
Analysis of Algorithms
Dynamic Programming

Andres Mendez-Vazquez

February 14, 2018

1 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

2 / 125

History

Dynamic Programming
The dynamic programming was developed in 1940’s by Richard Bellman at
RAND Corporation to solve problems by taking the best decisions one
after another.

You can think as
1 Sending a recursive function to do different jobs.
2 Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions
Dynamic was chosen by Bellman to capture the temporal part of the
problem.
Programming referred to finding the optimal program in military
logistic.

3 / 125

History

Dynamic Programming
The dynamic programming was developed in 1940’s by Richard Bellman at
RAND Corporation to solve problems by taking the best decisions one
after another.

You can think as
1 Sending a recursive function to do different jobs.
2 Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions
Dynamic was chosen by Bellman to capture the temporal part of the
problem.
Programming referred to finding the optimal program in military
logistic.

3 / 125

History

Dynamic Programming
The dynamic programming was developed in 1940’s by Richard Bellman at
RAND Corporation to solve problems by taking the best decisions one
after another.

You can think as
1 Sending a recursive function to do different jobs.
2 Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions
Dynamic was chosen by Bellman to capture the temporal part of the
problem.
Programming referred to finding the optimal program in military
logistic.

3 / 125

History

Dynamic Programming
The dynamic programming was developed in 1940’s by Richard Bellman at
RAND Corporation to solve problems by taking the best decisions one
after another.

You can think as
1 Sending a recursive function to do different jobs.
2 Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions
Dynamic was chosen by Bellman to capture the temporal part of the
problem.
Programming referred to finding the optimal program in military
logistic.

3 / 125

History

Dynamic Programming
The dynamic programming was developed in 1940’s by Richard Bellman at
RAND Corporation to solve problems by taking the best decisions one
after another.

You can think as
1 Sending a recursive function to do different jobs.
2 Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions
Dynamic was chosen by Bellman to capture the temporal part of the
problem.
Programming referred to finding the optimal program in military
logistic.

3 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

4 / 125

Bellman Equation

Definition
V (x0) = max

a0
[F (x0) + βV (x1)]

s.t. a0 ∈ Γ(x0), x1 = T (x0, a0)

Where Γ(x0) is a set of actions depend on the current state.
T (x0, a0) is a transition function.
F (x0) payoff.

5 / 125

Bellman Equation

Definition
V (x0) = max

a0
[F (x0) + βV (x1)]

s.t. a0 ∈ Γ(x0), x1 = T (x0, a0)

Where Γ(x0) is a set of actions depend on the current state.
T (x0, a0) is a transition function.
F (x0) payoff.

5 / 125

Bellman Equation

Definition
V (x0) = max

a0
[F (x0) + βV (x1)]

s.t. a0 ∈ Γ(x0), x1 = T (x0, a0)

Where Γ(x0) is a set of actions depend on the current state.
T (x0, a0) is a transition function.
F (x0) payoff.

5 / 125

Bellman Equation

Definition
V (x0) = max

a0
[F (x0) + βV (x1)]

s.t. a0 ∈ Γ(x0), x1 = T (x0, a0)

Where Γ(x0) is a set of actions depend on the current state.
T (x0, a0) is a transition function.
F (x0) payoff.

5 / 125

Looks Terrifying!!!

However
It is quite simple!!!

6 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

7 / 125

Elements of Dynamic Programming

Define the Optimal Structure
Characterize the structure of an optimal solution.

Define the Recursion
Recursively define the value of an optimal solution.

Compute the Solution

Compute the value of an optimal solution, typically bottom-up.

IMPORTANT!!!
We use an extra memory to stop the recursion!!!

8 / 125

Elements of Dynamic Programming

Define the Optimal Structure
Characterize the structure of an optimal solution.

Define the Recursion
Recursively define the value of an optimal solution.

Compute the Solution

Compute the value of an optimal solution, typically bottom-up.

IMPORTANT!!!
We use an extra memory to stop the recursion!!!

8 / 125

Elements of Dynamic Programming

Define the Optimal Structure
Characterize the structure of an optimal solution.

Define the Recursion
Recursively define the value of an optimal solution.

Compute the Solution

Compute the value of an optimal solution, typically bottom-up.

IMPORTANT!!!
We use an extra memory to stop the recursion!!!

8 / 125

Elements of Dynamic Programming

Define the Optimal Structure
Characterize the structure of an optimal solution.

Define the Recursion
Recursively define the value of an optimal solution.

Compute the Solution

Compute the value of an optimal solution, typically bottom-up.

IMPORTANT!!!
We use an extra memory to stop the recursion!!!

8 / 125

Elements of Dynamic Programming

Finally Rebuild the Optimal Solution
Construct an optimal solution from computed information.

9 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

10 / 125

Rod cutting

Problem
Given a rod of length n inches and a table of prices pi for i = 1, 2, ..., n,
determine the maximum revenue rn obtainable by cutting up the rod and
selling the pieces.

Rod Cutting table
length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

11 / 125

Rod cutting

Problem
Given a rod of length n inches and a table of prices pi for i = 1, 2, ..., n,
determine the maximum revenue rn obtainable by cutting up the rod and
selling the pieces.

Rod Cutting table
length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

11 / 125

Characterize the structure of an optimal solution

Example
For example for a rod of size 10, we could cut the rod in 3 parts,
10=4+3+3.

Thus
Then, we can assume that an optimal solution cuts the rod in k pieces,
1 ≤ k ≤ n i.e. k − 1 cuts.

Then
What?

12 / 125

Characterize the structure of an optimal solution

Example
For example for a rod of size 10, we could cut the rod in 3 parts,
10=4+3+3.

Thus
Then, we can assume that an optimal solution cuts the rod in k pieces,
1 ≤ k ≤ n i.e. k − 1 cuts.

Then
What?

12 / 125

Characterize the structure of an optimal solution

Example
For example for a rod of size 10, we could cut the rod in 3 parts,
10=4+3+3.

Thus
Then, we can assume that an optimal solution cuts the rod in k pieces,
1 ≤ k ≤ n i.e. k − 1 cuts.

Then
What?

12 / 125

Thus

The length of each piece can be numbered as
ij with 1 ≤ j ≤ k

The total size of the rod is then

Thus, the max revenue

13 / 125

Thus

The length of each piece can be numbered as
ij with 1 ≤ j ≤ k

The total size of the rod is then
n = i1 + i2 + ...+ ik

Thus, the max revenue

13 / 125

Thus

The length of each piece can be numbered as
ij with 1 ≤ j ≤ k

The total size of the rod is then
n = i1 + i2 + ...+ ik

Thus, the max revenue
rn = pi1 + pi2 + ...+ pik

13 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

Example

For length n = 4 by brute force approach
1 price equal to 9
2 price equal to 1+8
3 price equal to 8+1
4 price equal to 1+1+5
5 price equal to 1+5+1
6 price equal to 5+1+1
7 price equal to 1+1+1+1
8 price equal to 5+5 Optimal!!!

14 / 125

How can you obtain the recursion?

What about taking a decision each time?
In how to cut the rod!

For example

15 / 125

How can you obtain the recursion?

What about taking a decision each time?
In how to cut the rod!

For example

5

10

5

15 / 125

It looks like what?

One more cut
10

5 5

2 3 4 1

Yes
Recursion

16 / 125

It looks like what?

One more cut
10

5 5

2 3 4 1

Yes
Recursion

16 / 125

Thus, What can we do next?

We need to take decisions
One cut at each step.

For example
1 No cut n =⇒ pn

2 n = i1 + in−1 =⇒ rn = r1 + rn−1
3 n = i2 + in−2 =⇒ rn = r2 + rn−2
4 · · ·

In general
n = ij + in−j =⇒ r = rj + rn−1 for j = 1, 2, ..., n− 1

17 / 125

Thus, What can we do next?

We need to take decisions
One cut at each step.

For example
1 No cut n =⇒ pn

2 n = i1 + in−1 =⇒ rn = r1 + rn−1
3 n = i2 + in−2 =⇒ rn = r2 + rn−2
4 · · ·

In general
n = ij + in−j =⇒ r = rj + rn−1 for j = 1, 2, ..., n− 1

17 / 125

Thus, What can we do next?

We need to take decisions
One cut at each step.

For example
1 No cut n =⇒ pn

2 n = i1 + in−1 =⇒ rn = r1 + rn−1
3 n = i2 + in−2 =⇒ rn = r2 + rn−2
4 · · ·

In general
n = ij + in−j =⇒ r = rj + rn−1 for j = 1, 2, ..., n− 1

17 / 125

Thus, What can we do next?

We need to take decisions
One cut at each step.

For example
1 No cut n =⇒ pn

2 n = i1 + in−1 =⇒ rn = r1 + rn−1
3 n = i2 + in−2 =⇒ rn = r2 + rn−2
4 · · ·

In general
n = ij + in−j =⇒ r = rj + rn−1 for j = 1, 2, ..., n− 1

17 / 125

Thus, What can we do next?

We need to take decisions
One cut at each step.

For example
1 No cut n =⇒ pn

2 n = i1 + in−1 =⇒ rn = r1 + rn−1
3 n = i2 + in−2 =⇒ rn = r2 + rn−2
4 · · ·

In general
n = ij + in−j =⇒ r = rj + rn−1 for j = 1, 2, ..., n− 1

17 / 125

Thus, we take a final decision!!!

Thus
Which One?

The Largest One

18 / 125

Thus, we take a final decision!!!

Thus
Which One?

The Largest One
rn = max {pn, r1 + rn−1, r2 + rn−2, ..., rn−1 + r1}

18 / 125

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction
1 Imagine that a sub-solution has a better solution...
2 Then, you can substitute it in the original sub-solution.
3 Thus, you get something better than the original one.

19 / 125

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction
1 Imagine that a sub-solution has a better solution...
2 Then, you can substitute it in the original sub-solution.
3 Thus, you get something better than the original one.

19 / 125

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction
1 Imagine that a sub-solution has a better solution...
2 Then, you can substitute it in the original sub-solution.
3 Thus, you get something better than the original one.

