
Analysis of Algorithms
Red-Black Trees

Andres Mendez-Vazquez

October 1, 2018

1 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

2 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

3 / 163



Well Balanced Trees

Do you remember AVL (Adelson-Velskii and Landis) Trees?
Quite nice recursive methods for balancing the tree!!!

It is based on an height Invariant
At any node in the tree, the heights of the left and right subtrees
differs by at most 1.

4 / 163



Well Balanced Trees

Do you remember AVL (Adelson-Velskii and Landis) Trees?
Quite nice recursive methods for balancing the tree!!!

It is based on an height Invariant
At any node in the tree, the heights of the left and right subtrees
differs by at most 1.

4 / 163



Thus, it is necessary to add an extra field to the Node
Structure

Structure of a Node

Structure 1: Struct Node

1 Key key
2 int height
3 Value val
4 Node Left, Right

5 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

6 / 163



Observations

Due to the balancing methods
AVL Trees requiere to have a O (log2 n) rotations.
AVL Trees operations cost O (log2 n).

There is a problem about the height
How much memory it is necessary to allocate for the height field in
massive binary search trees?

7 / 163



Observations

Due to the balancing methods
AVL Trees requiere to have a O (log2 n) rotations.
AVL Trees operations cost O (log2 n).

There is a problem about the height
How much memory it is necessary to allocate for the height field in
massive binary search trees?

7 / 163



Observations

Due to the balancing methods
AVL Trees requiere to have a O (log2 n) rotations.
AVL Trees operations cost O (log2 n).

There is a problem about the height
How much memory it is necessary to allocate for the height field in
massive binary search trees?

7 / 163



Furthermore

Arguments in favor of AVL Trees
Search is O (logN) since AVL trees are always balanced.
Insertion and deletions are also O (logN).

Arguments against using AVL trees
Difficult to program and debug.
The dynamic space nature of the balancing (Height) factor.
Asymptotically faster but re-balancing costs time.
Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

8 / 163



Furthermore

Arguments in favor of AVL Trees
Search is O (logN) since AVL trees are always balanced.
Insertion and deletions are also O (logN).

Arguments against using AVL trees
Difficult to program and debug.
The dynamic space nature of the balancing (Height) factor.
Asymptotically faster but re-balancing costs time.
Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

8 / 163



Furthermore

Arguments in favor of AVL Trees
Search is O (logN) since AVL trees are always balanced.
Insertion and deletions are also O (logN).

Arguments against using AVL trees
Difficult to program and debug.
The dynamic space nature of the balancing (Height) factor.
Asymptotically faster but re-balancing costs time.
Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

8 / 163



Furthermore

Arguments in favor of AVL Trees
Search is O (logN) since AVL trees are always balanced.
Insertion and deletions are also O (logN).

Arguments against using AVL trees
Difficult to program and debug.
The dynamic space nature of the balancing (Height) factor.
Asymptotically faster but re-balancing costs time.
Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

8 / 163



Furthermore

Arguments in favor of AVL Trees
Search is O (logN) since AVL trees are always balanced.
Insertion and deletions are also O (logN).

Arguments against using AVL trees
Difficult to program and debug.
The dynamic space nature of the balancing (Height) factor.
Asymptotically faster but re-balancing costs time.
Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

8 / 163



Furthermore

Arguments in favor of AVL Trees
Search is O (logN) since AVL trees are always balanced.
Insertion and deletions are also O (logN).

Arguments against using AVL trees
Difficult to program and debug.
The dynamic space nature of the balancing (Height) factor.
Asymptotically faster but re-balancing costs time.
Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

8 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

9 / 163



Definitions

Definition
A Red Black Tree is a Binary Search Tree where each node has an extra
field, its color.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

10 / 163



Definitions

Definition
A Red Black Tree is a Binary Search Tree where each node has an extra
field, its color.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

10 / 163



Definitions

Definition
A Red Black Tree is a Binary Search Tree where each node has an extra
field, its color.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

10 / 163



Definitions

Definition
A Red Black Tree is a Binary Search Tree where each node has an extra
field, its color.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

10 / 163



Definitions

Definition
A Red Black Tree is a Binary Search Tree where each node has an extra
field, its color.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

10 / 163



Definitions

Definition
A Red Black Tree is a Binary Search Tree where each node has an extra
field, its color.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

10 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

11 / 163



Red-Black Trees

Example

26

17 41

14 21

10 16

7 12

19

 

20

23

15

3

30 47

28 38

35 39

T.nil

12 / 163



Height on a Red Black Tree

Black Height bh(x)
We call the number of black nodes on any path from, but not including, a
node x down to a leaf the black height of the node.

13 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

14 / 163



Lemma for the height of Red-Black Trees

Theorem
A Red-Black Trees with n internal nodes has height at most 2 log(n+ 1).

Proof: Step 1
Prove that any subtree rooted at x contains at least 2bh(x) − 1
internal nodes.
If bh(x) = 0, then

15 / 163



Lemma for the height of Red-Black Trees

Theorem
A Red-Black Trees with n internal nodes has height at most 2 log(n+ 1).

Proof: Step 1
Prove that any subtree rooted at x contains at least 2bh(x) − 1
internal nodes.
If bh(x) = 0, then

15 / 163



Lemma for the height of Red-Black Trees

Theorem
A Red-Black Trees with n internal nodes has height at most 2 log(n+ 1).

Proof: Step 1
Prove that any subtree rooted at x contains at least 2bh(x) − 1
internal nodes.
If bh(x) = 0, then

15 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

16 / 163



Examples for bh(x) = 0

Case I

 

x

T.NIL

17 / 163



Examples for bh(x) = 0

Case II - There are other, but they are similar

 
x

T.NIL

18 / 163



Then

Then, we have
Thus 2bh(x) − 1 = 20 − 1 = 0.
Now with bh(x) > 0, we have that child[x] has height bh(x) or
bh(x)− 1.

19 / 163



Then

Then, we have
Thus 2bh(x) − 1 = 20 − 1 = 0.
Now with bh(x) > 0, we have that child[x] has height bh(x) or
bh(x)− 1.

19 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

20 / 163



Thus, we have the following

Example

x

21 / 163



Proof

Case I
Height of child is bh(x).
Then, the child is red, if not subtree rooted at x will have height
bh(x) + 1!
Now, we have two subtrees from the child with red root...(The
children are black)

Thus, we have
Thus, each of this subtrees has height bh(x)− 1 ⇒ each tree
contains at least 2bh(x)−1 − 1 nodes by inductive hypothesis.
Then the child contains at least 2bh(x)−1 − 1 + 2bh(x)−1 − 1 internal
nodes.
Finally, the tree rooted contains 2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 (One
for the node rooted at the child node)

22 / 163



Proof

Case I
Height of child is bh(x).
Then, the child is red, if not subtree rooted at x will have height
bh(x) + 1!
Now, we have two subtrees from the child with red root...(The
children are black)

Thus, we have
Thus, each of this subtrees has height bh(x)− 1 ⇒ each tree
contains at least 2bh(x)−1 − 1 nodes by inductive hypothesis.
Then the child contains at least 2bh(x)−1 − 1 + 2bh(x)−1 − 1 internal
nodes.
Finally, the tree rooted contains 2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 (One
for the node rooted at the child node)

22 / 163



Proof

Case I
Height of child is bh(x).
Then, the child is red, if not subtree rooted at x will have height
bh(x) + 1!
Now, we have two subtrees from the child with red root...(The
children are black)

