
Analysis of Algorithms
Hash Tables

Andres Mendez-Vazquez

September 24, 2020

1 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
2 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
3 / 107

About Basic Data Structures

Remark
It is quite interesting to notice that many data structures actually share
similar operations!!!

Yes
If you think them as ADT

4 / 107

About Basic Data Structures

Remark
It is quite interesting to notice that many data structures actually share
similar operations!!!

Yes
If you think them as ADT

4 / 107

Examples

Search(S,k)
Example: Search in a BST

8

3

1 6

4 7

10

14

13

k=7

5 / 107

Examples

Insert(S,x)
Example: Insert in a linked list

CA EDB

firstNode

NULL

K

6 / 107

And Again

Delete(S,x)
Example: Delete in a BST

8

3

1 4

7

10

14

13

8

3

1 6

4 7

10

14

13

Delete = 6

7 / 107

Basic data structures and operations.

Therefore
This are basic structures, it is up to you to read about them.

Chapter 10 Cormen’s book

8 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
9 / 107

Hash tables: Concepts

Definition
A hash table or hash map T is a data structure, most commonly an
array, that uses a hash function to efficiently map certain identifiers of
keys (e.g. person names) to associated values.

Advantages
They have the advantage of having a expected complexity of
operations of O(1 + α)

I Still, be aware of α

However, If you have a large number of keys, U

Then, it is impractical to store a table of the size of |U |.
Thus, you can use a hash function h : U→{0, 1, ...,m− 1}

10 / 107

Hash tables: Concepts

Definition
A hash table or hash map T is a data structure, most commonly an
array, that uses a hash function to efficiently map certain identifiers of
keys (e.g. person names) to associated values.

Advantages
They have the advantage of having a expected complexity of
operations of O(1 + α)

I Still, be aware of α

However, If you have a large number of keys, U

Then, it is impractical to store a table of the size of |U |.
Thus, you can use a hash function h : U→{0, 1, ...,m− 1}

10 / 107

Hash tables: Concepts

Definition
A hash table or hash map T is a data structure, most commonly an
array, that uses a hash function to efficiently map certain identifiers of
keys (e.g. person names) to associated values.

Advantages
They have the advantage of having a expected complexity of
operations of O(1 + α)

I Still, be aware of α

However, If you have a large number of keys, U

Then, it is impractical to store a table of the size of |U |.
Thus, you can use a hash function h : U→{0, 1, ...,m− 1}

10 / 107

Hash tables: Concepts

Definition
A hash table or hash map T is a data structure, most commonly an
array, that uses a hash function to efficiently map certain identifiers of
keys (e.g. person names) to associated values.

Advantages
They have the advantage of having a expected complexity of
operations of O(1 + α)

I Still, be aware of α

However, If you have a large number of keys, U

Then, it is impractical to store a table of the size of |U |.
Thus, you can use a hash function h : U→{0, 1, ...,m− 1}

10 / 107

Hash tables: Concepts

Definition
A hash table or hash map T is a data structure, most commonly an
array, that uses a hash function to efficiently map certain identifiers of
keys (e.g. person names) to associated values.

Advantages
They have the advantage of having a expected complexity of
operations of O(1 + α)

I Still, be aware of α

However, If you have a large number of keys, U

Then, it is impractical to store a table of the size of |U |.
Thus, you can use a hash function h : U→{0, 1, ...,m− 1}

10 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
11 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a small universe of keys, U

Remarks
It is not necessary to map the key values.
Key values are direct addresses in the array.
Direct implementation or Direct-address tables.

Operations
1 Direct-Address-Search(T, k)

I return T [k]
2 Direct-Address-Search(T, x)

I T [x.key] = x

3 Direct-Address-Delete(T, x)
I T [x.key] = NIL

12 / 107

When you have a large universe of keys, U

Then
Then, it is impractical to store a table of the size of |U |.