19 / 125

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction
1 Imagine that a sub-solution has a better solution...
2 Then, you can substitute it in the original sub-solution.
3 Thus, you get something better than the original one.

19 / 125

Some stuff about the optimal solution

Did you notice the following?
Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal
Why?

Use contradiction
1 Imagine that a sub-solution has a better solution...
2 Then, you can substitute it in the original sub-solution.
3 Thus, you get something better than the original one.

19 / 125

Formally: Cut and Paste

Given
n = i1 + i2 + ...+ ik

Imagine, we split the problem in two parts
A1 = {i1,, i2, ..., il} and A2 = {il+1,, i2, ..., ik}

Properties
Now imagine that exist a A′

1 =
{
i

′
1, i

′
2, ..., il

}
such that:

r
′
n = p

i
′
1

+ p
i
′
2

+ ...+ pi
l
′ > rn = pi1 + pi2 + ...+ pil

20 / 125

Formally: Cut and Paste

Given
n = i1 + i2 + ...+ ik

Imagine, we split the problem in two parts
A1 = {i1,, i2, ..., il} and A2 = {il+1,, i2, ..., ik}

Properties
Now imagine that exist a A′

1 =
{
i

′
1, i

′
2, ..., il

}
such that:

r
′
n = p

i
′
1

+ p
i
′
2

+ ...+ pi
l
′ > rn = pi1 + pi2 + ...+ pil

20 / 125

Formally: Cut and Paste

Given
n = i1 + i2 + ...+ ik

Imagine, we split the problem in two parts
A1 = {i1,, i2, ..., il} and A2 = {il+1,, i2, ..., ik}

Properties
Now imagine that exist a A′

1 =
{
i

′
1, i

′
2, ..., il

}
such that:

r
′
n = p

i
′
1

+ p
i
′
2

+ ...+ pi
l
′ > rn = pi1 + pi2 + ...+ pil

20 / 125

Then

Then, we have a set of cuts
A

′
1 ∪A2 with better revenue than the original cut-set!!!

Clearly
Contradiction!!!

21 / 125

Then

Then, we have a set of cuts
A

′
1 ∪A2 with better revenue than the original cut-set!!!

Clearly
Contradiction!!!

21 / 125

Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable r0 = 0

In addition, we have that
ri = pi for i = 1, 2, ..., n

We can then apply this...
1 pn = pn + r0
2 r1 + rn−1 = p1 + rn−1
3 r2 + rn−2 = p2 + rn−2
4 ...

22 / 125

Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable r0 = 0

In addition, we have that
ri = pi for i = 1, 2, ..., n

We can then apply this...
1 pn = pn + r0
2 r1 + rn−1 = p1 + rn−1
3 r2 + rn−2 = p2 + rn−2
4 ...

22 / 125

Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable r0 = 0

In addition, we have that
ri = pi for i = 1, 2, ..., n

We can then apply this...
1 pn = pn + r0
2 r1 + rn−1 = p1 + rn−1
3 r2 + rn−2 = p2 + rn−2
4 ...

22 / 125

Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable r0 = 0

In addition, we have that
ri = pi for i = 1, 2, ..., n

We can then apply this...
1 pn = pn + r0
2 r1 + rn−1 = p1 + rn−1
3 r2 + rn−2 = p2 + rn−2
4 ...

22 / 125

Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable r0 = 0

In addition, we have that
ri = pi for i = 1, 2, ..., n

We can then apply this...
1 pn = pn + r0
2 r1 + rn−1 = p1 + rn−1
3 r2 + rn−2 = p2 + rn−2
4 ...

22 / 125

Rewrite the equation to simplify recursion

Did you notice that?
We can add a dummy variable r0 = 0

In addition, we have that
ri = pi for i = 1, 2, ..., n

We can then apply this...
1 pn = pn + r0
2 r1 + rn−1 = p1 + rn−1
3 r2 + rn−2 = p2 + rn−2
4 ...

22 / 125

Then

We have that

rn = max
1≤i≤n

(pi + rn−i)

So we need to convert this into something more programmable
You can define Cut-Rod(p, n− i) where

p is an array with the table values.
n− i is the size of the rod when going into the recursion.

23 / 125

Then

We have that

rn = max
1≤i≤n

(pi + rn−i)

So we need to convert this into something more programmable
You can define Cut-Rod(p, n− i) where

p is an array with the table values.
n− i is the size of the rod when going into the recursion.

23 / 125

Then

We have that

rn = max
1≤i≤n

(pi + rn−i)

So we need to convert this into something more programmable
You can define Cut-Rod(p, n− i) where

p is an array with the table values.
n− i is the size of the rod when going into the recursion.

23 / 125

Then

We have that

rn = max
1≤i≤n

(pi + rn−i)

So we need to convert this into something more programmable
You can define Cut-Rod(p, n− i) where

p is an array with the table values.
n− i is the size of the rod when going into the recursion.

23 / 125

Then

We have that

rn = max
1≤i≤n

(pi + rn−i)

So we need to convert this into something more programmable
You can define Cut-Rod(p, n− i) where

p is an array with the table values.
n− i is the size of the rod when going into the recursion.

23 / 125

Finally

Code
Cut-Rod(p, n)

1 if n == 0
2 return 0
3 q = −∞
4 for i = 1 to n
5 q = max {q, p [i] + Cut-Rod (p, n− i)}
6 return q

24 / 125

How the recursion tree for this code looks like?

First, Did you notice this?
4

3 2 1 0

1 01 0 02

1 0 0

0

0

25 / 125

Recursion

We have finally

T (n) =
{

1 if n = 0
1 +

∑n−1
j=0 T (j) if n > 0

(1)

1 for calling into the root of the tree.
T (j) counts the number of call (Recursive included)

How many possible decisions are being considered when cutting?
Decision cut at 1 cut at 2 · · · cut at n-1

Which One? 0 or 1 0 or 1 · · · 0 or 1

26 / 125

Recursion

We have finally

T (n) =
{

1 if n = 0
1 +

∑n−1
j=0 T (j) if n > 0

(1)

1 for calling into the root of the tree.
T (j) counts the number of call (Recursive included)

How many possible decisions are being considered when cutting?
Decision cut at 1 cut at 2 · · · cut at n-1

Which One? 0 or 1 0 or 1 · · · 0 or 1

26 / 125

Recursion

We have finally

T (n) =
{

1 if n = 0
1 +

∑n−1
j=0 T (j) if n > 0

(1)

1 for calling into the root of the tree.
T (j) counts the number of call (Recursive included)

How many possible decisions are being considered when cutting?
Decision cut at 1 cut at 2 · · · cut at n-1

Which One? 0 or 1 0 or 1 · · · 0 or 1

26 / 125

Recursion

We have finally

T (n) =
{

1 if n = 0
1 +

∑n−1
j=0 T (j) if n > 0

(1)

1 for calling into the root of the tree.
T (j) counts the number of call (Recursive included)

How many possible decisions are being considered when cutting?
Decision cut at 1 cut at 2 · · · cut at n-1

Which One? 0 or 1 0 or 1 · · · 0 or 1

26 / 125

What the tree is telling us?

The number of possible paths is equal to the number of leaves
We have 2n−1 paths, which is equal to the number of leaves

Then
The recursion consider explicitly all possible decisions

It is possible to prove by induction that

T (n) = 2n (2)

27 / 125

What the tree is telling us?

The number of possible paths is equal to the number of leaves
We have 2n−1 paths, which is equal to the number of leaves

Then
The recursion consider explicitly all possible decisions

It is possible to prove by induction that

T (n) = 2n (2)

27 / 125

What the tree is telling us?

The number of possible paths is equal to the number of leaves
We have 2n−1 paths, which is equal to the number of leaves

Then
The recursion consider explicitly all possible decisions

It is possible to prove by induction that

T (n) = 2n (2)

27 / 125

How we solve this?

We need something better
Dynamic programming approach!!!

How?
This is done by computing each sub-problem only once and storing its
solution in some way.
This is known as time-memory trade-off, and the savings may be
dramatic.

How and Why
Dynamic programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input
size and they can be solved in polynomial time.

28 / 125

How we solve this?

We need something better
Dynamic programming approach!!!

How?
This is done by computing each sub-problem only once and storing its
solution in some way.
This is known as time-memory trade-off, and the savings may be
dramatic.

How and Why
Dynamic programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input
size and they can be solved in polynomial time.

28 / 125

How we solve this?

We need something better
Dynamic programming approach!!!

How?
This is done by computing each sub-problem only once and storing its
solution in some way.
This is known as time-memory trade-off, and the savings may be
dramatic.

How and Why
Dynamic programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input
size and they can be solved in polynomial time.

28 / 125

How we solve this?

We need something better
Dynamic programming approach!!!

How?
This is done by computing each sub-problem only once and storing its
solution in some way.
This is known as time-memory trade-off, and the savings may be
dramatic.

How and Why
Dynamic programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input
size and they can be solved in polynomial time.

28 / 125

First Approach: Top-down with Memoization

Basics in this approach
1 We write the procedure recursively in a natural manner.
2 However, we save the result of each subproblem (Usually in an array

or hash table)

Then
Each time the procedure tries to solve a subproblem it first checks to see
whether it has previously solved this subproblem.

We can say the following
We say that the recursive procedure has been Memoized.
it “remembers” what results it has computed previously.

29 / 125

First Approach: Top-down with Memoization

Basics in this approach
1 We write the procedure recursively in a natural manner.
2 However, we save the result of each subproblem (Usually in an array

or hash table)

Then
Each time the procedure tries to solve a subproblem it first checks to see
whether it has previously solved this subproblem.

We can say the following
We say that the recursive procedure has been Memoized.
it “remembers” what results it has computed previously.

29 / 125

First Approach: Top-down with Memoization

Basics in this approach
1 We write the procedure recursively in a natural manner.
2 However, we save the result of each subproblem (Usually in an array

or hash table)

Then
Each time the procedure tries to solve a subproblem it first checks to see
whether it has previously solved this subproblem.

We can say the following
We say that the recursive procedure has been Memoized.
it “remembers” what results it has computed previously.

