Analysis of Algorithms
 Red-Black Trees

Andres Mendez-Vazquez

October 1, 2018

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
- Example
(3) Deletion in Red-Black Trees
- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

4 Exercises

- Something for you to do

Outline

（1）Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－TerminationExample
（3）Deletion in Red－Black Trees
－
The Basics
－
The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
（4）Exercises
Something for you to do

Well Balanced Trees

Do you remember AVL (Adelson-Velskii and Landis) Trees?
Quite nice recursive methods for balancing the tree!!!

Well Balanced Trees

Do you remember AVL (Adelson-Velskii and Landis) Trees?
Quite nice recursive methods for balancing the tree!!!

It is based on an height Invariant
At any node in the tree, the heights of the left and right subtrees differs by at most 1 .

Thus, it is necessary to add an extra field to the Node Structure

Structure of a Node

Structure 1: STRUCT NODE
1 Key key
2 int height
3 Value val
4 Node Left, Right

Outline

（1）Red－Black Trees

－The Search for Well Balanced Threes
－Observations
O Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
3．Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees

Observations

Due to the balancing methods

- AVL Trees requiere to have a $O\left(\log _{2} n\right)$ rotations.

Observations

Due to the balancing methods

- AVL Trees requiere to have a $O\left(\log _{2} n\right)$ rotations.
- AVL Trees operations cost $O\left(\log _{2} n\right)$.

Observations

Due to the balancing methods

- AVL Trees requiere to have a $O\left(\log _{2} n\right)$ rotations.
- AVL Trees operations cost $O\left(\log _{2} n\right)$.

There is a problem about the height

How much memory it is necessary to allocate for the height field in massive binary search trees?

Furthermore

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.

Furthermore

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Furthermore

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.

Furthermore

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor.

Furthermore

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor.
- Asymptotically faster but re-balancing costs time.

Furthermore

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor.
- Asymptotically faster but re-balancing costs time.
- Most large searches are done in database systems on disk and use other structures (e.g. B-trees).

Outline

（1）Red－Black Trees

－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
－Something for you to do

Definitions

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Definitions

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

(1) Every node is either red or black.

Definitions

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

(1) Every node is either red or black.
(2) The root is black.

Definitions

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NIL) is black.

Definitions

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NIL) is black.
(1) If a node is red, then both its children are black.

Definitions

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NIL) is black.
(9) If a node is red, then both its children are black.
(3) For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Outline

（1）Red－Black Trees

－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees

Red-Black Trees

Example

Height on a Red Black Tree

Black Height bh(x)

We call the number of black nodes on any path from, but not including, a node x down to a leaf the black height of the node.

Outline

（1）Red－Black Trees

－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
0
Example
（3）Deletion in Red－Black Trees
0
The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees

Lemma for the height of Red-Black Trees

Theorem
A Red-Black Trees with n internal nodes has height at most $2 \log (n+1)$.

Lemma for the height of Red-Black Trees

Theorem
A Red-Black Trees with n internal nodes has height at most $2 \log (n+1)$.

Proof: Step 1

- Prove that any subtree rooted at x contains at least $2^{b h(x)}-1$ internal nodes.

Lemma for the height of Red-Black Trees

Theorem
A Red-Black Trees with n internal nodes has height at most $2 \log (n+1)$.

Proof: Step 1

- Prove that any subtree rooted at x contains at least $2^{b h(x)}-1$ internal nodes.
- If $b h(x)=0$, then

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees

- Base Case of Induction

- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- TerminationExample
(3) Deletion in Red-Black Trees
-

The Basics
0
The Code

- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Examples for $b h(x)=0$

Case I

Examples for $b h(x)=0$

Case II - There are other, but they are similar

Then

Then, we have

- Thus $2^{b h(x)}-1=2^{0}-1=0$.

Then

Then, we have

- Thus $2^{b h(x)}-1=2^{0}-1=0$.
- Now with $b h(x)>0$, we have that child $[\mathrm{x}]$ has height $b h(x)$ or $b h(x)-1$.

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees

Base Case of Induction

- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
-

Example
(3) Deletion in Red-Black Trees
-
The Basics

- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Something for you to do

Thus, we have the following

Example

$$
b h(x)\{b h(\text { children }[x])=b h(x)
$$

Proof

Case I

- Height of child is $b h(x)$.

Proof

Case I

- Height of child is $b h(x)$.
- Then, the child is red, if not subtree rooted at x will have height $b h(x)+1$!

Proof

Case I

- Height of child is $b h(x)$.
- Then, the child is red, if not subtree rooted at x will have height $b h(x)+1$!
- Now, we have two subtrees from the child with red root...(The children are black)

Proof

Case I

- Height of child is $b h(x)$.
- Then, the child is red, if not subtree rooted at x will have height $b h(x)+1$!
- Now, we have two subtrees from the child with red root...(The children are black)

Thus, we have

- Thus, each of this subtrees has height $b h(x)-1 \Rightarrow$ each tree contains at least $2^{b h(x)-1}-1$ nodes by inductive hypothesis.

Proof

Case I

- Height of child is $b h(x)$.
- Then, the child is red, if not subtree rooted at x will have height $b h(x)+1$!
- Now, we have two subtrees from the child with red root...(The children are black)

Thus, we have

- Thus, each of this subtrees has height $b h(x)-1 \Rightarrow$ each tree contains at least $2^{b h(x)-1}-1$ nodes by inductive hypothesis.
- Then the child contains at least $2^{b h(x)-1}-1+2^{b h(x)-1}-1$ internal nodes.

Proof

Case I

- Height of child is $b h(x)$.
- Then, the child is red, if not subtree rooted at x will have height $b h(x)+1$!
- Now, we have two subtrees from the child with red root...(The children are black)

Thus, we have

- Thus, each of this subtrees has height $b h(x)-1 \Rightarrow$ each tree contains at least $2^{b h(x)-1}-1$ nodes by inductive hypothesis.
- Then the child contains at least $2^{b h(x)-1}-1+2^{b h(x)-1}-1$ internal nodes.
- Finally, the tree rooted contains $2^{b h(x)-1}-1+2^{b h(x)-1}-1+1$ (One for the node rooted at the child node)

Proof

Finally

- Then, the tree with root x contains at least $2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1$

Proof

Finally

- Then, the tree with root x contains at least

$$
2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1
$$

Case II

- Height of the child is $b h(x)-1$.

Proof

Finally

- Then, the tree with root x contains at least

$$
2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1
$$

Case II

- Height of the child is $b h(x)-1$.
- Now, we have two subtrees with at least $2^{b h(x)-1}-1$ nodes by inductive hypothesis.

Proof

Finally

- Then, the tree with root x contains at least

$$
2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1
$$

Case II

- Height of the child is $b h(x)-1$.
- Now, we have two subtrees with at least $2^{b h(x)-1}-1$ nodes by inductive hypothesis.
- Thus, we have that the tree with root x contains at least $2^{b h(x)-1}-1+2^{b h(x)-1}-1+1$ internal nodes.

Proof

Again

- Then, the tree with root x contains at least $2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1$

Proof

Again

- Then, the tree with root x contains at least

$$
2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1
$$

Finally

- Now given that h is the height of the tree, we have by property 4 that $b h(T) \geq \frac{h}{2}$.