You can use a especial function for mapping

h : U→{0, 1, ...,m− 1} (1)

Problem
With a large enough universe U , two keys can hash to the same value

This is called a collision.

13 / 107

When you have a large universe of keys, U

Then
Then, it is impractical to store a table of the size of |U |.

You can use a especial function for mapping

h : U→{0, 1, ...,m− 1} (1)

Problem
With a large enough universe U , two keys can hash to the same value

This is called a collision.

13 / 107

When you have a large universe of keys, U

Then
Then, it is impractical to store a table of the size of |U |.

You can use a especial function for mapping

h : U→{0, 1, ...,m− 1} (1)

Problem
With a large enough universe U , two keys can hash to the same value

This is called a collision.

13 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
14 / 107

Collisions

This is a problem
We might try to avoid this by using a suitable hash function h.

Idea
Make appear to be “random” enough to avoid collisions altogether
(Highly Improbable) or to minimize the probability of them.

You still have the problem of collisions
Possible Solutions to the problem:

1 Chaining
2 Open Addressing

15 / 107

Collisions

This is a problem
We might try to avoid this by using a suitable hash function h.

Idea
Make appear to be “random” enough to avoid collisions altogether
(Highly Improbable) or to minimize the probability of them.

You still have the problem of collisions
Possible Solutions to the problem:

1 Chaining
2 Open Addressing

15 / 107

Collisions

This is a problem
We might try to avoid this by using a suitable hash function h.

Idea
Make appear to be “random” enough to avoid collisions altogether
(Highly Improbable) or to minimize the probability of them.

You still have the problem of collisions
Possible Solutions to the problem:

1 Chaining
2 Open Addressing

15 / 107

Collisions

This is a problem
We might try to avoid this by using a suitable hash function h.

Idea
Make appear to be “random” enough to avoid collisions altogether
(Highly Improbable) or to minimize the probability of them.

You still have the problem of collisions
Possible Solutions to the problem:

1 Chaining
2 Open Addressing

15 / 107

Collisions

This is a problem
We might try to avoid this by using a suitable hash function h.

Idea
Make appear to be “random” enough to avoid collisions altogether
(Highly Improbable) or to minimize the probability of them.

You still have the problem of collisions
Possible Solutions to the problem:

1 Chaining
2 Open Addressing

15 / 107

Hash tables: Chaining

A Possible Solution
Insert the elements that hash to the same slot into a linked list.

U

(Universe of Keys)

16 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
17 / 107

Analysis of hashing with Chaining: Assumptions

Assumptions
We have a load factor α = n

m , where m is the size of the hash table
T , and n is the number of elements to store.
Simple uniform hashing property:

I This means that any of the m slots can be selected.
I This means that if n = n0 + n1 + ...+ nm−1, we have that E(nj) = α.

To simplify the analysis, you need to consider two cases
Unsuccessful search.
Successful search.

18 / 107

Analysis of hashing with Chaining: Assumptions

Assumptions
We have a load factor α = n

m , where m is the size of the hash table
T , and n is the number of elements to store.
Simple uniform hashing property:

I This means that any of the m slots can be selected.
I This means that if n = n0 + n1 + ...+ nm−1, we have that E(nj) = α.

To simplify the analysis, you need to consider two cases
Unsuccessful search.
Successful search.

18 / 107

Analysis of hashing with Chaining: Assumptions

Assumptions
We have a load factor α = n

m , where m is the size of the hash table
T , and n is the number of elements to store.
Simple uniform hashing property:

I This means that any of the m slots can be selected.
I This means that if n = n0 + n1 + ...+ nm−1, we have that E(nj) = α.

To simplify the analysis, you need to consider two cases
Unsuccessful search.
Successful search.

18 / 107

Analysis of hashing with Chaining: Assumptions

Assumptions
We have a load factor α = n

m , where m is the size of the hash table
T , and n is the number of elements to store.
Simple uniform hashing property:

I This means that any of the m slots can be selected.
I This means that if n = n0 + n1 + ...+ nm−1, we have that E(nj) = α.

