Analysis of Algorithms Red-Black Trees

Andres Mendez-Vazquez

October 1, 2018

イロン イボン イヨン トヨ

1/163

1 Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

2 Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- $igodoldsymbol{\Theta}$ The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises Something for you to do

1 Red-Black Trees

The Search for Well Balanced Threes

- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Something for you to do

Well Balanced Trees

Do you remember AVL (Adelson-Velskii and Landis) Trees?

Quite nice recursive methods for balancing the tree!!!

It is based on an height Invariant

At any node in the tree, the heights of the left and right subtrees differs by at most 1.

4/163

・ロン ・四 と ・ ヨ と ・ ヨ と

Well Balanced Trees

Do you remember AVL (Adelson-Velskii and Landis) Trees?

Quite nice recursive methods for balancing the tree!!!

It is based on an height Invariant

At any node in the tree, the heights of the left and right subtrees differs by at most 1.

4/163

< ロ > < 回 > < 回 > < 回 > < 回 >

Thus, it is necessary to add an extra field to the Node Structure

Structure of a Node

Structure 1: STRUCT NODE

- 1 Key key
- 2 int height
- 3 Value val
- 4 Node Left, Right

5/163

< ロ > < 回 > < 回 > < 回 > < 回 >

1 Red-Black Trees

The Search for Well Balanced Threes

Observations

- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Something for you to do

Observations

Due to the balancing methods

- AVL Trees requiere to have a $O\left(\log_2 n\right)$ rotations.
- AVL Trees operations cost O (log₂ n

7/163

イロン イヨン イヨン イヨン 三日

Observations

Due to the balancing methods

- AVL Trees requiere to have a $O\left(\log_2 n\right)$ rotations.
- AVL Trees operations cost $O(\log_2 n)$.

here is a problem about the height

How much memory it is necessary to allocate for the height field in massive binary search trees?

Observations

Due to the balancing methods

- AVL Trees requiere to have a $O\left(\log_2 n\right)$ rotations.
- AVL Trees operations cost $O(\log_2 n)$.

There is a problem about the height

How much memory it is necessary to allocate for the height field in massive binary search trees?

Arguments in favor of AVL Trees

• Search is $O(\log N)$ since AVL trees are always balanced.

8/163

イロン イヨン イヨン イヨン 三日

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL tre

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor
- Asymptotically faster but re-balancing costs time.
- Most large searches are done in database systems on disk and use other structures (e.g. B-trees).

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor.
- Asymptotically faster but re-balancing costs time.
 - Most large searches are done in database systems on disk and use other structures (e.g. B-trees).

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor.

Asymptotically faster but re-balancing costs time.

Most large searches are done in database systems on disk and use other structures (e.g. B-trees).

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor.
- Asymptotically faster but re-balancing costs time.

Aost large searches are done in database systems on disk and use ther structures (e.g. B-trees).

Arguments in favor of AVL Trees

- Search is $O(\log N)$ since AVL trees are always balanced.
- Insertion and deletions are also $O(\log N)$.

Arguments against using AVL trees

- Difficult to program and debug.
- The dynamic space nature of the balancing (Height) factor.
- Asymptotically faster but re-balancing costs time.
- Most large searches are done in database systems on disk and use other structures (e.g. B-trees).

< ロ > < 同 > < 回 > < 回 >

1 Red-Black Trees

The Search for Well Balanced Threes
 Observations

Red-Black Trees

- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

- Every node is either red or black.
 - Every leaf (NIL) is black.
 - If a node is red, then both its children are black.
 - For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

- Every node is either red or black.
- O The root is black.

) If a node is red, then both its children are black

For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

- Every node is either red or black.
- O The root is black.
- Severy leaf (NIL) is black.

If a node is red, then both its children are black.

For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

- Every node is either red or black.
- O The root is black.
- Severy leaf (NIL) is black.
- If a node is red, then both its children are black.

For each node, all paths from the node to descendant leaves contain the same number of black nodes.

< ロ > < 同 > < 三 > < 三 >

Definition

A Red Black Tree is a Binary Search Tree where each node has an extra field, its color.

Properties

- Every node is either red or black.
- One root is black.
- Severy leaf (NIL) is black.
- If a node is red, then both its children are black.
- For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Red-Black Trees

The Search for Well Balanced Threes

- Observations
- Red-Black Trees

Examples

- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Red-Black Trees

Example

Height on a Red Black Tree

Black Height bh(x)

We call the number of black nodes on any path from, but not including, a node x down to a leaf the black height of the node.

Red-Black Trees

The Search for Well Balanced Threes

- Observations
- Red-Black Trees
- Examples

Lemma for the height of Red-Black Trees

- Base Case of Induction
- Induction
- Rotations in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Lemma for the height of Red-Black Trees

Theorem

A Red-Black Trees with n internal nodes has height at most $2\log(n+1)$.

Lemma for the height of Red-Black Trees

Theorem

A Red-Black Trees with n internal nodes has height at most $2\log(n+1)$.

Proof: Step 1

 Prove that any subtree rooted at x contains at least 2^{bh(x)} - 1 internal nodes.

15/163

イロト イヨト イヨト イヨト

Lemma for the height of Red-Black Trees

Theorem

A Red-Black Trees with n internal nodes has height at most $2\log(n+1)$.

Proof: Step 1

• Prove that any subtree rooted at x contains at least $2^{bh(x)} - 1$ internal nodes.

• If
$$bh(x) = 0$$
, then

15/163

< ロ > < 回 > < 回 > < 回 > < 回 >

Red-Black Trees

The Search for Well Balanced Threes

- Observations
- Red-Black Trees
- Examples

Lemma for the height of Red-Black Trees Base Case of Induction

- Induction
- Rotations in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Something for you to do

Examples for bh(x) = 0

Case I

っへで 17/163

イロト イヨト イヨト イヨト 二日

Examples for bh(x) = 0

Case II - There are other, but they are similar

∃ ∽ Q ⊂ 18 / 163

イロン イ団 とく ヨン イヨン

Then

Then, we have

• Thus
$$2^{bh(x)} - 1 = 2^0 - 1 = 0$$
.

Now with bh(x) > 0, we have that child[x] has height bh(x) or bh(x) − 1.