29 / 125

First Approach: Top-down with Memoization

Basics in this approach
1 We write the procedure recursively in a natural manner.
2 However, we save the result of each subproblem (Usually in an array

or hash table)

Then
Each time the procedure tries to solve a subproblem it first checks to see
whether it has previously solved this subproblem.

We can say the following
We say that the recursive procedure has been Memoized.
it “remembers” what results it has computed previously.

29 / 125

First Approach: Top-down with Memoization

Basics in this approach
1 We write the procedure recursively in a natural manner.
2 However, we save the result of each subproblem (Usually in an array

or hash table)

Then
Each time the procedure tries to solve a subproblem it first checks to see
whether it has previously solved this subproblem.

We can say the following
We say that the recursive procedure has been Memoized.
it “remembers” what results it has computed previously.

29 / 125

We require an Auxiliary Function to Accomplish this

Code
Memoized-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 for i = 0 to n
3 r [i] = −∞
4 return Memoized-Cut-Rod-Aux(p, n, r)

30 / 125

We require an Auxiliary Function to Accomplish this

Code
Memoized-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 for i = 0 to n
3 r [i] = −∞
4 return Memoized-Cut-Rod-Aux(p, n, r)

30 / 125

We require an Auxiliary Function to Accomplish this

Code
Memoized-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 for i = 0 to n
3 r [i] = −∞
4 return Memoized-Cut-Rod-Aux(p, n, r)

30 / 125

We require an Auxiliary Function to Accomplish this

Code
Memoized-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 for i = 0 to n
3 r [i] = −∞
4 return Memoized-Cut-Rod-Aux(p, n, r)

30 / 125

Memoized-Cut-Rod-Aux(p, n, r)

Code
Memoized-Cut-Rod-Aux(p, n, r)

1 if r [n] ≥ 0
2 return r [n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n
7 q = max {q, p [i] + Memoized-Cut-Rod-Aux (p, n− i, r)}
8 r [n] = q

9 return q

31 / 125

Memoized-Cut-Rod-Aux(p, n, r)

Code
Memoized-Cut-Rod-Aux(p, n, r)

1 if r [n] ≥ 0
2 return r [n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n
7 q = max {q, p [i] + Memoized-Cut-Rod-Aux (p, n− i, r)}
8 r [n] = q

9 return q

31 / 125

Memoized-Cut-Rod-Aux(p, n, r)

Code
Memoized-Cut-Rod-Aux(p, n, r)

1 if r [n] ≥ 0
2 return r [n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n
7 q = max {q, p [i] + Memoized-Cut-Rod-Aux (p, n− i, r)}
8 r [n] = q

9 return q

31 / 125

Memoized-Cut-Rod-Aux(p, n, r)

Code
Memoized-Cut-Rod-Aux(p, n, r)

1 if r [n] ≥ 0
2 return r [n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n
7 q = max {q, p [i] + Memoized-Cut-Rod-Aux (p, n− i, r)}
8 r [n] = q

9 return q

31 / 125

Memoized-Cut-Rod-Aux(p, n, r)

Code
Memoized-Cut-Rod-Aux(p, n, r)

1 if r [n] ≥ 0
2 return r [n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n
7 q = max {q, p [i] + Memoized-Cut-Rod-Aux (p, n− i, r)}
8 r [n] = q

9 return q

31 / 125

The Recursion Tree of Memoized-Cut-Rod

Tree for n = 5
5

4 2 1 0

1 02

2 1 0

3

3

1 0

0

32 / 125

Thus

We have that
It solves each subproblem just once.
It solves subproblems for sizes i = 0, 1, ..., n

Thus
To solve a problem of size i the for loop in line 6 of
Memoized-Cut-Rod-Aux iterates i times.

33 / 125

Thus

We have that
It solves each subproblem just once.
It solves subproblems for sizes i = 0, 1, ..., n

Thus
To solve a problem of size i the for loop in line 6 of
Memoized-Cut-Rod-Aux iterates i times.

33 / 125

Thus

We have that
It solves each subproblem just once.
It solves subproblems for sizes i = 0, 1, ..., n

Thus
To solve a problem of size i the for loop in line 6 of
Memoized-Cut-Rod-Aux iterates i times.

33 / 125

Then look at this..

Something Notable
5

4 2 1 0

1 02

2 1 0

3

3

1 0

0

5

4

3

2

1

34 / 125

Complexity

Add the works
We have then

1 + 2 + 3 + ...+ n = n (n+ 1)
2 (3)

Then, we have
Θ
(
n2).

35 / 125

Complexity

Add the works
We have then

1 + 2 + 3 + ...+ n = n (n+ 1)
2 (3)

Then, we have
Θ
(
n2).

35 / 125

What about the Bottom-Up approach?

Simpler Solution
How?

The natural order of solving
A problem of size i is smaller than a subproblem of size j, if i < j.

It is simpler to solve problems in this orden
j = 0, 1, 2, ..., n in order of increasing size.

36 / 125

What about the Bottom-Up approach?

Simpler Solution
How?

The natural order of solving
A problem of size i is smaller than a subproblem of size j, if i < j.

It is simpler to solve problems in this orden
j = 0, 1, 2, ..., n in order of increasing size.

36 / 125

What about the Bottom-Up approach?

Simpler Solution
How?

The natural order of solving
A problem of size i is smaller than a subproblem of size j, if i < j.

It is simpler to solve problems in this orden
j = 0, 1, 2, ..., n in order of increasing size.

36 / 125

Bottom-Up-Cut-Rod(p, n)

Code
Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max {q, p [i] + r [j − i]}
7 r [j] = q

8 return r [n]

37 / 125

Bottom-Up-Cut-Rod(p, n)

Code
Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max {q, p [i] + r [j − i]}
7 r [j] = q

8 return r [n]

37 / 125

Bottom-Up-Cut-Rod(p, n)

Code
Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max {q, p [i] + r [j − i]}
7 r [j] = q

8 return r [n]

37 / 125

Bottom-Up-Cut-Rod(p, n)

Code
Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max {q, p [i] + r [j − i]}
7 r [j] = q

8 return r [n]

37 / 125

Bottom-Up-Cut-Rod(p, n)

Code
Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max {q, p [i] + r [j − i]}
7 r [j] = q

8 return r [n]

37 / 125

Bottom-Up-Cut-Rod(p, n)

Code
Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] be a new array
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max {q, p [i] + r [j − i]}
7 r [j] = q

8 return r [n]

37 / 125

How to See Everything: Subproblem Graphs (DAG)

In dynamic programing
It is necessary to understand how subproblems depend on each other.

This information can be found in the subproblem graph which is a
DAG

38 / 125

How to See Everything: Subproblem Graphs (DAG)
In dynamic programing
It is necessary to understand how subproblems depend on each other.

This information can be found in the subproblem graph which is a
DAG

4

3

2

1

0

38 / 125

Reconstructing the Solution

How, we can do that?
Any Ideas?

We need to...

So...

39 / 125

Reconstructing the Solution

How, we can do that?
Any Ideas?

We need to...
Store each choice of the solution some way

So...

39 / 125

Reconstructing the Solution

How, we can do that?
Any Ideas?

We need to...
Store each choice of the solution some way

So...
We can reconstruct the solution path

39 / 125

Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s

40 / 125

Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s

40 / 125

Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s

40 / 125

Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s

40 / 125

Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s

40 / 125

Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s

40 / 125

Final Code

Code
Extended-Bottom-Up-Cut-Rod(p, n)

1 Let r [0..n] and s [0..n] be new arrays
2 r [0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 if q < p [i] + r [j − i]
7 q = p [i] + r [j − i]
8 s [j] = i
9 r [j] = q

10 return r and s

40 / 125

Printing Code

Code
Print-Cut-Rod-Solution(p, n)

1 (r, s) =Extended-Bottom-Up-Cut-Rod(p, n)
2 while n > 0
3 print s [n]
4 n = n− s [n]

41 / 125

Printing Code

Code
Print-Cut-Rod-Solution(p, n)

1 (r, s) =Extended-Bottom-Up-Cut-Rod(p, n)
2 while n > 0
3 print s [n]
4 n = n− s [n]

41 / 125

Printing Code

Code
Print-Cut-Rod-Solution(p, n)

1 (r, s) =Extended-Bottom-Up-Cut-Rod(p, n)
2 while n > 0
3 print s [n]
4 n = n− s [n]

41 / 125

Example

From the previous problem
length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Thus
i 0 1 2 3 4 5 6 7 8 9 10
r [i] 0 1 5 8 10 13 17 18 22 25 30
s [i] 0 1 2 3 2 2 6 1 2 3 10

42 / 125

Example

From the previous problem
length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Thus
i 0 1 2 3 4 5 6 7 8 9 10
r [i] 0 1 5 8 10 13 17 18 22 25 30
s [i] 0 1 2 3 2 2 6 1 2 3 10

42 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

43 / 125

Optimal Substructure

In dynamic programming
A first step toward the solution is characterizing the problem and finding
the optimal substructure.

44 / 125

We have the following steps

First
The problem consists in making choices.

Second
Given each problem, you are given a choice that leads to a solution.

Third
Each solution allows us to determine which subproblems need to be solved,
and how to best characterize the resulting space of subproblems.

45 / 125

We have the following steps

First
The problem consists in making choices.

Second
Given each problem, you are given a choice that leads to a solution.

Third
Each solution allows us to determine which subproblems need to be solved,
and how to best characterize the resulting space of subproblems.

45 / 125

We have the following steps

First
The problem consists in making choices.

Second
Given each problem, you are given a choice that leads to a solution.

Third
Each solution allows us to determine which subproblems need to be solved,
and how to best characterize the resulting space of subproblems.

45 / 125

We have the following steps

Fourth
Use cut-and-paste to prove by contradiction that the optimal subproblem
structure exists.

46 / 125

Now using the following problems

Unweighted shortest path
Find a path from u to v consisting of the fewest edges.

Unweighted longest simple path
Find a simple path from u to v consisting of the most edges.

47 / 125

Now using the following problems

Unweighted shortest path
Find a path from u to v consisting of the fewest edges.