To simplify the analysis, you need to consider two cases
Unsuccessful search.
Successful search.

18 / 107

Analysis of hashing with Chaining: Assumptions

Assumptions
We have a load factor α = n

m , where m is the size of the hash table
T , and n is the number of elements to store.
Simple uniform hashing property:

I This means that any of the m slots can be selected.
I This means that if n = n0 + n1 + ...+ nm−1, we have that E(nj) = α.

To simplify the analysis, you need to consider two cases
Unsuccessful search.
Successful search.

18 / 107

Analysis of hashing with Chaining: Assumptions

Assumptions
We have a load factor α = n

m , where m is the size of the hash table
T , and n is the number of elements to store.
Simple uniform hashing property:

I This means that any of the m slots can be selected.
I This means that if n = n0 + n1 + ...+ nm−1, we have that E(nj) = α.

To simplify the analysis, you need to consider two cases
Unsuccessful search.
Successful search.

18 / 107

Why?

After all
You are always looking for keys when

Searching
Inserting
Deleting

It is clear that we have two possibilities
Finding the key or not finding the key

19 / 107

Why?

After all
You are always looking for keys when

Searching
Inserting
Deleting

It is clear that we have two possibilities
Finding the key or not finding the key

19 / 107

Why?

After all
You are always looking for keys when

Searching
Inserting
Deleting

It is clear that we have two possibilities
Finding the key or not finding the key

19 / 107

Why?

After all
You are always looking for keys when

Searching
Inserting
Deleting

It is clear that we have two possibilities
Finding the key or not finding the key

19 / 107

Why?

After all
You are always looking for keys when

Searching
Inserting
Deleting

It is clear that we have two possibilities
Finding the key or not finding the key

19 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
20 / 107

Therefore

We have two phenomena’s

Unsuccessful Search

Number of Nodes Scanned

h(key)

Second one

21 / 107

Therefore
We have two phenomena’s

Unsuccessful Search

Number of Nodes Scanned

h(key)

Second one

Successful Search

Number of Nodes Scanned Before Finding the Key

h(key) key

21 / 107

For this, we have the following theorems

Theorem 11.1
In a hash table in which collisions are resolved by chaining, an unsuccessful
search takes average-case time Θ (1 + α), under the assumption of simple
uniform hashing.

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a successful
search takes average-case time Θ (1 + α) under the assumption of simple
uniform hashing.

22 / 107

For this, we have the following theorems

Theorem 11.1
In a hash table in which collisions are resolved by chaining, an unsuccessful
search takes average-case time Θ (1 + α), under the assumption of simple
uniform hashing.

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a successful
search takes average-case time Θ (1 + α) under the assumption of simple
uniform hashing.

22 / 107

Analysis of hashing: Constant time.

Finally
These two theorems tell us that if n = O(m)

α = n
m = O(m)

m = O(1)

Or search time is constant.

23 / 107

Analysis of hashing: Constant time.

Finally
These two theorems tell us that if n = O(m)

α = n
m = O(m)

m = O(1)

Or search time is constant.

23 / 107

Analysis of hashing: Constant time.

Finally
These two theorems tell us that if n = O(m)

α = n
m = O(m)

m = O(1)

Or search time is constant.

23 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
24 / 107

Analysis of hashing: Which hash function?

Consider that:
Good hash functions should maintain the property of simple uniform
hashing!

The keys have the same probability 1/m to be hashed to any bucket!!!
A uniform hash function minimizes the likelihood of an overflow when
keys are selected at random.

Then:
What should we use?

If we know how the keys are distributed uniformly at the following
interval 0 ≤ k < 1 then h(k) = bkmc.

25 / 107

Analysis of hashing: Which hash function?

Consider that:
Good hash functions should maintain the property of simple uniform
hashing!

