Analysis of Algorithms Binary Search Trees

Andres Mendez-Vazquez

September 30, 2018

イロン イヨン イヨン イヨン 三日

1/49

Outline

2 Binary Search Tree Operations

- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

3 Balancing a Tree, AVL Trees

- Adding a Height
- The Height Problem
- Insertions in AVL-Trees

Outline

Binary Search Tree Operations

- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees

- Adding a Height
- The Height Problem
- Insertions in AVL-Trees

Why Binary Search Trees?

Compared them with an array representation

Ouch!!! Insertion, Search and Deletion are quite expensive with the O(n).

Instead Binary Search Trees

Since they are node based the cost of moving an element either into the collection or out of the collection is faster.

Why Binary Search Trees?

Compared them with an array representation

Ouch!!! Insertion, Search and Deletion are quite expensive with the O(n).

Instead Binary Search Trees

Since they are node based the cost of moving an element either into the collection or out of the collection is faster.

4/49

イロト イヨト イヨト

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

They represent its left child, right child and parent.

In addition, each node has the field key

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

• They represent its left child, right child and parent.

In addition, each node has the field key.

Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then key[y] ≤ key[x].
- ullet Similarly, if y is a node in the right subree of x, then $key[x] \leq key[y]$.

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.
- In addition, each node has the field key.

 Let x be a node in a binary search tree. If y is a node in the left subtree of x, then key[y] ≤ key[x].

lacksim Similarly, if y is a node in the right subree of x, then $key[x] \leq key[y]$

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.
- In addition, each node has the field key.

Property

 Let x be a node in a binary search tree. If y is a node in the left subtree of x, then key[y] ≤ key[x].

5/49

イロト イヨト イヨト

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.
- In addition, each node has the field key.

Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then key[y] ≤ key[x].
- Similarly, if y is a node in the right subree of x, then $key[x] \le key[y]$.

5/49

イロト イヨト イヨト

Outline

Binary Search Trees Concepts Introduction

- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees

- Adding a Height
- The Height Problem
- Insertions in AVL-Trees

This walk allows to print the keys in sorted order!

- Inorder-tree-walk(x.left
- print x.key
- Inorder-tree-walk(x.right)

This walk allows to print the keys in sorted order!

- $\bullet \quad \text{if } x \neq \mathsf{NIL}$
 - Inorder-tree-walk(x.left)
 - print x.key
 - Inorder-tree-walk(x.right)

This walk allows to print the keys in sorted order!

- **1** if $x \neq \mathsf{NIL}$
- 2 Inorder-tree-walk(x.left)
- print x.key
 - -Inorder-tree-walk(x.right)

This walk allows to print the keys in sorted order!

Inorder-tree-walk(x)

- **1** if $x \neq \mathsf{NIL}$
- Inorder-tree-walk(x.left)
- oprint x.key

Inorder-tree-walk(x.right)

This walk allows to print the keys in sorted order!

- $\bullet \ \ \text{if} \ x \neq \mathsf{NIL}$
- 2 Inorder-tree-walk(x.left)
- oprint x.key
- Inorder-tree-walk(x.right)

Theorem 12.1

If x is the root of an n-node subtree, then the call Inorder-tree-walk (x) takes $\Theta\left(n\right)$ time.

Theorem 12.1

If x is the root of an n-node subtree, then the call Inorder-tree-walk (x) takes $\Theta\left(n\right)$ time.

Proof:

Let T(n) denote the time taken by $\mathsf{Inorder-tree-walk}(x)$ when called at the root.

Theorem 12.1

If x is the root of an n-node subtree, then the call Inorder-tree-walk (x) takes $\Theta\left(n\right)$ time.

Proof:

Let T(n) denote the time taken by $\mathsf{Inorder-tree-walk}(x)$ when called at the root.

First

• Since Inorder-tree-walk(x) visit all the nodes then we have that $T\left(n\right)=\Omega\left(n\right).$

Thus, you need to prove $T\left(n
ight)=O\left(n
ight)$?