Then

Then, we have

- Thus $2^{bh(x)} 1 = 2^0 1 = 0$.
- Now with bh(x) > 0, we have that child[x] has height bh(x) or bh(x) 1.

Red-Black Trees

The Search for Well Balanced Threes

- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction

Induction

Rotations in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

20/163

< ロ > < 回 > < 回 > < 回 > < 回 >

Thus, we have the following

Example

Case I

- Height of child is bh(x).
- Then, the child is red, if not subtree rooted at x will have height bh(x) + 1!
- Now, we have two subtrees from the child with red root...(The children are black)

Case I

- Height of child is bh(x).
- Then, the child is red, if not subtree rooted at x will have height bh(x)+1!
- Now, we have two subtrees from the child with red root...(The children are black)

hus, we have

- Thus, each of this subtrees has height $bh(x) 1 \Rightarrow$ each tree contains at least $2^{bh(x)-1} 1$ nodes by inductive hypothesis.
- Then the child contains at least 2^{bh(x)-1} 1 + 2^{bh(x)-1} 1 internal nodes.
- Finally, the tree rooted contains $2^{bh(x)-1} 1 + 2^{bh(x)-1} 1 + 1$ (One for the node rooted at the child node)

Case I

- Height of child is bh(x).
- Then, the child is red, if not subtree rooted at x will have height bh(x)+1!
- Now, we have two subtrees from the child with red root...(The children are black)

hus, we have

- Thus, each of this subtrees has height bh(x) − 1 ⇒ each tree contains at least 2^{bh(x)−1} − 1 nodes by inductive hypothesis.
- Then the child contains at least 2^{bh(x)-1} 1 + 2^{bh(x)-1} 1 internal nodes.
- Finally, the tree rooted contains $2^{bh(x)-1} 1 + 2^{bh(x)-1} 1 + 1$ (One for the node rooted at the child node)

Case I

- Height of child is bh(x).
- Then, the child is red, if not subtree rooted at x will have height bh(x)+1!
- Now, we have two subtrees from the child with red root...(The children are black)

Thus, we have

• Thus, each of this subtrees has height $bh(x) - 1 \Rightarrow$ each tree contains at least $2^{bh(x)-1} - 1$ nodes by inductive hypothesis.

Finally, the tree rooted contains $2^{bh(x)-1} - 1 + 2^{bh(x)-1} - 1 + 1$ for the node rooted at the child node)

Case I

- Height of child is bh(x).
- Then, the child is red, if not subtree rooted at x will have height bh(x)+1!
- Now, we have two subtrees from the child with red root...(The children are black)

Thus, we have

- Thus, each of this subtrees has height $bh(x) 1 \Rightarrow$ each tree contains at least $2^{bh(x)-1} 1$ nodes by inductive hypothesis.
- Then the child contains at least $2^{bh(x)-1} 1 + 2^{bh(x)-1} 1$ internal nodes.

Case I

- Height of child is bh(x).
- Then, the child is red, if not subtree rooted at x will have height bh(x)+1!
- Now, we have two subtrees from the child with red root...(The children are black)

Thus, we have

- Thus, each of this subtrees has height $bh(x) 1 \Rightarrow$ each tree contains at least $2^{bh(x)-1} 1$ nodes by inductive hypothesis.
- Then the child contains at least $2^{bh(x)-1} 1 + 2^{bh(x)-1} 1$ internal nodes.
- Finally, the tree rooted contains $2^{bh(x)-1}-1+2^{bh(x)-1}-1+1$ (One for the node rooted at the child node)

Finally

 $\bullet\,$ Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 Q (C) 23 / 163

Finally

• Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

Case II

- Height of the child is bh(x) 1.
- Now, we have two subtrees with at least 2^{bh(x)−1} − 1 nodes by inductive hypothesis.
- Thus, we have that the tree with root x contains at least $2^{bh(x)-1}-1+2^{bh(x)-1}-1+1$ internal nodes.

Finally

• Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

Case II

- Height of the child is bh(x) 1.
- Now, we have two subtrees with at least $2^{bh(x)-1} 1$ nodes by inductive hypothesis.

イロト イロト イヨト イヨト

Finally

• Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

Case II

- Height of the child is bh(x) 1.
- Now, we have two subtrees with at least $2^{bh(x)-1} 1$ nodes by inductive hypothesis.
- Thus, we have that the tree with root x contains at least $2^{bh(x)-1} 1 + 2^{bh(x)-1} 1 + 1$ internal nodes.

イロト 不得 トイヨト イヨト 二日

Again

• Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 24 / 163

Again

• Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

Finally

• Now given that h is the height of the tree, we have by property 4 that $bh(T) \geq \frac{h}{2}.$

ヘロト ヘロト ヘヨト ヘヨト

Again

• Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

Finally

- Now given that h is the height of the tree, we have by property 4 that $bh(T) \geq \frac{h}{2}.$
- Then $n \ge 2^{bh(root)} 1 \ge 2^{\frac{h}{2}} 1$.

24 / 163

イロン イヨン イヨン イヨン 三日

Again

• Then, the tree with root x contains at least $2\times 2^{bh(x)-1}-1=2^{bh(x)}-1$

Finally

- Now given that h is the height of the tree, we have by property 4 that $bh(T) \geq \frac{h}{2}.$
- Then $n \ge 2^{bh(root)} 1 \ge 2^{\frac{h}{2}} 1$.
- Then, $h \leq 2\log(n+1)$ \Box .

ヘロト ヘロト ヘヨト ヘヨト

Lemma for the height of Red-Black Trees

Corollary

From the previous theorem we conclude that SEARCH, MINIMUM, etcetera, can be implemented in $O(\log n).$

Outline

Red-Black Trees

The Search for Well Balanced Threes

- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Rotations in Red-Black Trees

Purpose

Rotations are used to maintain the structure of the Red-Black Trees.

Rotations in Red-Black Trees

Purpose

Rotations are used to maintain the structure of the Red-Black Trees.

Types of rotations

There are left and right rotations, they are inverse to each other.