Thus, we have
Thus, each of this subtrees has height bh(x)− 1 ⇒ each tree
contains at least 2bh(x)−1 − 1 nodes by inductive hypothesis.
Then the child contains at least 2bh(x)−1 − 1 + 2bh(x)−1 − 1 internal
nodes.
Finally, the tree rooted contains 2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 (One
for the node rooted at the child node)

22 / 163



Proof

Case I
Height of child is bh(x).
Then, the child is red, if not subtree rooted at x will have height
bh(x) + 1!
Now, we have two subtrees from the child with red root...(The
children are black)

Thus, we have
Thus, each of this subtrees has height bh(x)− 1 ⇒ each tree
contains at least 2bh(x)−1 − 1 nodes by inductive hypothesis.
Then the child contains at least 2bh(x)−1 − 1 + 2bh(x)−1 − 1 internal
nodes.
Finally, the tree rooted contains 2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 (One
for the node rooted at the child node)

22 / 163



Proof

Case I
Height of child is bh(x).
Then, the child is red, if not subtree rooted at x will have height
bh(x) + 1!
Now, we have two subtrees from the child with red root...(The
children are black)

Thus, we have
Thus, each of this subtrees has height bh(x)− 1 ⇒ each tree
contains at least 2bh(x)−1 − 1 nodes by inductive hypothesis.
Then the child contains at least 2bh(x)−1 − 1 + 2bh(x)−1 − 1 internal
nodes.
Finally, the tree rooted contains 2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 (One
for the node rooted at the child node)

22 / 163



Proof

Case I
Height of child is bh(x).
Then, the child is red, if not subtree rooted at x will have height
bh(x) + 1!
Now, we have two subtrees from the child with red root...(The
children are black)

Thus, we have
Thus, each of this subtrees has height bh(x)− 1 ⇒ each tree
contains at least 2bh(x)−1 − 1 nodes by inductive hypothesis.
Then the child contains at least 2bh(x)−1 − 1 + 2bh(x)−1 − 1 internal
nodes.
Finally, the tree rooted contains 2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 (One
for the node rooted at the child node)

22 / 163



Proof

Finally
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Case II
Height of the child is bh(x)− 1.
Now, we have two subtrees with at least 2bh(x)−1 − 1 nodes by
inductive hypothesis.
Thus, we have that the tree with root x contains at least
2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 internal nodes.

23 / 163



Proof

Finally
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Case II
Height of the child is bh(x)− 1.
Now, we have two subtrees with at least 2bh(x)−1 − 1 nodes by
inductive hypothesis.
Thus, we have that the tree with root x contains at least
2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 internal nodes.

23 / 163



Proof

Finally
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Case II
Height of the child is bh(x)− 1.
Now, we have two subtrees with at least 2bh(x)−1 − 1 nodes by
inductive hypothesis.
Thus, we have that the tree with root x contains at least
2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 internal nodes.

23 / 163



Proof

Finally
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Case II
Height of the child is bh(x)− 1.
Now, we have two subtrees with at least 2bh(x)−1 − 1 nodes by
inductive hypothesis.
Thus, we have that the tree with root x contains at least
2bh(x)−1 − 1 + 2bh(x)−1 − 1 + 1 internal nodes.

23 / 163



Proof

Again
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Finally
Now given that h is the height of the tree, we have by property 4 that
bh(T ) ≥ h

2 .

Then n ≥ 2bh(root) − 1 ≥ 2
h
2 − 1.

Then, h ≤ 2 log(n+ 1) �.

24 / 163



Proof

Again
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Finally
Now given that h is the height of the tree, we have by property 4 that
bh(T ) ≥ h

2 .

Then n ≥ 2bh(root) − 1 ≥ 2
h
2 − 1.

Then, h ≤ 2 log(n+ 1) �.

24 / 163



Proof

Again
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Finally
Now given that h is the height of the tree, we have by property 4 that
bh(T ) ≥ h

2 .

Then n ≥ 2bh(root) − 1 ≥ 2
h
2 − 1.

Then, h ≤ 2 log(n+ 1) �.

24 / 163



Proof

Again
Then, the tree with root x contains at least
2× 2bh(x)−1 − 1 = 2bh(x) − 1

Finally
Now given that h is the height of the tree, we have by property 4 that
bh(T ) ≥ h

2 .

Then n ≥ 2bh(root) − 1 ≥ 2
h
2 − 1.

Then, h ≤ 2 log(n+ 1) �.

24 / 163



Lemma for the height of Red-Black Trees

Corollary
From the previous theorem we conclude that SEARCH, MINIMUM,
etcetera, can be implemented in O(logn).

25 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

26 / 163



Rotations in Red-Black Trees

Purpose
Rotations are used to maintain the structure of the Red-Black Trees.

Types of rotations
There are left and right rotations, they are inverse to each other.

27 / 163



Rotations in Red-Black Trees

Purpose
Rotations are used to maintain the structure of the Red-Black Trees.

Types of rotations
There are left and right rotations, they are inverse to each other.

y

x
y

x

Left-Rotate(T,x)

Right-Rotate(T,y)

27 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example of Rotations in Red-Black Trees

LEFT-ROTATE(T,x)
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree
3 if y.left 6= T.nil
4 y.left.p = x
5 y.p = x.p . Link x’s parent to y
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x . Put x on y’s left
12 x.p = y

28 / 163



Example Left-Rotate

Step 1 - the correct right child is changed
1 y = x.right . Set y
2 x.right = y.left . Turn y’s left subtree into x’s right subtree

y

x

29 / 163



Example Left-Rotate

Step 2 - the parents are set correctly
3. if y.left 6= T.nil
4. y.left.p = x
5. y.p = x.p

y

x

30 / 163



Example Left-Rotate
Step 3
6. if x.p == T.nil .Set y to be the root if x was it
7. T.root = y
8. elseif x == x.p.left
9. x.p.left = y
10. else x.p.right = y

y

x

31 / 163



Example Left-Rotate

Step 4
11. y.left = x . Put x on y’s left
12. x.p = y

y

x

32 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

33 / 163



First than anything

Something Notable
You still have a Binary Search Tree!!!

There
How do you do insertion in a Binary Search Tree?

34 / 163



First than anything

Something Notable
You still have a Binary Search Tree!!!

There
How do you do insertion in a Binary Search Tree?

34 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

35 / 163



Insertion Code in Red-Black Trees

RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x 6=T.nil
4. y = x
5. if z.key<x.key
6. x = x.left
7. else x = x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

First
Search Variables being Initialized.

36 / 163



Insertion Code in Red-Black Trees

RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x6=T.nil
4. y = x
5. if z.key<x.key
6. x =

x.left
7. else x =

x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

Second
Binary search for insertion.

37 / 163



Insertion Code in Red-Black Trees

RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x 6=T.nil
4. y = x
5. if z.key<x.key
6. x = x.left
7. else x = x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

Third
Change parent of the node to be inserted.

38 / 163



Insertion Code in Red-Black Trees

RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x 6=T.nil
4. y = x
5. if z.key<x.key
6. x = x.left
7. else x = x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

Fourth
Test to see if the Tree is empty!!!