8 / 49

イロト 不得 トイヨト イヨト

Theorem 12.1

If x is the root of an n-node subtree, then the call Inorder-tree-walk (x) takes $\Theta\left(n\right)$ time.

Proof:

Let T(n) denote the time taken by $\mathsf{Inorder-tree-walk}(x)$ when called at the root.

First

- Since Inorder-tree-walk(x) visit all the nodes then we have that $T\left(n\right)=\Omega\left(n\right).$
- Thus, you need to prove T(n) = O(n)?

First

For n = 0, the method takes a constant time T(0) = c for some c > 0.

First

For n = 0, the method takes a constant time T(0) = c for some c > 0.

Now for n > 0

We have the following situation:

 \circ Right subtree has n-k-1 nodes

First

For n = 0, the method takes a constant time T(0) = c for some c > 0.

Now for n > 0

We have the following situation:

() Left subtree has k nodes

9/49

3

イロト イヨト イヨト イヨト

First

For n = 0, the method takes a constant time T(0) = c for some c > 0.

Now for n > 0

We have the following situation:

- Left subtree has k nodes
- **2** Right subtree has n k 1 nodes

We have finally

$$T(n) = T(k) + T(n - k - 1) + d$$

 $\bigcirc T(k)$ is the amount of work done in the left

- $\ \ \, {\bf O} \ \ T(n-k-1) \ \ \, {\rm is \ the \ amount \ of \ work \ \ done \ \ in \ the \ right}$
- d > 0 reflects an upper bound for the in-between work done for the print.

We have finally

$$T(n) = T(k) + T(n - k - 1) + d$$

T(k) is the amount of work done in the left
 T(k) is the amount of work done in the right
 d > 0 reflects an upper bound for the in between work done for the print.

We use the substitution method to prove that $T(n)=O(\lambda e^{-1})$

This can be done if we can bound T(n) by bounding it by

(c+d)n+c

We have finally

$$T(n) = T(k) + T(n - k - 1) + d$$

T(k) is the amount of work done in the left
T(n-k-1) is the amount of work done in the right
d doe done for the model of the model work done for the prime

We use the substitution method to prove that $T(n)=\mathcal{C}$

This can be done if we can bound T(n) by bounding it by

(c+d)n+c

10/49

イロト イヨト イヨト イヨト

We have finally

$$T(n) = T(k) + T(n - k - 1) + d$$

- $\textcircled{\ } T(k) \text{ is the amount of work done in the left}$
- $\textcircled{O} \quad d>0$ reflects an upper bound for the in-between work done for the print.

This can be done if we can bound T(n) by bounding it by

10/49

< ロ > < 回 > < 回 > < 回 > < 回 >

We have finally

$$T(n) = T(k) + T(n - k - 1) + d$$

- ${\small \bigcirc } T(k) \text{ is the amount of work done in the left }$
- If a set of the set

We use the substitution method to prove that T(n) = O(n)

This can be done if we can bound T(n) by bounding it by

10/49

イロト イヨト イヨト

We have finally

$$T(n) = T(k) + T(n - k - 1) + d$$

- ${\small \bigcirc } T(k) \text{ is the amount of work done in the left }$
- (a) d > 0 reflects an upper bound for the in-between work done for the print.

We use the substitution method to prove that T(n) = O(n)

This can be done if we can bound ${\cal T}(n)$ by bounding it by

$$(c+d)n+c$$

10/49

イロト イヨト イヨト

(1)

For n = 0

$$T\left(0\right) = c = (c+d) \times 0 + c$$

11 / 49

・ロト・西ト・ヨト・ヨー うへぐ

(2)

For n > 0

$$T(n) \le T(k) + T(n - k - 1) + d$$

For n > 0

$$T(n) \le T(k) + T(n - k - 1) + d$$

= ((c + d) k + c) + ((c + d) (n - k - 1) + c) + d

$T\left(n\right) = \Theta\left(n\right)$

For n > 0

$$T(n) \le T(k) + T(n - k - 1) + d$$

= ((c + d) k + c) + ((c + d) (n - k - 1) + c) + d
= (c + d) n + c - (c + d) + c + d