- O x.right = y.left → Turn y's left subtree into x's right subtree
- if y.left \neq T.nil
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- if x.p == T.nil
- T.root = y
- $0 \ e lseif x == x.p.left$
- x.p.left = y
- else x.p.right = y
- A x.p = y

- $\textbf{ (y) x.right} = y.left \quad \triangleright \text{ Turn y's left subtree into x's right subtree}$
- $if y.left \neq T.nil$
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- $\textbf{0} \quad \text{if } x.p == T.nil$
- T.root = y
- elseif x == x.p.left
- x.p.left = y
- else x.p.right = y
- A x.p = y

- $\textbf{ 3 x.right} = y.left \quad \triangleright \text{ Turn y's left subtree into x's right subtree}$
- if y.left \neq T.nil
- y.left.p = x
- Intersection of the second sector of the second second sector of the second second
- if x.p == T.nil
- T.root = y
- $0 \ elseif x == x.p.left$
- x.p.left = y
- else x.p.right = y
- A x.p = y

- **2** x.right = y.left \triangleright Turn y's left subtree into x's right subtree
- if y.left \neq T.nil
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- If x.p == T.nil
- T.root = y
- \bigcirc elseif x == x.p.left
- x.p.left = y
- else x.p.right = y
- A x.p = y

- $I y = x.right \qquad \triangleright Set y$
- **2** x.right = y.left \triangleright Turn y's left subtree into x's right subtree
- if y.left \neq T.nil
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- if x.p == T.nil
- T.root = y
- elseif x == x.p.left
- else x.p.right = y
- x.p = y

- $I y = x.right \qquad \triangleright Set y$
- $\textbf{O} x.right = y.left \quad \triangleright Turn y's left subtree into x's right subtree$
- if y.left \neq T.nil
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- If x.p == T.nil
- T.root = y
- elseif x == x.p.left
- x.p.left = y
- else x.p.right = y
- x.p = y

LEFT-ROTATE(T,x)

- $I y = x.right \qquad \triangleright Set y$
- **2** x.right = y.left \triangleright Turn y's left subtree into x's right subtree
- if y.left \neq T.nil
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- If x.p == T.nil
- T.root = y
- elseif x == x.p.left
- x.p.left = y
- \mathbf{O} else x.p.right = y

▷ Put x on y's left

A x.p = y

- y = x.right \triangleright Set y
- **2** x.right = y.left \triangleright Turn y's left subtree into x's right subtree
- if y.left \neq T.nil
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- If x.p == T.nil
- T.root = y
- elseif x == x.p.left
- x.p.left = y
- 0 else x.p.right = y

- $I y = x.right \qquad \triangleright Set y$
- **2** x.right = y.left \triangleright Turn y's left subtree into x's right subtree
- if y.left \neq T.nil
- y.left.p = x
- y.p = x.p \triangleright Link x's parent to y
- If x.p == T.nil
- T.root = y
- elseif x == x.p.left
- x.p.left = y
- 0 else x.p.right = y
- x.p = y

Step 2 - the parents are set correctly

Х

 α

- 3. if y.left \neq T.nil
- 4. y.left.p = x
- 5. y.p = x.p

Step 3

- 6. if x.p == T.nil \triangleright Set y to be the root if x was it
- 7. T.root = y
- 8. elseif x == x.p.left
- 9. x.p.left = y
- 10. else x.p.right = y

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

Important!!!

- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

First than anything

Something Notable

You still have a Binary Search Tree!!!

There

How do you do insertion in a Binary Search Tree?

First than anything

Something Notable

You still have a Binary Search Tree!!!

There

How do you do insertion in a Binary Search Tree?

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

Important!!!

Insertion Code

- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

35 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

RB-INSERT(T, z)	
1. $y = T.nil$	9. if $y == T.nil$
2. x = T.root	10. $T.root = z$
while x≠T.nil	11. elseif z.key $<$ y.key
4. y = x	12. $y.left = z$
5. if z.key <x.key< th=""><th>13. else y.right = z</th></x.key<>	13. else y.right = z
$6. \qquad \qquad x = x. left$	14. $z.left = T.nil$
7. else $x = x.right$	15. $z.right = T.nil$
8. z.p = y	16. $z.color = T.RED$
	17. RB-Insert-Fixup(T.z)

First

Search Variables being Initialized.

RB-INSERT(T, z)	
1. $y = T.nil$	9. if $y == T.nil$
2. $x = T$.root	10. $T.root = z$
3. while x≠T.nil	11. elseif z.key $<$ y.key
4. y = x	12. $y.left = z$
5. if z.key <x.key< th=""><th>13. else y.right = z</th></x.key<>	13. else y.right = z
6. x =	14. $z.left = T.nil$
x.left	15. $z.right = T.nil$
7. else $x =$	16. $z.color = T.RED$
x.right	17. RB-Insert-Fixup(T.z)
8. z.p = y	
Second	
Binary search for insertion.	
	diveste

RB-INSERT(T,z)	
1. $y = T.nil$	9. if $y == T.nil$
2. $x = T.root$	10. $T.root = z$
while x≠T.nil	11. elseif z.key $<$ y.key
4. y = x	12. $y.left = z$
5. if z.key <x.key< td=""><td>13. else y.right = z</td></x.key<>	13. else y.right = z
$6. \qquad \qquad x = x. left$	14. z.left = T.nil
7. else $x = x.right$	15. $z.right = T.nil$
8. z.p = y	16. $z.color = T.RED$
	17. RB-Insert-Fixup(T.z)

Third

Change parent of the node to be inserted.

38/163

< ロ > < 回 > < 回 > < 回 > < 回 >

$1. \hspace{0.1 in} y = T.nil$	9. if $y == T.nil$	
2. $x = T.root$	10. T.root = z	
while x≠T.nil	11. elseif z.key $<$ y.key	
4. y = x	12. $y.left = z$	
5. if z.key <x.key< th=""><th>13. else y.right = z</th><th></th></x.key<>	13. else y.right = z	
$6. \qquad \qquad x = x. left$	14. z.left = T.nil	
7. else $x = x.right$	15. z.right = T.nil	
8. z.p = y	16. $z.color = T.RED$	
	17. RB-Insert-Fixup(T.z)	
ourth		
Test to see if the Tree is a	empty!!!	

