
Analysis of Algorithms
Dynamic Programming

Andres Mendez-Vazquez

February 14, 2018

1 / 125



Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

2 / 125



History

Dynamic Programming
The dynamic programming was developed in 1940’s by Richard Bellman at
RAND Corporation to solve problems by taking the best decisions one
after another.

You can think as
1 Sending a recursive function to do different jobs.
2 Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions
Dynamic was chosen by Bellman to capture the temporal part of the
problem.
Programming referred to finding the optimal program in military
logistic.
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Bellman Equation

Definition
V (x0) = max

a0
[F (x0) + βV (x1)]

s.t. a0 ∈ Γ(x0), x1 = T (x0, a0)

Where Γ(x0) is a set of actions depend on the current state.
T (x0, a0) is a transition function.
F (x0) payoff.
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Looks Terrifying!!!

However
It is quite simple!!!
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Elements of Dynamic Programming

Define the Optimal Structure
Characterize the structure of an optimal solution.

Define the Recursion
Recursively define the value of an optimal solution.

Compute the Solution

Compute the value of an optimal solution, typically bottom-up.

IMPORTANT!!!
We use an extra memory to stop the recursion!!!
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Elements of Dynamic Programming

Finally Rebuild the Optimal Solution
Construct an optimal solution from computed information.
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Rod cutting

Problem
Given a rod of length n inches and a table of prices pi for i = 1, 2, ..., n,
determine the maximum revenue rn obtainable by cutting up the rod and
selling the pieces.

Rod Cutting table
length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30
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Characterize the structure of an optimal solution

Example
For example for a rod of size 10, we could cut the rod in 3 parts,
10=4+3+3.

Thus
Then, we can assume that an optimal solution cuts the rod in k pieces,
1 ≤ k ≤ n i.e. k − 1 cuts.

Then
What?
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Thus

The length of each piece can be numbered as
ij with 1 ≤ j ≤ k

The total size of the rod is then

Thus, the max revenue
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Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!
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How can you obtain the recursion?

What about taking a decision each time?
In how to cut the rod!

For example
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It looks like what?

One more cut
10

5 5

2 3 4 1

Yes
Recursion
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Thus, What can we do next?

We need to take decisions
One cut at each step.

For example
1 No cut n =⇒ pn

2 n = i1 + in−1 =⇒ rn = r1 + rn−1
3 n = i2 + in−2 =⇒ rn = r2 + rn−2
4 · · ·

In general
n = ij + in−j =⇒ r = rj + rn−1 for j = 1, 2, ..., n− 1
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Thus, we take a final decision!!!

Thus
Which One?

The Largest One
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Thus, we take a final decision!!!

Thus
Which One?

The Largest One
rn = max {pn, r1 + rn−1, r2 + rn−2, ..., rn−1 + r1}
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Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction
1 Imagine that a sub-solution has a better solution...
2 Then, you can substitute it in the original sub-solution.
3 Thus, you get something better than the original one.
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Formally: Cut and Paste

Given
n = i1 + i2 + ...+ ik

Imagine, we split the problem in two parts
A1 = {i1,, i2, ..., il} and A2 = {il+1,, i2, ..., ik}

Properties
Now imagine that exist a A′

1 =
{
i

′
1, i

′
2, ..., il

}
such that:

r
′
n = p

i
′
1

+ p
i
′
2

+ ...+ pi
l
′ > rn = pi1 + pi2 + ...+ pil
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Then

Then, we have a set of cuts
A

′
1 ∪A2 with better revenue than the original cut-set!!!

Clearly
Contradiction!!!
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Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable r0 = 0

In addition, we have that
ri = pi for i = 1, 2, ..., n

We can then apply this...
1 pn = pn + r0
2 r1 + rn−1 = p1 + rn−1
3 r2 + rn−2 = p2 + rn−2
4 ...
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Then

We have that

rn = max
1≤i≤n

(pi + rn−i)

So we need to convert this into something more programmable
You can define Cut-Rod(p, n− i) where

p is an array with the table values.
n− i is the size of the rod when going into the recursion.
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Finally

Code
Cut-Rod(p, n)

1 if n == 0
2 return 0
3 q = −∞
4 for i = 1 to n
5 q = max {q, p [i] + Cut-Rod (p, n− i)}
6 return q

24 / 125



How the recursion tree for this code looks like?

