
Analysis of Algorithms
Binary Search Trees

Andres Mendez-Vazquez

September 30, 2018

1 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

2 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

3 / 49

Why Binary Search Trees?

Compared them with an array representation
Ouch!!! Insertion, Search and Deletion are quite expensive with the O (n).

Instead Binary Search Trees
Since they are node based the cost of moving an element either into the
collection or out of the collection is faster.

4 / 49

Why Binary Search Trees?

Compared them with an array representation
Ouch!!! Insertion, Search and Deletion are quite expensive with the O (n).

Instead Binary Search Trees
Since they are node based the cost of moving an element either into the
collection or out of the collection is faster.

4 / 49

Binary Search Tree Concepts

Definition
A binary search tree (BST) is a data structure where each node posses
three fields left, right and p.

They represent its left child, right child and parent.
In addition, each node has the field key.

Property
Let x be a node in a binary search tree. If y is a node in the left
subtree of x, then key[y] ≤ key[x].
Similarly, if y is a node in the right subree of x, then key[x] ≤ key[y].

5 / 49

Binary Search Tree Concepts

Definition
A binary search tree (BST) is a data structure where each node posses
three fields left, right and p.

They represent its left child, right child and parent.
In addition, each node has the field key.

Property
Let x be a node in a binary search tree. If y is a node in the left
subtree of x, then key[y] ≤ key[x].
Similarly, if y is a node in the right subree of x, then key[x] ≤ key[y].

5 / 49

Binary Search Tree Concepts

Definition
A binary search tree (BST) is a data structure where each node posses
three fields left, right and p.

They represent its left child, right child and parent.
In addition, each node has the field key.

Property
Let x be a node in a binary search tree. If y is a node in the left
subtree of x, then key[y] ≤ key[x].
Similarly, if y is a node in the right subree of x, then key[x] ≤ key[y].

5 / 49

Binary Search Tree Concepts

Definition
A binary search tree (BST) is a data structure where each node posses
three fields left, right and p.

They represent its left child, right child and parent.
In addition, each node has the field key.

Property
Let x be a node in a binary search tree. If y is a node in the left
subtree of x, then key[y] ≤ key[x].
Similarly, if y is a node in the right subree of x, then key[x] ≤ key[y].

5 / 49

Binary Search Tree Concepts

Definition
A binary search tree (BST) is a data structure where each node posses
three fields left, right and p.

They represent its left child, right child and parent.
In addition, each node has the field key.

Property
Let x be a node in a binary search tree. If y is a node in the left
subtree of x, then key[y] ≤ key[x].
Similarly, if y is a node in the right subree of x, then key[x] ≤ key[y].

5 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

6 / 49

In Order Walk

This walk allows to print the keys in sorted order!
Inorder-tree-walk(x)

1 if x 6= NIL
2 Inorder-tree-walk(x.left)
3 print x.key
4 Inorder-tree-walk(x.right)

7 / 49

In Order Walk

This walk allows to print the keys in sorted order!
Inorder-tree-walk(x)

1 if x 6= NIL
2 Inorder-tree-walk(x.left)
3 print x.key
4 Inorder-tree-walk(x.right)

7 / 49

In Order Walk

This walk allows to print the keys in sorted order!
Inorder-tree-walk(x)

1 if x 6= NIL
2 Inorder-tree-walk(x.left)
3 print x.key
4 Inorder-tree-walk(x.right)

7 / 49

In Order Walk

This walk allows to print the keys in sorted order!
Inorder-tree-walk(x)

1 if x 6= NIL
2 Inorder-tree-walk(x.left)
3 print x.key
4 Inorder-tree-walk(x.right)

7 / 49

In Order Walk

This walk allows to print the keys in sorted order!
Inorder-tree-walk(x)

1 if x 6= NIL
2 Inorder-tree-walk(x.left)
3 print x.key
4 Inorder-tree-walk(x.right)

7 / 49

Cost of inorder walk

Theorem 12.1
If x is the root of an n-node subtree, then the call Inorder-tree-walk(x)
takes Θ (n) time.

Proof:
Let T (n) denote the time taken by Inorder-tree-walk(x) when called at the
root.

First
Since Inorder-tree-walk(x) visit all the nodes then we have that
T (n) = Ω (n).
Thus, you need to prove T (n) = O (n)?

8 / 49

Cost of inorder walk

Theorem 12.1
If x is the root of an n-node subtree, then the call Inorder-tree-walk(x)
takes Θ (n) time.

Proof:
Let T (n) denote the time taken by Inorder-tree-walk(x) when called at the
root.

