)
(1) if $r[n] \geq 0$
(2) return $r[n]$
(3) if $n==0$
() $\quad q=0$

Memoized-Cut-Rod-Aux (p, n, r)

Code

Memoized-Cut-Rod-Aux (p, n, r)
(1) if $r[n] \geq 0$
(2) return $r[n]$
(3) if $n==0$
() $\quad q=0$
(6) else $q=-\infty$
(0) for $i=1$ to n
(ㄱ) $q=\max \{q, p[i]+$ Memoized-Cut-Rod-Aux $(p, n-i, r)\}$

Memoized-Cut-Rod-Aux (p, n, r)

Code

Memoized-Cut-Rod-Aux (p, n, r)
(1) if $r[n] \geq 0$
(2) return $r[n]$
(3) if $n==0$
(9) $\quad q=0$
(6) else $q=-\infty$
(0) for $i=1$ to n
() $q=\max \{q, p[i]+$ Memoized-Cut-Rod-Aux $(p, n-i, r)\}$
(8) $r[n]=q$

Memoized-Cut-Rod-Aux (p, n, r)

Code

Memoized-Cut-Rod-Aux (p, n, r)
(1) if $r[n] \geq 0$
(2) return $r[n]$
(3) if $n==0$
(3) $\quad q=0$
(6) else $q=-\infty$
(0) for $i=1$ to n
(3) $q=\max \{q, p[i]+$ Memoized-Cut-Rod-Aux $(p, n-i, r)\}$
(8) $r[n]=q$
(2) return q

The Recursion Tree of Memoized-Cut-Rod

Tree for $n=5$

(5)
cinvestov

Thus

We have that

- It solves each subproblem just once.

Thus

We have that

- It solves each subproblem just once.
- It solves subproblems for sizes $i=0,1, \ldots, n$

Thus

We have that

- It solves each subproblem just once.
- It solves subproblems for sizes $i=0,1, \ldots, n$

Thus

- To solve a problem of size i the for loop in line 6 of Memoized-Cut-Rod-Aux iterates i times.

Then look at this..

Something Notable

Complexity

Add the works

We have then

$$
\begin{equation*}
1+2+3+\ldots+n=\frac{n(n+1)}{2} \tag{3}
\end{equation*}
$$

Complexity

Add the works

We have then

$$
\begin{equation*}
1+2+3+\ldots+n=\frac{n(n+1)}{2} \tag{3}
\end{equation*}
$$

Then, we have
$\Theta\left(n^{2}\right)$.

What about the Bottom-Up approach?

Simpler Solution

How?

What about the Bottom-Up approach?

Simpler Solution

How?
The natural order of solving
A problem of size i is smaller than a subproblem of size j, if $i<j$.

What about the Bottom-Up approach?

Simpler Solution
 How?

The natural order of solving
A problem of size i is smaller than a subproblem of size j, if $i<j$.

It is simpler to solve problems in this orden $j=0,1,2, \ldots, n$ in order of increasing size.

Bottom-Up-Cut-Rod (p, n)

Code

Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array

Bottom-Up-Cut-Rod (p, n)

Code

Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) $r[0]=0$

Bottom-Up-Cut-Rod (p, n)

Code

Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) $r[0]=0$
(3) for $j=1$ to n
(3)

$$
q=-\infty
$$

Bottom-Up-Cut-Rod (p, n)

Code

Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) $r[0]=0$
(3) for $j=1$ to n
©

$$
q=-\infty
$$

(3) for $i=1$ to j
-

$$
q=\max \{q, p[i]+r[j-i]\}
$$

Bottom-Up-Cut-Rod (p, n)

Code

Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) $r[0]=0$
(3) for $j=1$ to n
(9) $q=-\infty$
(6) for $i=1$ to j
(6) $q=\max \{q, p[i]+r[j-i]\}$
() $r[j]=q$

Bottom-Up-Cut-Rod (p, n)

Code

Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ be a new array
(2) $r[0]=0$
(3) for $j=1$ to n
(9) $q=-\infty$
(3) for $i=1$ to j
(6) $q=\max \{q, p[i]+r[j-i]\}$
(1) $r[j]=q$
(8) return $r[n]$

How to See Everything: Subproblem Graphs (DAG)

In dynamic programing
It is necessary to understand how subproblems depend on each other.

How to See Everything: Subproblem Graphs (DAG)

In dynamic programing

It is necessary to understand how subproblems depend on each other.

This information can be found in the subproblem graph which is a DAG

Reconstructing the Solution

How, we can do that?
Any Ideas?

Reconstructing the Solution

```
How, we can do that?
Any Ideas?
```

We need to...
Store each choice of the solution some way

Reconstructing the Solution

```
How, we can do that?
Any Ideas?
```

We need to...
Store each choice of the solution some way

So...
We can reconstruct the solution path

Final Code

Code

Extended-Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ and $s[0 . . n]$ be new arrays

Final Code

Code

Extended-Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ and $s[0 . . n]$ be new arrays
(2) $r[0]=0$

Final Code

Code

Extended-Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ and $s[0 . . n]$ be new arrays
(2) $r[0]=0$
(3) for $j=1$ to n
(9) $q=-\infty$

Final Code

Code

Extended-Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ and $s[0 . . n]$ be new arrays
(2) $r[0]=0$
(3) for $j=1$ to n
(3) $q=-\infty$
(5) for $i=1$ to j
(6) if $q<p[i]+r[j-i]$

Final Code

Code

Extended-Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ and $s[0 . . n]$ be new arrays
(2) $r[0]=0$
(3) for $j=1$ to n
(9) $q=-\infty$
(3) for $i=1$ to j
(0) if $q<p[i]+r[j-i]$
©

$$
\begin{aligned}
& q=p[i]+r[j-i] \\
& s[j]=i
\end{aligned}
$$

Final Code

Code

Extended-Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ and $s[0 . . n]$ be new arrays
(2) $r[0]=0$
(3) for $j=1$ to n
(9) $q=-\infty$
(3) for $i=1$ to j
(0) if $q<p[i]+r[j-i]$
©

$$
q=p[i]+r[j-i]
$$

$$
s[j]=i
$$

(-) $r[j]=q$

Final Code

Code

Extended-Bottom-Up-Cut-Rod (p, n)
(1) Let $r[0 . . n]$ and $s[0 . . n]$ be new arrays
(2) $r[0]=0$
(3) for $j=1$ to n
(9) $\quad q=-\infty$
(5) for $i=1$ to j
(0) if $q<p[i]+r[j-i]$
(1) $q=p[i]+r[j-i]$
(8) $s[j]=i$
(9) $r[j]=q$
(10) return r and s

Printing Code

Code

Print-Cut-Rod-Solution (p, n)
(1) $(r, s)=$ Extended-Bottom-Up-Cut-Rod (p, n)

Printing Code

Code

Print-Cut-Rod-Solution (p, n)
(1) $(r, s)=$ Extended-Bottom-Up-Cut-Rod (p, n)
(2) while $n>0$
(3) print $s[n]$

Printing Code

Code

Print-Cut-Rod-Solution (p, n)
(1) $(r, s)=$ Extended-Bottom-Up-Cut-Rod (p, n)
(2) while $n>0$
(3) print $s[n]$
(4) $n=n-s[n]$

Example

From the previous problem

length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30

Example

From the previous problem

length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30

Thus

i	0	1	2	3	4	5	6	7	8	9	10
$r[i]$	0	1	5	8	10	13	17	18	22	25	30
$s[i]$	0	1	2	3	2	2	6	1	2	3	10

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

Optimal Substructure

In dynamic programming

A first step toward the solution is characterizing the problem and finding the optimal substructure.