Proof

Again

- Then, the tree with root x contains at least

$$
2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1
$$

Finally

- Now given that h is the height of the tree, we have by property 4 that $b h(T) \geq \frac{h}{2}$.
- Then $n \geq 2^{b h(r o o t)}-1 \geq 2^{\frac{h}{2}}-1$.

Proof

Again

- Then, the tree with root x contains at least

$$
2 \times 2^{b h(x)-1}-1=2^{b h(x)}-1
$$

Finally

- Now given that h is the height of the tree, we have by property 4 that $b h(T) \geq \frac{h}{2}$.
- Then $n \geq 2^{b h(\text { root })}-1 \geq 2^{\frac{h}{2}}-1$.
- Then, $h \leq 2 \log (n+1) \square$.

Lemma for the height of Red-Black Trees

Corollary

From the previous theorem we conclude that SEARCH, MINIMUM, etcetera, can be implemented in $O(\log n)$.

Outline

（1）Red－Black Trees

－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemima for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees

Rotations in Red-Black Trees

Purpose

Rotations are used to maintain the structure of the Red-Black Trees.

Rotations in Red-Black Trees

Purpose

Rotations are used to maintain the structure of the Red-Black Trees.

Types of rotations

There are left and right rotations, they are inverse to each other.

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)

(1) $y=x$.right \triangleright Set y

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)

(1) $y=x$.right
\triangleright Set y
(2) x.right $=y$.left \triangleright Turn y's left subtree into x 's right subtree

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)

(1) $y=x$.right
\triangleright Set y
(2) x.right $=y$.left \triangleright Turn y's left subtree into x 's right subtree
(3) if y.left \neq T.nil
(9) y.left. $\mathrm{p}=\mathrm{x}$

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)

(1) $y=x$.right
\triangleright Set y
(2) x.right $=y$.left \triangleright Turn y's left subtree into x 's right subtree
(3) if y.left \neq T.nil
(9) y.left. $\mathrm{p}=\mathrm{x}$
(3) y.p $=x . p \quad \triangleright$ Link x 's parent to y

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T, x)

(1) $y=x$.right
\triangleright Set y
(2) x.right $=y$.left \triangleright Turn y's left subtree into x 's right subtree
(3) if y.left \neq T.nil
(9) y.left. $\mathrm{p}=\mathrm{x}$
(6) y.p $=x \cdot p$
\triangleright Link x's parent to y
(6) if $x . p==T$.nil
(3) T.root $=y$

Example of Rotations in Red－Black Trees

LEFT－ROTATE（T，x）

（1）$y=x$ ．right \triangleright Set y
（2）x．right $=y$ ．left \triangleright Turn y＇s left subtree into x＇s right subtree
（3）if y ．left \neq T．nil
（9）y．left． $\mathrm{p}=\mathrm{x}$
（6）y．p $=x . p \quad \triangleright \operatorname{Link} x$＇s parent to y
（6）if $x . p==T$ ．nil
（1）\quad T．root $=y$
（8）elseif $x==x$ ．p．left
（9）$\quad x . p . l e f t=y$

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T, x)

(1) $y=x$.right \triangleright Set y
(2) x.right $=y$.left \triangleright Turn y's left subtree into x 's right subtree
(3) if y.left \neq T.nil
(1) y.left. $\mathrm{p}=\mathrm{x}$
(6) y.p $=x . p \quad \triangleright \operatorname{Link} x$'s parent to y
(6) if $x . p==T$.nil
(1) \quad T.root $=y$
(8) elseif $x==x$.p.left
(0) x.p.left $=y$
(10) else x.p.right $=y$

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)

(1) $y=x$.right \triangleright Set y
(2) x.right $=y$.left \triangleright Turn y's left subtree into x 's right subtree
(3) if y.left \neq T.nil
(3) y.left. $\mathrm{p}=\mathrm{x}$
(3) y.p $=x . p \quad \triangleright$ Link x 's parent to y
(6) if $x . p==T$.nil
(3) T.root $=y$
(8) elseif $x==x$.p.left
(9) x.p.left $=y$
(10) else x.p.right $=y$
(1) y . left $=\mathrm{x}$
\triangleright Put x on y 's left

Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)

(1) $y=x$.right \triangleright Set y
(2) x.right $=y$.left \triangleright Turn y's left subtree into x 's right subtree
(3) if y.left \neq T.nil
(3) y.left. $p=x$
(6) y.p $=x . p \quad \triangleright \operatorname{Link} x$'s parent to y
(6) if $x . p==T$.nil
(1) \quad T.root $=y$
(8) elseif $x==x$.p.left
(0) x.p.left $=y$
(10) else x.p.right $=y$
(1) y .left $=\mathrm{x}$
\triangleright Put x on y 's left
(1) $\mathrm{x} \cdot \mathrm{p}=\mathrm{y}$

Example Left-Rotate

Step 1 - the correct right child is changed

(1) $y=x$.right
\triangleright Set y
(2) x.right $=y$.left \triangleright Turn y 's left subtree into x 's right subtree

Example Left-Rotate

Step 2 - the parents are set correctly

3. if y.left $\neq T$.nil
4. $\quad \mathrm{y}$.left. $\mathrm{p}=\mathrm{x}$
5. y.p $=x . p$

Example Left-Rotate

Step 3

6. if $x . p==$ T.nil $\quad \Delta$ Set y to be the root if x was it
7. \quad T.root $=y$
8. elseif $x==x . p . l e f t$
9. $\quad x . p . l e f t=y$
10. else x.p.right $=y$

Example Left-Rotate

Step 4

11. y .left $=\mathrm{x}$
\triangleright Put x on y 's left
12. $x . p=y$

Outline

（1）Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees

Something for you to do

First than anything

Something Notable
You still have a Binary Search Tree!!!

First than anything

Something Notable
 You still have a Binary Search Tree!!!

There
How do you do insertion in a Binary Search Tree?

Outline

（1）Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
Important！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
（4）Exercises
－Something for you to do

Insertion Code in Red-Black Trees

RB-INSERT(T, z)

1. $\mathrm{y}=\mathrm{T}$. nil
2. $x=$ T.root
3. while $x \neq T$.nil
4. $y=x$
5. if z.key<x.key
6. $x=x$.left
7. else $x=x$.right
8. $z . p=y$
9. if $y==T$.nil
10. \quad T.root $=z$
11. elseif z.key $<$ y.key
12. y.left $=z$
13. else y.right $=z$
14. z.left $=$ T.nil
15. z.right $=$ T.nil
16. z.color $=$ T.RED
17. RB-Insert-Fixup(T.z)

First

Search Variables being Initialized.

Insertion Code in Red-Black Trees

RB-INSERT(T, z)

1. $\mathrm{y}=$ T.nil	9. if $y==$ T.nil
2. $x=T$.root	10. T .root $=\mathrm{z}$
3. while $x \neq$ T.nil	11. elseif z.key $<$ y.key
4. $\mathrm{y}=\mathrm{x}$	12. y.left $=z$
5. if z.key<x.key	13. else y.right $=z$
6. $\mathrm{x}=$	14. z.left $=$ T.nil
$x . l e f t$	15. z.right $=$ T.nil
7. else $x=$	16. z. color $=$ T.RED
x.right	17. RB-Insert-Fixup(T.z)
8. z.p $=\mathrm{y}$	17. RB-Insert-Fixup(T.z)

Second

Binary search for insertion.