$\mathsf{RB}\text{-}\mathsf{INSERT}(T, z)$

- $1. \ y=\mathsf{T.nil}$
- $2. \ x=T.root$
- 3. while $x \neq T.nil$
- 4. y = x
- 5. if z.key<x.key
- $6. \qquad \qquad x = x.left$
- 7. else x = x.right
- $8. \ z.p=y$

- 9. if y == T.nil
- 10. T.root = z
- 11. elseif z.key < y.key
- 12. y.left = z
- 13. else y.right = z
- 14. z.left = T.nil
 - 15. z.right = T.nil
 - 16. z.color = T.RED
 - 17. RB-Insert-Fixup(T.z)

Fifth

Insert node z in the correct left or right child:

- if z.key < y.key \Rightarrow y.left = z
- if $z.key \ge y.key \Rightarrow y.right = z$

1. $y = T.nil$	9. if $y == T.nil$	
2. $x = T.root$	10. $T.root = z$	
while x≠T.nil	11. elseif z.key $<$ y.key	
4. y = x	12. $y.left = z$	
5. if z.key <x.key< td=""><td>13. else y.right = z</td><td></td></x.key<>	13. else y.right = z	
$6. \qquad \qquad x=x.left$	14. $z.left = T.nil$	
7. else $x = x$.right	15. $z.right = T.nil$	
8. z.p = y	16. $z.color = T.RED$	
	17. RB-Insert-Fixup(T.z)	

Make z's leafs equal to T.nil.

1. $y = T.nil$	9. if $y == T.nil$	
2. $x = T.root$	10. $T.root = z$	
while x≠T.nil	11. elseif z.key $<$ y.key	
4. y = x	12. $y.left = z$	
5. if z.key <x.key< td=""><td>13. else y.right = z</td><td></td></x.key<>	13. else y.right = z	
$6. \qquad \qquad x = x. left$	14. z.left = T.nil	
7. else $x = x.right$	15. z.right = T.nil	
8. z.p = y	16. $z.color = T.RED$	
	17. RB-Insert-Fixup(T.z)	

Make z's color equal to **RED**.

9. if $y == T$.nil 10. T.root = z 11. elseif z.key < y.key 12. y.left = z 13. else y.right = z
12. $y.left = z$
13. else y.right = z
14. $z.left = T.nil$
15. $z.right = T.nil$
16. $z.color = T.RED$
17. RB-Insert-Fixup(T.z)

2

メロト メタト メヨト メヨト

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code

The Fixup Code

- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

B) Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

RB-Insert-Fixup

2

3

4

6

6

0

8

9

10

0

2

3

14

6

16

RB-Insert-Fixup(T,z)

while z.p.color $== \mathsf{RED}$

 $\mathsf{if} \ \mathsf{z}.\mathsf{p} == \mathsf{z}.\mathsf{p}.\mathsf{p}.\mathsf{left}$

y=z.p.p.right

if y.color ==RED

z.p.color = BLACK

y.color = BLACK

 ${\sf z.p.p.color} = {\sf RED}$

z = z.p.p

else if z == z.p.right

z = z.p

Left-Rotate(T, z)

 ${\sf z.p.color} = {\sf BLACK}$

z.p.p.color = RED

Right-Rotate(T, z.p.p)

else ("right" and "left" exchanged)

T.root.color = BLACK

Case 1

- z's uncle is RED
 - Change of parent and uncle's color to BLACK
 - Move problem to z's grandfather

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code

Loop Invariance

- Initialization
- Maintenance
- Termination
- Example

Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Prior to the first iteration of the loop

We start with a red-black tree with no violations

• Then, the algorithm insert the red node z at the bottom of the Red-Black Trees.

This Tree does not violate properties 1,3 and 5

Prior to the first iteration of the loop

We start with a red-black tree with no violations

- Then, the algorithm insert the red node *z* at the bottom of the Red-Black Trees.
 - This Tree does not violate properties 1,3 and 5.

Properties

- **1** Every node is either red or black.
- One root is black.
- Severy leaf (NIL) is black.
- If a node is red, then both its children are black.
- For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Important

If z.p is the root

 $\bullet\,$ Then, z.p began as a black node no change happened when Fix-Up is Called

Fix-Up is Called

• The RB-Insert-Fixup is called because the following possible violations.

If z is the first node to be inserted, you violate the property 2.

- It is the only violation on the entire Red-Black Trees.
- Because the parent and both children of ' are the sentinel.

Then

Fix-Up is Called

• The RB-Insert-Fixup is called because the following possible violations.

Case I

- If z is the first node to be inserted, you violate the property 2.
 - It is the only violation on the entire Red-Black Trees.
 - Because the parent and both children of ´ are the sentinel.

50 / 163

イロト イヨト イヨト

Case II

• If the tree violates property 4

: was inserted after a red node

• Thus, z and z.p are red

The Tree does not violate any other property

Now

Case II

• If the tree violates property 4

\boldsymbol{z} was inserted after a red node

- $\bullet\,$ Thus, z and z.p are red
 - The Tree does not violate any other property

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code

Loop Invariance

Initialization

Maintenance

- Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Some Notes

Something Notable

• We need to consider six cases

However

but three of them are symmetric to the other three
Depending if *z.p* to be a left or right child of *z.p.p* given
if *z.p* == *z.p.p.left*

Some Notes

Something Notable

• We need to consider six cases

However

• but three of them are symmetric to the other three

Depending if z.p to be a left or right child of z.p.p given

if z.p == z.p.p.left

Therefore

If z.p is red

• We enter the loop of Fix-Up code...

Which tells us that

• If z.p is red, z.p cannot be the root $\Rightarrow z.p.p$ exists

Therefore

If z.p is red

• We enter the loop of Fix-Up code...

Which tells us that

• If z.p is red, z.p cannot be the root $\Rightarrow z.p.p$ exists

Maintenance in Insertion in Red-Black Trees

∃ ∽ ९ € 55 / 163

イロン イ団 とく ヨン イヨン

Maintenance in Insertion in Red-Black Trees

∃ ∽ Q ⊂ 56 / 163

イロン イ団 とく ヨン イヨン

Observations

Recoloring will fix the z.parent.color == red and keeps the bh property

- It will move the problem upwards.
- Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
- So the new z will move the problem upward for the next iteration.

Observations

- Recoloring will fix the z.parent.color == red and keeps the bh property
 - It will move the problem upwards.
- Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
 - So the new z will move the problem upward for the next iteration.

Observations

- Recoloring will fix the z.parent.color == red and keeps the bh property
 - It will move the problem upwards.
- **②** Nevertheless, the tree rooted at A, B and D are Red-Black Trees.