First
Since Inorder-tree-walk(x) visit all the nodes then we have that
T (n) = Ω (n).
Thus, you need to prove T (n) = O (n)?

8 / 49

Cost of inorder walk

Theorem 12.1
If x is the root of an n-node subtree, then the call Inorder-tree-walk(x)
takes Θ (n) time.

Proof:
Let T (n) denote the time taken by Inorder-tree-walk(x) when called at the
root.

First
Since Inorder-tree-walk(x) visit all the nodes then we have that
T (n) = Ω (n).
Thus, you need to prove T (n) = O (n)?

8 / 49

Cost of inorder walk

Theorem 12.1
If x is the root of an n-node subtree, then the call Inorder-tree-walk(x)
takes Θ (n) time.

Proof:
Let T (n) denote the time taken by Inorder-tree-walk(x) when called at the
root.

First
Since Inorder-tree-walk(x) visit all the nodes then we have that
T (n) = Ω (n).
Thus, you need to prove T (n) = O (n)?

8 / 49

Proof of inorder walk, T (n) = O (n)

First
For n = 0, the method takes a constant time T (0) = c for some c > 0.

Now for n > 0
We have the following situation:

1 Left subtree has k nodes
2 Right subtree has n− k − 1 nodes

9 / 49

Proof of inorder walk, T (n) = O (n)

First
For n = 0, the method takes a constant time T (0) = c for some c > 0.

Now for n > 0
We have the following situation:

1 Left subtree has k nodes
2 Right subtree has n− k − 1 nodes

9 / 49

Proof of inorder walk, T (n) = O (n)

First
For n = 0, the method takes a constant time T (0) = c for some c > 0.

Now for n > 0
We have the following situation:

1 Left subtree has k nodes
2 Right subtree has n− k − 1 nodes

9 / 49

Proof of inorder walk, T (n) = O (n)

First
For n = 0, the method takes a constant time T (0) = c for some c > 0.

Now for n > 0
We have the following situation:

1 Left subtree has k nodes
2 Right subtree has n− k − 1 nodes

9 / 49

Substitution Method

We have finally
T (n) = T (k) + T (n− k − 1) + d

1 T (k) is the amount of work done in the left
2 T (n− k − 1) is the amount of work done in the right
3 d > 0 reflects an upper bound for the in-between work done for the

print.

We use the substitution method to prove that T (n) = O(n)
This can be done if we can bound T (n) by bounding it by

(c + d)n + c (1)

10 / 49

Substitution Method

We have finally
T (n) = T (k) + T (n− k − 1) + d

1 T (k) is the amount of work done in the left
2 T (n− k − 1) is the amount of work done in the right
3 d > 0 reflects an upper bound for the in-between work done for the

print.

We use the substitution method to prove that T (n) = O(n)
This can be done if we can bound T (n) by bounding it by

(c + d)n + c (1)

10 / 49

Substitution Method

We have finally
T (n) = T (k) + T (n− k − 1) + d

1 T (k) is the amount of work done in the left
2 T (n− k − 1) is the amount of work done in the right
3 d > 0 reflects an upper bound for the in-between work done for the

print.

We use the substitution method to prove that T (n) = O(n)
This can be done if we can bound T (n) by bounding it by

(c + d)n + c (1)

10 / 49

Substitution Method

We have finally
T (n) = T (k) + T (n− k − 1) + d

1 T (k) is the amount of work done in the left
2 T (n− k − 1) is the amount of work done in the right
3 d > 0 reflects an upper bound for the in-between work done for the

print.

We use the substitution method to prove that T (n) = O(n)
This can be done if we can bound T (n) by bounding it by

(c + d)n + c (1)

10 / 49

Substitution Method

We have finally
T (n) = T (k) + T (n− k − 1) + d

1 T (k) is the amount of work done in the left
2 T (n− k − 1) is the amount of work done in the right
3 d > 0 reflects an upper bound for the in-between work done for the

print.

We use the substitution method to prove that T (n) = O(n)
This can be done if we can bound T (n) by bounding it by

(c + d)n + c (1)

10 / 49

Substitution Method

We have finally
T (n) = T (k) + T (n− k − 1) + d

1 T (k) is the amount of work done in the left
2 T (n− k − 1) is the amount of work done in the right
3 d > 0 reflects an upper bound for the in-between work done for the

print.