Insertion Code in Red-Black Trees

RB-INSERT(T, z)

1. $\mathrm{y}=$ T.nil	9. if $y==$ T.nil
2. $x=$ T.root	10. T.root $=z$
3. while $x \neq T$.nil	11. elseif z.key $<$ y.key
4. $y=x$	12. y .left $=\mathrm{z}$
5. if z.key<x.key	13. else y.right $=z$
6. $x=x$.left	14. z.left $=$ T.nil
7. else $x=x$ right	15. z.right $=$ T.nil
8. z.p $=\mathrm{y}$	16. $\mathrm{z} . \mathrm{color}=$ T.RED
	17. RB-Insert-Fixup(T.z)

Third

Change parent of the node to be inserted.

Insertion Code in Red-Black Trees

RB-INSERT (T, z)

1. $y=$ T.nil
2. $x=T$.root
3. while $x \neq T$.nil
4. $y=x$
5. if z. key $<x$.key
6. $x=x$.left
7. else $x=x$.right
8. $z . p=y$
9. if $y==T$.nil
10. T.root $=z$
11. elseif $z . k e y<y . k e y$
12. $\quad y . l e f t=z$
13. else y.right $=z$
14. z.left $=$ T.nil
15. z.right $=\mathrm{T}$.nil
16. z.color $=$ T.RED
17. RB-Insert-Fixup(T.z)

Fourth

Test to see if the Tree is empty!!!

Insertion Code in Red-Black Trees

RB-INSERT(T, z)

1. $y=$ T.nil
2. $x=$ T.root
3. while $x \neq$ T.nil
4. $y=x$
5. if $z . k e y<x$. key
6. $x=x$.left
7. else $x=x$.right
8. $\mathrm{z} . \mathrm{p}=\mathrm{y}$
9. if $y==T$.nil
10. \quad T.root $=z$
11. elseif $z . k e y<y . k e y$
12. \quad y.left $=z$
13. else y.right $=z$
14. z.left $=$ T.nil
15. z.right $=\mathrm{T}$.nil
16. \quad.color $=$ T.RED
17. RB-Insert-Fixup(T.z)

Fifth

Insert node z in the correct left or right child:

- if z. key $<y . k e y ~ \Rightarrow y . l e f t=z$
- if z.key \geq y.key \Rightarrow y.right $=z$

Insertion Code in Red-Black Trees

RB-INSERT(T, z)

1. $y=$ T.nil
2. $x=T$.root
3. while $x \neq T$.nil
4. $y=x$
5. if z.key<x.key
6. $x=x$.left
7. else $x=x$.right
8. z. $p=y$
9. if $y==T$.nil
10. \quad T.root $=z$
11. elseif z.key $<y$.key
12. \quad y.left $=z$
13. else y.right $=z$
14. z.left $=$ T.nil
15. z.right $=$ T.nil
16. z.color $=$ T.RED
17. RB-Insert-Fixup(T.z)

Sixth

Make z's leafs equal to T.nil.

Insertion Code in Red-Black Trees

RB-INSERT(T, z)

1. $y=$ T.nil
2. $x=T$.root
3. while $x \neq T$.nil
4. $y=x$
5. if z.key<x.key
6. $x=x$.left
7. else $x=x$.right
8. z. $p=y$
9. if $y==T$.nil
10. \quad T.root $=z$
11. elseif z.key $<y$.key
12. \quad y.left $=z$
13. else y.right $=z$
14. z.left $=$ T.nil
15. z.right $=$ T.nil
16. z.color $=$ T.RED
17. RB-Insert-Fixup(T.z)

Seventh

Make z's color equal to RED.

Insertion Code in Red-Black Trees

RB-INSERT (T, z)

1. $\mathrm{y}=$ T.nil	9. if $\mathrm{y}==$ T.nil
2. $x=$ T.root	10. T.root $=z$
3. while $x \neq T$.nil	11. elseif z.key $<$ y.key
4. $y=x$	12. y.left $=z$
5. if z.key<x.key	13. else y.right $=z$
6. $x=x . l e f t$	14. z.left $=$ T.nil
7. else $x=x . r i g h t$	15. z.right $=$ T.nil
8. z.p $=\mathrm{y}$	16. $\mathrm{z} . \mathrm{color}=$ T.RED
	17. RB-Insert-Fixup(T.z)

Eight

Call RB-Insert-Fixup!!!

Outline

1 Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
（4）Exercises
－Something for you to do

RB-Insert-Fixup

RB-Insert-Fixup(T,z)

```
(1)
while z.p.color \(==\) RED
```

(2)

```
        Left-Rotate(T, z)
        z.p.color \(=\) BLACK
        z.p.p.color \(=\) RED
        Right-Rotate(T, z.p.p)
    else ("right" and "left" exchanged)
    T.root.color \(=\) BLACK
```

Case 1

- z's uncle is RED
- Change of parent and uncle's color to BLACK
- Move problem to z 's grandfather

Outline

1．Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
4 Exercises
－Something for you to do

Outline

（1）Red－Black Trees
－The Search for Well Balanced Threes
－Observations
Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
4 Exercises
－Something for you to do

Prior to the first iteration of the loop

We start with a red-black tree with no violations

- Then, the algorithm insert the red node z at the bottom of the Red-Black Trees.

Prior to the first iteration of the loop

We start with a red-black tree with no violations

- Then, the algorithm insert the red node z at the bottom of the Red-Black Trees.
- This Tree does not violate properties 1,3 and 5 .

Properties

(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NIL) is black.
(9) If a node is red, then both its children are black.
(5) For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Important

If $z \cdot p$ is the root

- Then, z.p began as a black node no change happened when Fix-Up is Called

Then

Fix-Up is Called

- The RB-Insert-Fixup is called because the following possible violations.

Then

Fix-Up is Called

- The RB-Insert-Fixup is called because the following possible violations.

Case I

- If z is the first node to be inserted, you violate the property 2 .
- It is the only violation on the entire Red-Black Trees.
- Because the parent and both children of' are the sentinel.

Now

Case II

- If the tree violates property 4

Now

Case II

- If the tree violates property 4
z was inserted after a red node
- Thus, z and z.p are red
- The Tree does not violate any other property

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations

Red-Black Trees

- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
-

Example
3) Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees
(4) Exercises
- Something for you to do

Some Notes

Something Notable

- We need to consider six cases

Some Notes

Something Notable

- We need to consider six cases

However

- but three of them are symmetric to the other three
- Depending if $z . p$ to be a left or right child of $z . p . p$ given
(1) if z.p $==$ z.p.p.left

Therefore

If $z . p$ is red

- We enter the loop of Fix-Up code...

Therefore

If $z . p$ is red

- We enter the loop of Fix-Up code...