So the new z will move the problem upward for the next iteration.

Observations

- Recoloring will fix the z.parent.color == red and keeps the bh property
 - It will move the problem upwards.
- ② Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
- **③** So the new z will move the problem upward for the next iteration.

The Symmetric Case

500

2 58/163

イロト イヨト イヨト イヨト

The Symmetric Case

୍ଚ୍ଚର 59/163

æ

イロト イヨト イヨト イヨト

RB-Insert-Fixup

2

3

4

6

6

0

8

9

10

•

2

3

14

6

16

RB-Insert-Fixup(T,z)

while z.p.color == RED

 $\mathsf{if} \ \mathsf{z}.\mathsf{p} == \mathsf{z}.\mathsf{p}.\mathsf{p}.\mathsf{left}$

y=z.p.p.right

if y.color ==RED

z.p.color = BLACK

 ${\sf y.color} = {\sf BLACK}$

 ${\sf z.p.p.color} = {\sf RED}$

z = z.p.p

else if z == z.p.right

z = z.p

Left-Rotate(T, z)

 ${\sf z.p.color} = {\sf BLACK}$

 $z.p.p.color = \mathsf{RED}$

Right-Rotate(T, z.p.p)

else ("right" and "left" exchanged)

T.root.color = BLACK

Case 2

- if z is in the right child then
 - Move the problem to the parent by making z = z.p
 - Rotate left using z as the rotation node

First

Here simple recoloring will not work.

Rotate

We rotate first from to left using z.p.

This moves case 2 toward case 3

To get ready for the final fix-up.

62/163

<ロ> <四> <ヨ> <ヨ>

First

Here simple recoloring will not work.

Rotate

We rotate first from to left using z.p.

This moves case 2 toward case 3

Fo get ready for the final fix-up.

First

Here simple recoloring will not work.

Rotate

We rotate first from to left using z.p.

This moves case 2 toward case 3

To get ready for the final fix-up.

From Case 2 to Case 3

୍ର ୧ ୯ 63 / 163

2

イロン イ団 とく ヨン イヨン

RB-Insert-Fixup

1

2

3

4

6

6

0

8

9

10

0

2

B

14

6

16

RB-Insert-Fixup(T,z)

while z.p.color == RED

if z.p == z.p.p.left

y=z.p.p.right

if y.color ==RED

 ${\sf z.p.color} = {\sf BLACK}$

 $\mathsf{y.color} = \mathsf{BLACK}$

 $z.p.p.color = \mathsf{RED}$

z = z.p.p

```
else if z == z.p.right
```

z = z.p

Left-Rotate(T, z)

 $z.p.color = \mathsf{BLACK}$

z.p.p.color = RED

Right-Rotate(T, z.p.p)

else ("right" and "left" exchanged)

T.root.color = BLACK

Case 3

- if z is in the left child then
 - Recolor z's parent to BLACK
 - recolor z's grandparent to RED
 - Rotate right using the grandparent

We do the following

Then, we recolor B.color = **BLACK**, C.color = **RED** (No problem γ and δ are black nodes)

Then, you rotate right using *z.p.p* to fix the black height property!!

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We do the following

Then, we recolor B.color = **BLACK**, C.color = **RED** (No problem γ and δ are black nodes)

Finally

Then, you rotate right using z.p.p to fix the black height property!!

From Case 3 to final recoloring

66 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code

Loop Invariance

- Initialization
- Maintenance

Termination

Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

When the loop terminates

it does so because z.p is black (Sentinel or not)

- The Tree does not violate property 4 at loop termination.
 - If a node is red, then both its children are black.

By the loop invariant

The only property that might fail to hold is property 2
 The root is black.

When the loop terminates

it does so because z.p is black (Sentinel or not)

- The Tree does not violate property 4 at loop termination.
 - If a node is red, then both its children are black.

By the loop invariant

- The only property that might fail to hold is property 2
 - The root is black.

Then

Root Recoloring

After pushing the problem up to the root by the while loop color the root to $\ensuremath{\textbf{BLACK}}{!!!}$

69/163

イロト イロト イヨト イヨト

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

2 Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

70/163

< ロ > < 回 > < 回 > < 回 > < 回 >

∃ ∽ Q ⊂ 71 / 163

イロン イ団 とく ヨン イヨン

≣ ∽ < € 73 / 163

イロト イロト イヨト イヨト

77/163

Example: InsertionInsertion Code in Red-Black Trees

80/163

We insert 21

<ロト < 回 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 < つ Q () 86 / 163

87 / 163

88 / 163

- Do a binary search to find a place to insert
- Parent of z is RED!!!

Case 2 into 3

Re-balance first to the left if z==z.p.right z=z.p Left-Rotate(T, z)

T.nil

T.nil

Case 3 - Symmetrical Selection Order Re-color and re-balance to the 12 right 28 z.p.color = BLACKz.p.p.color=RED 10 Left-Rotate(T, z.p.p) 2 No problem to fix 41 The root is already BLACK so nothing happens 26

イロト イヨト イヨト

Complexity of RB-Insert

It is easy to see that we have

$$O(\log n)$$

(1)

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

Deletion in Red-Black Trees The Basics

- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Something for you to do

100 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

Here, we use the idea of removing

By pushing in its place its successor.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (C) 101/163

Here, we use the idea of removing

By pushing in its place its successor.

Therefore we have a problem

• If the successor of a node is the node y.

• We have removed a black node from a path.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Here, we use the idea of removing

By pushing in its place its successor.

Therefore we have a problem

- If the successor of a node is the node y.
 - ► And y is black.

We have removed a black node from a path.

< ロ > < 回 > < 回 > < 回 > < 回 >

Here, we use the idea of removing

By pushing in its place its successor.

Therefore we have a problem

- If the successor of a node is the node y.
 - And y is black.
- We have removed a black node from a path.