We have the following steps

First

The problem consists in making choices.

We have the following steps

First

The problem consists in making choices.

Second

Given each problem, you are given a choice that leads to a solution.

We have the following steps

First

The problem consists in making choices.

Second

Given each problem, you are given a choice that leads to a solution.

Third

Each solution allows us to determine which subproblems need to be solved, and how to best characterize the resulting space of subproblems.

We have the following steps

Fourth

Use cut-and-paste to prove by contradiction that the optimal subproblem structure exists.

Now using the following problems

Unweighted shortest path

Find a path from u to v consisting of the fewest edges.

Now using the following problems

Unweighted shortest path

Find a path from u to v consisting of the fewest edges.

Unweighted longest simple path

Find a simple path from u to v consisting of the most edges.

We can explain subtleties about the Optimal Substructure

Unweighted shortest path

It has an optimal substructure

We can explain subtleties about the Optimal Substructure

Unweighted shortest path

It has an optimal substructure

Why?

First, given an optimal shortest path t between p and q.

How do we prove this?

First

Assume an intermediate point z such that there are two paths t_{1} and t_{2}, $t=t_{1} \cup t_{2}$

How do we prove this?

First

Assume an intermediate point z such that there are two paths t_{1} and t_{2}, $t=t_{1} \cup t_{2}$

By contradiction

Thus, by contradiction, assume that there is a shorter path between z and q, t_{2}^{1}. Then, $\left|t_{1} \cup t_{2}^{1}\right|<t \perp$ Quod Erat Demonstrandum (QED).

However

Some problems do not have the optimal substructure

The longest unweighted path

However

Some problems do not have the optimal substructure

The longest unweighted path

Example

cinyestor

Examples

First: Possible path between q and t

$$
q \longrightarrow r \longrightarrow t
$$

Examples

First: Possible path between q and t

$$
q \longrightarrow r \longrightarrow t
$$

But

$q \longrightarrow r$ is not the longest simple path from q and r nor the path $r \longrightarrow t$

Examples

First: Possible path between q and t

$$
q \longrightarrow r \longrightarrow t
$$

But

$q \longrightarrow r$ is not the longest simple path from q and r nor the path $r \longrightarrow t$
Example of largest simple path for $q \longrightarrow r$
$q \longrightarrow s \longrightarrow t \longrightarrow r$

What the problem shows

We have that

- It not only does the problem lack optimal substructure.

What the problem shows

We have that

- It not only does the problem lack optimal substructure.
- We cannot necessarily assemble a "legal" solution to the problem from solutions to subproblems.

What the problem shows

We have that

- It not only does the problem lack optimal substructure.
- We cannot necessarily assemble a "legal" solution to the problem from solutions to subproblems.

It is more

- No efficient dynamic programming algorithm for this problem has ever been found.

What the problem shows

We have that

- It not only does the problem lack optimal substructure.
- We cannot necessarily assemble a "legal" solution to the problem from solutions to subproblems.

It is more

- No efficient dynamic programming algorithm for this problem has ever been found.
- In fact, this problem is NP-complete.

Then, How can we use the DAG?

Get the Space Problem

- Use the elements of the space.

Then, How can we use the DAG?

Get the Space Problem

- Use the elements of the space.
- Build a Graph using all the decisions that can be made.

Then, How can we use the DAG?

Get the Space Problem

- Use the elements of the space.
- Build a Graph using all the decisions that can be made.
- If you have a DAG!!! You have a optimal substructure!!!

What is the difference?

In the Unweighted Shortest Path the problems are independent

We mean that the solution to one sub-problem does not affect the solution of another subproblem.

What is the difference?

In the Unweighted Shortest Path the problems are independent

We mean that the solution to one sub-problem does not affect the solution of another subproblem.

In the Unweighted Longest Path

Remember vertices q and r in the second case!!!

What is the difference?

In the Unweighted Shortest Path the problems are independent

We mean that the solution to one sub-problem does not affect the solution of another subproblem.

In the Unweighted Longest Path

Remember vertices q and r in the second case!!!

Question

Then, Why the USP are independent?

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

Overlapping Subproblems

Why

This happens because the recursive solution revisits the same subproblem multiple times.

Overlapping Subproblems

Why

This happens because the recursive solution revisits the same subproblem multiple times.

This is the main advantage of dynamic programming
It takes advantage of this by solving and storing the solution.

Overlapping Subproblems

Why

This happens because the recursive solution revisits the same subproblem multiple times.

This is the main advantage of dynamic programming

It takes advantage of this by solving and storing the solution.

Properties

A dynamic-programming solution runs in polynomial time when the number of distinct subproblems involved is polynomial in the input size and they can be solved in polynomial time.

Overlapping Subproblems

We have two ways of solving the problem

- Top-down with Memoization.
- Bottom-up.

Outline

© Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(a) Exercises

Reconstruction of Subproblems

To reconstruct
We use a table to store the choices such that we can reconstruct those of the sub-problem.

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

Common Subproblems

Something Notable

Finding the right subproblem takes creativity and experimentation.

Common Subproblems

Something Notable

Finding the right subproblem takes creativity and experimentation.

However

There are a few standard choices that arise repeatedly in dynamic programming.

Number of Subproblems is Linear

We have the following input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Number of Subproblems is Linear

We have the following input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Subproblems

$x_{1}, x_{2}, \ldots, x_{i}$

Number of Subproblems is Linear

We have the following input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Subproblems

$x_{1}, x_{2}, \ldots, x_{i}$

Example

$$
\begin{array}{|llllll|llll}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
\hline
\end{array}
$$

Number of Subproblems is Linear

We have the following input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Subproblems

$x_{1}, x_{2}, \ldots, x_{i}$

Example

$$
\begin{array}{|llllll|llll}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
\hline
\end{array}
$$

Therefore

The number of subproblems is therefore linear.

Number of Subproblems is $O(n m)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{m}$.

Number of Subproblems is $O(n m)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{m}$.

Subproblems

$x_{1}, x_{2}, \ldots, x_{i}$ and $y_{1}, y_{2}, \ldots, y_{j}$.

Number of Subproblems is $O(n m)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{m}$.

Subproblems

$x_{1}, x_{2}, \ldots, x_{i}$ and $y_{1}, y_{2}, \ldots, y_{j}$.

Example

$$
\begin{array}{|llllllllll|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
& & & & & & & & & \\
& y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} &
\end{array}
$$

Number of Subproblems is $O(n m)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{m}$.

Subproblems

$x_{1}, x_{2}, \ldots, x_{i}$ and $y_{1}, y_{2}, \ldots, y_{j}$.
Example

$$
\begin{array}{|llllllllll|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
& \begin{array}{|lllllllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} &
\end{array}
\end{array}
$$

Therefore
The number of subproblems is $O(m n)$.

Number of Subproblems is $O\left(n^{2}\right)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Number of Subproblems is $O\left(n^{2}\right)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Subproblems

$x_{i}, x_{i+1}, \ldots, x_{j}$

Number of Subproblems is $O\left(n^{2}\right)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Subproblems

$x_{i}, x_{i+1}, \ldots, x_{j}$

Example

$$
x_{1} \quad x_{2} \begin{array}{|cccc}
x_{3} & x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9} & x_{10}
\end{array}
$$

Number of Subproblems is $O\left(n^{2}\right)$

Input

The input is $x_{1}, x_{2}, \ldots, x_{n}$.