Which tells us that

- If $z . p$ is red, $z . p$ cannot be the root $\Rightarrow z . p . p$ exists

Maintenance in Insertion in Red-Black Trees

Case I - z 's uncle is red

Maintenance in Insertion in Red-Black Trees

Recolor parent and uncle to black

Thus

Observations

(1) Recoloring will fix the z.parent.color $==$ red and keeps the bh property

Thus

Observations

(1) Recoloring will fix the z.parent.color $==$ red and keeps the bh property
(1) It will move the problem upwards.

Thus

Observations

(1) Recoloring will fix the z.parent.color $==$ red and keeps the bh property
(1) It will move the problem upwards.
(2) Nevertheless, the tree rooted at A, B and D are Red-Black Trees.

Thus

Observations

(1) Recoloring will fix the z.parent.color $==$ red and keeps the bh property
(1) It will move the problem upwards.
(2) Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
(3) So the new z will move the problem upward for the next iteration.

The Symmetric Case

We have

The Symmetric Case

We have

RB-Insert-Fixup

RB-Insert-Fixup(T,z)

```
    while z.p.color \(==\) RED
```

(2)

16 T.root.color $=$ BLACK
T.root.color = BLACK

```
\[
\begin{aligned}
& \text { z.p.color }=\text { BLACK } \\
& \text { z.p.p.color }=\text { RED } \\
& \text { Right-Rotate(T, z.p.p) }
\end{aligned}
\]
else ("right" and "left" exchanged)
```


Case 2

- if z is in the right child then
- Move the problem to the parent by making z = z.p
- Rotate left using z as the rotation node

Insertion in Red-Black Trees

Case 2-z's uncle y is black and z is a right child

Thus

First

Here simple recoloring will not work.

Thus

First

Here simple recoloring will not work.

Rotate
We rotate first from to left using z.p.

Thus

First

Here simple recoloring will not work.

Rotate

We rotate first from to left using z.p.
This moves case 2 toward case 3
To get ready for the final fix-up.

From Case 2 to Case 3

Example

CASE 2

CASE 3

RB-Insert-Fixup

RB-Insert-Fixup(T,z)

```
    while z.p.color \(==\) RED
```

16 T.root.color $=$ BLACK

```
Left-Rotate(T, z)
z.p.color \(=\) BLACK
z.p.p.color \(=\) RED
Right-Rotate(T, z.p.p)
else ("right" and "left" exchanged)
```


Case 3

- if z is in the left child then
- Recolor z's parent to BLACK
- recolor z's grandparent to RED
- Rotate right using the grandparent

Then

We do the following

Then, we recolor B.color $=$ BLACK, C.color $=$ RED (No problem γ and δ are black nodes)

Then

We do the following

Then, we recolor B.color $=$ BLACK, C.color $=$ RED $($ No problem γ and δ are black nodes)

Finally

Then, you rotate right using z.p.p to fix the black height property!!

From Case 3 to final recoloring

Case 3 - It allows to fix the bh locally

CASE 3

Outline

1. Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
- Example
(3) Deletion in Red-Black Trees
- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees
(4) Exercises
- Something for you to do

When the loop terminates

it does so because z.p is black (Sentinel or not)

- The Tree does not violate property 4 at loop termination.
- If a node is red, then both its children are black.

When the loop terminates

it does so because z.p is black (Sentinel or not)

- The Tree does not violate property 4 at loop termination.
- If a node is red, then both its children are black.

By the loop invariant

- The only property that might fail to hold is property 2
- The root is black.

Then

Root Recoloring

After pushing the problem up to the root by the while loop color the root to BLACK!!!

We have then

Outline

1 Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
－Something for you to do

Example: Insertion in Red-Black Trees

Example Tree is empty

Example: Insertion in Red-Black Trees

The root becomes red!!!

STEPS

(1) $y=$ T.nil
(2) $x=$ T.root

(3) We never go into the search loop
(3) z.p $=y$
(3) if $y==T$.nil
(6) T.root $=z$
(3) z.left $=$ T.nil
(8) z.right $=$ T.nil
(0) z.color = T.RED

Example: Insertion in Red-Black Trees

Fix the problem

ONLY STEP

(1) T.root.color $=\mathrm{BLACK}$

It happens at the end of the Fix-up

Example: Insertion in Red-Black Trees

Insert 7

(1) Do a binary search to find a place to insert
(2) Parent of z is not RED \Rightarrow no fix-up

Example: Insertion in Red-Black Trees

Insert 12

(1) Do a binary search to find a place to insert
(2) Parent of z is RED!!!

$75 / 163$

Example: Insertion in Red-Black Trees

Case 2 into Case 3

(1) Re-balance first to the left
if $z==z$.p.right
z=z.p
Left-Rotate(T, z)

Example: Insertion in Red-Black Trees

Case 3

re-balance to the right
z.p.color $=$ BLACK
z.p.p.color=RED Right-Rotate(T, z.p.p)
(2) No problem to fix
(3) The root is already BLACK so nothing happens

Example: InsertionInsertion Code in Red-Black Trees

Insert 10

$\underset{\text { (26) (47) (21) (28) }}{\text { Selection Order }}$

(1) We insert 10
(2) We color it to RED
(3) We need to fix the problem

Example: Insertion in Red-Black Trees

Case 1

(1) if z.p $==$ z.p.p.left
(2) $y=z . p . p . r i g h t ~$
(3) if $y . c o l o r==$ RED

$79 / 163$

Example: Insertion in Red-Black Trees

Case 1

(1) if y.color $==$ RED
(2) z.p.color $=$ BLACK
(3) y.color $=$ BLACK
(9) z.p.p.color $=$ RED
(5) $z=z . p . p$

Example: Insertion in Red-Black Trees

Case 1 You get out of the loop and...

(1) T.root.color $=$ BLACK

Example: Insertion in Red-Black Trees

Insert 28

(1) We insert 28
(2) We color it to RED
(3) No problem to fix...

Example: Insertion in Red-Black Trees

Insert 28

(1) We insert 28
(2) We color it to RED
(3) No problem to fix...

Example: Insertion in Red-Black Trees

Insert 21

(1) We insert 21
(2) We color it to RED
(3) We need to fix...

Example: Insertion in Red-Black Trees

Case 3

(1) Re-color and re-balance to the right z.p.color $=$ BLACK z.p.p.color=RED Right-Rotate(T, z.p.p)
(2) No problem to fix
(3) The root is already BLACK so nothing happens

Example: Insertion in Red-Black Trees

Insert 14

(1) We insert 14
(2) We color it to RED
(3) We need to fix...

cinvestov

Example: Insertion in Red-Black Trees

Case 1

(1) if z.p $==$ z.p.p.left
(2) $\mathrm{y}=\mathrm{z}$.p.p.right
(3) if y .color $==$ RED

cinvestav

Example: Insertion in Red-Black Trees

Case 1

(6)
 (41) (17)

Selection Order
(1) if y.color $==$ RED
(2) z.p.color $=$ BLACK
(3) $\mathrm{y} . \mathrm{color}=$ BLACK
(9) z.p.p.color $=$ RED
(6) $\mathrm{z}=\mathrm{z} . \mathrm{p} . \mathrm{p}$

Nothing to do after!!!

ciryestov

Example: Insertion in Red-Black Trees

Insert 17

(1) Do a binary search to find a place to insert
(2) Parent of z is RED!!!