We use the substitution method to prove that T (n) = O(n)
This can be done if we can bound T (n) by bounding it by

(c + d)n + c (1)

10 / 49

Thus

For n = 0

T (0) = c = (c + d)× 0 + c (2)

11 / 49

Now, By Substitution Method

For n > 0

T (n) ≤ T (k) + T (n− k − 1) + d

= ((c + d) k + c) + ((c + d) (n− k − 1) + c) + d

= (c + d) n + c− (c + d) + c + d

= (c + d) n + c

Thus

T (n) = Θ (n) (3)

12 / 49

Now, By Substitution Method

For n > 0

T (n) ≤ T (k) + T (n− k − 1) + d

= ((c + d) k + c) + ((c + d) (n− k − 1) + c) + d

= (c + d) n + c− (c + d) + c + d

= (c + d) n + c

Thus

T (n) = Θ (n) (3)

12 / 49

Now, By Substitution Method

For n > 0

T (n) ≤ T (k) + T (n− k − 1) + d

= ((c + d) k + c) + ((c + d) (n− k − 1) + c) + d

= (c + d) n + c− (c + d) + c + d

= (c + d) n + c

Thus

T (n) = Θ (n) (3)

12 / 49

Now, By Substitution Method

For n > 0

T (n) ≤ T (k) + T (n− k − 1) + d

= ((c + d) k + c) + ((c + d) (n− k − 1) + c) + d

= (c + d) n + c− (c + d) + c + d

= (c + d) n + c

Thus

T (n) = Θ (n) (3)

12 / 49

Now, By Substitution Method

For n > 0

T (n) ≤ T (k) + T (n− k − 1) + d

= ((c + d) k + c) + ((c + d) (n− k − 1) + c) + d

= (c + d) n + c− (c + d) + c + d

= (c + d) n + c

Thus

T (n) = Θ (n) (3)

12 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

13 / 49

What may we use for a search?

Given a key k, we have the following Trichotomy Law
1 x.key == k

2 x.key > k

3 x.key < k

This allows us to take decisions
Go to the left or go to the right down the tree!!!

14 / 49

What may we use for a search?

Given a key k, we have the following Trichotomy Law
1 x.key == k

2 x.key > k

3 x.key < k

This allows us to take decisions
Go to the left or go to the right down the tree!!!

14 / 49

Case 1

Return Payload

15 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Searching

Searching
Tree-search(x, k)

1 if x == NIL or k == x.key

2 return x
3 if k < x.key

4 return Tree-search(x.left, k)
5 else return Tree-search(x.right, k)

Complexity

O (h) (4)

where h is the height of the tree ⇒ we look for well balanced trees.

16 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

17 / 49

Minimum and Maximum

Minimum and Maximum
Tree-minimum(x)

1 while x.left 6=NIL
2 x = x.left

3 return x

Complexity

O (h) (5)

where h is the height of the tree ⇒ we look for well balanced trees.

18 / 49

Minimum and Maximum

Minimum and Maximum
Tree-minimum(x)

1 while x.left 6=NIL
2 x = x.left

3 return x

Complexity

O (h) (5)

where h is the height of the tree ⇒ we look for well balanced trees.

18 / 49

Minimum and Maximum

Minimum and Maximum
Tree-minimum(x)

1 while x.left 6=NIL
2 x = x.left

3 return x

Complexity

O (h) (5)

where h is the height of the tree ⇒ we look for well balanced trees.

18 / 49

Minimum and Maximum

Minimum and Maximum
Tree-minimum(x)

1 while x.left 6=NIL
2 x = x.left

3 return x

Complexity

O (h) (5)

where h is the height of the tree ⇒ we look for well balanced trees.

18 / 49

Minimum and Maximum

Minimum and Maximum
Tree-minimum(x)

1 while x.left 6=NIL
2 x = x.left

3 return x

Complexity

O (h) (5)

where h is the height of the tree ⇒ we look for well balanced trees.

18 / 49

Minimum and Maximum

Minimum and Maximum
Tree-minimum(x)

1 while x.left 6=NIL
2 x = x.left

3 return x

Complexity

O (h) (5)

where h is the height of the tree ⇒ we look for well balanced trees.

18 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

19 / 49

Ouch!!!

At the End We Delete
Thus, we have a problem!!!
We need to maintain the Binary Search Property.

A simple idea
Move the previous or next element to the deleted position!!!

20 / 49

Ouch!!!

At the End We Delete
Thus, we have a problem!!!
We need to maintain the Binary Search Property.

A simple idea
Move the previous or next element to the deleted position!!!

20 / 49

Ouch!!!

At the End We Delete
Thus, we have a problem!!!
We need to maintain the Binary Search Property.

A simple idea
Move the previous or next element to the deleted position!!!