Subproblems

$x_{i}, x_{i+1}, \ldots, x_{j}$

Example

$$
x_{1} \quad x_{2} \begin{array}{|cccc}
x_{3} & x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9} & x_{10}
\end{array}
$$

Therefore

The number of subproblems is $O\left(n^{2}\right)$.

Input is a rooted subtree

Input

Input is a rooted subtree

Subproblem

Question

How Many Subproblems do you have?
Any Idea?

Outline

（1）Dynamic Programming
－Bellman Equation
－Elements of Dynamic Programming
－Rod Cutting
（2）Elements of Dynamic Programming
－Optimal Substructure
－Overlapping Subproblems
－Reconstruction of Subproblems
－Common Subproblems
（3）Examples
－Longest Increasing Subsequence
－Matrix Multiplication
－Longest Common Subsequence
（a）Exercises

Definition

Input
 A sequence $a_{1}, a_{2}, \ldots, a_{n}$

Definition

Input
 A sequence $a_{1}, a_{2}, \ldots, a_{n}$

A subsequence

It is any subset of these numbers taken in order $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$.

Definition

Input

A sequence $a_{1}, a_{2}, \ldots, a_{n}$

A subsequence

It is any subset of these numbers taken in order $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$.

Thus

An increasing subsequence is one in which the numbers are getting strictly larger.

Definition

Output

The task is to find the increasing subsequence of greatest length.

Definition

Output

The task is to find the increasing subsequence of greatest length.

Example

$$
5 \quad 2 \quad 8 \quad 6 \quad \underset{1}{3} \quad \begin{array}{lllll}
6 & 9 & 7 \\
1
\end{array}
$$

The Graph of increasing subsequences

To better understand the solution space, we can create the graph of all permissible transitions

- First, establish a node i for each element a_{i}, and add directed edges
(i, j) whenever possible.

The Graph of increasing subsequences

To better understand the solution space, we can create the graph of all permissible transitions

- First, establish a node i for each element a_{i}, and add directed edges
(i, j) whenever possible.
- i.e. Whenever $i<j$ and $a_{i}<a_{j}$.

The Graph of increasing subsequences

To better understand the solution space, we can create the graph of all permissible transitions

- First, establish a node i for each element a_{i}, and add directed edges (i, j) whenever possible.
- i.e. Whenever $i<j$ and $a_{i}<a_{j}$.

The Graph

Notice the following

We have
The graph is a DAG

Notice the following

We have
The graph is a DAG
Thus

- There is a one-to-one correspondence between increasing subsequences and paths in this DAG.

Notice the following

We have

The graph is a DAG

Thus

- There is a one-to-one correspondence between increasing subsequences and paths in this DAG.
- Thus, find the longest path in the DAG.

Formulation

Something Notable

If we choose a number a_{j} to be in the longest increasing subsequence

Formulation

Something Notable

If we choose a number a_{j} to be in the longest increasing subsequence
We ask if the there is an edge to another
Is $(i, j) \in E$?

Formulation

Something Notable

If we choose a number a_{j} to be in the longest increasing subsequence

We ask if the there is an edge to another
Is $(i, j) \in E$?

Thus, we need to choose all of them!!!
This can be done with a for loop

Thus

We start at a certain j
Then, we look at the previous i with $1 \leq i \leq j-1$

Thus

We start at a certain j

Then, we look at the previous i with $1 \leq i \leq j-1$

Here is the recursion for $\forall A[i]<A[j]$
$L[j]= \begin{cases}1 & \text { if there is no edge }(i, j) \in \\ 1+\max \left\{L\left[i_{1}\right], L\left[i_{2}\right], \ldots, L\left[i_{h}\right]\right\} & \text { For }\left(i_{k}, j\right) \in E, 1 \leq k \leq h\end{cases}$

What is the meaning of this?

When is there an edge between i_{k} and j ?

Clearly, this needs to be implemented in a machine

We have then that

A is an array that contains numbers indexed from 1 to n

Clearly, this needs to be implemented in a machine

We have then that

A is an array that contains numbers indexed from 1 to n
Then, we have that

Instead of using $\left(i_{k}, j\right) \in E$ we use $A\left[i_{k}\right]<A[j]$

Clearly, this needs to be implemented in a machine

We have then that

A is an array that contains numbers indexed from 1 to n

Then, we have that

Instead of using $\left(i_{k}, j\right) \in E$ we use $A\left[i_{k}\right]<A[j]$

Instead of max
We use a loop and something like $q<t e m p$ for it

Recursive Function

Recursive Function

The final recursive code
Recursive-Longest-Subsequence (A, n)
(1) $q=1$
(2) // Assume n as part of your solution
(3) // Thus $A[i]<A[n]$ here $j==n$
(c) for $i=1$ to $n-1$

Recursive Function

The final recursive code
Recursive-Longest-Subsequence (A, n)
(1) $q=1$
(2) // Assume n as part of your solution
(3) // Thus $A[i]<A[n]$ here $j==n$
(9) for $i=1$ to $n-1$
(3) $t=\operatorname{Recursive-Longest-Subsequence~}(A, i)$

Recursive Function

The final recursive code

Recursive-Longest-Subsequence (A, n)
(1) $q=1$
(2) // Assume n as part of your solution
(3) // Thus $A[i]<A[n]$ here $j==n$
(9) for $i=1$ to $n-1$
(5) $t=\operatorname{Recursive-Longest-Subsequence~}(A, i)$
(6) if $A[i]<A[n]$ and $q<1+t$
(1)

$$
q=1+t
$$

Recursive Function

The final recursive code

Recursive-Longest-Subsequence (A, n)
(1) $q=1$
(2) // Assume n as part of your solution
(3) // Thus $A[i]<A[n]$ here $j==n$
(9) for $i=1$ to $n-1$
(3) $t=\operatorname{Recursive-Longest-Subsequence~}(A, i)$
(0) if $A[i]<A[n]$ and $q<1+t$
©

$$
q=1+t
$$

(3) return q

What about the Complexity?

Recursion Tree - Can somebody Guess the Complexity?

How we save in recursive calls

First

Let $L[1 . . n]$ an array to store the values the longest subsequence

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
(4) $L[i]=1$
(5) for $j=2$ to n
(6) for $i=1$ to $j-1$
(7) if $A[i]<A[j]$ and

$$
L[j]<L[i]+1
$$

8

$$
L[j]=L[i]+1
$$

(9) for $i=1$ to n
(10) if $\max <L[i]$
(11) $\max =L[i]$
(12) return \max

Step 1

- An array to store the values the longest subsequence.
(8) $L[j]=L[i]+1$

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
(9) $L[i]=1$
(6) for $j=2$ to n
(c) for $i=1$ to $j-1$
(1) if $A[i]<A[j]$ and
$L[j]<L[i]+1$
(3)

$$
L[j]=L[i]+1
$$

(9) for $i=1$ to n
(10) if $\max <L[i]$
(1) $\max =L[i]$
(12) return max

Step 2

- A measure about the longest subsequence.

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
(9) $L[i]=1$
(6) for $j=2$ to n
(c) for $i=1$ to $j-1$
(1) if $A[i]<A[j]$ and
$L[j]<L[i]+1$
(8) $L[j]=L[i]+1$
(9) for $i=1$ to n
(10) if $\max <L[i]$
(1) $\quad \max =L[i]$
(12) return \max

Step 3

- Initialize everything to 1 (Itself).

