Analysis of Algorithms Binary Search Trees

Andres Mendez-Vazquez

September 30, 2018

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees
(4) Exercises

Some Excercises

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees

4 Exercises

- Some Excercises

Why Binary Search Trees?

Compared them with an array representation Ouch!!! Insertion, Search and Deletion are quite expensive with the $O(n)$.

Why Binary Search Trees?

Compared them with an array representation
Ouch!!! Insertion, Search and Deletion are quite expensive with the $O(n)$.

Instead Binary Search Trees

Since they are node based the cost of moving an element either into the collection or out of the collection is faster.

Binary Search Tree Concepts

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

Binary Search Tree Concepts

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.

Binary Search Tree Concepts

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.
- In addition, each node has the field key.

Binary Search Tree Concepts

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.
- In addition, each node has the field key.

Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $k e y[y] \leq \operatorname{key}[x]$.

Binary Search Tree Concepts

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.
- In addition, each node has the field key.

Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $k e y[y] \leq k e y[x]$.
- Similarly, if y is a node in the right subree of x, then $k e y[x] \leq k e y[y]$.

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees
(4) Exercises
- Some Excercises

In Order Walk

This walk allows to print the keys in sorted order! Inorder-tree-walk(x)

In Order Walk

This walk allows to print the keys in sorted order! Inorder-tree-walk(x)
(1) if $x \neq$ NIL

In Order Walk

This walk allows to print the keys in sorted order! Inorder-tree-walk(x)
(1) if $x \neq$ NIL
(2) Inorder-tree-walk(x.left)

In Order Walk

This walk allows to print the keys in sorted order! Inorder-tree-walk(x)
(1) if $x \neq$ NIL
(2) Inorder-tree-walk(x.left)
(3) print x.key

In Order Walk

This walk allows to print the keys in sorted order! Inorder-tree-walk(x)
(1) if $x \neq$ NIL
(2) Inorder-tree-walk(x.left)
(3) print x.key
(9) Inorder-tree-walk(x.right)

Cost of inorder walk

Theorem 12.1
If x is the root of an n -node subtree, then the call Inorder-tree-walk (x) takes $\Theta(n)$ time.

Cost of inorder walk

Theorem 12.1

If x is the root of an n -node subtree, then the call $\operatorname{Inorder-tree-walk}(x)$ takes $\Theta(n)$ time.

Proof:

Let $T(n)$ denote the time taken by Inorder-tree-walk (x) when called at the root.

Cost of inorder walk

Theorem 12.1

If x is the root of an n -node subtree, then the call $\operatorname{Inorder-tree-walk}(x)$ takes $\Theta(n)$ time.

Proof:

Let $T(n)$ denote the time taken by Inorder-tree-walk (x) when called at the root.

First

- Since Inorder-tree-walk (x) visit all the nodes then we have that $T(n)=\Omega(n)$.

Cost of inorder walk

Theorem 12.1

If x is the root of an n -node subtree, then the call Inorder-tree-walk (x) takes $\Theta(n)$ time.

Proof:

Let $T(n)$ denote the time taken by Inorder-tree-walk (x) when called at the root.

First

- Since Inorder-tree-walk (x) visit all the nodes then we have that

$$
T(n)=\Omega(n)
$$

- Thus, you need to prove $T(n)=O(n)$?

Proof of inorder walk, $T(n)=O(n)$

First

For $n=0$, the method takes a constant time $T(0)=c$ for some $c>0$.

Proof of inorder walk, $T(n)=O(n)$

First

For $n=0$, the method takes a constant time $T(0)=c$ for some $c>0$.

Now for $n>0$
We have the following situation:

Proof of inorder walk, $T(n)=O(n)$

First

For $n=0$, the method takes a constant time $T(0)=c$ for some $c>0$.

Now for $n>0$

We have the following situation:
(1) Left subtree has k nodes

Proof of inorder walk, $T(n)=O(n)$

First

For $n=0$, the method takes a constant time $T(0)=c$ for some $c>0$.