20 / 49

We want to do the following

We have then

Node To Be Deleted

Nodes than can replace it

21 / 49

Tree-Delete

TREE-DELETE(T, z)
1 if z.left == NIL
2 Transplant(T, z, z.right)
3 elseif z.right == NIL
4 Transplant(T, z, z.left)
5 else
6 y=Tree-minimum(z.right)
7 if y.p 6= z

8 Transplant(T, y, y.right)
9 y.right = z.right

10 y.right.p = y

11 Transplant(T, z, y)
12 y.left = z.left

13 y.left.p = y

Case 1
Basically if the element z to be
deleted has a NIL left child
simply replace z with that
child!!!

22 / 49

Tree-Delete

TREE-DELETE(T, z)
1 if z.left == NIL
2 Transplant(T, z, z.right)
3 elseif z.right == NIL
4 Transplant(T, z, z.left)
5 else
6 y=Tree-minimum(z.right)
7 if y.p 6= z

8 Transplant(T, y, y.right)
9 y.right = z.right

10 y.right.p = y

11 Transplant(T, z, y)
12 y.left = z.left

13 y.left.p = y

Case 2
Basically if the element z to be
deleted has a NIL right child
simply replace z with that
child!!!

22 / 49

Tree-Delete

TREE-DELETE(T, z)
1 if z.left == NIL
2 Transplant(T, z, z.right)
3 elseif z.right == NIL
4 Transplant(T, z, z.left)
5 else
6 y=Tree-minimum(z.right)
7 if y.p 6= z

8 Transplant(T, y, y.right)
9 y.right = z.right

10 y.right.p = y

11 Transplant(T, z, y)
12 y.left = z.left

13 y.left.p = y

Case 3
The z element has not empty
children you need to find the
successor of it.

22 / 49

Tree-Delete

TREE-DELETE(T, z)
1 if z.left == NIL
2 Transplant(T, z, z.right)
3 elseif z.right == NIL
4 Transplant(T, z, z.left)
5 else
6 y=Tree-minimum(z.right)
7 if y.p 6= z

8 Transplant(T, y, y.right)
9 y.right = z.right

10 y.right.p = y

11 Transplant(T, z, y)
12 y.left = z.left

13 y.left.p = y

Case 4
if y.p 6= z then y.right takes the
position of y after all y.left ==
NIL

I take z.right and make it the
new right of y

I make the
(y.right == z.right).p equal
to y

22 / 49

Tree-Delete

TREE-DELETE(T, z)
1 if z.left == NIL
2 Transplant(T, z, z.right)
3 elseif z.right == NIL
4 Transplant(T, z, z.left)
5 else
6 y=Tree-minimum(z.right)
7 if y.p 6= z

8 Transplant(T, y, y.right)
9 y.right = z.right

10 y.right.p = y

11 Transplant(T, z, y)
12 y.left = z.left

13 y.left.p = y

Case 4
put y in the position of z

make y.left equal to z.left

make the (y.left == z.left).p
equal to y

22 / 49

Support Operations: Transplant

Transplant(T, u, v)
1 if u.p == NIL
2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 if v 6=NIL
7 v.p = u.p

Case 1
If u is the root then make the
root equal to v

23 / 49

Support Operations: Transplant

Transplant(T, u, v)
1 if u.p == NIL
2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 if v 6=NIL
7 v.p = u.p

Case 2
if u is the left child make the
left child of the parent of u
equal to v

23 / 49

Support Operations: Transplant

Transplant(T, u, v)
1 if u.p == NIL
2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 if v 6=NIL
7 v.p = u.p

Case 3
Similar to the second case, but
for right child

23 / 49

Support Operations: Transplant

Transplant(T, u, v)
1 if u.p == NIL
2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 if v 6=NIL
7 v.p = u.p

Case 4
If v 6= NIL then make the parent
of v the parent of u

23 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

24 / 49

Example: Deletion in BST

Case z.left == NIL

if z.left == NIL

Transplant(T, z, z.right)...

CASE z.left==NIL

z

z.right

z.p

z.right.p

25 / 49

Example: Deletion in BST

Case z.left == NIL

Transplant(T, z, z.right)
elseif z == z.p.left

z.p.left = z.right

if z.right 6=NIL
z.right.p = z.p

CASE z.left==NIL

z

z.right

z.p

z.right.p

26 / 49

Example: Deletion in BST

Case z.left == NIL

Remove the node z once
you get out of the proce-
dure

CASE z.left==NIL

z

z.right

z.right.p

27 / 49

Another Example: Deletion in BST

Case z.left 6= NIL and z.right 6= NIL

y=Tree-minimum(z.right)
z

y

28 / 49

Another Example: Deletion in BST

Case z.left 6= NIL and z.right 6= NIL

if y.p 6= z

Transplant(T, y, y.right)
z

y

29 / 49

Another Example: Deletion in BST

Case z.left 6= NIL and z.right 6= NIL

y.right = z.right

y.right.p = y

z

y
y.right.p

y.right

30 / 49

Another Example: Deletion in BST

Case z.left 6= NIL and z.right 6= NIL

Transplant(T, z, y)
y.left = z.left

y.left.p = y

z

y
y.right.p

y.right

y.p

31 / 49

Another Example: Deletion in BST

Case z.left 6= NIL and z.right 6= NIL

Transplant(T, z, y)
y.left = z.left

y.left.p = y

z

y
y.right.p

y.right

y.p

32 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

33 / 49

What do we need?