39 / 163



Insertion Code in Red-Black Trees
RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x 6=T.nil
4. y = x
5. if z.key<x.key
6. x = x.left
7. else x = x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

Fifth
Insert node z in the correct left or right child:

if z.key < y.key ⇒ y.left = z
if z.key ≥ y.key ⇒ y.right = z

40 / 163



Insertion Code in Red-Black Trees

RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x 6=T.nil
4. y = x
5. if z.key<x.key
6. x = x.left
7. else x = x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

Sixth
Make z’s leafs equal to T.nil.

41 / 163



Insertion Code in Red-Black Trees

RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x 6=T.nil
4. y = x
5. if z.key<x.key
6. x = x.left
7. else x = x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

Seventh
Make z’s color equal to RED.

42 / 163



Insertion Code in Red-Black Trees

RB-INSERT(T, z)
1. y = T.nil
2. x = T.root
3. while x 6=T.nil
4. y = x
5. if z.key<x.key
6. x = x.left
7. else x = x.right
8. z.p = y

9. if y == T.nil
10. T.root = z
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
14. z.left = T.nil
15. z.right = T.nil
16. z.color = T.RED
17. RB-Insert-Fixup(T.z)

Eight
Call RB-Insert-Fixup!!!

43 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

44 / 163



RB-Insert-Fixup
RB-Insert-Fixup(T,z)

1 while z.p.color == RED

2 if z.p == z.p.p.left

3 y=z.p.p.right

4 if y.color ==RED

5 z.p.color = BLACK

6 y.color = BLACK

7 z.p.p.color = RED

8 z = z.p.p

9 else if z == z.p.right

10 z = z.p

11 Left-Rotate(T, z)

12 z.p.color = BLACK

13 z.p.p.color = RED

14 Right-Rotate(T, z.p.p)

15 else (“right” and “left” exchanged)

16 T.root.color = BLACK

Case 1
z’s uncle is RED

I Change of parent and uncle’s color to
BLACK

I Move problem to z’s grandfather

45 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

46 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

47 / 163



Prior to the first iteration of the loop

We start with a red-black tree with no violations
Then, the algorithm insert the red node z at the bottom of the
Red-Black Trees.

I This Tree does not violate properties 1,3 and 5.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves
contain the same number of black nodes.

48 / 163



Prior to the first iteration of the loop

We start with a red-black tree with no violations
Then, the algorithm insert the red node z at the bottom of the
Red-Black Trees.

I This Tree does not violate properties 1,3 and 5.

Properties
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves
contain the same number of black nodes.

48 / 163



Important

If z.p is the root
Then, z.p began as a black node no change happened when
Fix-Up is Called

49 / 163



Then

Fix-Up is Called
The RB-Insert-Fixup is called because the following possible
violations.

Case I
If z is the first node to be inserted, you violate the property 2.

I It is the only violation on the entire Red-Black Trees.
I Because the parent and both children of´ are the sentinel.

50 / 163



Then

Fix-Up is Called
The RB-Insert-Fixup is called because the following possible
violations.

Case I
If z is the first node to be inserted, you violate the property 2.

I It is the only violation on the entire Red-Black Trees.
I Because the parent and both children of´ are the sentinel.

50 / 163



Now

Case II
If the tree violates property 4

z was inserted after a red node
Thus, z and z.p are red

I The Tree does not violate any other property

51 / 163



Now

Case II
If the tree violates property 4

z was inserted after a red node
Thus, z and z.p are red

I The Tree does not violate any other property

51 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

52 / 163



Some Notes

Something Notable
We need to consider six cases

However
but three of them are symmetric to the other three

I Depending if z.p to be a left or right child of z.p.p given
1 if z.p == z.p.p.left

53 / 163



Some Notes

Something Notable
We need to consider six cases

However
but three of them are symmetric to the other three

I Depending if z.p to be a left or right child of z.p.p given
1 if z.p == z.p.p.left

53 / 163



Therefore

If z.p is red
We enter the loop of Fix-Up code...

Which tells us that
If z.p is red, z.p cannot be the root ⇒ z.p.p exists

54 / 163



Therefore

If z.p is red
We enter the loop of Fix-Up code...

Which tells us that
If z.p is red, z.p cannot be the root ⇒ z.p.p exists

54 / 163



Maintenance in Insertion in Red-Black Trees

Case I - z’s uncle is red

z

yA

B

C

D

55 / 163



Maintenance in Insertion in Red-Black Trees

Recolor parent and uncle to black
new z

A

B

C

D

56 / 163



Thus

Observations
1 Recoloring will fix the z.parent.color == red and keeps the bh

property
1 It will move the problem upwards.

2 Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
3 So the new z will move the problem upward for the next iteration.

57 / 163



Thus

Observations
1 Recoloring will fix the z.parent.color == red and keeps the bh

property
1 It will move the problem upwards.

2 Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
3 So the new z will move the problem upward for the next iteration.

57 / 163



Thus

Observations
1 Recoloring will fix the z.parent.color == red and keeps the bh

property
1 It will move the problem upwards.

2 Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
3 So the new z will move the problem upward for the next iteration.

57 / 163



Thus

Observations
1 Recoloring will fix the z.parent.color == red and keeps the bh

property
1 It will move the problem upwards.

2 Nevertheless, the tree rooted at A, B and D are Red-Black Trees.
3 So the new z will move the problem upward for the next iteration.

57 / 163



The Symmetric Case

We have

z

y

A

B

C

D

58 / 163



The Symmetric Case

We have
new z

A

B

C

D

59 / 163



RB-Insert-Fixup
RB-Insert-Fixup(T,z)

1 while z.p.color == RED

2 if z.p == z.p.p.left

3 y=z.p.p.right

4 if y.color ==RED

5 z.p.color = BLACK

6 y.color = BLACK

7 z.p.p.color = RED

8 z = z.p.p

9 else if z == z.p.right

10 z = z.p

11 Left-Rotate(T, z)

12 z.p.color = BLACK

13 z.p.p.color = RED

14 Right-Rotate(T, z.p.p)

15 else (“right” and “left” exchanged)

16 T.root.color = BLACK

Case 2
if z is in the right child then

I Move the problem to the parent by
making z = z.p

I Rotate left using z as the rotation
node

60 / 163



Insertion in Red-Black Trees

Case 2 - z’s uncle y is black and z is a right child

z

y
A

 

B

C

CASE 2

61 / 163



Thus

First
Here simple recoloring will not work.

Rotate
We rotate first from to left using z.p.

This moves case 2 toward case 3
To get ready for the final fix-up.

62 / 163



Thus

First
Here simple recoloring will not work.

Rotate
We rotate first from to left using z.p.

This moves case 2 toward case 3
To get ready for the final fix-up.

62 / 163



Thus

First
Here simple recoloring will not work.

Rotate
We rotate first from to left using z.p.

This moves case 2 toward case 3
To get ready for the final fix-up.

62 / 163



From Case 2 to Case 3

Example

z

y
A

 

B

C

z

y

A

B

CASE 2 CASE 3

C

63 / 163



RB-Insert-Fixup
RB-Insert-Fixup(T,z)

1 while z.p.color == RED

2 if z.p == z.p.p.left

3 y=z.p.p.right

4 if y.color ==RED

5 z.p.color = BLACK

6 y.color = BLACK

7 z.p.p.color = RED

8 z = z.p.p

9 else if z == z.p.right

10 z = z.p

11 Left-Rotate(T, z)

12 z.p.color = BLACK

13 z.p.p.color = RED

14 Right-Rotate(T, z.p.p)

15 else (“right” and “left” exchanged)

16 T.root.color = BLACK

Case 3
if z is in the left child then

I Recolor z’s parent to BLACK
I recolor z’s grandparent to RED
I Rotate right using the grandparent

64 / 163



Then

We do the following
Then, we recolor B.color = BLACK, C.color = RED (No problem γ and δ
are black nodes)

Finally
Then, you rotate right using z.p.p to fix the black height property!!