Now for $n>0$

We have the following situation:
(1) Left subtree has k nodes
(2) Right subtree has $n-k-1$ nodes

Substitution Method

We have finally

$$
T(n)=T(k)+T(n-k-1)+d
$$

Substitution Method

We have finally

$$
T(n)=T(k)+T(n-k-1)+d
$$

(1) $T(k)$ is the amount of work done in the left

Substitution Method

We have finally

$$
T(n)=T(k)+T(n-k-1)+d
$$

(1) $T(k)$ is the amount of work done in the left
(2) $T(n-k-1)$ is the amount of work done in the right

Substitution Method

We have finally

$$
T(n)=T(k)+T(n-k-1)+d
$$

(1) $T(k)$ is the amount of work done in the left
(2) $T(n-k-1)$ is the amount of work done in the right
(3) $d>0$ reflects an upper bound for the in-between work done for the print.

Substitution Method

We have finally

$$
T(n)=T(k)+T(n-k-1)+d
$$

(1) $T(k)$ is the amount of work done in the left
(2) $T(n-k-1)$ is the amount of work done in the right
(3) $d>0$ reflects an upper bound for the in-between work done for the print.

We use the substitution method to prove that $T(n)=O(n)$
This can be done if we can bound $T(n)$ by bounding it by

Substitution Method

We have finally

$$
T(n)=T(k)+T(n-k-1)+d
$$

(1) $T(k)$ is the amount of work done in the left
(2) $T(n-k-1)$ is the amount of work done in the right
(3) $d>0$ reflects an upper bound for the in-between work done for the print.

We use the substitution method to prove that $T(n)=O(n)$
This can be done if we can bound $T(n)$ by bounding it by

$$
\begin{equation*}
(c+d) n+c \tag{1}
\end{equation*}
$$

Thus

For $n=0$

$$
\begin{equation*}
T(0)=c=(c+d) \times 0+c \tag{2}
\end{equation*}
$$

Now, By Substitution Method

For $n>0$

$$
T(n) \leq T(k)+T(n-k-1)+d
$$

Now, By Substitution Method

For $n>0$

$$
\begin{aligned}
T(n) & \leq T(k)+T(n-k-1)+d \\
& =((c+d) k+c)+((c+d)(n-k-1)+c)+d
\end{aligned}
$$

Now, By Substitution Method

For $n>0$

$$
\begin{aligned}
T(n) & \leq T(k)+T(n-k-1)+d \\
& =((c+d) k+c)+((c+d)(n-k-1)+c)+d \\
& =(c+d) n+c-(c+d)+c+d
\end{aligned}
$$

Now, By Substitution Method

For $n>0$

$$
\begin{aligned}
T(n) & \leq T(k)+T(n-k-1)+d \\
& =((c+d) k+c)+((c+d)(n-k-1)+c)+d \\
& =(c+d) n+c-(c+d)+c+d \\
& =(c+d) n+c
\end{aligned}
$$

Thus

Now, By Substitution Method

For $n>0$

$$
\begin{aligned}
T(n) & \leq T(k)+T(n-k-1)+d \\
& =((c+d) k+c)+((c+d)(n-k-1)+c)+d \\
& =(c+d) n+c-(c+d)+c+d \\
& =(c+d) n+c
\end{aligned}
$$

Thus

$$
\begin{equation*}
T(n)=\Theta(n) \tag{3}
\end{equation*}
$$

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Wearching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees
(4) Exercises
- Some Excercises

What may we use for a search?

Given a key k, we have the following Trichotomy Law
(1) x.key $==k$
(2) $x . k e y>k$
(3) $x . k e y<k$

What may we use for a search?

Given a key k, we have the following Trichotomy Law
(1) x.key $==k$
(2) x.key $>k$

- x. key $<k$

This allows us to take decisions
Go to the left or go to the right down the tree!!!

Case 1

Return Payload

Searching

Searching

Tree-search (x, k)

Searching

Searching

Tree-search (x, k)
(1) if $x=$ NIL or $k==x$.key

Searching

Searching
Tree-search (x, k)
(1) if $x==$ NIL or $k==x$.key
(2) return x

Searching

Searching

Tree-search (x, k)
(1) if $x==$ NIL or $k==x$.key
(2) return x
(0) if $k<$.key

Searching

Searching

Tree-search (x, k)
(1) if $x==$ NIL or $k==x$.key
(2) return x
(3) if $k<x$.key
(9) return Tree-search (x.left, k)

Searching

Searching

Tree-search (x, k)
(1) if $x==$ NIL or $k==x$.key
(2) return x
(3) if $k<x$.key
(9) return Tree-search (x.left, k)
(3) else return Tree-search $(x . r i g h t, k)$