The keys have the same probability 1/m to be hashed to any bucket!!!
A uniform hash function minimizes the likelihood of an overflow when
keys are selected at random.

Then:
What should we use?

If we know how the keys are distributed uniformly at the following
interval 0 ≤ k < 1 then h(k) = bkmc.

25 / 107

Analysis of hashing: Which hash function?

Consider that:
Good hash functions should maintain the property of simple uniform
hashing!

The keys have the same probability 1/m to be hashed to any bucket!!!
A uniform hash function minimizes the likelihood of an overflow when
keys are selected at random.

Then:
What should we use?

If we know how the keys are distributed uniformly at the following
interval 0 ≤ k < 1 then h(k) = bkmc.

25 / 107

Analysis of hashing: Which hash function?

Consider that:
Good hash functions should maintain the property of simple uniform
hashing!

The keys have the same probability 1/m to be hashed to any bucket!!!
A uniform hash function minimizes the likelihood of an overflow when
keys are selected at random.

Then:
What should we use?

If we know how the keys are distributed uniformly at the following
interval 0 ≤ k < 1 then h(k) = bkmc.

25 / 107

Analysis of hashing: Which hash function?

Consider that:
Good hash functions should maintain the property of simple uniform
hashing!

The keys have the same probability 1/m to be hashed to any bucket!!!
A uniform hash function minimizes the likelihood of an overflow when
keys are selected at random.

Then:
What should we use?

If we know how the keys are distributed uniformly at the following
interval 0 ≤ k < 1 then h(k) = bkmc.

25 / 107

What if...

Question:
What about something with keys in a normal distribution?

26 / 107

Possible hash functions when the keys are natural numbers

The division method
h(k) = k mod m.

Good choices for m are primes not too close to a power of 2.

The multiplication method
h(k) = bm(kA mod 1)c with 0 < A < 1.
The value of m is not critical.
Easy to implement in a computer.

27 / 107

Possible hash functions when the keys are natural numbers

The division method
h(k) = k mod m.

Good choices for m are primes not too close to a power of 2.

The multiplication method
h(k) = bm(kA mod 1)c with 0 < A < 1.
The value of m is not critical.
Easy to implement in a computer.

27 / 107

Possible hash functions when the keys are natural numbers

The division method
h(k) = k mod m.

Good choices for m are primes not too close to a power of 2.

The multiplication method
h(k) = bm(kA mod 1)c with 0 < A < 1.
The value of m is not critical.
Easy to implement in a computer.

27 / 107

Possible hash functions when the keys are natural numbers

The division method
h(k) = k mod m.

Good choices for m are primes not too close to a power of 2.

The multiplication method
h(k) = bm(kA mod 1)c with 0 < A < 1.
The value of m is not critical.
Easy to implement in a computer.

27 / 107

Possible hash functions when the keys are natural numbers

The division method
h(k) = k mod m.

Good choices for m are primes not too close to a power of 2.

The multiplication method
h(k) = bm(kA mod 1)c with 0 < A < 1.
The value of m is not critical.
Easy to implement in a computer.

27 / 107

When they are not, we need to interpreting the keys as
natural numbers

Keys interpreted as natural numbers
Given a string “pt”, we can say p = 112 and t=116 (ASCII numbers)

ASCII has 128 possible symbols.
I Then (128× 112) + 1280 × 116 = 14452

Nevertheless
This is highly dependent on the origins of the keys!!!

28 / 107

When they are not, we need to interpreting the keys as
natural numbers

Keys interpreted as natural numbers
Given a string “pt”, we can say p = 112 and t=116 (ASCII numbers)

ASCII has 128 possible symbols.
I Then (128× 112) + 1280 × 116 = 14452

Nevertheless
This is highly dependent on the origins of the keys!!!