65 / 163



Then

We do the following
Then, we recolor B.color = BLACK, C.color = RED (No problem γ and δ
are black nodes)

Finally
Then, you rotate right using z.p.p to fix the black height property!!

65 / 163



From Case 3 to final recoloring

Case 3 - It allows to fix the bh locally

z

y

A

 

B

CASE 3

B

A C

C

66 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

67 / 163



When the loop terminates

it does so because z.p is black (Sentinel or not)
The Tree does not violate property 4 at loop termination.

I If a node is red, then both its children are black.

By the loop invariant
The only property that might fail to hold is property 2

I The root is black.

68 / 163



When the loop terminates

it does so because z.p is black (Sentinel or not)
The Tree does not violate property 4 at loop termination.

I If a node is red, then both its children are black.

By the loop invariant
The only property that might fail to hold is property 2

I The root is black.

68 / 163



Then

Root Recoloring
After pushing the problem up to the root by the while loop color the root
to BLACK!!!

We have then

A B

Root

A B

Root

69 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

70 / 163



Example: Insertion in Red-Black Trees

Example Tree is empty
26 1741 14 21 10 712

 

3028

T.nil

Selection Order

71 / 163



Example: Insertion in Red-Black Trees

The root becomes red!!!
STEPS

1 y = T.nil
2 x = T.root
3 We never go into

the search loop
4 z.p = y
5 if y == T.nil
6 T.root = z
7 z.left = T.nil
8 z.right = T.nil
9 z.color = T.RED

26 1741 14 21 10 712

 

30

28

T.nil

Selection Order

z

72 / 163



Example: Insertion in Red-Black Trees

Fix the problem

ONLY STEP
1 T.root.color=BLACK

It happens at the end of the
Fix-up

26 1741 14 21 10 712

 

30

28

T.nil

Selection Order

z
 

73 / 163



Example: Insertion in Red-Black Trees

Insert 7

1 Do a binary
search to find a
place to insert

2 Parent of z is not
RED ⇒ no fix-up

26 1741 14 21 10

7

12

 
30

28

T.nil

Selection Order

z

74 / 163



Example: Insertion in Red-Black Trees

Insert 12

1 Do a binary
search to find a
place to insert

2 Parent of z is
RED!!!

26 1741 14 21 10

7

12

 

30

28

T.nil

Selection Order

z

75 / 163



Example: Insertion in Red-Black Trees

Case 2 into Case 3

1 Re-balance first to the
left
if z==z.p.right

z=z.p
Left-Rotate(T, z)

26 1741 14 21 10

712 

30

28

T.nil

Selection Order

7z

76 / 163



Example: Insertion in Red-Black Trees

Case 3

1 Re-color and
re-balance to the right
z.p.color = BLACK
z.p.p.color=RED
Right-Rotate(T, z.p.p)

2 No problem to fix
3 The root is already

BLACK so nothing
happens

Insertion Code
26 1741 14 21 10

712 

30

28

T.nil

Selection Order

7z

77 / 163



Example: InsertionInsertion Code in Red-Black Trees

Insert 10

1 We insert 10
2 We color it to RED
3 We need to fix the

problem

26 1741 14 21

10

712

30

28

T.nil

Selection Order

7

z

y

78 / 163



Example: Insertion in Red-Black Trees

Case 1

1 if z.p == z.p.p.left
2 y=z.p.p.right
3 if y.color ==RED

26 1741 14 21

10

712

30

28

T.nil

Selection Order

7

z

y

79 / 163



Example: Insertion in Red-Black Trees

Case 1

1 if y.color ==RED
2 z.p.color = BLACK
3 y.color = BLACK
4 z.p.p.color = RED
5 z = z.p.p

26 1741 14 21

10

712

30

28

T.nil

Selection Order

7

z

80 / 163



Example: Insertion in Red-Black Trees

Case 1 You get out of the loop and...

1 T.root.color = BLACK

26 1741 14 21

10

712

30

28

T.nil

Selection Order

7

z

81 / 163



Example: Insertion in Red-Black Trees

Insert 28

1 We insert 28
2 We color it to RED
3 No problem to fix...

Insertion Code
26 1741 14 21

10

712

30

28

T.nil

Selection Order

7

z

82 / 163



Example: Insertion in Red-Black Trees

Insert 28

1 We insert 28
2 We color it to RED
3 No problem to fix...

26 1741 14 21

10

712

30

28

T.nil

Selection Order

7

z

83 / 163



Example: Insertion in Red-Black Trees

Insert 21

1 We insert 21
2 We color it to RED
3 We need to fix...

26 1741 14

21

10

712

30

28

T.nil

Selection Order

7

z

84 / 163



Example: Insertion in Red-Black Trees

Case 3

1 Re-color and
re-balance to the right
z.p.color = BLACK
z.p.p.color=RED
Right-Rotate(T, z.p.p)

2 No problem to fix
3 The root is already

BLACK so nothing
happens

26 1741 14

2110

712

30

28

T.nil

Selection Order

7

z

85 / 163



Example: Insertion in Red-Black Trees

Insert 14

1 We insert 14
2 We color it to RED
3 We need to fix...

26 1741

14

2110

712

30

28

T.nil

Selection Order

7

z

86 / 163



Example: Insertion in Red-Black Trees

Case 1

1 if z.p == z.p.p.left
2 y=z.p.p.right
3 if y.color ==RED

26 1741

14

2110

712

30

28

T.nil

Selection Order

7

z

y

87 / 163



Example: Insertion in Red-Black Trees

Case 1

1 if y.color ==RED
2 z.p.color = BLACK
3 y.color = BLACK
4 z.p.p.color = RED
5 z = z.p.p

Nothing to do after!!!

26 1741

14

2110

712

30

28

T.nil

Selection Order

7 z

88 / 163



Example: Insertion in Red-Black Trees
Insert 17

1 Do a binary search to find a
place to insert

2 Parent of z is RED!!!

26

17

41

14

2110

712

30

28

T.nil

Selection Order

7 z

z

89 / 163



Case 2 into 3

1 Re-balance first to the left
if z==z.p.right

z=z.p
Left-Rotate(T, z)

26

17

41

14

2110

712

30

28

T.nil

Selection Order

7

z

90 / 163



Example: Insertion in Red-Black Trees
Case 3

1 Re-color and
re-balance to the right
z.p.color = BLACK
z.p.p.color=RED
Right-Rotate(T, z.p.p)

2 No problem to fix
3 The root is already

BLACK so nothing
happens

26

17

41

14

2110

712

30

28

T.nil

Selection Order

7

z

90 / 163



Example: Insertion in Red-Black Trees
Case 3

1 Re-color and
re-balance to the right
z.p.color = BLACK
z.p.p.color=RED
Right-Rotate(T, z.p.p)

2 No problem to fix
3 The root is already

BLACK so nothing
happens

26

17

41

14

2110

712

30

28

T.nil

Selection Order

7

z

91 / 163



Example: Insertion in Red-Black Trees
Case 3

1 Re-color and
re-balance to the right
z.p.color = BLACK
z.p.p.color=RED
Right-Rotate(T, z.p.p)

2 No problem to fix
3 The root is already

BLACK so nothing
happens

26

17

41

14
21

10

712

30

28

T.nil

Selection Order

7

z

92 / 163



Example: Insertion in Red-Black Trees
Insert 41

1 Put in the correct
node by binary
search

2 Because 41’s parent
is BLACK nothing to
fix

26

17

41
14

21

10

712

30

28

T.nil

Selection Order

7

z

93 / 163



Example: Insertion in Red-Black Trees

Case 1 Symmetrical

1 if z.p == z.p.p.right
2 y=z.p.p.left
3 if y.color ==RED
4 z.p.color = BLACK
5 y.color = BLACK
6 z.p.p.color = RED
7 z = z.p.p