 $T\left(n\right) = \Theta\left(n\right)$

For n > 0

$$T(n) \le T(k) + T(n - k - 1) + d$$

= ((c + d) k + c) + ((c + d) (n - k - 1) + c) + d
= (c + d) n + c - (c + d) + c + d
= (c + d) n + c

Thus

For n > 0

$$T(n) \le T(k) + T(n - k - 1) + d$$

= ((c + d) k + c) + ((c + d) (n - k - 1) + c) + d
= (c + d) n + c - (c + d) + c + d
= (c + d) n + c

Thus

$$T\left(n\right) = \Theta\left(n\right) \tag{3}$$

イロン イヨン イヨン イヨン 三日

12 / 49

Outline

Binary Search Trees Concepts Introduction

Walking on a Tree

Searching

Minimum and Maximum

Deletion in Binary Search Trees

Examples of Deletion

Balancing a Tree, AVL Trees

Adding a Height

- The Height Problem
- Insertions in AVL-Trees

What may we use for a search?

Given a key k, we have the following Trichotomy Law

- 1 x.key == k
- 2 x.key > k
- 3 x.key < k

This allows us to take decisions

Go to the left or go to the right down the tree!!!

What may we use for a search?

Given a key k, we have the following Trichotomy Law

- 1 x.key == k
- 2 x.key > k
- 3 x.key < k

This allows us to take decisions

Go to the left or go to the right down the tree!!!

Case 1

Return Payload

Searching

 $\mathsf{Tree-search}(x,k)$

- if x == NIL or k == x.key
- eturn x
- if k < x.key
- return Tree-search(x.left, k)
- else return Tree-search(x.right, k)

Searching

Tree-search(x, k)if x == NIL or k == x.keyif k = x.keyif k = x.keyif k = x.key

• else return Tree-search(x.right, k)

 < ロ > < 四 > < 三 > < < < = > < 三 > < □ > < < □ > < □	জাসকরের ৩ ৭ ৫ 16 / 49

Searching

Tree-search(x, k)

- if x == NIL or k == x.key
- 2 return x
- if k < x.key
 - return Tree-search(x.left,k)
- else return Tree-search(x.right, k)

	CITVESCAV
<ロ><四><四><日><日><日><日><日><日><日><日<<0<0<0<0<0<0<0<	うくC 16/49

Searching

Tree-search(x, k)

- if x == NIL or k == x.key
- 2 return x
- ${\small \textcircled{0}} \ \, \text{if} \ \, k < x.key$
 - return Tree-search(x.left,k)
 - else return Tree-search(x.right, k)

Searching

Tree-search(x,k)

- if x == NIL or k == x.key
- 2 return x
- ${\small \textcircled{0}} \ \, \text{if} \ \, k < x.key$
- return Tree-search(x.left,k)

) else return Tree-search(x.right,k)

Searching

 $\mathsf{Tree-search}(x,k)$

- if x == NIL or k == x.key
- 2 return x
- ${\small \textcircled{0}} \ \, \text{if} \ \, k < x.key$
- return Tree-search(x.left, k)
- **③** else return Tree-search(x.right, k)

Searching

 $\mathsf{Tree-search}(x,k)$

- if x == NIL or k == x.key
- 2 return x
- if k < x.key
- return Tree-search(x.left,k)
- **(a)** else return Tree-search(x.right, k)

Complexity

$$O\left(h
ight)$$

(4)

where h is the height of the tree \Rightarrow we look for well balanced trees.

CITVESCEN

Searching

Tree-search(x,k)

- if x == NIL or k == x.key
- 2 return x
- (a) if k < x.key
- return Tree-search(x.left,k)
- **(**) else return Tree-search(x.right, k)

Complexity

$$O\left(h\right)$$

(4)

where h is the height of the tree \Rightarrow we look for well balanced trees.