Unweighted longest simple path
Find a simple path from u to v consisting of the most edges.

47 / 125

We can explain subtleties about the Optimal Substructure

Unweighted shortest path
It has an optimal substructure

Why?
First, given an optimal shortest path t between p and q.

48 / 125

We can explain subtleties about the Optimal Substructure

Unweighted shortest path
It has an optimal substructure

Why?
First, given an optimal shortest path t between p and q.

p q

t

48 / 125

How do we prove this?

First
Assume an intermediate point z such that there are two paths t1 and t2,
t = t1 ∪ t2

p q

By contradiction
Thus, by contradiction, assume that there is a shorter path between z and
q, t12. Then,

∣∣t1 ∪ t12∣∣ < t⊥ Quod Erat Demonstrandum (QED).

49 / 125

How do we prove this?

First
Assume an intermediate point z such that there are two paths t1 and t2,
t = t1 ∪ t2

p q

By contradiction
Thus, by contradiction, assume that there is a shorter path between z and
q, t12. Then,

∣∣t1 ∪ t12∣∣ < t⊥ Quod Erat Demonstrandum (QED).

49 / 125

However

Some problems do not have the optimal substructure
The longest unweighted path

Example

50 / 125

However

Some problems do not have the optimal substructure
The longest unweighted path

Example

q r

s t

50 / 125

Examples

First: Possible path between q and t

q −→ r −→ t

But
q −→ r is not the longest simple path from q and r nor the path r −→ t

Example of largest simple path for q −→ r

q −→ s −→ t −→ r

51 / 125

Examples

First: Possible path between q and t

q −→ r −→ t

But
q −→ r is not the longest simple path from q and r nor the path r −→ t

Example of largest simple path for q −→ r

q −→ s −→ t −→ r

51 / 125

Examples

First: Possible path between q and t

q −→ r −→ t

But
q −→ r is not the longest simple path from q and r nor the path r −→ t

Example of largest simple path for q −→ r

q −→ s −→ t −→ r

51 / 125

What the problem shows

We have that
It not only does the problem lack optimal substructure.

I We cannot necessarily assemble a “legal” solution to the problem from
solutions to subproblems.

It is more
No efficient dynamic programming algorithm for this problem has ever
been found.

I In fact, this problem is NP-complete.

52 / 125

What the problem shows

We have that
It not only does the problem lack optimal substructure.

I We cannot necessarily assemble a “legal” solution to the problem from
solutions to subproblems.

It is more
No efficient dynamic programming algorithm for this problem has ever
been found.

I In fact, this problem is NP-complete.

52 / 125

What the problem shows

We have that
It not only does the problem lack optimal substructure.

I We cannot necessarily assemble a “legal” solution to the problem from
solutions to subproblems.

It is more
No efficient dynamic programming algorithm for this problem has ever
been found.

I In fact, this problem is NP-complete.

52 / 125

What the problem shows

We have that
It not only does the problem lack optimal substructure.

I We cannot necessarily assemble a “legal” solution to the problem from
solutions to subproblems.

It is more
No efficient dynamic programming algorithm for this problem has ever
been found.

I In fact, this problem is NP-complete.

52 / 125

Then, How can we use the DAG?

Get the Space Problem
Use the elements of the space.
Build a Graph using all the decisions that can be made.
If you have a DAG!!! You have a optimal substructure!!!

53 / 125

Then, How can we use the DAG?

Get the Space Problem
Use the elements of the space.
Build a Graph using all the decisions that can be made.
If you have a DAG!!! You have a optimal substructure!!!

53 / 125

Then, How can we use the DAG?

Get the Space Problem
Use the elements of the space.
Build a Graph using all the decisions that can be made.
If you have a DAG!!! You have a optimal substructure!!!

53 / 125

What is the difference?

In the Unweighted Shortest Path the problems are independent
We mean that the solution to one sub-problem does not affect the solution
of another subproblem.

In the Unweighted Longest Path
Remember vertices q and r in the second case!!!

Question
Then, Why the USP are independent?

54 / 125

What is the difference?

In the Unweighted Shortest Path the problems are independent
We mean that the solution to one sub-problem does not affect the solution
of another subproblem.

In the Unweighted Longest Path
Remember vertices q and r in the second case!!!

Question
Then, Why the USP are independent?

54 / 125

What is the difference?

In the Unweighted Shortest Path the problems are independent
We mean that the solution to one sub-problem does not affect the solution
of another subproblem.

In the Unweighted Longest Path
Remember vertices q and r in the second case!!!

Question
Then, Why the USP are independent?

54 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

55 / 125

Overlapping Subproblems

Why
This happens because the recursive solution revisits the same subproblem
multiple times.

This is the main advantage of dynamic programming
It takes advantage of this by solving and storing the solution.

Properties
A dynamic-programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input size
and they can be solved in polynomial time.

56 / 125

Overlapping Subproblems

Why
This happens because the recursive solution revisits the same subproblem
multiple times.

This is the main advantage of dynamic programming
It takes advantage of this by solving and storing the solution.

Properties
A dynamic-programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input size
and they can be solved in polynomial time.

56 / 125

Overlapping Subproblems

Why
This happens because the recursive solution revisits the same subproblem
multiple times.

This is the main advantage of dynamic programming
It takes advantage of this by solving and storing the solution.

Properties
A dynamic-programming solution runs in polynomial time when the
number of distinct subproblems involved is polynomial in the input size
and they can be solved in polynomial time.

56 / 125

Overlapping Subproblems

We have two ways of solving the problem
Top-down with Memoization.
Bottom-up.

57 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

58 / 125

Reconstruction of Subproblems

To reconstruct
We use a table to store the choices such that we can reconstruct those of
the sub-problem.

59 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

60 / 125

Common Subproblems

Something Notable
Finding the right subproblem takes creativity and experimentation.

However
There are a few standard choices that arise repeatedly in dynamic
programming.

61 / 125

Common Subproblems

Something Notable
Finding the right subproblem takes creativity and experimentation.

However
There are a few standard choices that arise repeatedly in dynamic
programming.

61 / 125

Number of Subproblems is Linear

We have the following input
The input is x1, x2, ..., xn.

Subproblems
x1, x2, ..., xi

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is therefore linear.

62 / 125

Number of Subproblems is Linear

We have the following input
The input is x1, x2, ..., xn.

Subproblems
x1, x2, ..., xi

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is therefore linear.

62 / 125

Number of Subproblems is Linear

We have the following input
The input is x1, x2, ..., xn.

Subproblems
x1, x2, ..., xi

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is therefore linear.

62 / 125

Number of Subproblems is Linear

We have the following input
The input is x1, x2, ..., xn.

Subproblems
x1, x2, ..., xi

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is therefore linear.

62 / 125

Number of Subproblems is O (nm)

Input
The input is x1, x2, ..., xn and y1, y2, ..., ym.

Subproblems
x1, x2, ..., xi and y1, y2, ..., yj .

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

Therefore
The number of subproblems is O(mn).

63 / 125

Number of Subproblems is O (nm)

Input
The input is x1, x2, ..., xn and y1, y2, ..., ym.

Subproblems
x1, x2, ..., xi and y1, y2, ..., yj .

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

Therefore
The number of subproblems is O(mn).

63 / 125

Number of Subproblems is O (nm)

Input
The input is x1, x2, ..., xn and y1, y2, ..., ym.

Subproblems
x1, x2, ..., xi and y1, y2, ..., yj .

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

Therefore
The number of subproblems is O(mn).

63 / 125

Number of Subproblems is O (nm)

Input
The input is x1, x2, ..., xn and y1, y2, ..., ym.

Subproblems
x1, x2, ..., xi and y1, y2, ..., yj .

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

Therefore
The number of subproblems is O(mn).

63 / 125

Number of Subproblems is O (n2)

Input
The input is x1, x2, ..., xn.

Subproblems
xi, xi+1, ..., xj

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is O

(
n2).

64 / 125

Number of Subproblems is O (n2)

Input
The input is x1, x2, ..., xn.

Subproblems
xi, xi+1, ..., xj

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is O

(
n2).

64 / 125

Number of Subproblems is O (n2)

Input
The input is x1, x2, ..., xn.

Subproblems
xi, xi+1, ..., xj

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is O

(
n2).

64 / 125

Number of Subproblems is O (n2)

Input
The input is x1, x2, ..., xn.

Subproblems
xi, xi+1, ..., xj

Example
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Therefore
The number of subproblems is O

(
n2).

64 / 125

Input is a rooted subtree

Input

65 / 125

Input is a rooted subtree

Subproblem

66 / 125

Question

How Many Subproblems do you have?
Any Idea?

67 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

68 / 125

Definition

Input
A sequence a1, a2, ..., an

A subsequence
It is any subset of these numbers taken in order ai1 , ai2 , ..., aik

where
1 ≤ i1 < i2 < · · · < ik ≤ n.

Thus
An increasing subsequence is one in which the numbers are getting strictly
larger.

69 / 125

Definition

Input
A sequence a1, a2, ..., an

A subsequence
It is any subset of these numbers taken in order ai1 , ai2 , ..., aik

where
1 ≤ i1 < i2 < · · · < ik ≤ n.

Thus
An increasing subsequence is one in which the numbers are getting strictly
larger.

69 / 125

Definition

Input
A sequence a1, a2, ..., an

A subsequence
It is any subset of these numbers taken in order ai1 , ai2 , ..., aik

where
1 ≤ i1 < i2 < · · · < ik ≤ n.

Thus
An increasing subsequence is one in which the numbers are getting strictly
larger.

69 / 125

Definition

Output
The task is to find the increasing subsequence of greatest length.

Example

70 / 125

Definition

Output
The task is to find the increasing subsequence of greatest length.

Example
5 2 8 6 3 6 9 7

70 / 125

The Graph of increasing subsequences

To better understand the solution space, we can create the graph of
all permissible transitions

First, establish a node i for each element ai, and add directed edges
(i, j) whenever possible.
i.e. Whenever i < j and ai < aj .