26

17

41
14

21

10

712

30

28

T.nil

Selection Order

7

z

94 / 163



Example: Insertion in Red-Black Trees

Case 1 Symmetrical

1 if z.p == z.p.p.right
2 y=z.p.p.left
3 if y.color ==RED
4 z.p.color = BLACK
5 y.color = BLACK
6 z.p.p.color = RED
7 z = z.p.p

26

17

41
14

21

10

712

30

28

T.nil

Selection Order

7

z

95 / 163



Example: Insertion in Red-Black Trees

Case 2 to case 3 - Symmetrical

1 Re-balance first to the right
if z==z.p.left

z=z.p
Right-Rotate(T, z)

26

17

41
14

21

10

712

30

28

T.nil

Selection Order

7 z

96 / 163



Example: Insertion in Red-Black Trees

Case 3 - Symmetrical

1 Re-color and re-balance to the
right
z.p.color = BLACK
z.p.p.color=RED
Left-Rotate(T, z.p.p)

2 No problem to fix
3 The root is already BLACK so

nothing happens 26

17

41
14

21

10

712

30

28

T.nil

Selection Order

7 z

97 / 163



Example: Insertion in Red-Black Trees

Case 3 - Symmetrical

1 Re-color and re-balance to the
right
z.p.color = BLACK
z.p.p.color=RED
Left-Rotate(T, z.p.p)

2 No problem to fix
3 The root is already BLACK so

nothing happens 26

17

41
14

21

10

712

30

28

T.nil

Selection Order

7

z

98 / 163



Complexity of RB-Insert

It is easy to see that we have

O(logn) (1)

99 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

100 / 163



The Main Idea

Here, we use the idea of removing
By pushing in its place its successor.

Therefore we have a problem
If the successor of a node is the node y.

I And y is black.

We have removed a black node from a path.

101 / 163



The Main Idea

Here, we use the idea of removing
By pushing in its place its successor.

Therefore we have a problem
If the successor of a node is the node y.

I And y is black.

We have removed a black node from a path.

101 / 163



The Main Idea

Here, we use the idea of removing
By pushing in its place its successor.

Therefore we have a problem
If the successor of a node is the node y.

I And y is black.

We have removed a black node from a path.

101 / 163



The Main Idea

Here, we use the idea of removing
By pushing in its place its successor.

Therefore we have a problem
If the successor of a node is the node y.

I And y is black.

We have removed a black node from a path.

101 / 163



Thus

Example
z

y

x

MOVING

102 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

103 / 163



Deletion in Red-Black Trees
RB-DELETE(T,z)

1 y = z
2 y-original-color = y.color
3 if z.left == T.nil
4 x = z.right
5 RB-Transplant(T, z, z.right)
6 elseif z.right == T.nil
7 x = z.left
8 RB-Transplant(T, z, z.left)
9 else y = Tree-Minimum(z.right)
10 y-original-color = y.color
11 x = y.right
12 if y.p == z
13 x.p = y
14 else RB-Transplant(T,y,y.right)
15 y.right = z.right
16 y.right.p = y

Case 1
Store the info of the node to be
deleted

104 / 163



Deletion in Red-Black Trees
RB-DELETE(T,z)

1 y = z
2 y-original-color = y.color
3 if z.left == T.nil
4 x = z.right
5 RB-Transplant(T, z, z.right)
6 elseif z.right == T.nil
7 x = z.left
8 RB-Transplant(T, z, z.left)
9 else y = Tree-Minimum(z.right)
10 y-original-color = y.color
11 x = y.right
12 if y.p == z
13 x.p = y
14 else RB-Transplant(T,y,y.right)
15 y.right = z.right
16 y.right.p = y

Case 2
If the left child is empty
Store the info of the right child
Move z.right into the position of
z

105 / 163



Deletion in Red-Black Trees
RB-DELETE(T,z)

1 y = z
2 y-original-color = y.color
3 if z.left == T.nil
4 x = z.right
5 RB-Transplant(T, z, z.right)
6 elseif z.right == T.nil
7 x = z.left
8 RB-Transplant(T, z, z.left)
9 else y = Tree-Minimum(z.right)
10 y-original-color = y.color
11 x = y.right
12 if y.p == z
13 x.p = y
14 else RB-Transplant(T,y,y.right)
15 y.right = z.right
16 y.right.p = y

Case 3
If the right child is empty
Store the info of the left child
Move z.left into the position of z

106 / 163



Deletion in Red-Black Trees
RB-DELETE(T,z)

1 y = z
2 y-original-color = y.color
3 if z.left == T.nil
4 x = z.right
5 RB-Transplant(T, z, z.right)
6 elseif z.right == T.nil
7 x = z.left
8 RB-Transplant(T, z, z.left)
9 else y = Tree-Minimum(z.right)
10 y-original-color = y.color
11 x = y.right
12 if y.p == z
13 x.p = y
14 else RB-Transplant(T,y,y.right)
15 y.right = z.right
16 y.right.p = y

Case 4
Find the successor of z
Store the info of it: Color and
right child

107 / 163



Deletion in Red-Black Trees
RB-DELETE(T,z)

1 y = z
2 y-original-color = y.color
3 if z.left == T.nil
4 x = z.right
5 RB-Transplant(T, z, z.right)
6 elseif z.right == T.nil
7 x = z.left
8 RB-Transplant(T, z, z.left)
9 else y = Tree-Minimum(z.right)
10 y-original-color = y.color
11 x = y.right
12 if y.p == z
13 x.p = y
14 else RB-Transplant(T,y,y.right)
15 y.right = z.right
16 y.right.p = y

Case 5
If parent of succesor is z then
set parent of x to y

108 / 163



Deletion in Red-Black Trees
RB-DELETE(T,z)

1 y = z
2 y-original-color = y.color
3 if z.left == T.nil
4 x = z.right
5 RB-Transplant(T, z, z.right)
6 elseif z.right == T.nil
7 x = z.left
8 RB-Transplant(T, z, z.left)
9 else y = Tree-Minimum(z.right)
10 y-original-color = y.color
11 x = y.right
12 if y.p == z
13 x.p = y
14 else RB-Transplant(T,y,y.right)
15 y.right = z.right
16 y.right.p = y

ø

Case 6
Substitute y with y.right
set y.right with z.right
set the parent of y.right to y

109 / 163



Deletion in Red-Black Trees

RB-DELETE(T,z)

17. RB-Transplant(T, z, y)
18. y.left = z.left
19. y.left.p = y
20. y.color = z.color
21. if y-original-color ==BLACK
22. RB-Delete-Fixup(T,x)

Case 7
Substitute z with y
Make y.left to z.left
Make the parent of y.left to y
Make the color of y to the color
of z

110 / 163



Deletion in Red-Black Trees

RB-DELETE(T,z)

17. RB-Transplant(T, z, y)
18. y.left = z.left
19. y.left.p = y
20. y.color = z.color
21. if y-original-color ==BLACK
22. RB-Delete-Fixup(T,x)

Case 8
If y-original-color == BLACK
then call RB-Delete-Fixup(T,x)
After all x points to the node
that:

I It is moved into the position
of y.