28 / 107

When they are not, we need to interpreting the keys as
natural numbers

Keys interpreted as natural numbers
Given a string “pt”, we can say p = 112 and t=116 (ASCII numbers)

ASCII has 128 possible symbols.
I Then (128× 112) + 1280 × 116 = 14452

Nevertheless
This is highly dependent on the origins of the keys!!!

28 / 107

When they are not, we need to interpreting the keys as
natural numbers

Keys interpreted as natural numbers
Given a string “pt”, we can say p = 112 and t=116 (ASCII numbers)

ASCII has 128 possible symbols.
I Then (128× 112) + 1280 × 116 = 14452

Nevertheless
This is highly dependent on the origins of the keys!!!

28 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
29 / 107

Hashing methods: The division method

Hash function
h(k) = k mod m

Problems with some selections
m = 2p, h(k) is only the p lowest-order bits.
m = 2p − 1, when k is interpreted as a character string interpreted in
radix 2p, permuting characters in k does not change the value.

It is better to select
Prime numbers not too close to an exact power of two.

I For example, given n = 2000 elements.
F We can use m = 701 because it is near to 2000/3 but not near a power

of two.

30 / 107

Hashing methods: The division method

Hash function
h(k) = k mod m

Problems with some selections
m = 2p, h(k) is only the p lowest-order bits.
m = 2p − 1, when k is interpreted as a character string interpreted in
radix 2p, permuting characters in k does not change the value.

It is better to select
Prime numbers not too close to an exact power of two.

I For example, given n = 2000 elements.
F We can use m = 701 because it is near to 2000/3 but not near a power

of two.

30 / 107

Hashing methods: The division method

Hash function
h(k) = k mod m

Problems with some selections
m = 2p, h(k) is only the p lowest-order bits.
m = 2p − 1, when k is interpreted as a character string interpreted in
radix 2p, permuting characters in k does not change the value.

It is better to select
Prime numbers not too close to an exact power of two.

I For example, given n = 2000 elements.
F We can use m = 701 because it is near to 2000/3 but not near a power

of two.

30 / 107

Hashing methods: The division method

Hash function
h(k) = k mod m

Problems with some selections
m = 2p, h(k) is only the p lowest-order bits.
m = 2p − 1, when k is interpreted as a character string interpreted in
radix 2p, permuting characters in k does not change the value.

It is better to select
Prime numbers not too close to an exact power of two.

I For example, given n = 2000 elements.
F We can use m = 701 because it is near to 2000/3 but not near a power

of two.

30 / 107

Hashing methods: The division method

Hash function
h(k) = k mod m

Problems with some selections
m = 2p, h(k) is only the p lowest-order bits.
m = 2p − 1, when k is interpreted as a character string interpreted in
radix 2p, permuting characters in k does not change the value.

It is better to select
Prime numbers not too close to an exact power of two.

I For example, given n = 2000 elements.
F We can use m = 701 because it is near to 2000/3 but not near a power

of two.

30 / 107

Hashing methods: The division method

Hash function
h(k) = k mod m

Problems with some selections
m = 2p, h(k) is only the p lowest-order bits.
m = 2p − 1, when k is interpreted as a character string interpreted in
radix 2p, permuting characters in k does not change the value.

It is better to select
Prime numbers not too close to an exact power of two.

I For example, given n = 2000 elements.
F We can use m = 701 because it is near to 2000/3 but not near a power

of two.

30 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
31 / 107

Hashing methods: The multiplication method

The multiplication method for creating hash functions has two steps
1 Multiply the key k by a constant A in the range 0 < A < 1 and

extract the fractional part of kA.
2 Then, you multiply the value by m an take the floor,
h(k) = bm (kA mod 1)c.

The mod allows to extract that fractional part!!!
kA mod 1 = kA− bkAc, 0 < A < 1.

Advantages:
m is not critical, normally m = 2p.

32 / 107

Hashing methods: The multiplication method

The multiplication method for creating hash functions has two steps
1 Multiply the key k by a constant A in the range 0 < A < 1 and

extract the fractional part of kA.
2 Then, you multiply the value by m an take the floor,
h(k) = bm (kA mod 1)c.