CITVESTE

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 16 / 49

Outline

Binary Search Trees Concepts Introduction

Walking on a 1
 Searching

Minimum and Maximum

- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees Adding a Height

- The Height Problem
- Insertions in AVL-Trees

Minimum and Maximum

- Tree-minimum(x)
 - while $x.left \neq \mathsf{NIL}$
 - x = x.left
 - 🕘 return *a*

Minimum and Maximum

- $\mathsf{Tree-minimum}(x)$
 - $\bullet \ \text{ while } x.left \neq \mathsf{NIL}$
 - x = x.left

return *x*

Minimum and Maximum

 $\mathsf{Tree-minimum}(x)$

 $\bullet \ \text{while} \ x.left \neq \mathsf{NIL}$

🕘 return a

Minimum and Maximum

 $\mathsf{Tree-minimum}(x)$

 $\bullet \ \text{ while } x.left \neq \mathsf{NIL}$

 \bigcirc return x

Minimum and Maximum

Tree-minimum(x)

 $\bullet \ \text{ while } x.left \neq \mathsf{NIL}$

 \bigcirc return x

Complexity O(h) (5) where h is the height of the tree is we look for well balanced trees $(\Box + (\Box + (\Xi + \Xi))) = 0.000$ (8/49)

Minimum and Maximum

Tree-minimum(x)

• while $x.left \neq NIL$

 ${f 0}$ return x

Complexity

where h is the height of the tree \Rightarrow we look for well balanced trees.

(5)

Outline

Binary Search Trees Concepts Introduction

2 Binary Search Tree Operations

- Walking on a Tree
 Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees Adding a Height

- The Height Problem
- Insertions in AVL-Trees

At the End We Delete

- Thus, we have a problem !!!
- We need to maintain the Binary Search Property.

20 / 49

イロン イヨン イヨン イヨン 三日

Ouch!!!

At the End We Delete

- Thus, we have a problem !!!
- We need to maintain the Binary Search Property.

Nove the previous or next element to the deleted position!!!

20 / 49

< ロ > < 回 > < 回 > < 回 > < 回 >

Ouch!!!

At the End We Delete

- Thus, we have a problem !!!
- We need to maintain the Binary Search Property.

A simple idea

Move the previous or next element to the deleted position!!!

We want to do the following

We have then

21/49

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TREE-DELETE(T, z)

```
1 if z.left == NIL
2
          \mathsf{Transplant}(T, z, z.right)
3
    elseif z.right == NIL
          \mathsf{Transplant}(T, z, z.left)
(4)
6 else
6
            y = \text{Tree-minimum}(z.right)
0
            if y.p \neq z
8
                  \mathsf{Transplant}(T, y, y.right)
9
                  y.right = z.right
10
                  y.right.p = y
0
            \mathsf{Transplant}(T, z, y)
2
            y.left = z.left
ß
            y.left.p = y
```

Case 1

• Basically if the element z to be deleted has a NIL left child simply replace z with that child!!!

イロト イボト イヨト イヨト

sinvestav ∽) Q (22 / 49

3

TREE-DELETE(T, z)

1	if $z.left == NIL$
2	Transplant(T, z, z.right)
3	elseif $z.right == NIL$
4	Transplant(T, z, z.left)
6	else
6	y =Tree-minimum $(z.right)$
0	$ \text{if } y.p \neq z \\$
8	Transplant(T,y,y.right)
9	y.right = z.right
0	y.right.p = y
•	Transplant(T,z,y)
0	y.left = z.left
₿	y.left.p = y

Case 2

• Basically if the element z to be deleted has a NIL right child simply replace z with that child!!!

イロト 不得 とくき とくきとう

э

TREE-DELETE(T, z)

1	if $z.left == NIL$
2	Transplant(T, z, z.right)
3	elseif $z.right == NIL$
4	Transplant(T, z, z.left)
6	else
6	y =Tree-minimum $(z.right)$
7	$ \text{if } y.p \neq z \\$
8	Transplant(T,y,y.right)
9	y.right = z.right
0	y.right.p = y
•	Transplant(T,z,y)
12	y.left = z.left
₿	y.left.p = y

Case 3

• The *z* element has not empty children you need to find the successor of it.