The Graph

71 / 125

The Graph of increasing subsequences

To better understand the solution space, we can create the graph of
all permissible transitions

First, establish a node i for each element ai, and add directed edges
(i, j) whenever possible.
i.e. Whenever i < j and ai < aj .

The Graph

71 / 125

The Graph of increasing subsequences
To better understand the solution space, we can create the graph of
all permissible transitions

First, establish a node i for each element ai, and add directed edges
(i, j) whenever possible.
i.e. Whenever i < j and ai < aj .

The Graph

71 / 125

Notice the following

We have
The graph is a DAG

Thus
There is a one-to-one correspondence between increasing
subsequences and paths in this DAG.
Thus, find the longest path in the DAG.

72 / 125

Notice the following

We have
The graph is a DAG

Thus
There is a one-to-one correspondence between increasing
subsequences and paths in this DAG.
Thus, find the longest path in the DAG.

72 / 125

Notice the following

We have
The graph is a DAG

Thus
There is a one-to-one correspondence between increasing
subsequences and paths in this DAG.
Thus, find the longest path in the DAG.

72 / 125

Formulation

Something Notable
If we choose a number aj to be in the longest increasing subsequence

We ask if the there is an edge to another
Is (i, j) ∈ E?

Thus, we need to choose all of them!!!
This can be done with a for loop

73 / 125

Formulation

Something Notable
If we choose a number aj to be in the longest increasing subsequence

We ask if the there is an edge to another
Is (i, j) ∈ E?

Thus, we need to choose all of them!!!
This can be done with a for loop

73 / 125

Formulation

Something Notable
If we choose a number aj to be in the longest increasing subsequence

We ask if the there is an edge to another
Is (i, j) ∈ E?

Thus, we need to choose all of them!!!
This can be done with a for loop

73 / 125

Thus

We start at a certain j

Then, we look at the previous i with 1 ≤ i ≤ j − 1

Here is the recursion for ∀A[i] < A[j]

L [j] =
{

1 if there is no edge (i, j) ∈ E
1 + max {L [i1] , L [i2] , ..., L [ih]} For (ik, j) ∈ E, 1 ≤ k ≤ h

(4)

74 / 125

Thus

We start at a certain j

Then, we look at the previous i with 1 ≤ i ≤ j − 1

Here is the recursion for ∀A[i] < A[j]

L [j] =
{

1 if there is no edge (i, j) ∈ E
1 + max {L [i1] , L [i2] , ..., L [ih]} For (ik, j) ∈ E, 1 ≤ k ≤ h

(4)

74 / 125

What is the meaning of this?

When is there an edge between ik and j?

jj-1j-221

75 / 125

Clearly, this needs to be implemented in a machine

We have then that
A is an array that contains numbers indexed from 1 to n

Then, we have that

Instead of using (ik, j) ∈ E we use A [ik] < A [j]

Instead of max

We use a loop and something like q < temp for it

76 / 125

Clearly, this needs to be implemented in a machine

We have then that
A is an array that contains numbers indexed from 1 to n

Then, we have that

Instead of using (ik, j) ∈ E we use A [ik] < A [j]

Instead of max

We use a loop and something like q < temp for it

76 / 125

Clearly, this needs to be implemented in a machine

We have then that
A is an array that contains numbers indexed from 1 to n

Then, we have that

Instead of using (ik, j) ∈ E we use A [ik] < A [j]

Instead of max

We use a loop and something like q < temp for it

76 / 125

Recursive Function

The final recursive code
Recursive-Longest-Subsequence(A,n)

1 q = 1
2 // Assume n as part of your solution
3 // Thus A [i] < A [n] here j == n
4 for i = 1 to n− 1
5 t =Recursive-Longest-Subsequence(A, i)
6 if A[i] < A [n] and q < 1 + t
7 q = 1 + t

8 return q

77 / 125

Recursive Function

The final recursive code
Recursive-Longest-Subsequence(A,n)

1 q = 1
2 // Assume n as part of your solution
3 // Thus A [i] < A [n] here j == n
4 for i = 1 to n− 1
5 t =Recursive-Longest-Subsequence(A, i)
6 if A[i] < A [n] and q < 1 + t
7 q = 1 + t

8 return q

77 / 125

Recursive Function

The final recursive code
Recursive-Longest-Subsequence(A,n)

1 q = 1
2 // Assume n as part of your solution
3 // Thus A [i] < A [n] here j == n
4 for i = 1 to n− 1
5 t =Recursive-Longest-Subsequence(A, i)
6 if A[i] < A [n] and q < 1 + t
7 q = 1 + t

8 return q

77 / 125

Recursive Function

The final recursive code
Recursive-Longest-Subsequence(A,n)

1 q = 1
2 // Assume n as part of your solution
3 // Thus A [i] < A [n] here j == n
4 for i = 1 to n− 1
5 t =Recursive-Longest-Subsequence(A, i)
6 if A[i] < A [n] and q < 1 + t
7 q = 1 + t

8 return q

77 / 125

Recursive Function

The final recursive code
Recursive-Longest-Subsequence(A,n)

1 q = 1
2 // Assume n as part of your solution
3 // Thus A [i] < A [n] here j == n
4 for i = 1 to n− 1
5 t =Recursive-Longest-Subsequence(A, i)
6 if A[i] < A [n] and q < 1 + t
7 q = 1 + t

8 return q

77 / 125

What about the Complexity?

Recursion Tree - Can somebody Guess the Complexity?
L(5)

L(1) L(2) L(3) L(4)

L(1) L(2)

L(1)

L(1) L(1) L(2)

L(1)

L(3)

L(2)

L(1)

L(1)

78 / 125

How we save in recursive calls

First
Let L [1..n] an array to store the values the longest subsequence

79 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 1
An array to store the
values the longest
subsequence.

80 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 2
A measure about the
longest subsequence.

80 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 3
Initialize everything to 1
(Itself).

80 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 4
We know that the
subproblem with size 1
has a solution, thus you
need to start at 2.

80 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 5
Get solutions to the
subproblems less or
equal than j − 1

80 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 6
Take a decision

80 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 7
If the decision is true
then increase the counter
for solution starting at j

80 / 125

Bottom-Up Solution
Code
Bottom-Up-Longest-Subsequence(A,n)

1 Let L [1..n]
2 max = 0
3 for i = 1 to n
4 L [i] = 1
5 for j = 2 to n
6 for i = 1 to j − 1
7 if A[i] < A[j] and
L [j] < L [i] + 1

8 L [j] = L [i] + 1
9 for i = 1 to n
10 if max < L [i]
11 max = L [i]
12 return max

Step 8
Find the Maximum
Value

80 / 125

What about backtracking the Solution

We can do the following
You can have an array S [1..n] initialized to the sequence 1, 2, ..., n

Thus, each time
A[i] < A[j] and L [j] < L [i] + 1 is true, we set S[j] = i.

Then
After returning the L and S we can get the index of the max to backtrack
the answer.

81 / 125

What about backtracking the Solution

We can do the following
You can have an array S [1..n] initialized to the sequence 1, 2, ..., n

Thus, each time
A[i] < A[j] and L [j] < L [i] + 1 is true, we set S[j] = i.

Then
After returning the L and S we can get the index of the max to backtrack
the answer.

81 / 125

What about backtracking the Solution

We can do the following
You can have an array S [1..n] initialized to the sequence 1, 2, ..., n

Thus, each time
A[i] < A[j] and L [j] < L [i] + 1 is true, we set S[j] = i.

Then
After returning the L and S we can get the index of the max to backtrack
the answer.

81 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

82 / 125

Definition of The Problem

Input
A sequence of Matrices 〈A1, A2, ..., An〉

Output
We want a fully parenthesized product, where the final result is a single
matrix or the product of two fully parenthesized matrix products.

Why
Take in consideration the following algorithm

83 / 125

Definition of The Problem

Input
A sequence of Matrices 〈A1, A2, ..., An〉

Output
We want a fully parenthesized product, where the final result is a single
matrix or the product of two fully parenthesized matrix products.

Why
Take in consideration the following algorithm

83 / 125

Definition of The Problem

Input
A sequence of Matrices 〈A1, A2, ..., An〉

Output
We want a fully parenthesized product, where the final result is a single
matrix or the product of two fully parenthesized matrix products.

Why
Take in consideration the following algorithm

83 / 125

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)
1 if A.columns 6= B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows×B.columns matrix
4 for i = 1 to A.rows
5 for for j = 1 to B.columns
6 cij = 0
7 for k = 1 to A.columns
8 cij = cij + aik · bkj

9 return C

Then
If A is N ×M and B is a M × P then the cost is N ·M · P .

84 / 125

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)
1 if A.columns 6= B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows×B.columns matrix
4 for i = 1 to A.rows
5 for for j = 1 to B.columns
6 cij = 0
7 for k = 1 to A.columns
8 cij = cij + aik · bkj

9 return C

Then
If A is N ×M and B is a M × P then the cost is N ·M · P .

84 / 125

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)
1 if A.columns 6= B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows×B.columns matrix
4 for i = 1 to A.rows
5 for for j = 1 to B.columns
6 cij = 0
7 for k = 1 to A.columns
8 cij = cij + aik · bkj

9 return C

Then
If A is N ×M and B is a M × P then the cost is N ·M · P .

84 / 125

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)
1 if A.columns 6= B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows×B.columns matrix
4 for i = 1 to A.rows
5 for for j = 1 to B.columns
6 cij = 0
7 for k = 1 to A.columns
8 cij = cij + aik · bkj

9 return C

Then
If A is N ×M and B is a M × P then the cost is N ·M · P .

84 / 125

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)
1 if A.columns 6= B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows×B.columns matrix
4 for i = 1 to A.rows
5 for for j = 1 to B.columns
6 cij = 0
7 for k = 1 to A.columns
8 cij = cij + aik · bkj

9 return C

Then
If A is N ×M and B is a M × P then the cost is N ·M · P .

84 / 125

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)
1 if A.columns 6= B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows×B.columns matrix
4 for i = 1 to A.rows
5 for for j = 1 to B.columns
6 cij = 0
7 for k = 1 to A.columns
8 cij = cij + aik · bkj

9 return C

Then
If A is N ×M and B is a M × P then the cost is N ·M · P .