Thus

Example

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

The Basics

The Code

- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

RB-DELETE(T,z)

0	y = z
2	y-original-color = y.color
3	if $z.left == T.nil$
4	x = z.right
6	RB-Transplant(T, z, z.right)
6	elseif z.right == T.nil
0	x = z.left
8	RB-Transplant(T, z, z.left)
9	else y = Tree-Minimum(z.right)
0	y-original-color = y.color
•	x = y.right
12	if $y.p == z$
13	x.p = y
14	else RB-Transplant(T,y,y.right)
15	y.right = z.right
16	y.right.p = y

Case 1

• Store the info of the node to be deleted

RB-DELETE(T,z)

1	y = z
2	y-original-color = y.color
3	if $z.left == T.nil$
4	x = z.right
6	RB-Transplant(T, z, z.right)
6	elseif z.right == T.nil
0	x = z.left
8	RB-Transplant(T, z, z.left)
9	$else \ y = Tree-Minimum(z.right)$
10	y-original-color = y.color
0	x = y.right
12	if $y.p == z$
₿	x.p = y
14	else RB-Transplant(T,y,y.right)
15	y.right = z.right
16	y.right.p = y

Case 2

- If the left child is empty
- Store the info of the right child
- Move z.right into the position of

Z

RB-DELETE(T,z)

1	y=z
2	y-original-color = y.color
3	if $z.left == T.nil$
4	x = z.right
5	RB-Transplant(T, z, z.right)
6	elseif z.right == T.nil
0	x = z.left
8	RB-Transplant(T, z, z.left)
9	$else \ y = Tree-Minimum(z.right)$
٥	y-original-color = y.color
•	x = y.right
12	if $y.p == z$
₿	x.p = y
14	else RB-Transplant(T,y,y.right)
15	y.right = z.right
10	y.right.p = y

Case 3

- If the right child is empty
- Store the info of the left child
- Move z.left into the position of z

RB-DELETE(T,z)

1	y=z
2	y-original-color = y.color
3	if $z.left == T.nil$
4	x = z.right
6	RB-Transplant(T, z, z.right)
6	elseif z.right == T.nil
0	x = z.left
8	RB-Transplant(T, z, z.left)
9	$else \ y = Tree-Minimum(z.right)$
0	y-original-color = y.color
0	x = y.right
12	if $y.p == z$
₿	x.p = y
14	else RB-Transplant(T,y,y.right)
15	y.right = z.right
10	y.right. $p = y$

Case 4

- $\bullet\,$ Find the successor of z
- Store the info of it: Color and right child

RB-DELETE(T,z)

1	y=z
_	·
9	y-original-color $=$ y.color
3	if $z.left == T.nil$
4	x = z.right
6	RB-Transplant(T, z, z.right)
6	elseif z.right == T.nil
7	x = z.left
8	RB-Transplant(T, z, z.left)
9	else y = Tree-Minimum(z.right)
0	y-original-color = y.color
•	x = y.right
12	if $y.p == z$
1	x.p = y
14	else RB-Transplant(T,y,y.right)
15	y.right = z.right
16	y.right.p = y

Case 5

• If parent of succesor is z then set parent of x to y

RB-DELETE(T,z)

y = z y-original-color = y.color if z.left == T.nil 4 x = z.right6 RB-Transplant(T, z, z.right) 6 elseif z.right == T.nil 0 x = z left 8 RB-Transplant(T, z, z.left) 9 else y = Tree-Minimum(z.right)0 y-original-color = y.color 0 x = y.right2 if y.p == z3 x.p = y14 else RB-Transplant(T,y,y.right) 15 y.right = z.right16 y.right.p = y

Case 6

ø

- Substitute y with y.right
- set y.right with z.right
- set the parent of y.right to y

RB-DELETE(T,z)

- 17. RB-Transplant(T, z, y)
- $18. \qquad \text{y.left} = \text{z.left}$
- 19. y.left.p = y
- $20. \qquad y.color = z.color$
- $21. \ \ {\rm if \ y-original-color} == {\rm BLACK}$
- 22. RB-Delete-Fixup(T,x)

Case 7

- Substitute z with y
- Make y.left to z.left
- Make the parent of y.left to y
- Make the color of y to the color of z

イロト イヨト イヨト

RB-DELETE(T,z)

- 17. RB-Transplant(T, z, y)
- $18. \qquad \text{y.left} = \text{z.left}$
- 19. y.left.p = y
- $20. \qquad y.color = z.color$
- 21. if y-original-color == BLACK
- 22. RB-Delete-Fixup(T,x)

Case 8

- If y-original-color == BLACK then call RB-Delete-Fixup(T,x)
- After all x points to the node that:
 - It is moved into the position of y.
 - Where y was moved into the position of z.

Where RB-Transplant

RB-Transplant(T, u, v)

- if u.p == T.nil
- T.root = v
- **3** elseif u == u.p.left
- u.p.left = v
- $\bullet \ \ \, {\rm else} \ u.p.right = v \\$
- $\bullet v.p = u.p$

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code

ullet The Case of a Virtual Node y

- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

Case 1

• In line 1, y is removed when it points to z and has less than two children.

Case 1

• In line 1, y is removed when it points to z and has less than two children.

Case 2

• In line 9, y is moved around when z has two children

Case 1

• In line 1, y is removed when it points to z and has less than two children.

Case 2

- In line 9, y is moved around when z has two children
 - Because y=Tree-Minimum(z.right).

Then

y will move to z's position.

114 / 163

イロト イヨト イヨト

Now, the color of y's can change

• Therefore, it gets stored in y-original-color (Lines 2, 10).

. This can produce a violation.

Now, the color of y's can change

• Therefore, it gets stored in y-original-color (Lines 2, 10).

Then, when z has two children

• Then y moves to z's position and y gets the same color than z.

イロト イヨト イヨト

Now, the color of y's can change

• Therefore, it gets stored in y-original-color (Lines 2, 10).

Then, when z has two children

- Then y moves to z's position and y gets the same color than z.
- This can produce a violation.

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

e x is going to move to y's original position

The x.p is pointed to y's parent.

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

Since x is going to move to y's original position

The x.p is pointed to y's parent.

The assignment of x.p takes place in line 6 of RB-Transpl

 Observe that when RB-Transplant is called in lines 5, 8, or 14, the second parameter passed is the same as x.

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

Since x is going to move to y's original position

The x.p is pointed to y's parent.

Unless z is y's original parent

The assignment of x.p takes place in line 6 of RB-Transplant.

In lines 4, 7, and 11, x is set to point to

- to y's only child or
- T.nil

Since x is going to move to y's original position

The x.p is pointed to y's parent.

Unless z is y's original parent

The assignment of x.p takes place in line 6 of RB-Transplant.