TREE-DELETE(T, z)

```
\bigcirc if z.left == NIL
2
          \mathsf{Transplant}(T, z, z.right)
3
    elseif z.right == NIL
          \mathsf{Transplant}(T, z, z.left)
6
   else
6
            y = \text{Tree-minimum}(z.right)
0
             if y.p \neq z
8
                  \mathsf{Transplant}(T, y, y.right)
9
                  y.right = z.right
10
                  y.right.p = y
0
            \mathsf{Transplant}(T, z, y)
2
            y.left = z.left
ß
            y.left.p = y
```

Case 4

- if $y.p \neq z$ then y.right takes the position of y after all y.left == NIL
 - take z.right and make it the new right of y
 - make the
 (y.right == z.right).p equal
 to y

イロト イボト イヨト イヨト

3

TREE-DELETE(T, z)

```
1 if z.left == NIL
2
          \mathsf{Transplant}(T, z, z.right)
3
    elseif z.right == NIL
          \mathsf{Transplant}(T, z, z.left)
6
   else
6
            y = \text{Tree-minimum}(z.right)
0
             if y.p \neq z
8
                  \mathsf{Transplant}(T, y, y.right)
9
                  y.right = z.right
10
                  y.right.p = y
0
            \mathsf{Transplant}(T, z, y)
2
            y.left = z.left
<u>1</u>3
             y.left.p = y
```

Case 4

- put y in the position of z
- make y.left equal to z.left
- make the (y.left == z.left).pequal to y

イロト イボト イヨト イヨト

cinvesta

$\mathsf{Transplant}(T,\underline{u},v)$

 $\begin{array}{ccc} \bullet & \text{if } u.p == \mathsf{NIL} \\ \bullet & T.root = v \\ \bullet & \text{elseif } u == u.p.left \\ \bullet & u.p.left = v \\ \bullet & \text{else } u.p.right = v \\ \bullet & \text{if } v \neq \mathsf{NIL} \\ \bullet & v.p = u.p \end{array}$

Case 1

• If u is the root then make the root equal to v

< ロ > < 回 > < 回 > < 回 > < 回 >

$\mathsf{Transplant}(T,\underline{u},v)$

 $\begin{array}{ccc} \bullet & \text{if } u.p == \text{NIL} \\ \bullet & T.root = v \\ \bullet & \text{elseif } u == u.p.left \\ \bullet & u.p.left = v \\ \bullet & \text{else } u.p.right = v \\ \bullet & \text{if } v \neq \text{NIL} \\ \bullet & v.p = u.p \end{array}$

Case 2

• if u is the left child make the left child of the parent of u equal to v

< ロ > < 回 > < 回 > < 回 > < 回 >

$\mathsf{Transplant}(T,\underline{u},v)$

 $\begin{array}{ccc} \bullet & \text{if } u.p == \mathsf{NIL} \\ \bullet & T.root = v \\ \bullet & \text{elseif } u == u.p.left \\ \bullet & u.p.left = v \\ \bullet & \text{else } u.p.right = v \\ \bullet & \text{if } v \neq \mathsf{NIL} \\ \bullet & v.p = u.p \end{array}$

Case 3

• Similar to the second case, but for right child

< ロ > < 回 > < 回 > < 回 > < 回 >

$\mathsf{Transplant}(T,\underline{u},v)$

Case 4

 If v ≠ NIL then make the parent of v the parent of u

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Binary Search Trees Concepts Introduction

2 Binary Search Tree Operations

- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees Adding a Height The Height Problem Insertions in AVL-Trees

Example: Deletion in BST

Example: Deletion in BST

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 26 / 49

Example: Deletion in BST

28 / 49

э

イロト イヨト イヨト イヨト

Case $z.left \neq NIL$ and $z.right \neq NIL$

- if $y.p \neq z$
- Transplant(T, y, y.right)

Case $z.left \neq NIL$ and $z.right \neq NIL$

- y.right = z.right
- y.right.p = y

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

30 / 49

Case $z.left \neq NIL$ and $z.right \neq NIL$

- Transplant(T, z, y)
- y.left = z.left
- y.left.p = y

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

31 / 49

Case $z.left \neq NIL$ and $z.right \neq NIL$

- Transplant(T, z, y)
- y.left = z.left
- y.left.p = y

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

32 / 49

Outline

Binary Search Trees Concepts Introduction

2 Binary Search Tree Operations

- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees Adding a Height The Height Problem

Insertions in AVL-Trees

What do we need?