First, Did you notice this?
4

3 2 1 0

1 01 0 02

1 0 0

0

0
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Recursion

We have finally

T (n) =
{

1 if n = 0
1 +

∑n−1
j=0 T (j) if n > 0

(1)

1 for calling into the root of the tree.
T (j) counts the number of call (Recursive included)

How many possible decisions are being considered when cutting?
Decision cut at 1 cut at 2 · · · cut at n-1

Which One? 0 or 1 0 or 1 · · · 0 or 1
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What the tree is telling us?

The number of possible paths is equal to the number of leaves
We have 2n−1 paths, which is equal to the number of leaves

Then
The recursion consider explicitly all possible decisions

It is possible to prove by induction that

T (n) = 2n (2)
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How we solve this?

We need something better
Dynamic programming approach!!!

How?
This is done by computing each sub-problem only once and storing its
solution in some way.
This is known as time-memory trade-off, and the savings may be
dramatic.

How and Why
Dynamic programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input
size and they can be solved in polynomial time.
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First Approach: Top-down with Memoization

Basics in this approach
1 We write the procedure recursively in a natural manner.
2 However, we save the result of each subproblem (Usually in an array

or hash table)

Then
Each time the procedure tries to solve a subproblem it first checks to see
whether it has previously solved this subproblem.

We can say the following
We say that the recursive procedure has been Memoized.
it “remembers” what results it has computed previously.
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We require an Auxiliary Function to Accomplish this

Code
Memoized-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 for i = 0 to n
3 r [i] = −∞
4 return Memoized-Cut-Rod-Aux(p, n, r)
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Memoized-Cut-Rod-Aux(p, n, r)

Code
Memoized-Cut-Rod-Aux(p, n, r)

1 if r [n] ≥ 0
2 return r [n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n
7 q = max {q, p [i] + Memoized-Cut-Rod-Aux (p, n− i, r)}
8 r [n] = q

9 return q
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The Recursion Tree of Memoized-Cut-Rod

Tree for n = 5
5

4 2 1 0

1 02

2 1 0

3

3

1 0

0
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Thus

We have that
It solves each subproblem just once.
It solves subproblems for sizes i = 0, 1, ..., n

Thus
To solve a problem of size i the for loop in line 6 of
Memoized-Cut-Rod-Aux iterates i times.
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Then look at this..

Something Notable
5

4 2 1 0

1 02

2 1 0

3

3

1 0

0

5

4

3

2

1
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Complexity

Add the works
We have then

1 + 2 + 3 + ...+ n = n (n+ 1)
2 (3)

Then, we have
Θ
(
n2).
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What about the Bottom-Up approach?

Simpler Solution
How?

The natural order of solving
A problem of size i is smaller than a subproblem of size j, if i < j.

It is simpler to solve problems in this orden
j = 0, 1, 2, ..., n in order of increasing size.
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Bottom-Up-Cut-Rod(p, n)

Code
Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max {q, p [i] + r [j − i]}
7 r [j] = q

8 return r [n]
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How to See Everything: Subproblem Graphs (DAG)

In dynamic programing
It is necessary to understand how subproblems depend on each other.

This information can be found in the subproblem graph which is a
DAG
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Reconstructing the Solution

How, we can do that?
Any Ideas?

We need to...

So...
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Reconstructing the Solution

How, we can do that?
Any Ideas?

We need to...
Store each choice of the solution some way

So...
We can reconstruct the solution path
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Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s
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Printing Code

Code
Print-Cut-Rod-Solution(p, n)

1 (r, s) =Extended-Bottom-Up-Cut-Rod(p, n)
2 while n > 0
3 print s [n]
4 n = n− s [n]
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Example

From the previous problem
length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Thus
i 0 1 2 3 4 5 6 7 8 9 10
r [i] 0 1 5 8 10 13 17 18 22 25 30
s [i] 0 1 2 3 2 2 6 1 2 3 10
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2 Elements of Dynamic Programming
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Optimal Substructure

In dynamic programming
A first step toward the solution is characterizing the problem and finding
the optimal substructure.
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We have the following steps

First
The problem consists in making choices.

Second
Given each problem, you are given a choice that leads to a solution.