Selection Order
(1) Re-balance first to the left if $z==z$.p.right
$z=z . p$
Left-Rotate(T, z)

Example: Insertion in Red-Black Trees

Case 3

Selection Order
(1) Re-color and
re-balance to the right z.p.color $=$ BLACK z.p.p.color=RED Right-Rotate(T, z.p.p)
(2) No problem to fix
(3) The root is already BLACK so nothing happens

Example: Insertion in Red-Black Trees

Case 3

Selection Order
(1) Re-color and
re-balance to the right z.p.color $=$ BLACK z.p.p.color=RED Right-Rotate(T, z.p.p)
(2) No problem to fix
(3) The root is already BLACK so nothing happens

Example: Insertion in Red-Black Trees

Case 3

Selection Order
(1) Re-color and
re-balance to the right z.p.color $=$ BLACK
z.p.p.color=RED

Right-Rotate(T, z.p.p)
(2) No problem to fix
(3) The root is already BLACK so nothing happens

Example: Insertion in Red-Black Trees

Insert 41

(1) Put in the correct node by binary search
(2) Because 41's parent is BLACK nothing to fix

Example: Insertion in Red-Black Trees

Case 1 Symmetrical

(1) if z.p $==$ z.p.p.right
(2) $\mathrm{y}=\mathrm{z}$.p.p.left
(3) if y .color $==$ RED
(1) z.p.color $=$ BLACK
(9) $\mathrm{y} . \mathrm{color}=$ BLACK
(0) z.p.p.color $=$ RED

0
z = z.p.p

Example: Insertion in Red-Black Trees

Case 1 Symmetrical

(1) if z.p $==$ z.p.p.right
(2) $y=z$.p.p.left
(3) if y .color $==$ RED
(4)

$$
\begin{aligned}
& \text { z.p.color }=\text { BLACK } \\
& \text { y.color }=\text { BLACK } \\
& \text { z.p.p.color }=\text { RED } \\
& z=\text { z.p.p }
\end{aligned}
$$

Example: Insertion in Red-Black Trees

Case 2 to case 3 - Symmetrical

(1) Re-balance first to the right if $z==$ z.p.left
z=z.p
Right-Rotate(T, z)

Example: Insertion in Red-Black Trees

Case 3 - Symmetrical

(1) Re-color and re-balance to the right
z.p.color $=$ BLACK
z.p.p.color=RED Left-Rotate(T, z.p.p)
(2) No problem to fix
(3) The root is already BLACK so nothing happens

Example: Insertion in Red-Black Trees

Case 3 - Symmetrical

(1) Re-color and re-balance to the right
z.p.color $=$ BLACK
z.p.p.color=RED Left-Rotate(T, z.p.p)
(2) No problem to fix
(3) The root is already BLACK so nothing happens

Selection Order

Complexity of RB-Insert

It is easy to see that we have
$O(\log n)$

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
- Example
(3) Deletion in Red-Black Trees
- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees
(4) Exercises

Something for you to do

The Main Idea

Here, we use the idea of removing
By pushing in its place its successor.

The Main Idea

Here, we use the idea of removing
By pushing in its place its successor.
Therefore we have a problem

- If the successor of a node is the node y.

The Main Idea

Here, we use the idea of removing
By pushing in its place its successor.
Therefore we have a problem

- If the successor of a node is the node y.
- And y is black.

The Main Idea

Here, we use the idea of removing

By pushing in its place its successor.

Therefore we have a problem

- If the successor of a node is the node y.
- And y is black.
- We have removed a black node from a path.

Thus

Example

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
- Example
(3) Deletion in Red-Black Trees

The Basics

- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Deletion in Red-Black Trees

RB-DELETE(T,z)

(1)
$y=z$
(2) y-original-color $=y$.color
(3) if z.left $==T$.nil
(4)
$x=z$ right
(5) RB - Transplant(T, z, z.right)
(6) elseif z.right $==$ T.nil
(1)
$x=z . l e f t$
RB-Transplant(T, z, z.left)
(9) else $y=$ Tree-Minimum(z.right)
(10) y-original-color $=\mathrm{y}$.color
(1) $\mathrm{x}=\mathrm{y}$.right
(12) if $y \cdot p==z$
(13) $x \cdot p=y$
(14) else RB-Transplant(T, y, y, right)
(15)
(10)

$$
\begin{aligned}
& \text { y.right }=z . r i g h t \\
& \text { y.right. } . p=y
\end{aligned}
$$

Case 1

- Store the info of the node to be deleted

Deletion in Red-Black Trees

RB-DELETE(T,z)

(1) $y=z$
(2) y-original-color $=y$.color
(3) if z.left $==$ T.nil
(4) $x=z . r i g h t$
(5) RB-Transplant(T, z, z.right)
(6) elseif z.right $==$ T.nil
(7) $x=z$.left
(8) RB-Transplant(T, z, z.left)
(9) else $y=$ Tree-Minimum(z.right)
(10) y-original-color $=\mathrm{y}$.color
(1) $\mathrm{x}=\mathrm{y}$.right
(12) if $y \cdot p==z$
(13) $x \cdot p=y$
(14) else RB-Transplant(T,y,y,right)
(15) y.right $=$ z.right
(10)

$$
\text { y.right.p }=y
$$

Case 2

- If the left child is empty
- Store the info of the right child
- Move z.right into the position of Z

Deletion in Red-Black Trees

RB-DELETE(T,z)

(1) $y=z$
(2) y-original-color $=y$.color
(3) if z.left $==T$.nil

4
x = z.right
(5) RB-Transplant(T, z, z.right)
(6) elseif z.right $==$ T.nil
(7) $x=z$.left
(8) RB-Transplant(T, z, z.left)
(9) else $y=$ Tree-Minimum(z.right)
(10) y-original-color $=y$.color
(1) $x=y \cdot$ right
(12) if $y \cdot p==z$
(13) $x \cdot p=y$
(14) else RB-Transplant(T,y,y.right)
(15) y.right $=$ z.right
(10)

$$
\text { y.right.p }=y
$$

Case 3

- If the right child is empty
- Store the info of the left child
- Move z.left into the position of z

Deletion in Red-Black Trees

RB-DELETE(T,z)

(1) $y=z$
(2) y-original-color $=y$.color
(3) if z.left $==$ T.nil

4
$x=$ z.right
(5) RB-Transplant(T, z, z.right)
(6) elseif z.right $==T$.nil
(7) $x=z$.left
(8) RB-Transplant(T, z, z.left)
(9) else $y=$ Tree-Minimum(z.right)
(10) y-original-color $=y$.color
(1) $x=y$.right
(12) if $y \cdot p==z$
(13) $x \cdot p=y$
(14) else RB-Transplant(T,y,y.right)
(15) y. right $=z$. right
(10)

$$
\text { y.right.p }=y
$$

Case 4

- Find the successor of z
- Store the info of it: Color and right child

Deletion in Red-Black Trees

RB-DELETE(T,z)