The mod allows to extract that fractional part!!!
kA mod 1 = kA− bkAc, 0 < A < 1.

Advantages:
m is not critical, normally m = 2p.

32 / 107

Hashing methods: The multiplication method

The multiplication method for creating hash functions has two steps
1 Multiply the key k by a constant A in the range 0 < A < 1 and

extract the fractional part of kA.
2 Then, you multiply the value by m an take the floor,
h(k) = bm (kA mod 1)c.

The mod allows to extract that fractional part!!!
kA mod 1 = kA− bkAc, 0 < A < 1.

Advantages:
m is not critical, normally m = 2p.

32 / 107

Hashing methods: The multiplication method

The multiplication method for creating hash functions has two steps
1 Multiply the key k by a constant A in the range 0 < A < 1 and

extract the fractional part of kA.
2 Then, you multiply the value by m an take the floor,
h(k) = bm (kA mod 1)c.

The mod allows to extract that fractional part!!!
kA mod 1 = kA− bkAc, 0 < A < 1.

Advantages:
m is not critical, normally m = 2p.

32 / 107

Hashing methods: The multiplication method

The multiplication method for creating hash functions has two steps
1 Multiply the key k by a constant A in the range 0 < A < 1 and

extract the fractional part of kA.
2 Then, you multiply the value by m an take the floor,
h(k) = bm (kA mod 1)c.

The mod allows to extract that fractional part!!!
kA mod 1 = kA− bkAc, 0 < A < 1.

Advantages:
m is not critical, normally m = 2p.

32 / 107

Implementing in a computer

First
First, imagine that the word in a machine has w bits size and k fits on
those bits.

Second
Then, select an s in the range 0 < s < 2w and assume A = s

2w .

Third
Now, we multiply k by the number s = A2w.

33 / 107

Implementing in a computer

First
First, imagine that the word in a machine has w bits size and k fits on
those bits.

Second
Then, select an s in the range 0 < s < 2w and assume A = s

2w .

Third
Now, we multiply k by the number s = A2w.

33 / 107

Implementing in a computer

First
First, imagine that the word in a machine has w bits size and k fits on
those bits.

Second
Then, select an s in the range 0 < s < 2w and assume A = s

2w .

Third
Now, we multiply k by the number s = A2w.

33 / 107

Example

Fourth
The result of that is r12w + r0, a 2w-bit value word, where the first
p-most significative bits of r0 are the desired hash value.

Graphically

34 / 107

Example
Fourth
The result of that is r12w + r0, a 2w-bit value word, where the first
p-most significative bits of r0 are the desired hash value.

Graphically

extract p bits

34 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
35 / 107

However

Sooner or Latter
We can pick up a hash function that does not give us the desired uniform
randomized property

Thus
We are required to analyze the possible clustering of the data by the hash
function

36 / 107

However

Sooner or Latter
We can pick up a hash function that does not give us the desired uniform
randomized property

Thus
We are required to analyze the possible clustering of the data by the hash
function

36 / 107

However

Unfortunately
Hash table do not give a way to measure clustering

Thus, table designers
They should provide some clustering estimation as part of the interface.

Thus
The clustering measure needs an estimate of the variance of the
distribution of bucket sizes.

37 / 107

However

Unfortunately
Hash table do not give a way to measure clustering

Thus, table designers
They should provide some clustering estimation as part of the interface.

Thus
The clustering measure needs an estimate of the variance of the
distribution of bucket sizes.

37 / 107

However

Unfortunately
Hash table do not give a way to measure clustering

Thus, table designers
They should provide some clustering estimation as part of the interface.

Thus
The clustering measure needs an estimate of the variance of the
distribution of bucket sizes.