Third
Each solution allows us to determine which subproblems need to be solved,
and how to best characterize the resulting space of subproblems.
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We have the following steps

Fourth
Use cut-and-paste to prove by contradiction that the optimal subproblem
structure exists.
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Now using the following problems

Unweighted shortest path
Find a path from u to v consisting of the fewest edges.

Unweighted longest simple path
Find a simple path from u to v consisting of the most edges.
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We can explain subtleties about the Optimal Substructure

Unweighted shortest path
It has an optimal substructure

Why?
First, given an optimal shortest path t between p and q.
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First, given an optimal shortest path t between p and q.

p q

t
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How do we prove this?

First
Assume an intermediate point z such that there are two paths t1 and t2,
t = t1 ∪ t2

p q

By contradiction
Thus, by contradiction, assume that there is a shorter path between z and
q, t12. Then,

∣∣t1 ∪ t12∣∣ < t⊥ Quod Erat Demonstrandum (QED).
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However

Some problems do not have the optimal substructure
The longest unweighted path

Example
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The longest unweighted path

Example

q r

s t
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Examples

First: Possible path between q and t

q −→ r −→ t

But
q −→ r is not the longest simple path from q and r nor the path r −→ t

Example of largest simple path for q −→ r

q −→ s −→ t −→ r
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What the problem shows

We have that
It not only does the problem lack optimal substructure.

I We cannot necessarily assemble a “legal” solution to the problem from
solutions to subproblems.

It is more
No efficient dynamic programming algorithm for this problem has ever
been found.

I In fact, this problem is NP-complete.
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Then, How can we use the DAG?

Get the Space Problem
Use the elements of the space.
Build a Graph using all the decisions that can be made.
If you have a DAG!!! You have a optimal substructure!!!
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What is the difference?

In the Unweighted Shortest Path the problems are independent
We mean that the solution to one sub-problem does not affect the solution
of another subproblem.

In the Unweighted Longest Path
Remember vertices q and r in the second case!!!

Question
Then, Why the USP are independent?
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Overlapping Subproblems

Why
This happens because the recursive solution revisits the same subproblem
multiple times.

This is the main advantage of dynamic programming
It takes advantage of this by solving and storing the solution.

Properties
A dynamic-programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input size
and they can be solved in polynomial time.
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Overlapping Subproblems

We have two ways of solving the problem
Top-down with Memoization.
Bottom-up.
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Reconstruction of Subproblems

To reconstruct
We use a table to store the choices such that we can reconstruct those of
the sub-problem.
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Common Subproblems

Something Notable
Finding the right subproblem takes creativity and experimentation.

However
There are a few standard choices that arise repeatedly in dynamic
programming.

61 / 125



Common Subproblems

Something Notable
Finding the right subproblem takes creativity and experimentation.

However
There are a few standard choices that arise repeatedly in dynamic
programming.

61 / 125



Number of Subproblems is Linear

We have the following input
The input is x1, x2, ..., xn.

Subproblems
x1, x2, ..., xi

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is therefore linear.
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Number of Subproblems is O (nm)

Input
The input is x1, x2, ..., xn and y1, y2, ..., ym.

Subproblems
x1, x2, ..., xi and y1, y2, ..., yj .

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

Therefore
The number of subproblems is O(mn).
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Number of Subproblems is O (n2)

Input
The input is x1, x2, ..., xn.

Subproblems
xi, xi+1, ..., xj

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is O

(
n2).
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Input is a rooted subtree

Input
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Input is a rooted subtree

Subproblem
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Question

How Many Subproblems do you have?
Any Idea?
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Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises
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Definition

Input
A sequence a1, a2, ..., an

A subsequence
It is any subset of these numbers taken in order ai1 , ai2 , ..., aik

where
1 ≤ i1 < i2 < · · · < ik ≤ n.

Thus
An increasing subsequence is one in which the numbers are getting strictly
larger.
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Definition

Output
The task is to find the increasing subsequence of greatest length.

Example
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Definition

Output
The task is to find the increasing subsequence of greatest length.

Example
5     2     8       6     3     6      9     7
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The Graph of increasing subsequences

To better understand the solution space, we can create the graph of
all permissible transitions

First, establish a node i for each element ai, and add directed edges
(i, j) whenever possible.
i.e. Whenever i < j and ai < aj .