(1) $y=z$
(2) y-original-color $=y$.color
(3) if z.left $==$ T.nil

4
$x=$ z.right
(5) RB-Transplant(T, z, z.right)
(6) elseif z.right $==$ T.nil
(7) $x=z$.left
(8) RB-Transplant(T, z, z.left)
(9) else $y=$ Tree-Minimum(z.right)
(10) y-original-color $=y$.color
(1) $x=y \cdot r i g h t$
(12) if $y \cdot p==z$
(13) $x \cdot p=y$
(14) else RB-Transplant(T,y,y.right)
(10)

$$
\begin{aligned}
& \text { y.right }=z . r i g h t ~ \\
& \text { y.right.p }=y
\end{aligned}
$$

Case 5

- If parent of succesor is z then set parent of x to y

Deletion in Red-Black Trees

RB-DELETE(T,z)

(1) $y=z$
(2) y-original-color $=y$.color
(3) if z.left $==$ T.nil

4
$x=$ z.right
(5) RB-Transplant(T, z, z.right)
\varnothing
(6) elseif z.right $==T$.nil
(1)
$x=z . l e f t$
(8) RB-Transplant(T, z, z.left)
(9) else $y=$ Tree-Minimum(z.right)
(10) y-original-color $=\mathrm{y}$.color
(1) $x=y \cdot$ right
(12) if $\mathrm{y} \cdot \mathrm{p}==\mathrm{z}$
(13)
(14) else RB-Transplant(T,y,y,right)
(10)

$$
\begin{aligned}
& \text { y.right }=z . r i g h t \\
& \text { y.right. } . p=y
\end{aligned}
$$

Case 6

- Substitute y with y.right
- set y.right with z.right
- set the parent of y.right to y

Deletion in Red-Black Trees

RB-DELETE(T,z)

17. \quad RB-Transplant (T, z, y)
18. \quad y.left $=z . l e f t$
19. \quad y.left. $p=y$
20. \quad y.color $=z . c o l o r ~$
21. if y-original-color $==$ BLACK
22.

RB-Delete-Fixup (T, x)

Case 7

- Substitute z with y
- Make y.left to z.left
- Make the parent of y.left to y
- Make the color of y to the color of z

Deletion in Red-Black Trees

RB-DELETE(T,z)

Case 8

- If y-original-color $==$ BLACK then call RB-Delete-Fixup (T, x)
- After all x points to the node that:
- It is moved into the position of y.
- Where y was moved into the position of z.

Where RB-Transplant

RB-Transplant(T, u, v)
(1) if $u \cdot p==$ T.nil
(2) T.root $=v$
(3) elseif $u==u$.p.left
(9) u.p.left $=v$
(3) else u.p.right $=v$
(6) $v . p=u . p$

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
-

Example
(3) Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees
(4) Exercises
- Something for you to do

A virtual node y to be removed or moved around

Case 1

- In line $1, y$ is removed when it points to z and has less than two children.

A virtual node y to be removed or moved around

Case 1

- In line $1, y$ is removed when it points to z and has less than two children.

Case 2

- In line 9, y is moved around when z has two children

A virtual node y to be removed or moved around

Case 1

- In line $1, y$ is removed when it points to z and has less than two children.

Case 2

- In line 9, y is moved around when z has two children
- Because $y=$ Tree-Minimum(z.right).

A virtual node y to be removed or moved around

Case 1

- In line $1, y$ is removed when it points to z and has less than two children.

Case 2

- In line 9, y is moved around when z has two children
- Because $y=$ Tree-Minimum(z.right).

Then

y will move to z 's position.

A virtual node y to be removed or moved around

A virtual node y to be removed or moved around

Now, the color of y's can change

- Therefore, it gets stored in y-original-color (Lines 2, 10).

Then, when z has two children

- Then y moves to z 's position and y gets the same color than z.

A virtual node y to be removed or moved around

Now, the color of y's can change

- Therefore, it gets stored in y-original-color (Lines 2, 10).

Then, when z has two children

- Then y moves to z's position and y gets the same color than z.
- This can produce a violation.

The node x gets position y

In lines 4, 7, and $11, x$ is set to point to

- to y's only child or

The node x gets position y

In lines 4, 7, and $11, x$ is set to point to

- to y's only child or
- T.nil

The node x gets position y

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

Since x is going to move to y 's original position

The x.p is pointed to y's parent.

The node x gets position y

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

Since x is going to move to y 's original position

The x.p is pointed to y's parent.

Unless z is y's original parent
The assignment of x.p takes place in line 6 of RB-Transplant.

The node x gets position y

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

Since x is going to move to y 's original position

The x.p is pointed to y's parent.

Unless z is y's original parent

The assignment of x.p takes place in line 6 of RB-Transplant.

- Observe that when RB-Transplant is called in lines 5 , 8 , or 14 , the second parameter passed is the same as x.

The node x gets position y

if z is not the original y 's parent

We do not want x.p to point to it since we are going to remove it.

The node x gets position y

if z is not the original y 's parent

We do not want x.p to point to it since we are going to remove it.

Then

In line 13 of RB-Delete, x.p is set to point to y .

The node x gets position y

if z is not the original y 's parent

We do not want x.p to point to it since we are going to remove it.

Then

In line 13 of RB-Delete, x.p is set to point to y .

Finally

y will take the position of z in line 17 .

The node x gets position y

Then

If y was originally black after taking the z.color can produce a violation, then RB-Delete-Fixup is called.

The node x gets position y

Abstract

Then If y was originally black after taking the z.color can produce a violation, then RB-Delete-Fixup is called.

This can happen If y was originally red the Red-Black Trees properties still hold.

Deletion in Red-Black Trees

Question

What if we removed a black node?

Explanation

We have three problems

(1) If y was a root and a RED child becomes the new root, we have violated property 2.

Explanation

We have three problems

(1) If y was a root and a RED child becomes the new root, we have violated property 2.
(2) If both x and $x . p$ are RED, then we have violated property 4 .

Explanation

We have three problems

(1) If y was a root and a RED child becomes the new root, we have violated property 2.
(2) If both x and x.p are RED, then we have violated property 4.
(3) Moving y around decreases the black-height on a section of the Red Black Tree.

Explanation

We have three problems

(1) If y was a root and a RED child becomes the new root, we have violated property 2.
(2) If both x and x.p are RED, then we have violated property 4.
(3) Moving y around decreases the black-height on a section of the Red Black Tree.
(1) Thus, Property 5 is violated.

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
- Example
(3) Deletion in Red-Black Trees

O The Basics

- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees
- Something for you to do

Fix-up

How?

- This could be fixed assuming that x has an "extra black."

Fix-up

How?

- This could be fixed assuming that x has an "extra black."

Meaning

- This means that the node is "doubly black" or "red-and-black."

Example

We have then

Doubly Black Case Red-and-Black Case

How is this done?

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

How is this done?

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

Until

- If we have that x is a red-and-black, we simply need to change the color of the node to BLACK (Line 23).

How is this done?

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

Until

- If we have that x is a red-and-black, we simply need to change the color of the node to BLACK (Line 23).

Then, use Rotations

- Use suitable rotations and re-colorings until x stops to be a doubly black node.

How is this done?

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

Until

- If we have that x is a red-and-black, we simply need to change the color of the node to BLACK (Line 23).