37 / 107

Measuring Clustering through a metric C

Definition
If bucket i contains ni elements, then

C = m

n− 1

[∑m
i=1 n

2
i

n
− 1

]
(2)

Properties
1 If C = 1, then you have uniform hashing.
2 If C > 1, it means that the performance of the hash table is slowed

down by clustering by approximately a factor of C.
3 If C < 1, the spread of the elements is more even than uniform!!! Not

going to happen!!!

38 / 107

Measuring Clustering through a metric C

Definition
If bucket i contains ni elements, then

C = m

n− 1

[∑m
i=1 n

2
i

n
− 1

]
(2)

Properties
1 If C = 1, then you have uniform hashing.
2 If C > 1, it means that the performance of the hash table is slowed

down by clustering by approximately a factor of C.
3 If C < 1, the spread of the elements is more even than uniform!!! Not

going to happen!!!

38 / 107

Measuring Clustering through a metric C

Definition
If bucket i contains ni elements, then

C = m

n− 1

[∑m
i=1 n

2
i

n
− 1

]
(2)

Properties
1 If C = 1, then you have uniform hashing.
2 If C > 1, it means that the performance of the hash table is slowed

down by clustering by approximately a factor of C.
3 If C < 1, the spread of the elements is more even than uniform!!! Not

going to happen!!!

38 / 107

Measuring Clustering through a metric C

Definition
If bucket i contains ni elements, then

C = m

n− 1

[∑m
i=1 n

2
i

n
− 1

]
(2)

Properties
1 If C = 1, then you have uniform hashing.
2 If C > 1, it means that the performance of the hash table is slowed

down by clustering by approximately a factor of C.
3 If C < 1, the spread of the elements is more even than uniform!!! Not

going to happen!!!

38 / 107

Measuring Clustering through a metric C

Definition
If bucket i contains ni elements, then

C = m

n− 1

[∑m
i=1 n

2
i

n
− 1

]
(2)

Properties
1 If C = 1, then you have uniform hashing.
2 If C > 1, it means that the performance of the hash table is slowed

down by clustering by approximately a factor of C.
3 If C < 1, the spread of the elements is more even than uniform!!! Not

going to happen!!!

38 / 107

Thus

First
If clustering is occurring, some buckets will have more elements than they
should, and some will have fewer.

Second
There will be a wider range of bucket sizes than one would expect from
a random hash function.

39 / 107

Thus

First
If clustering is occurring, some buckets will have more elements than they
should, and some will have fewer.

Second
There will be a wider range of bucket sizes than one would expect from
a random hash function.

39 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
40 / 107

Analysis of C

Consider the following random variable
Consider bucket i containing ni elements, with Xij= I{element j lands in
bucket i}

Then, given

ni =
n∑
j=1

Xij (3)

We have, given the unifrom hash property that

E [Xij] = 1
m
, E

[
X2
ij

]
= 1
m

(4)

41 / 107

Analysis of C

Consider the following random variable
Consider bucket i containing ni elements, with Xij= I{element j lands in
bucket i}

Then, given

ni =
n∑
j=1

Xij (3)

We have, given the unifrom hash property that

E [Xij] = 1
m
, E

[
X2
ij

]
= 1
m

(4)

41 / 107

Analysis of C

Consider the following random variable
Consider bucket i containing ni elements, with Xij= I{element j lands in
bucket i}

Then, given

ni =
n∑
j=1

Xij (3)

We have, given the unifrom hash property that

E [Xij] = 1
m
, E

[
X2
ij

]
= 1
m

(4)

41 / 107

We look at the Variance of Xij

We look at the dispersion of Xij

V ar [Xij] = E
[
X2
ij

]
− (E [Xij])2 = 1

m
− 1
m2 (5)

What about the expected number of elements at each bucket?

E [ni] = E

 n∑
j=1

Xij

 = n

m
= α (6)

42 / 107

We look at the Variance of Xij

We look at the dispersion of Xij

V ar [Xij] = E
[
X2
ij

]
− (E [Xij])2 = 1

m
− 1
m2 (5)

What about the expected number of elements at each bucket?