Tree Height

To describe AVL trees we need the concept of tree height

Definition

The maximal length of a path from the root to a leaf.

What do we need?

Tree Height

To describe AVL trees we need the concept of tree height

Definition

The maximal length of a path from the root to a leaf.

$\mathsf{Height}=3$

35 / 49

・ロト ・四ト ・ヨト ・ヨト 三日

Outline

Binary Search Trees Concepts Introduction

2 Binary Search Tree Operations

- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

We want the following

Height Invariant

At any node in the tree, the heights of the left and right sub-trees differs by at most 1.

Thus, it is necessary to add an extra field to the Node Structure

The Code

```
class Node():
    def __init__():
        self.key = None
        self.height = 0
        self.Val = None
        self.left = None
        self.right = None
```


38 / 49

3

イロト イヨト イヨト イヨト

Example

Outline

Binary Search Trees Concepts Introduction

2 Binary Search Tree Operations

- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees Adding a Height The Height Problem Insertions in AVL-Trees

Insertion

Similar to the Insertion in a BST

With a Fix-up at the end of the insertion

We have the following cases

Right Subtree is of height h + 1 and the left subtree is of height h
 Right Subtree is of height h and the left subtree is of height h + 1

Insertion

Similar to the Insertion in a BST

With a Fix-up at the end of the insertion

We have the following cases

- 0 Right Subtree is of height <math>h+1 and the left subtree is of height h
- **2** Right Subtree is of height h and the left subtree is of height h + 1

41 / 49

< ロ > < 回 > < 回 > < 回 > < 回 >

Right Subtree is of height h+1 and the left subtree is of height h

Now, if we are unlucky

- Now, we insert in the **right subtree** of the right subtree.
- The result of inserting into the **right subtree** will give us a new right subtree of height h + 2.

This is how the tree looks like

Right Subtree is of height h+1 and the left subtree is of height h

Now, if we are unlucky

- Now, we insert in the **right subtree** of the right subtree.
- The result of inserting into the **right subtree** will give us a new right subtree of height h + 2.

This is how the tree looks like

This

Which raises the height of the overall tree to $h + 3 \,$

In addition

In the new right subtree has height h+2

Either its right or the left subtree must be of height h+1

This

Which raises the height of the overall tree to $h + 3 \,$

In addition

In the new right subtree has height h+2

• Either its right or the left subtree must be of height h+1

43 / 49

イロト イヨト イヨト イヨト

Thus, we have

This Violates the height invariance

How we solve this?

We can do the following

44 / 49

э

イロト イヨト イヨト イヨト

Thus, we have

This Violates the height invariance

There is no left node at this level

How we solve this?

h

< □ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < > へへの 44/49

Now, The second case

We insert into the right subtree

But now the left subtree of the right subtree has height h + 1.

Example

Now, The second case

We insert into the right subtree

But now the left subtree of the right subtree has height h + 1.

Example

We fix the problem by

46 / 49

э

イロト イヨト イヨト イヨト

We fix the problem by

Now a left rotation with respect to the x

47 / 49

э

イロト イロト イヨト イヨト

Outline

Binary Search Trees Concepts Introduction

2 Binary Search Tree Operations

- Walking on a Tree
- Searching
- Minimum and Maximum
- Deletion in Binary Search Trees
- Examples of Deletion

Balancing a Tree, AVL Trees Adding a Height

- The Height Problem
- Insertions in AVL-Trees

Excercises

From Cormen's book, chapters 11 and 12

- 11.1-2
- 11.2-1
- 11.2-2
- 11.2-3
- 11.3-1
- 11.3-3
- 12.1-3
- 12.1-5
- 12.2-5
- 12.2-7
- 12.2-9
- 12.3-3