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
(9) $L[i]=1$
(3) for $j=2$ to n
(0) for $i=1$ to $j-1$
(1) if $A[i]<A[j]$ and

$$
L[j]<L[i]+1
$$

(8)

$$
L[j]=L[i]+1
$$

(9) for $i=1$ to n
(10) if $\max <L[i]$
(1) $\max =L[i]$
(1) return max

Step 4

- We know that the subproblem with size 1 has a solution, thus you need to start at 2.

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
(4) $L[i]=1$
(5) for $j=2$ to n
(6) for $i=1$ to $j-1$
(7) if $A[i]<A[j]$ and

$$
L[j]<L[i]+1
$$

(8)

$$
L[j]=L[i]+1
$$

(9) for $i=1$ to n
(10) if $\max <L[i]$
(11) $\max =L[i]$
(12) return \max

Step 5

- Get solutions to the subproblems less or equal than $j-1$

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
©

$$
L[i]=1
$$

(3) for $j=2$ to n
(c) for $i=1$ to $j-1$
(1) if $A[i]<A[j]$ and

$$
L[j]<L[i]+1
$$

©

$$
L[j]=L[i]+1
$$

(9) for $i=1$ to n
(10) if $\max <L[i]$
(1) $\max =L[i]$
(12) return \max

Step 6

- Take a decision

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
(9) $L[i]=1$
(6) for $j=2$ to n
(c) for $i=1$ to $j-1$
(1) if $A[i]<A[j]$ and

$$
L[j]<L[i]+1
$$

©

$$
L[j]=L[i]+1
$$

(9) for $i=1$ to n
(10) if $\max <L[i]$
(1) $\quad \max =L[i]$
(12) return \max

Step 7

- If the decision is true then increase the counter for solution starting at j

Bottom-Up Solution

Code

Bottom-Up-Longest-Subsequence (A, n)
(1) Let $L[1 . . n]$
(2) $\max =0$
(3) for $i=1$ to n
(9) $L[i]=1$
(6) for $j=2$ to n
(c) for $i=1$ to $j-1$
(1) if $A[i]<A[j]$ and

$$
L[j]<L[i]+1
$$

(8) $L[j]=L[i]+1$
(9) for $i=1$ to n
(10) if $\max <L[i]$
(1) $\quad \max =L[i]$
(2) return max

Step 8

- Find the Maximum

Value

What about backtracking the Solution

We can do the following
You can have an array $S[1 . . n]$ initialized to the sequence $1,2, \ldots, n$

What about backtracking the Solution

We can do the following

You can have an array $S[1 . . n]$ initialized to the sequence $1,2, \ldots, n$
Thus, each time
$A[i]<A[j]$ and $L[j]<L[i]+1$ is true, we set $S[j]=i$.

What about backtracking the Solution

We can do the following

You can have an array $S[1 . . n]$ initialized to the sequence $1,2, \ldots, n$

Thus, each time

$A[i]<A[j]$ and $L[j]<L[i]+1$ is true, we set $S[j]=i$.

Then
After returning the L and S we can get the index of the max to backtrack the answer.

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

Definition of The Problem

```
Input
A sequence of Matrices }\langle\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}
```


Definition of The Problem

```
Input
A sequence of Matrices }\langle\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}
```


Output

We want a fully parenthesized product, where the final result is a single matrix or the product of two fully parenthesized matrix products.

Definition of The Problem

Input

A sequence of Matrices $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$

Output

We want a fully parenthesized product, where the final result is a single matrix or the product of two fully parenthesized matrix products.

Why

Take in consideration the following algorithm

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)

(1) if A.columns \neq B.rows
(2) error "incompatible dimensions"

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)

(1) if A.columns \neq B.rows
(2) error "incompatible dimensions"
(3) else let C be a new A.rows $\times B$.columns matrix

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)

(1) if A.columns \neq B.rows
(2) error "incompatible dimensions"
(3) else let C be a new A.rows $\times B$.columns matrix

0

$$
\text { for } i=1 \text { to A.rows }
$$

for for $j=1$ to B.columns

6

$$
c_{i j}=0
$$

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)

(1) if A.columns $\neq B$.rows
(2) error "incompatible dimensions"
(3) else let C be a new A.rows $\times B$.columns matrix
(9) for $i=1$ to A.rows
(5) for for $j=1$ to B.columns
(6)
$c_{i j}=0$
for $k=1$ to A.columns

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)

(1) if A.columns $\neq B$.rows
(2) error "incompatible dimensions"
(3) else let C be a new A.rows \times. columns matrix
(9) for $i=1$ to A.rows
© for for $j=1$ to B.columns
$c_{i j}=0$
for $k=1$ to A.columns

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

© return C

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)

(1) if A.columns $\neq B$.rows
(2) error "incompatible dimensions"
(3) else let C be a new A.rows $\times B$.columns matrix
(9) for $i=1$ to A.rows
(5) for for $j=1$ to B.columns

6

$$
c_{i j}=0
$$

(7)
for $k=1$ to A.columns
(8)

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

© return C

Then

If A is $N \times M$ and B is a $M \times P$ then the cost is $N \cdot M \cdot P$.

Example of Matrix Multiplications

Given the following matrices

- A, B, C with $10 \times 100,100 \times 5$ and 5×50

Example of Matrix Multiplications

Given the following matrices

- A, B, C with $10 \times 100,100 \times 5$ and 5×50
- Cost in scalar operations of $(A B)$ is $10 \cdot 100 \cdot 5=5000$

Example of Matrix Multiplications

Given the following matrices

- A, B, C with $10 \times 100,100 \times 5$ and 5×50
- Cost in scalar operations of $(A B)$ is $10 \cdot 100 \cdot 5=5000$
- Cost in scalar operations of $(B C)$ is $100 \cdot 5 \cdot 50=25000$

Example of Matrix Multiplications

Given the following matrices

- A, B, C with $10 \times 100,100 \times 5$ and 5×50
- Cost in scalar operations of $(A B)$ is $10 \cdot 100 \cdot 5=5000$
- Cost in scalar operations of $(B C)$ is $100 \cdot 5 \cdot 50=25000$

Then

Cost in scalar operations of $(A B) C$ is $5000+10 \cdot 5 \cdot 50=7500$

Example of Matrix Multiplications

Given the following matrices

- A, B, C with $10 \times 100,100 \times 5$ and 5×50
- Cost in scalar operations of $(A B)$ is $10 \cdot 100 \cdot 5=5000$
- Cost in scalar operations of $(B C)$ is $100 \cdot 5 \cdot 50=25000$

Abstract

Then Cost in scalar operations of $(A B) C$ is $5000+10 \cdot 5 \cdot 50=7500$ Cost in scalar operations of $\mathrm{A}(\mathrm{BC})$ is $25000+10 \cdot 100 \cdot 50=75000$

Matrix-Chain Multiplication

Problem

Given a chain $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of n matrices, where A_{i} has dimension $p_{i-1} \times p_{i}$. We want to fully parenthesize the product $A_{1} A_{2} \ldots A_{n}$ to minimize the number of scalar multiplications

Solving by brute force

Count all the possible parenthesizations

$$
P(n)= \begin{cases}1 & \text { if } n=1 \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text { if } n \geq 2\end{cases}
$$

Solving by brute force

Count all the possible parenthesizations

$$
P(n)= \begin{cases}1 & \text { if } n=1 \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text { if } n \geq 2\end{cases}
$$

Which is the sequence of Catalan Numbers which grows

$$
\Omega\left(\frac{4^{n}}{n^{\frac{3}{2}}}\right)
$$

Did you notice the following?