Then, use Rotations

- Use suitable rotations and re-colorings until \times stops to be a doubly black node.
- If we have that x is pointing to the root, remove "extra node."

Outline

(1) Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
- Base Case of Induction
- Induction
- Rotations in Red-Black Trees
(2) Insertion in Red-Black Trees
- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
- Initialization
- Maintenance
- Termination
-

Example
(3) Deletion in Red-Black Trees

O The Basics

- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

```
RB-DELETE-FIXUP(T,x)
while }x\not=\mathrm{ T.root and x.color == BLACK
    if x == x.p.left
    w = x.p.right
    if w.color == RED
        w.color = BLACK
        x.p.color = RED
        Left-Rotate(T, x.p)
        w = x.p.right
    if w.left.color == BLACK and w.right.color == BLACK
        w.color = RED
        x = x.p
    else if w.right.color == BLACK
            w.left.color = BLACK
            w.color = RED
            Right-Rotate(T, w)
            w = x.p.right
            w.color = x.p.color
            x.p.color = BLACK
            w.right.color = BLACK
            Left-Rotate(T, x.p)
            x = T.root
    else (same with "right" and "left" exchanged)
x.color = BLACK
```


While loop

- Because a violation on the bh, you need to move x up until the problem is fixed up.

RB-DELETE-FIXUP(T,x)

```
(1) while \(x \neq\) T.root and \(x\).color \(==\) BLACK
    if \(x==x\).p.left
    \(\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}\)
    if w .color \(==\) RED
        w.color \(=\) BLACK
        x.p.color \(=\) RED
        Left-Rotate(T, x.p)
        \(\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}\)
    if w.left.color \(==\) BLACK and w.right.color \(==\) BLACK
        w.color \(=\) RED
        \(\mathrm{x}=\mathrm{x} . \mathrm{p}\)
    else if w.right.color \(==\) BLACK
            w.left.color \(=\) BLACK
            w. color \(=\) RED
            Right-Rotate(T, w)
            \(\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}\)
            \(\mathrm{w} . \mathrm{color}=\mathrm{x} . \mathrm{p} . \mathrm{color}\)
            x.p.color \(=\) BLACK
            w.right.color \(=\) BLACK
            Left-Rotate(T, x.p)
            \(\mathrm{x}=\mathrm{T}\).root
else (same with "right" and "left" exchanged)
\(x\). color \(=\) BLACK

\section*{Finding who you are}
- Find which child are you
- Make w the other child

\section*{RB-DELETE-FIXUP(T,x)}
```

(1) while $x \neq$ T.root and x.color $==$ BLACK
if $\mathrm{x}==\mathrm{x}$.p.left
$\mathrm{w}=\mathrm{x} \cdot \mathrm{p} . \mathrm{right}$
if w.color $==$ RED
w.color $=$ BLACK
x.p.color $=$ RED
Left-Rotate(T, x.p)
$\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}$
if w.left.color $==$ BLACK and w.right.color $==$ BLACK
w .color $=$ RED
$\mathrm{x}=\mathrm{x} . \mathrm{p}$
else if w.right.color $==$ BLACK
w.left.color $=$ BLACK
w. color $=$ RED
Right-Rotate(T, w)
$\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}$
w. color $=\mathrm{x} . \mathrm{p} . \mathrm{color}$
x.p.color $=$ BLACK
w.right.color $=$ BLACK
Left-Rotate(T, x.p)
$x=$ T.root
else (same with "right" and "left" exchanged)
x. color $=$ BLACK

```

\section*{Case 1}
- if \(x\) is BLACK and \(w\) is RED
- Fix the bh problem by making w BLACK, x's parent to RED then rotate left using x's parent
- Make w = x.p.right moving the problem down.

\section*{Outline}
（1）Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node \(y\)
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
（4）Exercises
－Something for you to do

\section*{Suitable Rotations and Recoloring}

Case \(1-x\) 's sibling \(w\) is red. You keep the bh property of the other subtrees


\section*{Suitable Rotations and Recoloring}

Case \(1-x\) 's sibling w is red. You keep the bh property of the other subtrees


\section*{RB-DELETE-FIXUP (T,x)}
```

(1) while $x \neq$ T.root and x.color $==$ BLACK

```
if \(\mathrm{x}==\mathrm{x}\).p.left
\(\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}\)
if \(w\). color \(==\) RED
w.color \(=\) BLACK
x.p.color \(=\) RED

Left-Rotate(T, x.p)
\(\mathrm{w}=\mathrm{x}\).p.right
if w.left.color \(==\) BLACK and w.right.color \(==\) BLACK
w. color \(=\) RED
\(x=x . p\)
else if w.right.color \(==\) BLACK
w.left.color \(=\) BLACK
w.color \(=\) RED

Right-Rotate(T, w)
\(\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}\)
w. color \(=\mathrm{x} . \mathrm{p} . \mathrm{color}\)
x.p.color \(=\) BLACK
w.right.color \(=\) BLACK

Left-Rotate(T, x.p)
\(x=\) T.root
else (same with "right" and "left" exchanged)
\(x\). color \(=\) BLACK

\section*{Case 2}
- Now if w.left's color and w.right's color is BLACK
- We do something smart decrease the bh height at w by making w's color to RED
- Move the problem fropm to \(x\) to x.p (After all the subtree have the same height at x.p)

\section*{Suitable Rotations and Recoloring}

Case 2 - x's sibling w is black, and both of w's children are black.


Note: The Node with half and half colors has the meaning that it can be red or black.

\section*{Suitable Rotations and Recoloring}

\section*{Case 2 - x's sibling w is black, and both of w's children are black.}


\section*{RB-DELETE-FIXUP (T,x)}
```

(1) while $x \neq$ T.root and x.color $==$ BLACK

```
if \(\mathrm{x}==\mathrm{x}\).p.left
\(\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}\)
if \(w\). color \(==\) RED
w.color \(=\) BLACK
x.p.color \(=\) RED

Left-Rotate(T, x.p)
\(\mathrm{w}=\mathrm{x}\).p.right
if w.left.color \(==\) BLACK and w.right.color \(==\) BLACK
w.color \(=\) RED
\(x=x . p\)
else if w.right.color \(==\) BLACK
w.left.color \(=\) BLACK
w. color \(=\) RED

Right-Rotate(T, w)
\(\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}\)
w. color \(=\mathrm{x} . \mathrm{p}\). color
x.p.color \(=\) BLACK
w.right.color \(=\) BLACK

Left-Rotate(T, x.p)
\(x=\) T.root
else (same with "right" and "left" exchanged)
\(x\). color \(=\) BLACK

\section*{Case 3}
- If w.right's color is BLACK
- We do something smart, we re-color and do a right rotation at w
- This does not change the Red-Black Trees properties of w
- but prepare the situation for fixing the \(\times\) height problem in case 4.

\section*{Suitable Rotations and Recoloring}

Case 3 - \(x\) 's sibling w is black, w's left child is red, and w's right child is black.


\section*{Suitable Rotations and Recoloring}

Case 3: x's sibling w is black, w's left child is red, and w's right child is black.


\section*{RB-DELETE-FIXUP(T,x)}
```