Searching

Searching

Tree-search (x, k)
(1) if $x==$ NIL or $k==x$.key
(2) return x
(3) if $k<x$.key
(9) return Tree-search (x.left, k)
(5) else return Tree-search $(x . r i g h t, k)$

Complexity

$$
O(h)
$$

Searching

Searching

Tree-search (x, k)
(1) if $x==$ NIL or $k==x$.key
(2) return x
(3) if $k<x$.key
(9) return Tree-search (x.left, k)
(3) else return Tree-search $(x . r i g h t, k)$

Complexity

$$
O(h)
$$

where h is the height of the tree \Rightarrow we look for well balanced trees.

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree

Searching

- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees
(4) Exercises
- Some Excercises

Minimum and Maximum

Minimum and Maximum

Tree-minimum (x)

Minimum and Maximum

Minimum and Maximum
Tree-minimum (x)
(1) while x.left \neq NIL

Minimum and Maximum

Minimum and Maximum
Tree-minimum (x)
(1) while x.left \neq NIL
(2) $x=x . l e f t$

Minimum and Maximum

Minimum and Maximum

Tree-minimum (x)
(1) while x.left \neq NIL
(2) $x=x$.left
(3) return x

Minimum and Maximum

Minimum and Maximum

Tree-minimum (x)
(1) while x.left \neq NIL
(2) $x=x$.left
(3) return x

Complexity

$$
\begin{equation*}
O(h) \tag{5}
\end{equation*}
$$

Minimum and Maximum

Minimum and Maximum

Tree-minimum (x)
(1) while x.left \neq NIL
(2) $x=x$.left
(3) return x

Complexity

$$
\begin{equation*}
O(h) \tag{5}
\end{equation*}
$$

where h is the height of the tree \Rightarrow we look for well balanced trees.

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees
(4) Exercises
- Some Excercises

Ouch!!!

At the End We Delete

- Thus, we have a problem!!!

Ouch!!!

At the End We Delete

- Thus, we have a problem!!!
- We need to maintain the Binary Search Property.

Ouch!!!

At the End We Delete

- Thus, we have a problem!!!
- We need to maintain the Binary Search Property.

Abstract

A simple idea Move the previous or next element to the deleted position!!!

We want to do the following

We have then

Tree-Delete

TREE-DELETE (T, z)

(1) if z.left $==$ NIL
(2) Transplant $(T, z, z$.right $)$
(3) elseif z.right $==$ NIL
(4) Transplant $(T, z, z . l e f t)$
(5) else

6
0
0
0

$$
\begin{aligned}
& y=\text { Tree-minimum }(z . \text { right }) \\
& \text { if } y . p \neq z \\
& \quad \operatorname{Transplant}(T, y, y . \text { right }) \\
& \quad y . \text { right }=z . \text { right } \\
& \quad \text { y.right. } p=y
\end{aligned}
$$

(1) $\operatorname{Transplant}(T, z, y)$
(12) $y . l e f t=z . l e f t$
(13)

$$
y . l e f t . p=y
$$

Case 1

- Basically if the element z to be deleted has a NIL left child simply replace z with that child!!!

Tree-Delete

TREE-DELETE (T, z)

(1) if $z . l e f t==\mathrm{NIL}$
(2) Transplant $(T, z, z$.right $)$
(3) elseif z.right $==$ NIL
(4) Transplant $(T, z, z . l e f t)$
(5) else

6
0
0
0
0
0
0
(10)
(11) $\operatorname{Transplant}(T, z, y)$
(12) $y . l e f t=z . l e f t$
(13)

$$
\begin{aligned}
& y=\text { Tree-minimum }(z . \text { right }) \\
& \text { if } y . p \neq z \\
& \quad \operatorname{Transplant}(T, y, y . r i g h t) \\
& \quad \text { y.right }=z . \text { right } \\
& \quad \text { y.right. } p=y
\end{aligned}
$$

$$
y . l e f t . p=y
$$

Case 2

- Basically if the element z to be deleted has a NIL right child simply replace z with that child!!!