If we have the following sequence $A_{k-1}\left(A_{k} A_{k+1}\right)$
We have that A_{k-1} has dimension $p_{k-2} \times p_{k-1}, A_{k}$ has dimension $p_{k-1} \times p_{k}$ and A_{k+1} has dimension $p_{k} \times p_{k+1}$.

Did you notice the following?

If we have the following sequence $A_{k-1}\left(A_{k} A_{k+1}\right)$
We have that A_{k-1} has dimension $p_{k-2} \times p_{k-1}, A_{k}$ has dimension $p_{k-1} \times p_{k}$ and A_{k+1} has dimension $p_{k} \times p_{k+1}$.

The final matrix has dimensions

It has dimension $p_{k-2} \times p_{k+1}$.

Did you notice the following?

If we have the following sequence $A_{k-1}\left(A_{k} A_{k+1}\right)$
We have that A_{k-1} has dimension $p_{k-2} \times p_{k-1}, A_{k}$ has dimension $p_{k-1} \times p_{k}$ and A_{k+1} has dimension $p_{k} \times p_{k+1}$.

The final matrix has dimensions

It has dimension $p_{k-2} \times p_{k+1}$.

Properties

With cost of multiplication:
(1) For the first parenthesis $p_{k-1} p_{k} p_{k+1}$ with final dimension $p_{k-1} \times p_{k+1}$.

Did you notice the following?

If we have the following sequence $A_{k-1}\left(A_{k} A_{k+1}\right)$
We have that A_{k-1} has dimension $p_{k-2} \times p_{k-1}, A_{k}$ has dimension $p_{k-1} \times p_{k}$ and A_{k+1} has dimension $p_{k} \times p_{k+1}$.

The final matrix has dimensions

It has dimension $p_{k-2} \times p_{k+1}$.

Properties

With cost of multiplication:
(1) For the first parenthesis $p_{k-1} p_{k} p_{k+1}$ with final dimension $p_{k-1} \times p_{k+1}$.
(2) For A_{k-1} against what is inside parenthesis $p_{k-2} p_{k-1} p_{k+1}$ with final dimensions $p_{k-2} \times p_{k+1}$.

Did you notice the following?

If we have the following sequence $A_{k-1}\left(A_{k} A_{k+1}\right)$
We have that A_{k-1} has dimension $p_{k-2} \times p_{k-1}, A_{k}$ has dimension $p_{k-1} \times p_{k}$ and A_{k+1} has dimension $p_{k} \times p_{k+1}$.

The final matrix has dimensions

It has dimension $p_{k-2} \times p_{k+1}$.

Properties

With cost of multiplication:
(1) For the first parenthesis $p_{k-1} p_{k} p_{k+1}$ with final dimension $p_{k-1} \times p_{k+1}$.
(2) For A_{k-1} against what is inside parenthesis $p_{k-2} p_{k-1} p_{k+1}$ with final dimensions $p_{k-2} \times p_{k+1}$.
(3) Total cost is then $p_{k-2} p_{k-1} p_{k+1}+p_{k-1} p_{k} p_{k+1}$

In addition

Look at the following multiplication

$$
\left(A_{i} \cdots A_{k}\right)\left(A_{k+1} \cdots A_{j}\right)
$$

In addition

Look at the following multiplication

$$
\left(A_{i} \cdots A_{k}\right)\left(A_{k+1} \cdots A_{j}\right)
$$

We have the following
(1) $\left(A_{i} \cdots A_{k}\right)$ is a matrix with dimensions $p_{i-1} \times p_{k}$
(2) $\left(A_{k+1} \cdots A_{j}\right)$ is a matrix with dimensions $p_{k} \times p_{j}$

In addition

Look at the following multiplication

$$
\left(A_{i} \cdots A_{k}\right)\left(A_{k+1} \cdots A_{j}\right)
$$

We have the following
(1) $\left(A_{i} \cdots A_{k}\right)$ is a matrix with dimensions $p_{i-1} \times p_{k}$
(2) $\left(A_{k+1} \cdots A_{j}\right)$ is a matrix with dimensions $p_{k} \times p_{j}$

The total cost of this multiplication is

$m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}$ (In addition, you want to minimize the cost)

Then use the Cut-and-Paste to probe optimal substructure

Given $i<j$

Suppose the optimal paranthesization of

$$
A_{i}, A_{i+1}, \ldots, A_{j}
$$

USE CONTRADICTION!

Now, the Recursion can be wrote!!!

Given that $m[i, j]$ is the minimum number of scalar multiplications

$$
m[i, j]= \begin{cases}0 & \text { if } i==j \\ \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j\end{cases}
$$

The Recursive Solution

Recursive Algorithm

(1) Recursive-Matrix-Chain (p, i, j)
(2) if $i==j$
(3) return 0

The Recursive Solution

Recursive Algorithm

(1) Recursive-Matrix-Chain (p, i, j)
(2) if $i==j$
(3) return 0
(9) $m[i, j]=\infty$

The Recursive Solution

Recursive Algorithm

(1) Recursive-Matrix-Chain (p, i, j)
(2) if $i==j$
(3) return 0
(9) $m[i, j]=\infty$
(5) for $k=i$ to $j-1$
©
$q=$ Recursive-Matrix-Chain $(p, i, k)+\ldots$
(1) Recursive-Matrix-Chain $(p, k+1, j)+\ldots$

The Recursive Solution

Recursive Algorithm

(1) Recursive-Matrix-Chain (p, i, j)
(2) if $i==j$
(3) return 0
(9) $m[i, j]=\infty$
(6) for $k=i$ to $j-1$
(6) $\quad q=$ Recursive-Matrix-Chain $(p, i, k)+\ldots$
(3) Recursive-Matrix-Chain $(p, k+1, j)+\ldots$
(8) $p_{i-1} p_{k} p_{j}$

The Recursive Solution

Recursive Algorithm

(1) Recursive-Matrix-Chain (p, i, j)
(2) if $i==j$
(3) return 0
(9) $m[i, j]=\infty$
(6) for $k=i$ to $j-1$
(6) $\quad q=$ Recursive-Matrix-Chain $(p, i, k)+\ldots$
(1) Recursive-Matrix-Chain $(p, k+1, j)+\ldots$
(8) $p_{i-1} p_{k} p_{j}$
(9) if $q<m[i, j]$
(10) $m[i, j]=q$

The Recursive Solution

Recursive Algorithm

(1) Recursive-Matrix-Chain (p, i, j)
(2) if $i==j$
(3) return 0
(9) $m[i, j]=\infty$
(6) for $k=i$ to $j-1$
(6) $\quad q=$ Recursive-Matrix-Chain $(p, i, k)+\ldots$
(1) Recursive-Matrix-Chain $(p, k+1, j)+\ldots$
(8) $p_{i-1} p_{k} p_{j}$
(9) if $q<m[i, j]$
(1) $m[i, j]=q$
(1) return $m[i, j]$

Again!!! Overlapping substructure

Red Line Represents the Recursion Path

This is a nightmare

We have the following recursion

$$
\begin{aligned}
& T(1) \geq 1 \\
& T(n) \geq 1+\sum_{k=1}^{n-1}[T(n-k)+T(k)+1] \text { for } n>1
\end{aligned}
$$

First

Did you notice?