84 / 125

Example of Matrix Multiplications

Given the following matrices
A,B,C with 10× 100, 100× 5 and 5× 50
Cost in scalar operations of (AB) is 10 · 100 · 5 = 5000
Cost in scalar operations of (BC) is 100 · 5 · 50 = 25000

Then
Cost in scalar operations of (AB)C is 5000 + 10 · 5 · 50 = 7500
Cost in scalar operations of A(BC) is 25000 + 10 · 100 · 50 = 75000

85 / 125

Example of Matrix Multiplications

Given the following matrices
A,B,C with 10× 100, 100× 5 and 5× 50
Cost in scalar operations of (AB) is 10 · 100 · 5 = 5000
Cost in scalar operations of (BC) is 100 · 5 · 50 = 25000

Then
Cost in scalar operations of (AB)C is 5000 + 10 · 5 · 50 = 7500
Cost in scalar operations of A(BC) is 25000 + 10 · 100 · 50 = 75000

85 / 125

Example of Matrix Multiplications

Given the following matrices
A,B,C with 10× 100, 100× 5 and 5× 50
Cost in scalar operations of (AB) is 10 · 100 · 5 = 5000
Cost in scalar operations of (BC) is 100 · 5 · 50 = 25000

Then
Cost in scalar operations of (AB)C is 5000 + 10 · 5 · 50 = 7500
Cost in scalar operations of A(BC) is 25000 + 10 · 100 · 50 = 75000

85 / 125

Example of Matrix Multiplications

Given the following matrices
A,B,C with 10× 100, 100× 5 and 5× 50
Cost in scalar operations of (AB) is 10 · 100 · 5 = 5000
Cost in scalar operations of (BC) is 100 · 5 · 50 = 25000

Then
Cost in scalar operations of (AB)C is 5000 + 10 · 5 · 50 = 7500
Cost in scalar operations of A(BC) is 25000 + 10 · 100 · 50 = 75000

85 / 125

Example of Matrix Multiplications

Given the following matrices
A,B,C with 10× 100, 100× 5 and 5× 50
Cost in scalar operations of (AB) is 10 · 100 · 5 = 5000
Cost in scalar operations of (BC) is 100 · 5 · 50 = 25000

Then
Cost in scalar operations of (AB)C is 5000 + 10 · 5 · 50 = 7500
Cost in scalar operations of A(BC) is 25000 + 10 · 100 · 50 = 75000

85 / 125

Matrix-Chain Multiplication

Problem
Given a chain 〈A1, A2, ..., An〉 of n matrices, where Ai has dimension
pi−1 × pi. We want to fully parenthesize the product A1A2...An to
minimize the number of scalar multiplications

86 / 125

Solving by brute force

Count all the possible parenthesizations

P (n) =

1 if n = 1
n−1∑
k=1

P (k)P (n− k) if n ≥ 2

Which is the sequence of Catalan Numbers which grows

Ω
(

4n

n
3
2

)

87 / 125

Solving by brute force

Count all the possible parenthesizations

P (n) =

1 if n = 1
n−1∑
k=1

P (k)P (n− k) if n ≥ 2

Which is the sequence of Catalan Numbers which grows

Ω
(

4n

n
3
2

)

87 / 125

Did you notice the following?

If we have the following sequence Ak−1 (AkAk+1)
We have that Ak−1 has dimension pk−2 × pk−1, Ak has dimension
pk−1 × pk and Ak+1 has dimension pk × pk+1.

The final matrix has dimensions
It has dimension pk−2 × pk+1.

Properties
With cost of multiplication:

1 For the first parenthesis pk−1pkpk+1 with final dimension pk−1× pk+1.

2 For Ak−1 against what is inside parenthesis pk−2pk−1pk+1 with final
dimensions pk−2 × pk+1.

3 Total cost is then pk−2pk−1pk+1 + pk−1pkpk+1

88 / 125

Did you notice the following?

If we have the following sequence Ak−1 (AkAk+1)
We have that Ak−1 has dimension pk−2 × pk−1, Ak has dimension
pk−1 × pk and Ak+1 has dimension pk × pk+1.

The final matrix has dimensions
It has dimension pk−2 × pk+1.

Properties
With cost of multiplication:

1 For the first parenthesis pk−1pkpk+1 with final dimension pk−1× pk+1.

2 For Ak−1 against what is inside parenthesis pk−2pk−1pk+1 with final
dimensions pk−2 × pk+1.

3 Total cost is then pk−2pk−1pk+1 + pk−1pkpk+1

88 / 125

Did you notice the following?

If we have the following sequence Ak−1 (AkAk+1)
We have that Ak−1 has dimension pk−2 × pk−1, Ak has dimension
pk−1 × pk and Ak+1 has dimension pk × pk+1.

The final matrix has dimensions
It has dimension pk−2 × pk+1.

Properties
With cost of multiplication:

1 For the first parenthesis pk−1pkpk+1 with final dimension pk−1× pk+1.

2 For Ak−1 against what is inside parenthesis pk−2pk−1pk+1 with final
dimensions pk−2 × pk+1.

3 Total cost is then pk−2pk−1pk+1 + pk−1pkpk+1

88 / 125

Did you notice the following?

If we have the following sequence Ak−1 (AkAk+1)
We have that Ak−1 has dimension pk−2 × pk−1, Ak has dimension
pk−1 × pk and Ak+1 has dimension pk × pk+1.

The final matrix has dimensions
It has dimension pk−2 × pk+1.

Properties
With cost of multiplication:

1 For the first parenthesis pk−1pkpk+1 with final dimension pk−1× pk+1.

2 For Ak−1 against what is inside parenthesis pk−2pk−1pk+1 with final
dimensions pk−2 × pk+1.

3 Total cost is then pk−2pk−1pk+1 + pk−1pkpk+1

88 / 125

Did you notice the following?

If we have the following sequence Ak−1 (AkAk+1)
We have that Ak−1 has dimension pk−2 × pk−1, Ak has dimension
pk−1 × pk and Ak+1 has dimension pk × pk+1.

The final matrix has dimensions
It has dimension pk−2 × pk+1.

Properties
With cost of multiplication:

1 For the first parenthesis pk−1pkpk+1 with final dimension pk−1× pk+1.

2 For Ak−1 against what is inside parenthesis pk−2pk−1pk+1 with final
dimensions pk−2 × pk+1.

3 Total cost is then pk−2pk−1pk+1 + pk−1pkpk+1

88 / 125

In addition

Look at the following multiplication
(Ai · · ·Ak) (Ak+1 · · ·Aj)

We have the following
1 (Ai · · ·Ak) is a matrix with dimensions pi−1 × pk

2 (Ak+1 · · ·Aj) is a matrix with dimensions pk × pj

The total cost of this multiplication is
m [i, k] +m [k + 1, j] + pi−1pkpj (In addition, you want to minimize
the cost)

89 / 125

In addition

Look at the following multiplication
(Ai · · ·Ak) (Ak+1 · · ·Aj)

We have the following
1 (Ai · · ·Ak) is a matrix with dimensions pi−1 × pk

2 (Ak+1 · · ·Aj) is a matrix with dimensions pk × pj

The total cost of this multiplication is
m [i, k] +m [k + 1, j] + pi−1pkpj (In addition, you want to minimize
the cost)

89 / 125

In addition

Look at the following multiplication
(Ai · · ·Ak) (Ak+1 · · ·Aj)

We have the following
1 (Ai · · ·Ak) is a matrix with dimensions pi−1 × pk

2 (Ak+1 · · ·Aj) is a matrix with dimensions pk × pj

The total cost of this multiplication is
m [i, k] +m [k + 1, j] + pi−1pkpj (In addition, you want to minimize
the cost)

89 / 125

Then use the Cut-and-Paste to probe optimal substructure

Given i < j

Suppose the optimal paranthesization of

Ai, Ai+1, ..., Aj

USE CONTRADICTION!

90 / 125

Now, the Recursion can be wrote!!!

Given that m[i,j] is the minimum number of scalar multiplications

m[i, j] =
{

0 if i == j
min

i≤k<j
{m[i, k] +m[k + 1, j] + pi−1pkpj} if i < j

91 / 125

The Recursive Solution

Recursive Algorithm
1 Recursive-Matrix-Chain(p, i, j)
2 if i == j
3 return 0
4 m[i, j] =∞
5 for k = i to j − 1
6 q = Recursive-Matrix-Chain(p, i, k) + ...
7 Recursive-Matrix-Chain(p, k + 1, j) +...
8 pi−1pkpj

9 if q < m [i, j]
10 m [i, j] = q

11 return m [i, j]

92 / 125

The Recursive Solution

Recursive Algorithm
1 Recursive-Matrix-Chain(p, i, j)
2 if i == j
3 return 0
4 m[i, j] =∞
5 for k = i to j − 1
6 q = Recursive-Matrix-Chain(p, i, k) + ...
7 Recursive-Matrix-Chain(p, k + 1, j) +...
8 pi−1pkpj

9 if q < m [i, j]
10 m [i, j] = q

11 return m [i, j]

92 / 125

The Recursive Solution

Recursive Algorithm
1 Recursive-Matrix-Chain(p, i, j)
2 if i == j
3 return 0
4 m[i, j] =∞
5 for k = i to j − 1
6 q = Recursive-Matrix-Chain(p, i, k) + ...
7 Recursive-Matrix-Chain(p, k + 1, j) +...
8 pi−1pkpj

9 if q < m [i, j]
10 m [i, j] = q

11 return m [i, j]

92 / 125

The Recursive Solution

Recursive Algorithm
1 Recursive-Matrix-Chain(p, i, j)
2 if i == j
3 return 0
4 m[i, j] =∞
5 for k = i to j − 1
6 q = Recursive-Matrix-Chain(p, i, k) + ...
7 Recursive-Matrix-Chain(p, k + 1, j) +...
8 pi−1pkpj

9 if q < m [i, j]
10 m [i, j] = q

11 return m [i, j]

92 / 125

The Recursive Solution

Recursive Algorithm
1 Recursive-Matrix-Chain(p, i, j)
2 if i == j
3 return 0
4 m[i, j] =∞
5 for k = i to j − 1
6 q = Recursive-Matrix-Chain(p, i, k) + ...
7 Recursive-Matrix-Chain(p, k + 1, j) +...
8 pi−1pkpj

9 if q < m [i, j]
10 m [i, j] = q

11 return m [i, j]

92 / 125

The Recursive Solution

Recursive Algorithm
1 Recursive-Matrix-Chain(p, i, j)
2 if i == j
3 return 0
4 m[i, j] =∞
5 for k = i to j − 1
6 q = Recursive-Matrix-Chain(p, i, k) + ...
7 Recursive-Matrix-Chain(p, k + 1, j) +...
8 pi−1pkpj

9 if q < m [i, j]
10 m [i, j] = q

11 return m [i, j]

92 / 125

Again!!! Overlapping substructure

Red Line Represents the Recursion Path
1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4

3..3 4..4 2..2 3..3

1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

2..2 3..3 1..1 2..2

93 / 125

This is a nightmare

We have the following recursion

T (1) ≥ 1,

T (n) ≥ 1 +
n−1∑
k=1

[T (n− k) + T (k) + 1] for n > 1.