Tree-Delete

TREE-DELETE (T, z)

(1) if $z . l e f t==\mathrm{NIL}$
(2) Transplant $(T, z, z$.right $)$
(3) elseif z. right $==$ NIL
(4) Transplant $(T, z, z . l e f t)$
(5) else

6
(7)

8
(9)
(10)
(12) $y . l e f t=z . l e f t$
(13)

$$
\begin{aligned}
& \text { (1) } \quad \operatorname{Transplant}(T, z, y) \\
& y=\text { Tree-minimum (z.right }) \\
& \text { if } y . p \neq z \\
& \text { Transplant (} T, y, y \text {.right }) \\
& y . \text { right }=z . \text { right } \\
& y \text {.right. } p=y \\
& \text { y.left.p }=y
\end{aligned}
$$

Case 3

- The z element has not empty children you need to find the successor of it.

Tree-Delete

TREE-DELETE (T, z)

(1) if $z . l e f t==\mathrm{NIL}$
(2) $\operatorname{Transplant}(T, z, z$. right $)$
(3) elseif z.right $==$ NIL
(4) $\operatorname{Transplant}(T, z, z . l e f t)$
(5) else

(6)	$y=$ Tree-minimum $(z . r i g h t)$
(7)	if $y . p \neq z$
(8)	Transplant(T, y, y. right $)$
(9)	y. right $=z . r i g h t$
(10)	y. right. $p=y$
(1)	Transplant (T, z, y)
(12)	$y . l e f t=z . l e f t$
(13)	$y . l e f t . p=y$

Case 4

- if $y . p \neq z$ then y.right takes the position of y after all y.left $==$ NIL
- take z.right and make it the new right of y
- make the

$$
\begin{aligned}
& (y \cdot r i g h t==z \cdot r i g h t) \cdot p \text { equal } \\
& \text { to } y
\end{aligned}
$$

Tree-Delete

TREE-DELETE (T, z)

(1) if $z . l e f t==\mathrm{NIL}$
(2) Transplant $(T, z, z$.right $)$
(3) elseif z. right $==$ NIL
(4) else

Transplant($T, z, z . l e f t)$

6

Case 4

- put y in the position of z
- make y.left equal to $z . l e f t$
- make the ($y . l e f t==z . l e f t) \cdot p$ equal to y

$$
\text { (12) y.left }=z . l e f t
$$

$$
\text { (13) } \quad \text { y.left. } p=y
$$

$$
\begin{aligned}
& y=\text { Tree-minimum }(z . \text { right }) \\
& \text { if } y . p \neq z \\
& \text { Transplant (} T, y, y \text {.right }) \\
& \text { y.right }=z . \text { right } \\
& y \text {.right. } p=y
\end{aligned}
$$

Support Operations: Transplant

Transplant (T, u, v)

(1) if $u \cdot p==\mathrm{NIL}$
(2) T.root $=v$
(3) elseif $u==u$.p.left
(4) u.p.left $=v$
(5) else u.p.right $=v$
(6) if $v \neq$ NIL
(7) v.p $\quad u . p$

Case 1

- If u is the root then make the root equal to v

Support Operations: Transplant

Transplant (T, u, v)

(1) if $u \cdot p==\mathrm{NIL}$
(2) T.root $=v$
(3) elseif $u==u$.p.left
(4) u.p.left $=v$
(5) else u.p.right $=v$
(6) if $v \neq$ NIL
(7) v.p $\quad u . p$

Case 2

- if u is the left child make the left child of the parent of u equal to v

Support Operations: Transplant

Transplant (T, u, v)

(1) if $u \cdot p==\mathrm{NIL}$
(2) T.root $=v$
(3) elseif $u==u$.p.left
(4) u.p.left $=v$
(5) else u.p.right $=v$
(6) if $v \neq$ NIL
(7) $v \cdot p=u \cdot p$

Case 3

- Similar to the second case, but for right child

Support Operations: Transplant

Transplant (T, u, v)

(1) if $u \cdot p==\mathrm{NIL}$
(2) T.root $=v$
(3) elseif $u==u$.p.left
(4) u.p.left $=v$
(5) else u.p.right $=v$
(6) if $v \neq$ NIL
(7) $v \cdot p=u \cdot p$

Case 4

- If $v \neq$ NIL then make the parent of v the parent of u

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations

Walking on a Tree
Searching
Minimum and Maximum

- Deletion in Binary Search Trees
Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees
(4) Exercises
- Some Excercises