(1) while $x \neq$ T.root and x.color $==$ BLACK
if $\mathrm{x}==\mathrm{x}$.p.left
$\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}$
if w. color $==$ RED
w. color $=$ BLACK
x.p.color $=$ RED
Left-Rotate(T, x.p)
$\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}$
if w.left.color $==$ BLACK and w.right.color $==$ BLACK
w .color $=$ RED
$\mathrm{x}=\mathrm{x} \cdot \mathrm{p}$
else if w.right.color $==$ BLACK
w.left.color $=$ BLACK
w. color $=$ RED
Right-Rotate(T, w)
$\mathrm{w}=\mathrm{x} . \mathrm{p} . \mathrm{right}$
w. color $=\mathrm{x} . \mathrm{p}$. color
x.p.color $=$ BLACK
w.right.color $=$ BLACK
Left-Rotate(T, x.p)
$x=$ T.root
else (same with "right" and "left" exchanged)
x. color $=$ BLACK

```

\section*{Case 4}
- We are ready to fix our problem!!! with respect to \(\times\) (Case 2 and 3 where a preparation to fix the problem)
- We increase the height of the bh with the problem, x .

\section*{Suitable Rotations and Recoloring}

\section*{Case 4: x's sibling w is black, and w's right child is red.}


\section*{Suitable Rotations and Recoloring}

Case 4: x's sibling w is black, and w's right child is red.


\section*{Outline}
（1）Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
（3）Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node \(y\)
－The Fix－Up
－The Code To Fix the Viotations
Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
（4）Exercises
－Something for you to do

Deletion in Red-Black Trees

Delete 17

cinvestor

\section*{Deletion in Red-Black Trees}

\section*{Store the info about z}
- \(y=z\)
- y -original-color \(=\mathrm{y}\). color


\section*{Deletion in Red-Black Trees}

\section*{None of the children of \(z\) are T.nil, thus}
- else \(\mathrm{y}=\) Tree-Minimum(z.right)
- \(\quad y\)-original-color \(=y\).color
- \(\quad x=y\). right


\section*{Deletion in Red-Black Trees}

We have that \(\mathrm{y} . \mathrm{p} \neq z\)
- else RB-Transplant(T,y,y.right)
\(y\). right \(=\) z.right
\(y\).right.p \(=y\)


\section*{Deletion in Red-Black Trees}

Transplant(T, y, y.right)
- elseif \(y==y . p . l e f t\)
- y.p.left \(=\) y.right
- y.right.p \(=y . p\)


\section*{Deletion in Red-Black Trees}

\section*{Now, we move pointers}
- y.right \(=\) z.right
- y.right.p \(=y\)


\section*{Deletion in Red-Black Trees}

\section*{Transplant(z,y)}
- if z.p == T.nil
- \(\quad\) T.root \(=y\)
- y.p = z.p


\section*{Deletion in Red-Black Trees}

\section*{Move pointers}

> y.left \(=\) z.left
> y.left.p \(=\) y
> y.color \(=\) z.color


\section*{Deletion in Red-Black Trees}

\section*{We remove \(z\) safely and we go into Delete-Fixup( \(T, x\) )}
- z.right \(=\) NULL
- z.left \(=\) NULL
- z.parent \(=\) NULL


\section*{Deletion in Red-Black Trees}

\section*{We remove \(z\) safely and we go into Delete-Fixup( \(T, x\) )}
- Never enter into the loop
- Simply do x.color = BLACK


Deletion in Red-Black Trees

Delete 12

cinvestor

\section*{Deletion in Red-Black Trees}

\section*{None of the children of \(z\) are T.nil, thus}
- else \(\mathrm{y}=\) Tree-Minimum(z.right)
- y-original-color \(=y . c o l o r\) (BLACK)
- \(\quad x=y\). right (T.NIL)


\section*{Deletion in Red-Black Trees}

We have that \(\mathrm{y} \cdot \mathrm{p}==z\)
\[
\begin{array}{rr}
0 & \text { if } y . p==z \\
x . p=y
\end{array}
\]


\section*{Deletion in Red-Black Trees}

\section*{Next}
\[
\begin{array}{ll}
\text { RB-Transplant }(T, z, y) \\
\text { y.left }=z . l e f t \\
\text { y.left.p }=y \\
\text { y.color }=z . c o l o r ~
\end{array}
\]


\section*{Deletion in Red-Black Trees}

\section*{Next}
RB-Transplant \((T, z, y)\)
y.left \(=z . l e f t\)
y.left.p \(=y\)
y.color \(=z . c o l o r ~\)


\section*{Deletion in Red-Black Trees}

\section*{Next}
RB-Transplant \((T, z, y)\)
y.left \(=z . l e f t\)
y.left.p \(=y\)
y.color \(=z . c o l o r ~\)


\section*{Deletion in Red-Black Trees}

\section*{We remove z safely and we go into Delete-Fixup \((T, x)\)}
- enter into the loop
- if \(x==x\).p.right
- \(\quad w=x . p . l e f t\)


\section*{Deletion in Red-Black Trees}

\section*{We enter into case 4}
(1)
w. color \(=\mathrm{x} . \mathrm{p} . \mathrm{color}\)
(2) x.p.color \(=\) BLACK
(3) w.right.color \(=\) BLACK


\section*{Deletion in Red-Black Trees}

\section*{Rotate and move the \(x\)}
(1) Left-Rotate(T, x.p)
(2) \(x=\) T.root


\section*{Applications of Red-Black Trees}

\section*{Completely Fair Scheduler (CFS)}
- It is a task scheduler which was merged into 2.6.23 release of the Linux Kernel.
- It is a replacement of earlier \(\mathrm{O}(1)\) scheduler.
- CFS algorithm was designed to maintain balance (fairness) in providing processor time to tasks.

\section*{Applications of Red-Black Trees}

\section*{Completely Fair Scheduler (CFS)}
- It is a task scheduler which was merged into 2.6.23 release of the Linux Kernel.
- It is a replacement of earlier \(\mathrm{O}(1)\) scheduler.
- CFS algorithm was designed to maintain balance (fairness) in providing processor time to tasks.

\section*{Sorting using Parallel Implementations}
- Running in \(O(\log \log n)\) time

\section*{Outline}
（1）Red－Black Trees
－The Search for Well Balanced Threes
－Observations
－Red－Black Trees
－Examples
－Lemma for the height of Red－Black Trees
－Base Case of Induction
－Induction
－Rotations in Red－Black Trees
（2）Insertion in Red－Black Trees
－Important！！！
－Insertion Code
－The Fixup Code
－Loop Invariance
－Initialization
－Maintenance
－Termination
－
Example
3 Deletion in Red－Black Trees
－The Basics
－The Code
－The Case of a Virtual Node y
－The Fix－Up
－The Code To Fix the Violations
－Suitable Rotations and Recoloring
－Example of Deletion in Red－Black Trees
（4）Exercises
－Something for you to do

\section*{Exercises}

\section*{From Cormen's book solve}
- 13.1-1
- 13.1-3
- 13.1-5
- 13.1-7
- 13.2-2
- 13.2-3
- 13.2-4
- 13.2-5
- 13.3-2
- 13.3-4
- 13.4-2
- 13.4-4```