• Observe that when RB-Transplant is called in lines 5, 8, or 14, the second parameter passed is the same as x.

if z is not the original y's parent

We do not want x.p to point to it since we are going to remove it.

Then

In line 13 of RB-Delete, x.p is set to point to y.

Finally

y will take the position of z in line 17.

if z is not the original y's parent

We do not want x.p to point to it since we are going to remove it.

Then

In line 13 of RB-Delete, x.p is set to point to y.

Finally

y will take the position of z in line 17.

< ロ > < 回 > < 回 > < 回 > < 回 >

The node x gets position y

if z is not the original y's parent

We do not want x.p to point to it since we are going to remove it.

Then

In line 13 of RB-Delete, x.p is set to point to y.

Finally

y will take the position of z in line 17.

The node x gets position y

Then

If y was originally black after taking the z.color can produce a violation, then RB-Delete-Fixup is called.

This can happen

If y was originally red the Red-Black Trees properties still hold.

118 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

The node x gets position y

Then

If y was originally black after taking the z.color can produce a violation, then RB-Delete-Fixup is called.

This can happen

If y was originally red the Red-Black Trees properties still hold.

Question

What if we removed a black node?

We have three problems

- If y was a root and a RED child becomes the new root, we have violated property 2.
- If both x and x.p are RED, then we have violated property 4.
- Moving y around decreases the black-height on a section of the Red Black Tree.
- Thus, Property 5 is violated

We have three problems

- If y was a root and a RED child becomes the new root, we have violated property 2.
- If both x and x.p are RED, then we have violated property 4.
 - Moving y around decreases the black-height on a section of the Red Black Tree.
 - Thus, Property 5 is violated

We have three problems

- If y was a root and a RED child becomes the new root, we have violated property 2.
- **②** If both x and x.p are RED, then we have violated property 4.
- Moving y around decreases the black-height on a section of the Red Black Tree.

Thus, Property 5 is violated.

We have three problems

- If y was a root and a RED child becomes the new root, we have violated property 2.
- **②** If both x and x.p are RED, then we have violated property 4.
- Moving y around decreases the black-height on a section of the Red Black Tree.
- Thus, Property 5 is violated.

< ロ > < 同 > < 回 > < 回 >

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y

The Fix-Up

- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

How?

• This could be fixed assuming that x has an "extra black."

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How?

• This could be fixed assuming that x has an "extra black."

Meaning

• This means that the node is "doubly black" or "red-and-black."

∃ ∽ Q ⊂ 122 / 163

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Example

イロト イヨト イヨト イヨト

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

Until

• If we have that x is a **red-and-black**, we simply need to change the color of the node to BLACK (Line 23).

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

Until

• If we have that x is a **red-and-black**, we simply need to change the color of the node to BLACK (Line 23).

Then, use Rotations

• Use suitable rotations and re-colorings until x stops to be a doubly black node.

f we have that x is pointing to the root, remove "extra node."

Thus

The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by using the while loop to push the extra BLACK node up the tree.

Until

• If we have that x is a **red-and-black**, we simply need to change the color of the node to BLACK (Line 23).

Then, use Rotations

- Use suitable rotations and re-colorings until x stops to be a doubly black node.
- If we have that x is pointing to the root, remove "extra node."

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up

The Code To Fix the Violations

- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

125 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

```
2
23
    x.color = BLACK
```

```
while x \neq T.root and x.color == BLACK
     if x == x.p.left
         w = x.p.right
         if w color == RED
              w.color = BLACK
              x.p.color = RED
              Left-Rotate(T, x.p)
              w = x.p.right
         if w.left.color == BLACK and w.right.color == BLACK
              w.color = RED
              x = x.p
         else if w.right.color == BLACK
                     w.left.color = BLACK
                    w.color = RED
                     Right-Rotate(T, w)
                    w = x.p.right
              w.color = x.p.color
              x.p.color = BLACK
              w.right.color = BLACK
              Left-Rotate(T, x.p)
              x = T.root
     else (same with "right" and "left" exchanged)
```

While loop

Because a violation on the bh, you need to move x up until the problem is fixed up.

1

23

```
while x \neq T.root and x.color == BLACK
     if x == x.p.left
         w = x.p.right
          if w color == RED
              w.color = BLACK
              x.p.color = \mathsf{RED}
              Left-Rotate(T, x.p)
              w = x.p.right
          if w.left.color == BLACK and w.right.color == BLACK
              w.color = RED
              x = x.p
         else if w.right.color == BLACK
                     w.left.color = BLACK
                     w.color = RED
                     Right-Rotate(T, w)
                     w = x.p.right
              w.color = x.p.color
              x.p.color = BLACK
              w.right.color = BLACK
              Left-Rotate(T, x.p)
              x = T.root
     else (same with "right" and "left" exchanged)
x.color = BLACK
```

Finding who you are

- Find which child are you
- Make w the other child


```
while x \neq T.root and x.color == BLACK
2
          if x == x.p.left
w = x.p.right
              if w color == RED
                   w.color = BLACK
                   x.p.color = RED
                   Left-Rotate(T, x.p)
                   w = x.p.right
              if w.left.color == BLACK and w.right.color == BLACK
                   w.color = RED
                   x = x.p
              else if w.right.color == BLACK
                          w.left.color = BLACK
                          w.color = RED
                          Right-Rotate(T, w)
                          w = x.p.right
                   w.color = x.p.color
                   x.p.color = BLACK
                   w.right.color = BLACK
                   Left-Rotate(T, x.p)
                   x = T.root
          else (same with "right" and "left" exchanged)
23
     x.color = BLACK
```

Case 1

- if x is BLACK and w is RED
- Fix the bh problem by making w BLACK, x's parent to RED then rotate left using x's parent
- Make w = x.p.right moving the problem down.