The Graph
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Notice the following

We have
The graph is a DAG

Thus
There is a one-to-one correspondence between increasing
subsequences and paths in this DAG.
Thus, find the longest path in the DAG.
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Formulation

Something Notable
If we choose a number aj to be in the longest increasing subsequence

We ask if the there is an edge to another
Is (i, j) ∈ E?

Thus, we need to choose all of them!!!
This can be done with a for loop
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Thus

We start at a certain j

Then, we look at the previous i with 1 ≤ i ≤ j − 1

Here is the recursion for ∀A[i] < A[j]

L [j] =
{

1 if there is no edge (i, j) ∈ E
1 + max {L [i1] , L [i2] , ..., L [ih]} For (ik, j) ∈ E, 1 ≤ k ≤ h

(4)
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What is the meaning of this?

When is there an edge between ik and j?

jj-1j-221
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Clearly, this needs to be implemented in a machine

We have then that
A is an array that contains numbers indexed from 1 to n

Then, we have that

Instead of using (ik, j) ∈ E we use A [ik] < A [j]

Instead of max

We use a loop and something like q < temp for it
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Recursive Function

The final recursive code
Recursive-Longest-Subsequence(A,n)

1 q = 1
2 // Assume n as part of your solution
3 // Thus A [i] < A [n] here j == n
4 for i = 1 to n− 1
5 t =Recursive-Longest-Subsequence(A, i)
6 if A[i] < A [n] and q < 1 + t
7 q = 1 + t

8 return q
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What about the Complexity?

Recursion Tree - Can somebody Guess the Complexity?
L(5)

L(1) L(2) L(3) L(4)

L(1) L(2)

L(1)

L(1) L(1) L(2)

L(1)

L(3)

L(2)

L(1)

L(1)
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How we save in recursive calls

First
Let L [1..n] an array to store the values the longest subsequence
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Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 1
An array to store the
values the longest
subsequence.
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7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 2
A measure about the
longest subsequence.
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Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
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7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 3
Initialize everything to 1
(Itself).
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Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 4
We know that the
subproblem with size 1
has a solution, thus you
need to start at 2.
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Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 5
Get solutions to the
subproblems less or
equal than j − 1
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Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 6
Take a decision
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Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 7
If the decision is true
then increase the counter
for solution starting at j
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Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 8
Find the Maximum
Value
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What about backtracking the Solution

We can do the following
You can have an array S [1..n] initialized to the sequence 1, 2, ..., n

Thus, each time
A[i] < A[j] and L [j] < L [i] + 1 is true, we set S[j] = i.

Then
After returning the L and S we can get the index of the max to backtrack
the answer.
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Definition of The Problem

Input
A sequence of Matrices 〈A1, A2, ..., An〉

Output
We want a fully parenthesized product, where the final result is a single
matrix or the product of two fully parenthesized matrix products.

Why
Take in consideration the following algorithm
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Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)
1 if A.columns 6= B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows×B.columns matrix
4 for i = 1 to A.rows
5 for for j = 1 to B.columns
6 cij = 0
7 for k = 1 to A.columns
8 cij = cij + aik · bkj

9 return C

Then
If A is N ×M and B is a M × P then the cost is N ·M · P .
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Example of Matrix Multiplications

Given the following matrices
A,B,C with 10× 100, 100× 5 and 5× 50
Cost in scalar operations of (AB) is 10 · 100 · 5 = 5000
Cost in scalar operations of (BC) is 100 · 5 · 50 = 25000

Then
Cost in scalar operations of (AB)C is 5000 + 10 · 5 · 50 = 7500
Cost in scalar operations of A(BC) is 25000 + 10 · 100 · 50 = 75000
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Matrix-Chain Multiplication

Problem
Given a chain 〈A1, A2, ..., An〉 of n matrices, where Ai has dimension
pi−1 × pi. We want to fully parenthesize the product A1A2...An to
minimize the number of scalar multiplications
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Solving by brute force

Count all the possible parenthesizations

P (n) =


1 if n = 1
n−1∑
k=1

P (k)P (n− k) if n ≥ 2

Which is the sequence of Catalan Numbers which grows

Ω
(

4n

n
3
2

)
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Did you notice the following?