I Where y was moved into the
position of z.

111 / 163



Where RB-Transplant

RB-Transplant(T, u, v)
1 if u.p == T.nil

2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 v.p = u.p

112 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

113 / 163



A virtual node y to be removed or moved around

Case 1
In line 1, y is removed when it points to z and has less than two
children.

Case 2
In line 9, y is moved around when z has two children

I Because y=Tree-Minimum(z.right).

Then
y will move to z’s position.

114 / 163



A virtual node y to be removed or moved around

Case 1
In line 1, y is removed when it points to z and has less than two
children.

Case 2
In line 9, y is moved around when z has two children

I Because y=Tree-Minimum(z.right).

Then
y will move to z’s position.

114 / 163



A virtual node y to be removed or moved around

Case 1
In line 1, y is removed when it points to z and has less than two
children.

Case 2
In line 9, y is moved around when z has two children

I Because y=Tree-Minimum(z.right).

Then
y will move to z’s position.

114 / 163



A virtual node y to be removed or moved around

Case 1
In line 1, y is removed when it points to z and has less than two
children.

Case 2
In line 9, y is moved around when z has two children

I Because y=Tree-Minimum(z.right).

Then
y will move to z’s position.

114 / 163



A virtual node y to be removed or moved around

Now, the color of y’s can change
Therefore, it gets stored in y-original-color (Lines 2, 10).

Then, when z has two children
Then y moves to z’s position and y gets the same color than z.
This can produce a violation.

115 / 163



A virtual node y to be removed or moved around

Now, the color of y’s can change
Therefore, it gets stored in y-original-color (Lines 2, 10).

Then, when z has two children
Then y moves to z’s position and y gets the same color than z.
This can produce a violation.

115 / 163



A virtual node y to be removed or moved around

Now, the color of y’s can change
Therefore, it gets stored in y-original-color (Lines 2, 10).

Then, when z has two children
Then y moves to z’s position and y gets the same color than z.
This can produce a violation.

115 / 163



The node x gets position y

In lines 4, 7, and 11, x is set to point to
to y’s only child or
T.nil

Since x is going to move to y’s original position
The x.p is pointed to y’s parent.

Unless z is y’s original parent
The assignment of x.p takes place in line 6 of RB-Transplant.

Observe that when RB-Transplant is called in lines 5, 8, or 14, the
second parameter passed is the same as x.

116 / 163



The node x gets position y

In lines 4, 7, and 11, x is set to point to
to y’s only child or
T.nil

Since x is going to move to y’s original position
The x.p is pointed to y’s parent.

Unless z is y’s original parent
The assignment of x.p takes place in line 6 of RB-Transplant.

Observe that when RB-Transplant is called in lines 5, 8, or 14, the
second parameter passed is the same as x.

116 / 163



The node x gets position y

In lines 4, 7, and 11, x is set to point to
to y’s only child or
T.nil

Since x is going to move to y’s original position
The x.p is pointed to y’s parent.

Unless z is y’s original parent
The assignment of x.p takes place in line 6 of RB-Transplant.

Observe that when RB-Transplant is called in lines 5, 8, or 14, the
second parameter passed is the same as x.

116 / 163



The node x gets position y

In lines 4, 7, and 11, x is set to point to
to y’s only child or
T.nil

Since x is going to move to y’s original position
The x.p is pointed to y’s parent.

Unless z is y’s original parent
The assignment of x.p takes place in line 6 of RB-Transplant.

Observe that when RB-Transplant is called in lines 5, 8, or 14, the
second parameter passed is the same as x.

116 / 163



The node x gets position y

In lines 4, 7, and 11, x is set to point to
to y’s only child or
T.nil

Since x is going to move to y’s original position
The x.p is pointed to y’s parent.

Unless z is y’s original parent
The assignment of x.p takes place in line 6 of RB-Transplant.

Observe that when RB-Transplant is called in lines 5, 8, or 14, the
second parameter passed is the same as x.

116 / 163



The node x gets position y

if z is not the original y’s parent
We do not want x.p to point to it since we are going to remove it.

Then
In line 13 of RB-Delete, x.p is set to point to y.

Finally
y will take the position of z in line 17.

117 / 163



The node x gets position y

if z is not the original y’s parent
We do not want x.p to point to it since we are going to remove it.

Then
In line 13 of RB-Delete, x.p is set to point to y.

Finally
y will take the position of z in line 17.

117 / 163



The node x gets position y

if z is not the original y’s parent
We do not want x.p to point to it since we are going to remove it.

Then
In line 13 of RB-Delete, x.p is set to point to y.

Finally
y will take the position of z in line 17.

117 / 163



The node x gets position y

Then
If y was originally black after taking the z.color can produce a violation,
then RB-Delete-Fixup is called.

This can happen
If y was originally red the Red-Black Trees properties still hold.

118 / 163



The node x gets position y

Then
If y was originally black after taking the z.color can produce a violation,
then RB-Delete-Fixup is called.

This can happen
If y was originally red the Red-Black Trees properties still hold.

118 / 163



Deletion in Red-Black Trees

Question
What if we removed a black node?

119 / 163



Explanation

We have three problems
1 If y was a root and a RED child becomes the new root, we have

violated property 2.
2 If both x and x.p are RED, then we have violated property 4.
3 Moving y around decreases the black-height on a section of the Red

Black Tree.
4 Thus, Property 5 is violated.

120 / 163



Explanation

We have three problems
1 If y was a root and a RED child becomes the new root, we have

violated property 2.
2 If both x and x.p are RED, then we have violated property 4.
3 Moving y around decreases the black-height on a section of the Red

Black Tree.
4 Thus, Property 5 is violated.

120 / 163



Explanation

We have three problems
1 If y was a root and a RED child becomes the new root, we have

violated property 2.
2 If both x and x.p are RED, then we have violated property 4.
3 Moving y around decreases the black-height on a section of the Red

Black Tree.
4 Thus, Property 5 is violated.

120 / 163



Explanation

We have three problems
1 If y was a root and a RED child becomes the new root, we have

violated property 2.
2 If both x and x.p are RED, then we have violated property 4.
3 Moving y around decreases the black-height on a section of the Red

Black Tree.
4 Thus, Property 5 is violated.

120 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

121 / 163



Fix-up

How?
This could be fixed assuming that x has an “extra black.”

Meaning
This means that the node is “doubly black” or “red-and-black.”

122 / 163



Fix-up

How?
This could be fixed assuming that x has an “extra black.”

Meaning
This means that the node is “doubly black” or “red-and-black.”

122 / 163



Example

We have then

x

Doubly Black Case

Virtual
Black

x

Red-and-Black Case

Virtual
Black

123 / 163



How is this done?

Thus
The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by
using the while loop to push the extra BLACK node up the tree.

Until
If we have that x is a red-and-black, we simply need to change the
color of the node to BLACK (Line 23).

Then, use Rotations
Use suitable rotations and re-colorings until x stops to be a doubly
black node.
If we have that x is pointing to the root, remove “extra node.”