Tree Height
To describe AVL trees we need the concept of tree height

Definition
The maximal length of a path from the root to a leaf.

34 / 49

What do we need?

Tree Height
To describe AVL trees we need the concept of tree height

Definition
The maximal length of a path from the root to a leaf.

34 / 49

Example

Height = 3

10

5 15

2 7 13 32

35 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

36 / 49

We want the following

Height Invariant
At any node in the tree, the heights of the left and right sub-trees
differs by at most 1.

37 / 49

Thus, it is necessary to add an extra field to the Node
Structure

The Code

c l a s s Node () :
d e f __init__ () :

s e l f . key = None
s e l f . h e i g h t = 0
s e l f . Val = None
s e l f . l e f t = None
s e l f . r i g h t = None

38 / 49

Example

Violation of the Height Property
10

5 16

2 7 13 32

14

15

39 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

40 / 49

Insertion

Similar to the Insertion in a BST
With a Fix-up at the end of the insertion

We have the following cases
1 Right Subtree is of height h + 1 and the left subtree is of height h

2 Right Subtree is of height h and the left subtree is of height h + 1

41 / 49

Insertion

Similar to the Insertion in a BST
With a Fix-up at the end of the insertion

We have the following cases
1 Right Subtree is of height h + 1 and the left subtree is of height h

2 Right Subtree is of height h and the left subtree is of height h + 1

41 / 49

Right Subtree is of height h + 1 and the left subtree is of
height h

Now, if we are unlucky
Now, we insert in the right subtree of the right subtree.
The result of inserting into the right subtree will give us a new right
subtree of height h + 2.

This is how the tree looks like

42 / 49

Right Subtree is of height h + 1 and the left subtree is of
height h

Now, if we are unlucky
Now, we insert in the right subtree of the right subtree.
The result of inserting into the right subtree will give us a new right
subtree of height h + 2.

This is how the tree looks like

h

h+1

h+2

h+3

42 / 49

Then

This
Which raises the height of the overall tree to h + 3

In addition
In the new right subtree has height h + 2

Either its right or the left subtree must be of height h+1

43 / 49

Then

This
Which raises the height of the overall tree to h + 3

In addition
In the new right subtree has height h + 2

Either its right or the left subtree must be of height h+1

43 / 49

Thus, we have

This Violates the height invariance
How we solve this?

We can do the following

44 / 49

Thus, we have

This Violates the height invariance
How we solve this?

We can do the following

There is no left node at this level

h

h+1

h+2

h+3

44 / 49

Now, The second case

We insert into the right subtree
But now the left subtree of the right subtree has height h + 1.

Example

45 / 49

Now, The second case

We insert into the right subtree
But now the left subtree of the right subtree has height h + 1.

Example

h

h+1

h+2

h+3

45 / 49

We fix the problem by

First a right rotation with respect to the z

h

h+1

h+2

h+3

46 / 49

We fix the problem by

Now a left rotation with respect to the x

h

h+1

h+2

h+3

47 / 49

Outline

1 Binary Search Trees Concepts
Introduction

2 Binary Search Tree Operations
Walking on a Tree
Searching
Minimum and Maximum
Deletion in Binary Search Trees
Examples of Deletion

3 Balancing a Tree, AVL Trees
Adding a Height
The Height Problem
Insertions in AVL-Trees

4 Exercises
Some Excercises

48 / 49

Excercises

From Cormen’s book, chapters 11 and 12
11.1-2
11.2-1
11.2-2
11.2-3
11.3-1
11.3-3
12.1-3
12.1-5
12.2-5
12.2-7
12.2-9
12.3-3

49 / 49

	Binary Search Trees Concepts
	Introduction

	Binary Search Tree Operations
	Walking on a Tree
	Searching
	Minimum and Maximum
	Deletion in Binary Search Trees
	Examples of Deletion

	Balancing a Tree, AVL Trees
	Adding a Height
	The Height Problem
	Insertions in AVL-Trees

	Exercises
	Some Excercises