If we have the following sequence Ak−1 (AkAk+1)
We have that Ak−1 has dimension pk−2 × pk−1, Ak has dimension
pk−1 × pk and Ak+1 has dimension pk × pk+1.

The final matrix has dimensions
It has dimension pk−2 × pk+1.

Properties
With cost of multiplication:

1 For the first parenthesis pk−1pkpk+1 with final dimension pk−1× pk+1.

2 For Ak−1 against what is inside parenthesis pk−2pk−1pk+1 with final
dimensions pk−2 × pk+1.

3 Total cost is then pk−2pk−1pk+1 + pk−1pkpk+1
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In addition

Look at the following multiplication
(Ai · · ·Ak) (Ak+1 · · ·Aj)

We have the following
1 (Ai · · ·Ak) is a matrix with dimensions pi−1 × pk

2 (Ak+1 · · ·Aj) is a matrix with dimensions pk × pj

The total cost of this multiplication is
m [i, k] +m [k + 1, j] + pi−1pkpj (In addition, you want to minimize
the cost)
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Then use the Cut-and-Paste to probe optimal substructure

Given i < j

Suppose the optimal paranthesization of

Ai, Ai+1, ..., Aj

USE CONTRADICTION!
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Now, the Recursion can be wrote!!!

Given that m[i,j] is the minimum number of scalar multiplications

m[i, j] =
{

0 if i == j
min

i≤k<j
{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j
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The Recursive Solution

Recursive Algorithm
1 Recursive-Matrix-Chain(p, i, j)
2 if i == j
3 return 0
4 m[i, j] =∞
5 for k = i to j − 1
6 q = Recursive-Matrix-Chain(p, i, k) + ...
7 Recursive-Matrix-Chain(p, k + 1, j) +...
8 pi−1pkpj

9 if q < m [i, j]
10 m [i, j] = q

11 return m [i, j]
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Again!!! Overlapping substructure

Red Line Represents the Recursion Path
1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4

3..3 4..4 2..2 3..3

1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

2..2 3..3 1..1 2..2
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This is a nightmare

We have the following recursion

T (1) ≥ 1,

T (n) ≥ 1 +
n−1∑
k=1

[T (n− k) + T (k) + 1] for n > 1.
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First

Did you notice?
T (i) appears once as T (k) and once as T (n− k) for i = 1, 2, ..., n− 1.

We have then

T (n) ≥ 1 + 2
n−1∑
i=1

[T (i)] + n− 1.
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Then

We decide to guess T (n) = Ω (2n)
We shall guess the following T (n) ≥ 2n−1 for all n ≥ 1
First for n = 1 T (1) ≥ 1 = 20
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Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
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Thus

We want to avoid to calculate the same value many times
Use bottom up approach and store values at each step.
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We get two arrays or tables

The first one, m

It is used to hold the information about the cost of multiplying the
matrices

The second one, s

It is used to hold the place where the parenthesis is selected to minimize
the cost
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How do we simulate the recursion Bottom-Up?

We do the following...
We use the following strategy:

Solve the chain of matrices with small size (The smallest is 2
matrices... after all 1 matrix has cost 0)

Thus, we need
A loop from 2 to n for solving small sequences to larger ones.

In addition
An inner loop from 1 to n− l + 1 (We do not want to get out of the
sequence of matrices) for solving the smaller problems for the outer loop
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Then...

A value
j that is holding the ending index of the subsequence being taken in
consideration.

Then a third loop
To go from i to j − 1 to take the necessary decisions
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Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
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Example

Example
matrix A1 A2 A3 A4 A5 A6

dimensions 35× 30 30× 15 15× 5 5× 10 10× 20 20× 25
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Complexity

By looking at the algorithm we have
l← n− 1
i← n− l − 1
j ← i+ l − 1

Then
O(n3)
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Reconstruct the Output

PRINT-OPTIMAL-PARENS(s, i, j)
1 if i == j

2 print “Ai”
3 else print “(”
4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])
5 PRINT-OPTIMAL-PARENS(s, s [i, j] + 1, j)
6 print “)”

Final solution for the example
((A1(A2A3))((A4A5)A6)
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Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises
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In Biology
Biological applications often need to compare the DNA of two (or
more) different organisms.
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Why?