$T(i)$ appears once as $T(k)$ and once as $T(n-k)$ for $i=1,2, \ldots, n-1$.

First

Did you notice?

$T(i)$ appears once as $T(k)$ and once as $T(n-k)$ for $i=1,2, \ldots, n-1$.
We have then

$$
T(n) \geq 1+2 \sum_{i=1}^{n-1}[T(i)]+n-1
$$

Then

We decide to guess $T(n)=\Omega\left(2^{n}\right)$

- We shall guess the following $T(n) \geq 2^{n-1}$ for all $n \geq 1$

Then

We decide to guess $T(n)=\Omega\left(2^{n}\right)$

- We shall guess the following $T(n) \geq 2^{n-1}$ for all $n \geq 1$
- First for $n=1 T(1) \geq 1=2^{0}$

Then

Now, for $n \geq 2$

$$
T(n) \geq 2 \sum_{i=1}^{n-1}[T(i)]+n
$$

Then

Now, for $n \geq 2$

$$
\begin{aligned}
T(n) & \geq 2 \sum_{i=1}^{n-1}[T(i)]+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n
\end{aligned}
$$

Then

Now, for $n \geq 2$

$$
\begin{aligned}
T(n) & \geq 2 \sum_{i=1}^{n-1}[T(i)]+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=0}^{n-2} 2^{i}+n
\end{aligned}
$$

Then

Now, for $n \geq 2$

$$
\begin{aligned}
T(n) & \geq 2 \sum_{i=1}^{n-1}[T(i)]+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=0}^{n-2} 2^{i}+n \\
& =2\left(\frac{2^{n-1}-1}{2-1}\right)+n
\end{aligned}
$$

Then

Now, for $n \geq 2$

$$
\begin{aligned}
T(n) & \geq 2 \sum_{i=1}^{n-1}[T(i)]+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=0}^{n-2} 2^{i}+n \\
& =2\left(\frac{2^{n-1}-1}{2-1}\right)+n \\
& =2\left(2^{n-1}-1\right)+n
\end{aligned}
$$

Then

Now, for $n \geq 2$

$$
\begin{aligned}
T(n) & \geq 2 \sum_{i=1}^{n-1}[T(i)]+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=0}^{n-2} 2^{i}+n \\
& =2\left(\frac{2^{n-1}-1}{2-1}\right)+n \\
& =2\left(2^{n-1}-1\right)+n \\
& =2^{n}-2+n
\end{aligned}
$$

Then

Now, for $n \geq 2$

$$
\begin{aligned}
T(n) & \geq 2 \sum_{i=1}^{n-1}[T(i)]+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=0}^{n-2} 2^{i}+n \\
& =2\left(\frac{2^{n-1}-1}{2-1}\right)+n \\
& =2\left(2^{n-1}-1\right)+n \\
& =2^{n}-2+n \\
& \geq 2^{n}
\end{aligned}
$$

Then

Now, for $n \geq 2$

$$
\begin{aligned}
T(n) & \geq 2 \sum_{i=1}^{n-1}[T(i)]+n \\
& =2 \sum_{i=1}^{n-1} 2^{i-1}+n \\
& =2 \sum_{i=0}^{n-2} 2^{i}+n \\
& =2\left(\frac{2^{n-1}-1}{2-1}\right)+n \\
& =2\left(2^{n-1}-1\right)+n \\
& =2^{n}-2+n \\
& \geq 2^{n} \\
& \geq 2^{n-1}
\end{aligned}
$$

Thus

We want to avoid to calculate the same value many times
Use bottom up approach and store values at each step.

We get two arrays or tables

The first one, m
It is used to hold the information about the cost of multiplying the matrices

We get two arrays or tables

The first one, m

It is used to hold the information about the cost of multiplying the matrices

The second one, s
It is used to hold the place where the parenthesis is selected to minimize the cost

How do we simulate the recursion Bottom-Up?

We do the following...

We use the following strategy:

- Solve the chain of matrices with small size (The smallest is 2 matrices... after all 1 matrix has cost 0)

How do we simulate the recursion Bottom-Up?

We do the following...

We use the following strategy:

- Solve the chain of matrices with small size (The smallest is 2 matrices... after all 1 matrix has cost 0)

Thus, we need
A loop from 2 to n for solving small sequences to larger ones.

How do we simulate the recursion Bottom-Up?

We do the following...

We use the following strategy:

- Solve the chain of matrices with small size (The smallest is 2 matrices... after all 1 matrix has cost 0)

Thus, we need

A loop from 2 to n for solving small sequences to larger ones.

In addition

An inner loop from 1 to $n-l+1$ (We do not want to get out of the sequence of matrices) for solving the smaller problems for the outer loop

Then...

A value

j that is holding the ending index of the subsequence being taken in consideration.

Then...

A value

j that is holding the ending index of the subsequence being taken in consideration.

Then a third loop
To go from i to $j-1$ to take the necessary decisions

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

(1) $\mathrm{n}=\mathrm{p}$.length -1

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

(1) $\mathbf{n}=\mathbf{p}$. length -1
(2) let $m[1 . . n, 1 . . n]$ and $s[1 . . n-1,2 . . n]$ be new tables

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

(1) $\mathbf{n}=$ p.length-1
(2) let $m[1 . . n, 1 . . n]$ and $s[1 . . n-1,2 . . n]$ be new tables
(3) for $i=1$ to \mathbf{n}

4
$m[i, i]=0$

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

(1) $\mathbf{n}=\mathbf{p}$. length -1
(2) let $m[1 . . n, 1 . . n]$ and $s[1 . . n-1,2 . . n]$ be new tables
(3) for $i=1$ to \mathbf{n}
(4) $m[i, i]=0$
(5) for $l=2$ to n
(6) for $i=1$ to $n-l+1$
(7)

$$
j=i+l-1
$$

(8)

$$
m[i, j]=\infty
$$

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

(1) $\mathbf{n}=\mathbf{p}$. length-1
(2) let $m[1 . . n, 1 . . n]$ and $s[1 . . n-1,2 . . n]$ be new tables
(3) for $i=1$ to \mathbf{n}
(4) $m[i, i]=0$
(5) for $l=2$ to n
(6) for $i=1$ to $n-l+1$
(7

$$
j=i+l-1
$$

(8)

$$
m[i, j]=\infty
$$

for $k=i$ to $j-1$
(10)

$$
q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}
$$

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

(1) $\mathbf{n}=\mathbf{p}$. length-1
(2) let $m[1 . . n, 1 . . n]$ and $s[1 . . n-1,2 . . n]$ be new tables
(3) for $i=1$ to \mathbf{n}
(4) $m[i, i]=0$
(5) for $l=2$ to n
(6)

$$
\text { for } i=1 \text { to } n-l+1
$$

$$
j=i+l-1
$$

(8) $m[i, j]=\infty$
for $k=i$ to $j-1$
(10)
(11)

$$
\text { if } q<m[i, j]
$$

(12)

$$
q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}
$$

$$
m[i, j]=q
$$

(13)

$$
s[i, j]=k
$$

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

(1) $\mathbf{n}=\mathbf{p}$. length-1
(2) let $m[1 . . n, 1 . . n]$ and $s[1 . . n-1,2 . . n]$ be new tables
(3) for $i=1$ to \mathbf{n}
(4) $m[i, i]=0$
(5) for $l=2$ to n
(6) for $i=1$ to $n-l+1$
(7

$$
j=i+l-1
$$

$$
m[i, j]=\infty
$$

for $k=i$ to $j-1$
(10)
(11)
(12)
(13)

$$
\begin{aligned}
& q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j} \\
& \text { if } q<m[i, j] \\
& \quad m[i, j]=q \\
& \quad s[i, j]=k
\end{aligned}
$$