124 / 163



How is this done?

Thus
The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by
using the while loop to push the extra BLACK node up the tree.

Until
If we have that x is a red-and-black, we simply need to change the
color of the node to BLACK (Line 23).

Then, use Rotations
Use suitable rotations and re-colorings until x stops to be a doubly
black node.
If we have that x is pointing to the root, remove “extra node.”

124 / 163



How is this done?

Thus
The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by
using the while loop to push the extra BLACK node up the tree.

Until
If we have that x is a red-and-black, we simply need to change the
color of the node to BLACK (Line 23).

Then, use Rotations
Use suitable rotations and re-colorings until x stops to be a doubly
black node.
If we have that x is pointing to the root, remove “extra node.”

124 / 163



How is this done?

Thus
The procedure RB-DELETE -FIXUP restores properties 2, 4, and 5 by
using the while loop to push the extra BLACK node up the tree.

Until
If we have that x is a red-and-black, we simply need to change the
color of the node to BLACK (Line 23).

Then, use Rotations
Use suitable rotations and re-colorings until x stops to be a doubly
black node.
If we have that x is pointing to the root, remove “extra node.”

124 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

125 / 163



RB-DELETE-FIXUP(T,x)
1 while x 6= T.root and x.color == BLACK
2 if x == x.p.left
3 w = x.p.right
4 if w.color == RED
5 w.color = BLACK
6 x.p.color = RED
7 Left-Rotate(T, x.p)
8 w = x.p.right
9 if w.left.color == BLACK and w.right.color == BLACK
10 w.color = RED
11 x = x.p
12 else if w.right.color == BLACK
13 w.left.color = BLACK
14 w.color = RED
15 Right-Rotate(T, w)
16 w = x.p.right
17 w.color = x.p.color
18 x.p.color = BLACK
19 w.right.color = BLACK
20 Left-Rotate(T, x.p)
21 x = T.root
22 else (same with “right” and “left” exchanged)
23 x.color = BLACK

While loop
Because a violation
on the bh, you need
to move x up until
the problem is fixed
up.

126 / 163



RB-DELETE-FIXUP(T,x)
1 while x 6= T.root and x.color == BLACK
2 if x == x.p.left
3 w = x.p.right
4 if w.color == RED
5 w.color = BLACK
6 x.p.color = RED
7 Left-Rotate(T, x.p)
8 w = x.p.right
9 if w.left.color == BLACK and w.right.color == BLACK
10 w.color = RED
11 x = x.p
12 else if w.right.color == BLACK
13 w.left.color = BLACK
14 w.color = RED
15 Right-Rotate(T, w)
16 w = x.p.right
17 w.color = x.p.color
18 x.p.color = BLACK
19 w.right.color = BLACK
20 Left-Rotate(T, x.p)
21 x = T.root
22 else (same with “right” and “left” exchanged)
23 x.color = BLACK

Finding who you are
Find which child are
you
Make w the other
child

127 / 163



RB-DELETE-FIXUP(T,x)
1 while x 6= T.root and x.color == BLACK
2 if x == x.p.left
3 w = x.p.right
4 if w.color == RED
5 w.color = BLACK
6 x.p.color = RED
7 Left-Rotate(T, x.p)
8 w = x.p.right
9 if w.left.color == BLACK and w.right.color == BLACK
10 w.color = RED
11 x = x.p
12 else if w.right.color == BLACK
13 w.left.color = BLACK
14 w.color = RED
15 Right-Rotate(T, w)
16 w = x.p.right
17 w.color = x.p.color
18 x.p.color = BLACK
19 w.right.color = BLACK
20 Left-Rotate(T, x.p)
21 x = T.root
22 else (same with “right” and “left” exchanged)
23 x.color = BLACK

Case 1
if x is BLACK and w
is RED
Fix the bh problem
by making w
BLACK, x’s parent
to RED then rotate
left using x’s parent
Make w = x.p.right
moving the problem
down.

128 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

129 / 163



Suitable Rotations and Recoloring

Case 1 - x’s sibling w is red. You keep the bh property of the other
subtrees

x w

 

A

 

B

C

D

E

130 / 163



Suitable Rotations and Recoloring

Case 1 - x’s sibling w is red. You keep the bh property of the other
subtrees

x new w

 

A

 

B

C

D

E

131 / 163



RB-DELETE-FIXUP(T,x)
1 while x 6= T.root and x.color == BLACK
2 if x == x.p.left
3 w = x.p.right
4 if w.color == RED
5 w.color = BLACK
6 x.p.color = RED
7 Left-Rotate(T, x.p)
8 w = x.p.right
9 if w.left.color == BLACK and w.right.color == BLACK
10 w.color = RED
11 x = x.p
12 else if w.right.color == BLACK
13 w.left.color = BLACK
14 w.color = RED
15 Right-Rotate(T, w)
16 w = x.p.right
17 w.color = x.p.color
18 x.p.color = BLACK
19 w.right.color = BLACK
20 Left-Rotate(T, x.p)
21 x = T.root
22 else (same with “right” and “left” exchanged)
23 x.color = BLACK

Case 2
Now if w.left’s color
and w.right’s color is
BLACK
We do something
smart decrease the
bh height at w by
making w’s color to
RED
Move the problem
fropm to x to x.p
(After all the
subtree have the
same height at x.p)

132 / 163



Suitable Rotations and Recoloring

Case 2 - x’s sibling w is black, and both of w’s children are black.

x wA

 

C

D

E

B

Note: The Node with half and half colors has the meaning that it
can be red or black.

133 / 163



Suitable Rotations and Recoloring

Case 2 - x’s sibling w is black, and both of w’s children are black.

new x

A

 

C

D

E

B

134 / 163



RB-DELETE-FIXUP(T,x)
1 while x 6= T.root and x.color == BLACK
2 if x == x.p.left
3 w = x.p.right
4 if w.color == RED
5 w.color = BLACK
6 x.p.color = RED
7 Left-Rotate(T, x.p)
8 w = x.p.right
9 if w.left.color == BLACK and w.right.color == BLACK
10 w.color = RED
11 x = x.p
12 else if w.right.color == BLACK
13 w.left.color = BLACK
14 w.color = RED
15 Right-Rotate(T, w)
16 w = x.p.right
17 w.color = x.p.color
18 x.p.color = BLACK
19 w.right.color = BLACK
20 Left-Rotate(T, x.p)
21 x = T.root
22 else (same with “right” and “left” exchanged)
23 x.color = BLACK

Case 3
If w.right’s color is
BLACK
We do something
smart, we re-color
and do a right
rotation at w
This does not
change the
Red-Black Trees
properties of w
but prepare the
situation for fixing
the x height problem
in case 4.

135 / 163



Suitable Rotations and Recoloring

Case 3 - x’s sibling w is black, w’s left child is red, and w’s right child
is black.

x A

 

C

D

E

B

w

136 / 163



Suitable Rotations and Recoloring

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child
is black.

x A C

D

E

B

new w

137 / 163



RB-DELETE-FIXUP(T,x)
1 while x 6= T.root and x.color == BLACK
2 if x == x.p.left
3 w = x.p.right
4 if w.color == RED
5 w.color = BLACK
6 x.p.color = RED
7 Left-Rotate(T, x.p)
8 w = x.p.right
9 if w.left.color == BLACK and w.right.color == BLACK
10 w.color = RED
11 x = x.p
12 else if w.right.color == BLACK
13 w.left.color = BLACK
14 w.color = RED
15 Right-Rotate(T, w)
16 w = x.p.right
17 w.color = x.p.color
18 x.p.color = BLACK
19 w.right.color = BLACK
20 Left-Rotate(T, x.p)
21 x = T.root
22 else (same with “right” and “left” exchanged)
23 x.color = BLACK

Case 4
We are ready to fix
our problem!!! with
respect to x (Case 2
and 3 where a
preparation to fix
the problem)
We increase the
height of the bh
with the problem, x.