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations

Suitable Rotations and Recoloring

Example of Deletion in Red-Black Trees

Exercises

Something for you to do

129 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

Case 1 - x's sibling w is red. You keep the bh property of the other subtrees

Case 1 - x's sibling w is red. You keep the bh property of the other subtrees

x.color = BLACK

```
2
23
```

```
while x \neq T.root and x.color == BLACK
    if x == x.p.left
        w = x.p.right
         if w color == RED
             w.color = BLACK
             x.p.color = RED
             Left-Rotate(T, x.p)
             w = x.p.right
        if w.left.color == BLACK and w.right.color == BLACK
             w.color = RED
             x = x.p
        else if w.right.color == BLACK
                    w.left.color = BLACK
                   w.color = RED
                    Right-Rotate(T, w)
                    w = x.p.right
             w.color = x.p.color
             x.p.color = BLACK
             w.right.color = BLACK
             Left-Rotate(T, x.p)
             x = T.root
    else (same with "right" and "left" exchanged)
```

Case 2

- Now if w.left's color and w.right's color is BLACK
- We do something smart decrease the bh height at w by making w's color to RED
- Move the problem fropm to x to x.p (After all the subtree have the same height at x.p)

Case 2 - x's sibling w is black, and both of w's children are black.

Note: The Node with half and half colors has the meaning that it can be red or black.

Case 2 - x's sibling w is black, and both of w's children are black.

x.color = BLACK

```
2
23
```

```
while x \neq T.root and x.color == BLACK
    if x == x.p.left
        w = x.p.right
         if w color == RED
             w.color = BLACK
             x.p.color = RED
             Left-Rotate(T, x.p)
             w = x.p.right
         if w.left.color == BLACK and w.right.color == BLACK
             w.color = RED
             x = x.p
        else if w.right.color == BLACK
                    w.left.color = BLACK
                    w.color = RED
                    Right-Rotate(T, w)
                    w = x.p.right
             w.color = x.p.color
             x.p.color = BLACK
             w.right.color = BLACK
             Left-Rotate(T, x.p)
             x = T.root
    else (same with "right" and "left" exchanged)
```

Case 3

- If w.right's color is BLACK
- We do something smart, we re-color and do a right rotation at w
- This does not change the Red-Black Trees properties of w
- but prepare the situation for fixing the x height problem in case 4.

Case 3 - x's sibling w is black, w's left child is red, and w's right child is black.

^{136 / 163}

Case 3: x's sibling w is black, w's left child is red, and w's right child is black.


```
while x \neq T.root and x.color == BLACK
2
          if x == x.p.left
w = x.p.right
              if w color == RED
                   w.color = BLACK
                   x.p.color = RED
                   Left-Rotate(T, x.p)
                   w = x.p.right
              if w.left.color == BLACK and w.right.color == BLACK
                   w.color = RED
                   x = x.p
              else if w.right.color == BLACK
                          w.left.color = BLACK
                          w.color = RED
                          Right-Rotate(T, w)
                          w = x.p.right
                   w.color = x.p.color
                   x.p.color = BLACK
                   w.right.color = BLACK
                   Left-Rotate(T, x.p)
                   x = T.root
          else (same with "right" and "left" exchanged)
23
     x.color = BLACK
```

Case 4

- We are ready to fix our problem!!! with respect to x (Case 2 and 3 where a preparation to fix the problem)
- We increase the height of the bh with the problem, x.

139 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Store the info about \boldsymbol{z}

y = z
y-original-color = y.color

T.nil

イロト イロト イヨト イヨト

None of the children of z are T.nil, thus

- else y = Tree-Minimum(z.right)
- y-original-color = y.color
- x = y.right

(日) (日) (日) (日) (日)

144 / 163

We have that $y.p \neq z$

Transplant(T, y, y.right)

146 / 163

Now, we move pointers

• y.right = z.right • y.right.p = y • y.right.p = y

T.nil

イロト イロト イヨト イヨト

Transplant(z,y)

∃ ∽ Q ⊂ 148 / 163

イロン イ団 とく ヨン イヨン

Move pointers

We remove z safely and we go into Delete-Fixup(T,x)

z.right = NULL
z.left = NULL
z.parent = NULL

150 / 163

イロン イロン イヨン イヨン

We remove z safely and we go into Delete-Fixup(T,x)

- Never enter into the loop
- Simply do x.color = BLACK

< ロ > < 回 > < 回 > < 回 > < 回 >

151 / 163

152/163

None of the children of z are T.nil, thus

- else y = Tree-Minimum(z.right)
- y-original-color = y.color (BLACK)
- x = y.right (T.NIL)

(日) (日) (日) (日) (日)

153 / 163

We have that y.p = z

Next

Next

Next

We remove z safely and we go into Delete-Fixup(T,x)

158 / 163

< ロ > < 回 > < 回 > < 回 > < 回 >

We enter into case 4

159 / 163

Rotate and move the x

1 Left-Rotate(T, x.p) 2 x = T.root

E ∽ Q C 160 / 163

Applications of Red-Black Trees

Completely Fair Scheduler (CFS)

- It is a task scheduler which was merged into 2.6.23 release of the Linux Kernel.
- It is a replacement of earlier O(1) scheduler.
- CFS algorithm was designed to maintain balance (fairness) in providing processor time to tasks.

Sorting using Parallel Implementations

• Running in $O(\log \log n)$ time

Applications of Red-Black Trees

Completely Fair Scheduler (CFS)

- It is a task scheduler which was merged into 2.6.23 release of the Linux Kernel.
- It is a replacement of earlier O(1) scheduler.
- CFS algorithm was designed to maintain balance (fairness) in providing processor time to tasks.

Sorting using Parallel Implementations

• Running in $O(\log \log n)$ time

< ロ > < 同 > < 回 > < 回 >

Outline

Red-Black Trees

- The Search for Well Balanced Threes
- Observations
- Red-Black Trees
- Examples
- Lemma for the height of Red-Black Trees
 - Base Case of Induction
 - Induction
- Rotations in Red-Black Trees

Insertion in Red-Black Trees

- Important!!!
- Insertion Code
- The Fixup Code
- Loop Invariance
 - Initialization
 - Maintenance
 - Termination
- Example

3 Deletion in Red-Black Trees

- The Basics
- The Code
- \bigcirc The Case of a Virtual Node y
- The Fix-Up
- The Code To Fix the Violations
- Suitable Rotations and Recoloring
- Example of Deletion in Red-Black Trees

Exercises

From Cormen's book solve

- 13.1-1
- 13.1-3
- 13.1-5
- 13.1-7
- 13.2-2
- 13.2-3
- 13.2-4
- 13.2-5
- 13.3-2
- 13.3-4
- 13.4-2
- 13.4-4