Because given these strands
S1= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S1= GTCGTTCGGAATGCCGTTGCTCTGTAAA

We want
To determine how “similar” the two strands are, as some measure of how
closely related the two organisms are.
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Ways of Measuring Similarity

For example
We can say that two DNA strands are similar if one is a substring of the
other.

However
This does not happen in the previous example...

A better measure
Imagine that you are given another strand S3 in which the bases on it
appears in S1 and S2 (Common Basis)
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The Longer Strand

The Longer S3

The more similar the organism, represented by S1 and S2, are.

Thus
We need to find S3 the Longest Common Subsequence
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Longest Common Subsequence

Definition
Given a sequence X = 〈x1, x2, ..., xm〉, a sequence Z = 〈z1, z2, ..., zk〉 is a
subsequence of X if there exist a strictly increasing sequence 〈i1, i2, ..., ik〉
of indices of X such that xi = zj .

Therefore
Given two sequences X and Y , we say that Z is a common subsequence
of X and Y , if Z is a subsequence of both X and Y .
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Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)
Let X = 〈x1, x2, ..., xm〉 and Y = 〈y1, y2, ..., yn〉 be sequences, and let
Z = 〈z1, z2, ..., zk〉 be any LCS of X and Y .

1 If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and
Yn−1.

2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y .
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1.
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Overlapping Property

To find an LCS for X and Y , we may need to find
LCS of Xn−1 and Yn−1

LCS of X and Yn−1

LCS of Y and Xm−1
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Thus

For the first case
Recursion(i, j) = Recursion(i− 1, j − 1) + 1

Second case
Recursion(i, j) = Recursion(i, j − 1)

However, you have the too
Recursion(i, j) = Recursion(i− 1, j)
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Then, we can collapse second and third case

In the following way
Recursion(i, j) = max {Recursion(i− 1, j), Recursion(i, j − 1)}
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The Final Recurrence

Let c[i, j] the length of the common subsequence of Xi, Yj

c[i, j] =


0 if i = 0 or j = 0
c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max(c[i, j − 1], c[i− 1, j]) if i, j > and xi 6= yj

116 / 125



Thus, we can do the following

It is possible
To develop an exponential algorithm.

However
Let us to develop an algorithm that takes O (mn)

First, we need to take in account
X = 〈x1, x2, x3, ..., xm〉
Y = 〈y1, y2, y3, ..., yn〉
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We do the following

Use extra memory
You can store the result of c [i, j] values in a table c [0..m.0..n]

I In order to use it, the entries are computed in row-major order.

Row-Major Order
The procedure fills in the first row of c from left to right, then the
second row, and so on.

Why?
Clearly, we are using the bottom-up approach, so we get the results for the
smallest problem first!!!
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We also have a table to store the decisions

Ok, What type of symbols are in that table?
yi a v c r e

xi 0 0 0 0 0 0
a 0 ↖
b 0
c 0 ↖
d 0
e 0 ↖
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Thus, for the different cases

xm = yn

Simply use the symbol ”↖ ”.
After all we are consuming the same symbol

c[i− 1, j] ≥ c[i, j − 1]
Simply use the symbol ” ↑ ”.
After all you are moving up in the rows

c[i− 1, j] < c[i, j − 1]
Simply use the symbol ”← ”.
After all you are moving left in the columns
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How, we fill c [0..m.0..n]

Something Notable
We need to increase the columns and the rows.

Thus
for i = 1 to m

for j = 1 to n

In addition, c [0..m, 0] and c [0, 0..n]
If one of your subproblems is empty:

We know that the common elements are 0.
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Final Algorithm - Complexity O(mn)
LCS-Length(X, Y )

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b
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Example

The matrices after running the algorithm
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Constructing the LCS

PRINT-LCS(b, X, i, j)
1 if i == 0 or j == 0
2 return
3 if b [i, j] == ”↖ ”
4 PRINT-LCS(b,X, i− 1, j − 1)
5 print xi

6 elseif b [i, j] == ” ↑ ”
7 PRINT-LCS(b,X, i− 1, j)
8 else PRINT-LCS(b,X, i, j − 1)

Complexity
O(m+ n)
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Exercises

From Cormen’s book solve
15.3-3
15.3-5
15.2-3
15.2-4
15.2-5
15.4-2
15.4-4
15.4-5
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