(44) return m and s

Example

Example

matrix	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
dimensions	35×30	30×15	15×5	5×10	10×20	20×25

Complexity

By looking at the algorithm we have

```
l\leftarrown-1
i\leftarrown-l-1
j\leftarrowi+l-1
```


Complexity

By looking at the algorithm we have

$$
\begin{aligned}
& l \leftarrow n-1 \\
& i \leftarrow n-l-1 \\
& j \leftarrow i+l-1
\end{aligned}
$$

Then
$O\left(n^{3}\right)$

Reconstruct the Output

PRINT-OPTIMAL-PARENS (s, i, j)

(1) if $i==j$
(3) print " A_{i} "

- else print "("
-

PRINT-OPTIMAL-PARENS $(s, i, s[i, j])$

- PRINT-OPTIMAL-PARENS $(s, s[i, j]+1, j)$
- print ")"

Reconstruct the Output

PRINT-OPTIMAL-PARENS (s, i, j)

(1) if $i==j$
(3) print " A_{i} "
© else print "("

PRINT-OPTIMAL-PARENS $(s, i, s[i, j])$

- PRINT-OPTIMAL-PARENS $(s, s[i, j]+1, j)$
- print ")"

Final solution for the example
$\left(\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right)\right.$

Outline

(1) Dynamic Programming

- Bellman Equation
- Elements of Dynamic Programming
- Rod Cutting
(2) Elements of Dynamic Programming
- Optimal Substructure
- Overlapping Subproblems
- Reconstruction of Subproblems
- Common Subproblems
(3) Examples
- Longest Increasing Subsequence
- Matrix Multiplication
- Longest Common Subsequence
(4) Exercises

In Biology

Biological applications often need to compare the DNA of two (or more) different organisms.

Why?

Because given these strands

- $S_{1}=$ ACCGGTCGAGTGCGCGGAAGCCGGCCGAA

Why?

Because given these strands

- $S_{1}=$ ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
- $S_{1}=$ GTCGTTCGGAATGCCGTTGCTCTGTAAA

Why?

Because given these strands

- $S_{1}=$ ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
- $S_{1}=$ GTCGTTCGGAATGCCGTTGCTCTGTAAA

We want

To determine how "similar" the two strands are, as some measure of how closely related the two organisms are.

Ways of Measuring Similarity

For example

We can say that two DNA strands are similar if one is a substring of the other.

Ways of Measuring Similarity

For example

We can say that two DNA strands are similar if one is a substring of the other.

However

This does not happen in the previous example...

Ways of Measuring Similarity

For example

We can say that two DNA strands are similar if one is a substring of the other.

However

This does not happen in the previous example...

A better measure

Imagine that you are given another strand S_{3} in which the bases on it appears in S_{1} and S_{2} (Common Basis)

The Longer Strand

The Longer S_{3}
The more similar the organism, represented by S_{1} and S_{2}, are.

The Longer Strand

The Longer S_{3}

The more similar the organism, represented by S_{1} and S_{2}, are.

Thus

We need to find S_{3} the Longest Common Subsequence

Longest Common Subsequence

Definition

Given a sequence $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$, a sequence $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ is a subsequence of X if there exist a strictly increasing sequence $\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle$ of indices of X such that $x_{i}=z_{j}$.

Longest Common Subsequence

Definition

Given a sequence $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$, a sequence $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ is a subsequence of X if there exist a strictly increasing sequence $\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle$ of indices of X such that $x_{i}=z_{j}$.

Therefore

Given two sequences X and Y, we say that Z is a common subsequence of X and Y, if Z is a subsequence of both X and Y.

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be sequences, and let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be sequences, and let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.
(1) If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be sequences, and let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.
(1) If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
(2) If $x_{m} \neq y_{n}$, then $z_{k} \neq x_{m}$ implies that Z is an LCS of X_{m-1} and Y.

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be sequences, and let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.
(1) If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
(2) If $x_{m} \neq y_{n}$, then $z_{k} \neq x_{m}$ implies that Z is an LCS of X_{m-1} and Y.
(3) If $x_{m} \neq y_{n}$, then $z_{k} \neq y_{n}$ implies that Z is an LCS of X and Y_{n-1}.

Overlapping Property

To find an LCS for X and Y, we may need to find

- LCS of X_{n-1} and Y_{n-1}

Overlapping Property

To find an LCS for X and Y, we may need to find

- LCS of X_{n-1} and Y_{n-1}
- LCS of X and Y_{n-1}

Overlapping Property

To find an LCS for X and Y, we may need to find

- LCS of X_{n-1} and Y_{n-1}
- LCS of X and Y_{n-1}
- LCS of Y and X_{m-1}

Thus

For the first case
 $\operatorname{Recursion}(i, j)=\operatorname{Recursion}(i-1, j-1)+1$

Thus

> For the first case
> $\operatorname{Recursion}(i, j)=\operatorname{Recursion}(i-1, j-1)+1$

Second case

$\operatorname{Recursion}(i, j)=\operatorname{Recursion}(i, j-1)$

Thus

> For the first case
> Recursion $(i, j)=\operatorname{Recursion}(i-1, j-1)+1$

Second case

$\operatorname{Recursion}(i, j)=\operatorname{Recursion}(i, j-1)$

However, you have the too
$\operatorname{Recursion}(i, j)=\operatorname{Recursion}(i-1, j)$

Then, we can collapse second and third case

In the following way

$\operatorname{Recursion}(i, j)=\max \{\operatorname{Recursion}(i-1, j), \operatorname{Recursion}(i, j-1)\}$

The Final Recurrence

Let $c[i, j]$ the length of the common subsequence of X_{i}, Y_{j}

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max (c[i, j-1], c[i-1, j]) & \text { if } i, j>\text { and } x_{i} \neq y_{j}\end{cases}
$$

Thus, we can do the following

It is possible

To develop an exponential algorithm.

Thus, we can do the following

It is possible

To develop an exponential algorithm.

However

- Let us to develop an algorithm that takes $O(m n)$

Thus, we can do the following

It is possible

To develop an exponential algorithm.

However

- Let us to develop an algorithm that takes $O(m n)$

First, we need to take in account

- $X=\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\rangle$

Thus, we can do the following

It is possible

To develop an exponential algorithm.

However

- Let us to develop an algorithm that takes $O(m n)$

First, we need to take in account

- $X=\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\rangle$
- $Y=\left\langle y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\rangle$

We do the following

Use extra memory

- You can store the result of $c[i, j]$ values in a table $c[0 . . m .0 . . n]$

We do the following

Use extra memory

- You can store the result of $c[i, j]$ values in a table $c[0 . . m .0 . . n]$
- In order to use it, the entries are computed in row-major order.

We do the following

Use extra memory

- You can store the result of $c[i, j]$ values in a table $c[0 . . m .0 . . n]$
- In order to use it, the entries are computed in row-major order.

Row-Major Order

The procedure fills in the first row of c from left to right, then the second row, and so on.

We do the following

Use extra memory

- You can store the result of $c[i, j]$ values in a table $c[0 . . m .0 . . n]$
- In order to use it, the entries are computed in row-major order.