Example: Deletion in BST

Case z.left $==$ NIL

$$
\text { CASE } z . l e f t==\text { NIL }
$$

- if z.left $==$ NIL
- Transplant $(T, z, z . r i g h t) \ldots$

Example: Deletion in BST

Case z.left $==$ NIL

Example: Deletion in BST

Case z.left $==$ NIL

$$
\text { CASE z.left }==\text { NIL }
$$

Remove the node z once you get out of the procedure

Another Example: Deletion in BST

Case $z . l e f t \neq N I L$ and z.right $\neq N I L$

- $y=$ Tree-minimum (z.right $)$

Another Example: Deletion in BST

Case $z . l e f t \neq N I L$ and z.right $\neq N I L$

- if $y . p \neq z$
- \quad Transplant (T, y, y.right $)$

Another Example: Deletion in BST

Case $z . l e f t \neq N I L$ and z.right $\neq N I L$

- y.right $=z \cdot r i g h t$
- y.right. $p=y$

Another Example: Deletion in BST

Case $z . l e f t \neq N I L$ and z.right $\neq N I L$

- Transplant (T, z, y)
- y.left $=z$.left
- y.left. $p=y$

Another Example: Deletion in BST

Case $z . l e f t \neq N I L$ and z.right $\neq N I L$

- Transplant (T, z, y)
- y.left $=z . l e f t$
- $y . l e f t . p=y$

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees

4 Exercises

- Some Excercises

What do we need?

Tree Height
To describe AVL trees we need the concept of tree height

What do we need?

Tree Height

To describe AVL trees we need the concept of tree height

Definition

The maximal length of a path from the root to a leaf.

Example

Height $=3$

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees

4 Exercises

- Some Excercises

We want the following

Height Invariant

At any node in the tree, the heights of the left and right sub-trees differs by at most 1 .

Thus, it is necessary to add an extra field to the Node Structure

The Code
class Node():

$$
\begin{aligned}
& \text { def _init__ }(): \\
& \text { self. key }=\text { None } \\
& \text { self.height }=0 \\
& \text { self. Val }=\text { None } \\
& \text { self. left }=\text { None } \\
& \text { self.right }=\text { None }
\end{aligned}
$$

Example

Violation of the Height Property

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees

4. Exercises

- Some Excercises

Insertion

Similar to the Insertion in a BST

With a Fix-up at the end of the insertion

Insertion

Similar to the Insertion in a BST

With a Fix-up at the end of the insertion
We have the following cases
(1) Right Subtree is of height $h+1$ and the left subtree is of height h
(2) Right Subtree is of height h and the left subtree is of height $h+1$

Right Subtree is of height $h+1$ and the left subtree is of height h

Now, if we are unlucky

- Now, we insert in the right subtree of the right subtree.
- The result of inserting into the right subtree will give us a new right subtree of height $h+2$.

Right Subtree is of height $h+1$ and the left subtree is of height h

Now, if we are unlucky

- Now, we insert in the right subtree of the right subtree.
- The result of inserting into the right subtree will give us a new right subtree of height $h+2$.

This is how the tree looks like

Then

This

Which raises the height of the overall tree to $h+3$

Then

This

Which raises the height of the overall tree to $h+3$

In addition

In the new right subtree has height $h+2$

- Either its right or the left subtree must be of height $h+1$

Thus, we have

This Violates the height invariance How we solve this?

Thus, we have

This Violates the height invariance

How we solve this?

We can do the following

There is no left node at this level

Now, The second case

We insert into the right subtree
But now the left subtree of the right subtree has height $h+1$.

Now, The second case

We insert into the right subtree
But now the left subtree of the right subtree has height $h+1$.

Example

We fix the problem by

First a right rotation with respect to the z

We fix the problem by

Now a left rotation with respect to the x

$$
h+3
$$

Outline

(1) Binary Search Trees Concepts

- Introduction
(2) Binary Search Tree Operations
- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion
(3) Balancing a Tree, AVL Trees
- Adding a Height
- The Height Problem
- Insertions in AVL-Trees
(4) Exercises

Some Excercises

Excercises

From Cormen's book, chapters 11 and 12

- 11.1-2
- 11.2-1
- 11.2-2
- 11.2-3
- 11.3-1
- 11.3-3
- 12.1-3
- 12.1-5
- 12.2-5
- 12.2-7
- 12.2-9
- 12.3-3