138 / 163



Suitable Rotations and Recoloring

Case 4: x’s sibling w is black, and w’s right child is red.

x A

E

B

w

C

D

139 / 163



Suitable Rotations and Recoloring

Case 4: x’s sibling w is black, and w’s right child is red.

A

EB

C

Dnew x=T.root

140 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

141 / 163



Deletion in Red-Black Trees

Delete 17

26

17

41

14 21

10

712 

30

28

T.nil

7

z

142 / 163



Deletion in Red-Black Trees

Store the info about z

y = z
y-original-color = y.color 26

17

41

14 21

10

712 

30

28

T.nil

7

z

143 / 163



Deletion in Red-Black Trees

None of the children of z are T.nil, thus

else y = Tree-Minimum(z.right)
y-original-color = y.color
x = y.right 26

17

41

14 21

10

712 

30

28

T.nil

7

z

y

x

144 / 163



Deletion in Red-Black Trees

We have that y.p 6= z

else RB-Transplant(T,y,y.right)
y.right = z.right
y.right.p = y 26

17

41

14 21

10

712 

30

28

T.nil

7

z

y

x

145 / 163



Deletion in Red-Black Trees

Transplant(T, y, y.right)

elseif y == y.p.left
y.p.left = y.right

y.right.p = y.p
26

17

41

14 21

10

712 

30

28

T.nil

7

z

y

x

y.right.p=y.p

146 / 163



Deletion in Red-Black Trees

Now, we move pointers

y.right = z.right
y.right.p = y

26

17

41

14 21

10

712 

30

28

T.nil

7

z

y

x

y.right.p=y

147 / 163



Deletion in Red-Black Trees

Transplant(z,y)

if z.p == T.nil
T.root = y

y.p = z.p
26

17

41

14

21

10

712 

30

28

T.nil

7

z y

x

y.p = z.p

148 / 163



Deletion in Red-Black Trees

Move pointers

y.left = z.left
y.left.p = y
y.color = z.color 26

17

41

14

21

10

712 

30

28

T.nil

7

z y

x

y.left.p = y

149 / 163



Deletion in Red-Black Trees

We remove z safely and we go into Delete-Fixup(T,x)

z.right = NULL
z.left = NULL
z.parent = NULL

26

17

41

14

21

10

712 

30

28

T.nil

7

z y

x

150 / 163



Deletion in Red-Black Trees

We remove z safely and we go into Delete-Fixup(T,x)

Never enter into the loop
Simply do x.color =
BLACK 26

41

14

21

10

712 

30

28

T.nil

7

y

x

151 / 163



Deletion in Red-Black Trees

Delete 12

26

17

41

14 21

10

712 

30

28

T.nil

7

z

152 / 163



Deletion in Red-Black Trees

None of the children of z are T.nil, thus

else y = Tree-Minimum(z.right)
y-original-color = y.color

(BLACK)
x = y.right (T.NIL)

26

17

41

14 21

10

712 

30

28

T.nil

7

z

 y

x

153 / 163



Deletion in Red-Black Trees

We have that y.p== z

if y.p == z
x.p = y

26

17

41

14 21

10

712 

30

28

T.nil

7

z

 y

x

154 / 163



Deletion in Red-Black Trees

Next

RB-Transplant(T, z, y)
y.left = z.left
y.left.p = y
y.color = z.color

26

17

41

14 21

10

712 

30

28

T.nil

7

z

 y

x

155 / 163



Deletion in Red-Black Trees

Next

RB-Transplant(T, z, y)
y.left = z.left
y.left.p = y
y.color = z.color

26

17

41

14 21

10

712

 

30

28

T.nil

7

z

 y

x

156 / 163



Deletion in Red-Black Trees

Next

RB-Transplant(T, z, y)
y.left = z.left
y.left.p = y
y.color = z.color

26

17

41

14 21

10

712

 

30

28

T.nil

7

z

 y

x

157 / 163



Deletion in Red-Black Trees

We remove z safely and we go into Delete-Fixup(T,x)

enter into the loop
if x == x.p.right

w = x.p.left
26

17

41

14

21

10

 

30

28

T.nil

7
 

y

x

w

158 / 163



Deletion in Red-Black Trees

We enter into case 4

1 w.color = x.p.color

2 x.p.color = BLACK

3 w.right.color = BLACK
26

17

41

14

21

10

 

30

28

T.nil

7
 

x

w

159 / 163



Deletion in Red-Black Trees

Rotate and move the x

1 Left-Rotate(T, x.p)

2 x = T.root 26

17

41

14
21

10

 

30

28

T.nil

7

 

x

160 / 163



Applications of Red-Black Trees

Completely Fair Scheduler (CFS)
It is a task scheduler which was merged into 2.6.23 release of the
Linux Kernel.
It is a replacement of earlier O(1) scheduler.
CFS algorithm was designed to maintain balance (fairness) in
providing processor time to tasks.

Sorting using Parallel Implementations
Running in O(log logn) time

161 / 163



Applications of Red-Black Trees

Completely Fair Scheduler (CFS)
It is a task scheduler which was merged into 2.6.23 release of the
Linux Kernel.
It is a replacement of earlier O(1) scheduler.
CFS algorithm was designed to maintain balance (fairness) in
providing processor time to tasks.

Sorting using Parallel Implementations
Running in O(log logn) time

161 / 163



Outline
1 Red-Black Trees

The Search for Well Balanced Threes
Observations
Red-Black Trees
Examples
Lemma for the height of Red-Black Trees
Base Case of Induction
Induction

Rotations in Red-Black Trees

2 Insertion in Red-Black Trees
Important!!!
Insertion Code
The Fixup Code
Loop Invariance
Initialization
Maintenance
Termination

Example

3 Deletion in Red-Black Trees
The Basics
The Code
The Case of a Virtual Node y
The Fix-Up
The Code To Fix the Violations
Suitable Rotations and Recoloring
Example of Deletion in Red-Black Trees

4 Exercises
Something for you to do

162 / 163



Exercises

From Cormen’s book solve
13.1-1
13.1-3
13.1-5
13.1-7
13.2-2
13.2-3
13.2-4
13.2-5
13.3-2
13.3-4
13.4-2
13.4-4

163 / 163


	Red-Black Trees
	The Search for Well Balanced Threes
	Observations
	Red-Black Trees
	Examples
	Lemma for the height of Red-Black Trees
	Base Case of Induction
	Induction

	Rotations in Red-Black Trees

	Insertion in Red-Black Trees
	Important!!!
	Insertion Code 
	The Fixup Code
	Loop Invariance
	Initialization
	Maintenance
	Termination

	Example

	Deletion in Red-Black Trees
	The Basics
	The Code
	The Case of a Virtual Node y
	The Fix-Up
	The Code To Fix the Violations
	Suitable Rotations and Recoloring
	Example of Deletion in Red-Black Trees

	Exercises
	Something for you to do