Row-Major Order

The procedure fills in the first row of c from left to right, then the second row, and so on.

Why?

Clearly, we are using the bottom-up approach, so we get the results for the smallest problem first!!!

We also have a table to store the decisions

Ok, What type of symbols are in that table?

	y_{i}	a	v	c	r	e
x_{i}	0	0	0	0	0	0
a	0	\nwarrow				
b	0					
c	0			\nwarrow		
d	0					
e	0					\nwarrow

Thus, for the different cases

$x_{m}=y_{n}$

- Simply use the symbol " \nwarrow ".
- After all we are consuming the same symbol

Thus, for the different cases

$$
x_{m}=y_{n}
$$

- Simply use the symbol " \nwarrow ".
- After all we are consuming the same symbol

$$
c[i-1, j] \geq c[i, j-1]
$$

- Simply use the symbol " \uparrow ".
- After all you are moving up in the rows

Thus, for the different cases

$$
x_{m}=y_{n}
$$

- Simply use the symbol " \nwarrow ".
- After all we are consuming the same symbol

$$
c[i-1, j] \geq c[i, j-1]
$$

- Simply use the symbol " \uparrow ".
- After all you are moving up in the rows

$$
c[i-1, j]<c[i, j-1]
$$

- Simply use the symbol " \leftarrow ".
- After all you are moving left in the columns

How, we fill $c[0 . . m .0 . . n]$

Something Notable

We need to increase the columns and the rows.

How, we fill $c[0 . . m .0 . . n]$

Something Notable

We need to increase the columns and the rows.

```
Thus
- for \(i=1\) to \(m\)
for \(j=1\) to \(n\)
```

How, we fill $c[0 . . m .0 . . n]$

Something Notable

We need to increase the columns and the rows.

Thus

- for $i=1$ to m
- for $j=1$ to n

In addition, $c[0 . . m, 0]$ and $c[0,0 . . n]$
If one of your subproblems is empty:

- We know that the common elements are 0.

Final Algorithm - Complexity $O(m n)$

LCS-Length (X, Y)

(1) $m=X$.length
(2) $n=Y$.length

Final Algorithm - Complexity $O(m n)$

LCS-Length (X, Y)

(1) $m=$ X.length
(2) $n=Y$.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables

Final Algorithm - Complexity $O(m n)$

LCS-Length (X, Y)

(1) $m=X$.length
(2) $n=Y$.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables
(4) for $i=1$ to m
(5) $c[i, 0]=0$

Final Algorithm - Complexity $O(m n)$

LCS-Length (X, Y)

(1) $m=$ X.length
(2) $n=$ Y.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables
(4) for $i=1$ to m
(5) $c[i, 0]=0$
(6) for $j=0$ to n
(7

$$
c[0, j]=0
$$

Final Algorithm - Complexity $O(m n)$

LCS-Length (X, Y)

(1) $m=$ X.length
(2) $n=$ Y.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables
(4) for $i=1$ to m
(5) $c[i, 0]=0$
(6) for $j=0$ to n
(7) $c[0, j]=0$
(8) for $i=1$ to m
(9) for $j=1$ to n

Final Algorithm - Complexity $O(m n)$

LCS-Length (X, Y)

(1) $m=X$.length
(2) $n=Y$.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables
(4) for $i=1$ to m
(5) $c[i, 0]=0$
(6) for $j=0$ to n
(7) $c[0, j]=0$
(8) for $i=1$ to m

0

$$
\text { for } j=1 \text { to } n
$$

$$
\text { if } x_{i}==y_{j}
$$

$$
c[i, j]=c[i-1, j-1]+1
$$

$$
b[i, j]=" \nwarrow "
$$

Final Algorithm - Complexity $O(m n)$
LCS-Length (X, Y)
(1) $m=X$.length
(2) $n=Y$.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables
(4) for $i=1$ to m
(5) $c[i, 0]=0$
(6) for $j=0$ to n
(7) $c[0, j]=0$
(8) for $i=1$ to m
(9) for $j=1$ to n
(11)

$$
\begin{aligned}
& \text { if } x_{i}==y_{j} \\
& \quad c[i, j]=c[i-1, j-1]+1 \\
& b[i, j]=" \nwarrow " \\
& \text { elseif } c[i-1, j] \geq c[i, j-1] \\
& c[i, j]=c[i-1, j] \\
& \quad b[i, j]=" \uparrow "
\end{aligned}
$$

Final Algorithm - Complexity $O(m n)$
LCS-Length (X, Y)
(1) $m=X$.length
(2) $n=Y$.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables
(4) for $i=1$ to m
(5) $c[i, 0]=0$
(6) for $j=0$ to n
(7) $c[0, j]=0$
(8) for $i=1$ to m
(9) for $j=1$ to n
(10)

$$
\begin{aligned}
& \text { if } x_{i}==y_{j} \\
& \quad c[i, j]=c[i-1, j-1]+1 \\
& b[i, j]=" \nwarrow " \\
& \text { elseif } c[i-1, j] \geq c[i, j-1] \\
& c[i, j]=c[i-1, j] \\
& b[i, j]=" \uparrow " \\
& \text { else } c[i, j]=c[i, j-1] \\
& \quad b[i, j]=" \leftarrow "
\end{aligned}
$$

Final Algorithm - Complexity $O(m n)$
LCS-Length (X, Y)
(1) $m=X$.length
(2) $n=Y$.length
(3) let $b[1 . . m, 1 . . n]$ and $c[0 . . m, 0 . . n]$ be new tables
(4) for $i=1$ to m
(5) $c[i, 0]=0$
(6) for $j=0$ to n
(7) $c[0, j]=0$
(8) for $i=1$ to m
(9) for $j=1$ to n
(10)
(11) $x_{i}==y_{j}$
(12)
(13)
(14)
(15)
(10)
(17)
(17)
(18) return c and b

Example

The matrices after running the algorithm

$$
\begin{aligned}
& \begin{array}{llllllll}
j & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{aligned}
$$

Constructing the LCS

PRINT-LCS(b, X, i, j)

(1) if $i==0$ or $j==0$
(2) return

Constructing the LCS

PRINT-LCS($b, X, i, j)$

(1) if $i==0$ or $j==0$
(2) return

- if $b[i, j]==$ " $久 "$
- PRINT-LCS($b, X, i-1, j-1)$
- print x_{i}

Constructing the LCS

PRINT-LCS($b, X, i, j)$

(1) if $i==0$ or $j==0$
(2) return
(3) if $b[i, j]==$ " \nwarrow "
(9) PRINT-LCS $(b, X, i-1, j-1)$
(5) print x_{i}
(0) elseif $b[i, j]==$ " \uparrow "
(PRINT-LCS $(b, X, i-1, j)$

Constructing the LCS

PRINT-LCS($b, X, i, j)$

(1) if $i==0$ or $j==0$
(2) return
(3) if $b[i, j]==" \nwarrow "$
(9) PRINT-LCS $(b, X, i-1, j-1)$
(5) print x_{i}
(0) elseif $b[i, j]==$ " \uparrow "
(PRINT-LCS $(b, X, i-1, j)$
(8) else PRINT-LCS $(b, X, i, j-1)$

Complexity
 $O(m+n)$

Exercises

From Cormen's book solve

- 15.3-3
- 15.3-5
- 15.2-3
- 15.2-4
- 15.2-5
- 15.4-2
- 15.4-4
- 15.4-5