94 / 125

First

Did you notice?
T (i) appears once as T (k) and once as T (n− k) for i = 1, 2, ..., n− 1.

We have then

T (n) ≥ 1 + 2
n−1∑
i=1

[T (i)] + n− 1.

95 / 125

First

Did you notice?
T (i) appears once as T (k) and once as T (n− k) for i = 1, 2, ..., n− 1.

We have then

T (n) ≥ 1 + 2
n−1∑
i=1

[T (i)] + n− 1.

95 / 125

Then

We decide to guess T (n) = Ω (2n)
We shall guess the following T (n) ≥ 2n−1 for all n ≥ 1
First for n = 1 T (1) ≥ 1 = 20

96 / 125

Then

We decide to guess T (n) = Ω (2n)
We shall guess the following T (n) ≥ 2n−1 for all n ≥ 1
First for n = 1 T (1) ≥ 1 = 20

96 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Then
Now, for n ≥ 2

T (n) ≥ 2
n−1∑
i=1

[T (i)] + n

= 2
n−1∑
i=1

2i−1 + n

= 2
n−2∑
i=0

2i + n

= 2
(

2n−1 − 1
2− 1

)
+ n

= 2
(
2n−1 − 1

)
+ n

= 2n − 2 + n

≥ 2n

≥ 2n−1
97 / 125

Thus

We want to avoid to calculate the same value many times
Use bottom up approach and store values at each step.

98 / 125

We get two arrays or tables

The first one, m

It is used to hold the information about the cost of multiplying the
matrices

The second one, s

It is used to hold the place where the parenthesis is selected to minimize
the cost

99 / 125

We get two arrays or tables

The first one, m

It is used to hold the information about the cost of multiplying the
matrices

The second one, s

It is used to hold the place where the parenthesis is selected to minimize
the cost

99 / 125

How do we simulate the recursion Bottom-Up?

We do the following...
We use the following strategy:

Solve the chain of matrices with small size (The smallest is 2
matrices... after all 1 matrix has cost 0)

Thus, we need
A loop from 2 to n for solving small sequences to larger ones.

In addition
An inner loop from 1 to n− l + 1 (We do not want to get out of the
sequence of matrices) for solving the smaller problems for the outer loop

100 / 125

How do we simulate the recursion Bottom-Up?

We do the following...
We use the following strategy:

Solve the chain of matrices with small size (The smallest is 2
matrices... after all 1 matrix has cost 0)

Thus, we need
A loop from 2 to n for solving small sequences to larger ones.

In addition
An inner loop from 1 to n− l + 1 (We do not want to get out of the
sequence of matrices) for solving the smaller problems for the outer loop

100 / 125

How do we simulate the recursion Bottom-Up?

We do the following...
We use the following strategy:

Solve the chain of matrices with small size (The smallest is 2
matrices... after all 1 matrix has cost 0)

Thus, we need
A loop from 2 to n for solving small sequences to larger ones.

In addition
An inner loop from 1 to n− l + 1 (We do not want to get out of the
sequence of matrices) for solving the smaller problems for the outer loop

100 / 125

Then...

A value
j that is holding the ending index of the subsequence being taken in
consideration.

Then a third loop
To go from i to j − 1 to take the necessary decisions

101 / 125

Then...

A value
j that is holding the ending index of the subsequence being taken in
consideration.

Then a third loop
To go from i to j − 1 to take the necessary decisions

101 / 125

Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
102 / 125

Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
102 / 125

Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
102 / 125

Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
102 / 125

Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
102 / 125

Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
102 / 125

Bottom-Up Algorithm
MATRIX-CHAIN-ORDER(p)

1 n = p.length-1
2 let m [1..n, 1..n] and s [1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 m [i, i] = 0
5 for l = 2 to n
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 m [i, j] =∞
9 for k = i to j − 1
10 q = m [i, k] +m [k + 1, j] + pi−1pkpj

11 if q < m [i, j]
12 m [i, j] = q

13 s [i, j] = k

14 return m and s
102 / 125

Example

Example
matrix A1 A2 A3 A4 A5 A6

dimensions 35× 30 30× 15 15× 5 5× 10 10× 20 20× 25

103 / 125

Complexity

By looking at the algorithm we have
l← n− 1
i← n− l − 1
j ← i+ l − 1

Then
O(n3)

104 / 125

Complexity

By looking at the algorithm we have
l← n− 1
i← n− l − 1
j ← i+ l − 1

Then
O(n3)

104 / 125

Reconstruct the Output

PRINT-OPTIMAL-PARENS(s, i, j)
1 if i == j

2 print “Ai”
3 else print “(”
4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])
5 PRINT-OPTIMAL-PARENS(s, s [i, j] + 1, j)
6 print “)”

Final solution for the example
((A1(A2A3))((A4A5)A6)

105 / 125

Reconstruct the Output

PRINT-OPTIMAL-PARENS(s, i, j)
1 if i == j

2 print “Ai”
3 else print “(”
4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])
5 PRINT-OPTIMAL-PARENS(s, s [i, j] + 1, j)
6 print “)”

Final solution for the example
((A1(A2A3))((A4A5)A6)

105 / 125

Outline
1 Dynamic Programming

Bellman Equation
Elements of Dynamic Programming
Rod Cutting

2 Elements of Dynamic Programming
Optimal Substructure
Overlapping Subproblems
Reconstruction of Subproblems
Common Subproblems

3 Examples
Longest Increasing Subsequence
Matrix Multiplication
Longest Common Subsequence

4 Exercises

106 / 125

In Biology
Biological applications often need to compare the DNA of two (or
more) different organisms.

107 / 125

Why?

Because given these strands
S1= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S1= GTCGTTCGGAATGCCGTTGCTCTGTAAA

We want
To determine how “similar” the two strands are, as some measure of how
closely related the two organisms are.

108 / 125

Why?

Because given these strands
S1= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S1= GTCGTTCGGAATGCCGTTGCTCTGTAAA

We want
To determine how “similar” the two strands are, as some measure of how
closely related the two organisms are.

108 / 125

Why?

Because given these strands
S1= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S1= GTCGTTCGGAATGCCGTTGCTCTGTAAA

We want
To determine how “similar” the two strands are, as some measure of how
closely related the two organisms are.

108 / 125

Ways of Measuring Similarity

For example
We can say that two DNA strands are similar if one is a substring of the
other.

However
This does not happen in the previous example...

A better measure
Imagine that you are given another strand S3 in which the bases on it
appears in S1 and S2 (Common Basis)

109 / 125

Ways of Measuring Similarity

For example
We can say that two DNA strands are similar if one is a substring of the
other.

However
This does not happen in the previous example...

A better measure
Imagine that you are given another strand S3 in which the bases on it
appears in S1 and S2 (Common Basis)

109 / 125

Ways of Measuring Similarity

For example
We can say that two DNA strands are similar if one is a substring of the
other.

However
This does not happen in the previous example...

A better measure
Imagine that you are given another strand S3 in which the bases on it
appears in S1 and S2 (Common Basis)

109 / 125

The Longer Strand

The Longer S3

The more similar the organism, represented by S1 and S2, are.

Thus
We need to find S3 the Longest Common Subsequence

110 / 125

The Longer Strand

The Longer S3

The more similar the organism, represented by S1 and S2, are.

Thus
We need to find S3 the Longest Common Subsequence

110 / 125

Longest Common Subsequence

Definition
Given a sequence X = 〈x1, x2, ..., xm〉, a sequence Z = 〈z1, z2, ..., zk〉 is a
subsequence of X if there exist a strictly increasing sequence 〈i1, i2, ..., ik〉
of indices of X such that xi = zj .

Therefore
Given two sequences X and Y , we say that Z is a common subsequence
of X and Y , if Z is a subsequence of both X and Y .

111 / 125

Longest Common Subsequence

Definition
Given a sequence X = 〈x1, x2, ..., xm〉, a sequence Z = 〈z1, z2, ..., zk〉 is a
subsequence of X if there exist a strictly increasing sequence 〈i1, i2, ..., ik〉
of indices of X such that xi = zj .

Therefore
Given two sequences X and Y , we say that Z is a common subsequence
of X and Y , if Z is a subsequence of both X and Y .

111 / 125

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)
Let X = 〈x1, x2, ..., xm〉 and Y = 〈y1, y2, ..., yn〉 be sequences, and let
Z = 〈z1, z2, ..., zk〉 be any LCS of X and Y .

1 If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and
Yn−1.

2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y .
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1.

112 / 125

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)
Let X = 〈x1, x2, ..., xm〉 and Y = 〈y1, y2, ..., yn〉 be sequences, and let
Z = 〈z1, z2, ..., zk〉 be any LCS of X and Y .

1 If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and
Yn−1.

2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y .
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1.

112 / 125

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)
Let X = 〈x1, x2, ..., xm〉 and Y = 〈y1, y2, ..., yn〉 be sequences, and let
Z = 〈z1, z2, ..., zk〉 be any LCS of X and Y .

1 If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and
Yn−1.

2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y .
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1.

112 / 125

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)
Let X = 〈x1, x2, ..., xm〉 and Y = 〈y1, y2, ..., yn〉 be sequences, and let
Z = 〈z1, z2, ..., zk〉 be any LCS of X and Y .

1 If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and
Yn−1.

2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y .
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1.

112 / 125

Overlapping Property

To find an LCS for X and Y , we may need to find
LCS of Xn−1 and Yn−1

LCS of X and Yn−1

LCS of Y and Xm−1

113 / 125

Overlapping Property

To find an LCS for X and Y , we may need to find
LCS of Xn−1 and Yn−1

LCS of X and Yn−1

LCS of Y and Xm−1

113 / 125

Overlapping Property

To find an LCS for X and Y , we may need to find
LCS of Xn−1 and Yn−1

LCS of X and Yn−1

LCS of Y and Xm−1

113 / 125

Thus

For the first case
Recursion(i, j) = Recursion(i− 1, j − 1) + 1

Second case
Recursion(i, j) = Recursion(i, j − 1)

However, you have the too
Recursion(i, j) = Recursion(i− 1, j)

114 / 125

Thus

For the first case
Recursion(i, j) = Recursion(i− 1, j − 1) + 1

Second case
Recursion(i, j) = Recursion(i, j − 1)

However, you have the too
Recursion(i, j) = Recursion(i− 1, j)

114 / 125

Thus

For the first case
Recursion(i, j) = Recursion(i− 1, j − 1) + 1

Second case
Recursion(i, j) = Recursion(i, j − 1)

However, you have the too
Recursion(i, j) = Recursion(i− 1, j)

114 / 125

Then, we can collapse second and third case

In the following way
Recursion(i, j) = max {Recursion(i− 1, j), Recursion(i, j − 1)}

115 / 125

The Final Recurrence

Let c[i, j] the length of the common subsequence of Xi, Yj

c[i, j] =

0 if i = 0 or j = 0
c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max(c[i, j − 1], c[i− 1, j]) if i, j > and xi 6= yj

116 / 125

Thus, we can do the following

It is possible
To develop an exponential algorithm.

However
Let us to develop an algorithm that takes O (mn)

First, we need to take in account
X = 〈x1, x2, x3, ..., xm〉
Y = 〈y1, y2, y3, ..., yn〉

117 / 125

Thus, we can do the following

It is possible
To develop an exponential algorithm.

However
Let us to develop an algorithm that takes O (mn)

First, we need to take in account
X = 〈x1, x2, x3, ..., xm〉
Y = 〈y1, y2, y3, ..., yn〉

117 / 125

Thus, we can do the following

It is possible
To develop an exponential algorithm.

However
Let us to develop an algorithm that takes O (mn)

First, we need to take in account
X = 〈x1, x2, x3, ..., xm〉
Y = 〈y1, y2, y3, ..., yn〉

117 / 125

Thus, we can do the following

It is possible
To develop an exponential algorithm.

However
Let us to develop an algorithm that takes O (mn)

First, we need to take in account
X = 〈x1, x2, x3, ..., xm〉
Y = 〈y1, y2, y3, ..., yn〉

117 / 125

We do the following

Use extra memory
You can store the result of c [i, j] values in a table c [0..m.0..n]

I In order to use it, the entries are computed in row-major order.

Row-Major Order
The procedure fills in the first row of c from left to right, then the
second row, and so on.

Why?
Clearly, we are using the bottom-up approach, so we get the results for the
smallest problem first!!!

118 / 125

We do the following

Use extra memory
You can store the result of c [i, j] values in a table c [0..m.0..n]

I In order to use it, the entries are computed in row-major order.

Row-Major Order
The procedure fills in the first row of c from left to right, then the
second row, and so on.

Why?
Clearly, we are using the bottom-up approach, so we get the results for the
smallest problem first!!!

118 / 125

We do the following

Use extra memory
You can store the result of c [i, j] values in a table c [0..m.0..n]

I In order to use it, the entries are computed in row-major order.

Row-Major Order
The procedure fills in the first row of c from left to right, then the
second row, and so on.

Why?
Clearly, we are using the bottom-up approach, so we get the results for the
smallest problem first!!!

118 / 125

We do the following

Use extra memory
You can store the result of c [i, j] values in a table c [0..m.0..n]

I In order to use it, the entries are computed in row-major order.

Row-Major Order
The procedure fills in the first row of c from left to right, then the
second row, and so on.

Why?
Clearly, we are using the bottom-up approach, so we get the results for the
smallest problem first!!!

118 / 125

We also have a table to store the decisions

Ok, What type of symbols are in that table?
yi a v c r e

xi 0 0 0 0 0 0
a 0 ↖
b 0
c 0 ↖
d 0
e 0 ↖

119 / 125

Thus, for the different cases

xm = yn

Simply use the symbol ”↖ ”.
After all we are consuming the same symbol

c[i− 1, j] ≥ c[i, j − 1]
Simply use the symbol ” ↑ ”.
After all you are moving up in the rows

c[i− 1, j] < c[i, j − 1]
Simply use the symbol ”← ”.
After all you are moving left in the columns

120 / 125

Thus, for the different cases

xm = yn

Simply use the symbol ”↖ ”.
After all we are consuming the same symbol

c[i− 1, j] ≥ c[i, j − 1]
Simply use the symbol ” ↑ ”.
After all you are moving up in the rows

c[i− 1, j] < c[i, j − 1]
Simply use the symbol ”← ”.
After all you are moving left in the columns

120 / 125

Thus, for the different cases

xm = yn

Simply use the symbol ”↖ ”.
After all we are consuming the same symbol

c[i− 1, j] ≥ c[i, j − 1]
Simply use the symbol ” ↑ ”.
After all you are moving up in the rows

c[i− 1, j] < c[i, j − 1]
Simply use the symbol ”← ”.
After all you are moving left in the columns

120 / 125

How, we fill c [0..m.0..n]

Something Notable
We need to increase the columns and the rows.

Thus
for i = 1 to m

for j = 1 to n

In addition, c [0..m, 0] and c [0, 0..n]
If one of your subproblems is empty:

We know that the common elements are 0.

121 / 125

How, we fill c [0..m.0..n]

Something Notable
We need to increase the columns and the rows.

Thus
for i = 1 to m

for j = 1 to n

In addition, c [0..m, 0] and c [0, 0..n]
If one of your subproblems is empty:

We know that the common elements are 0.

121 / 125

How, we fill c [0..m.0..n]

Something Notable
We need to increase the columns and the rows.

Thus
for i = 1 to m

for j = 1 to n

In addition, c [0..m, 0] and c [0, 0..n]
If one of your subproblems is empty:

We know that the common elements are 0.

121 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Final Algorithm - Complexity O(mn)
LCS-Length(X, Y)

1 m = X.length

2 n = Y.length

3 let b [1..m, 1..n] and c [0..m, 0..n] be new tables
4 for i = 1 to m

5 c [i, 0] = 0
6 for j = 0 to n

7 c [0, j] = 0
8 for i = 1 to m

9 for j = 1 to n
10 if xi == yj

11 c [i, j] = c [i− 1, j − 1] + 1
12 b [i, j] = ”↖ ”
13 elseif c[i− 1, j] ≥ c[i, j − 1]
14 c [i, j] = c [i− 1, j]
15 b [i, j] = ” ↑ ”
16 else c [i, j] = c [i, j − 1]
17 b [i, j] = ”← ”
18 return c and b

122 / 125

Example

The matrices after running the algorithm

123 / 125

Constructing the LCS

PRINT-LCS(b, X, i, j)
1 if i == 0 or j == 0
2 return
3 if b [i, j] == ”↖ ”
4 PRINT-LCS(b,X, i− 1, j − 1)
5 print xi

6 elseif b [i, j] == ” ↑ ”
7 PRINT-LCS(b,X, i− 1, j)
8 else PRINT-LCS(b,X, i, j − 1)

Complexity
O(m+ n)

124 / 125

Constructing the LCS

PRINT-LCS(b, X, i, j)
1 if i == 0 or j == 0
2 return
3 if b [i, j] == ”↖ ”
4 PRINT-LCS(b,X, i− 1, j − 1)
5 print xi

6 elseif b [i, j] == ” ↑ ”
7 PRINT-LCS(b,X, i− 1, j)
8 else PRINT-LCS(b,X, i, j − 1)

Complexity
O(m+ n)

124 / 125

Constructing the LCS

PRINT-LCS(b, X, i, j)
1 if i == 0 or j == 0
2 return
3 if b [i, j] == ”↖ ”
4 PRINT-LCS(b,X, i− 1, j − 1)
5 print xi

6 elseif b [i, j] == ” ↑ ”
7 PRINT-LCS(b,X, i− 1, j)
8 else PRINT-LCS(b,X, i, j − 1)

Complexity
O(m+ n)

124 / 125

Constructing the LCS

PRINT-LCS(b, X, i, j)
1 if i == 0 or j == 0
2 return
3 if b [i, j] == ”↖ ”
4 PRINT-LCS(b,X, i− 1, j − 1)
5 print xi

6 elseif b [i, j] == ” ↑ ”
7 PRINT-LCS(b,X, i− 1, j)
8 else PRINT-LCS(b,X, i, j − 1)

Complexity
O(m+ n)

124 / 125

Exercises

From Cormen’s book solve
15.3-3
15.3-5
15.2-3
15.2-4
15.2-5
15.4-2
15.4-4
15.4-5

125 / 125

	Dynamic Programming
	Bellman Equation
	Elements of Dynamic Programming
	Rod Cutting

	Elements of Dynamic Programming
	Optimal Substructure
	Overlapping Subproblems
	Reconstruction of Subproblems
	Common Subproblems

	Examples
	Longest Increasing Subsequence
	Matrix Multiplication
	Longest Common Subsequence

	Exercises