E [ni] = E

 n∑
j=1

Xij

 = n

m
= α (6)

42 / 107

Then, we have given independence of {Xij}

Because independence of {Xij}, the scattering of ni

V ar [ni] = V ar

 n∑
j=1

Xij

=

n∑
j=1

V ar [Xij]

= nV ar [Xij]

43 / 107

Then, we have given independence of {Xij}

Because independence of {Xij}, the scattering of ni

V ar [ni] = V ar

 n∑
j=1

Xij

=

n∑
j=1

V ar [Xij]

= nV ar [Xij]

43 / 107

Then, we have given independence of {Xij}

Because independence of {Xij}, the scattering of ni

V ar [ni] = V ar

 n∑
j=1

Xij

=

n∑
j=1

V ar [Xij]

= nV ar [Xij]

43 / 107

Then
What about the dispersion of possible number of elements at each
bucket?

V ar [ni] = E
[
n2
i

]
− (E [ni])2

But, we have that

E
[
n2
i

]
= E

 n∑
j=1

X2
ij +

n∑
j=1

n∑
k=1,k 6=j

XijXik

 (7)

Or

E
[
n2
i

]
= n

m
+

n∑
j=1

n∑
k=1,k 6=j

1
m2 (8)

44 / 107

Then
What about the dispersion of possible number of elements at each
bucket?

V ar [ni] = E
[
n2
i

]
− (E [ni])2

But, we have that

E
[
n2
i

]
= E

 n∑
j=1

X2
ij +

n∑
j=1

n∑
k=1,k 6=j

XijXik

 (7)

Or

E
[
n2
i

]
= n

m
+

n∑
j=1

n∑
k=1,k 6=j

1
m2 (8)

44 / 107

Then
What about the dispersion of possible number of elements at each
bucket?

V ar [ni] = E
[
n2
i

]
− (E [ni])2

But, we have that

E
[
n2
i

]
= E

 n∑
j=1

X2
ij +

n∑
j=1

n∑
k=1,k 6=j

XijXik

 (7)

Or

E
[
n2
i

]
= n

m
+

n∑
j=1

n∑
k=1,k 6=j

1
m2 (8)

44 / 107

Thus

We re-express the range on term of expected values of ni

E
[
n2
i

]
= n

m
+ n (n− 1)

m2 (9)

Then

V ar (ni) = E
[
n2
i

]
− E [ni]2 = n

m
+ n (n− 1)

m2 − n2

m2

= n

m
− n

m2

= α− α

m

45 / 107

Thus

We re-express the range on term of expected values of ni

E
[
n2
i

]
= n

m
+ n (n− 1)

m2 (9)

Then

V ar (ni) = E
[
n2
i

]
− E [ni]2 = n

m
+ n (n− 1)

m2 − n2

m2

= n

m
− n

m2

= α− α

m

45 / 107

Thus

We re-express the range on term of expected values of ni

E
[
n2
i

]
= n

m
+ n (n− 1)

m2 (9)

Then

V ar (ni) = E
[
n2
i

]
− E [ni]2 = n

m
+ n (n− 1)

m2 − n2

m2

= n

m
− n

m2

= α− α

m

45 / 107

Thus

We re-express the range on term of expected values of ni

E
[
n2
i

]
= n

m
+ n (n− 1)

m2 (9)

Then

V ar (ni) = E
[
n2
i

]
− E [ni]2 = n

m
+ n (n− 1)

m2 − n2

m2

= n

m
− n

m2

= α− α

m

45 / 107

Then, we have that
Now we build an estimator of the mean of n2

i which is part of
C = m

n−1

[∑m

i=1 n
2
i

n
− 1

]
1
n

m∑
i=1

n2
i (10)

Thus, we ask what is the expected value of the mean of the variances

E

[
1
n

m∑
i=1

n2
i

]
= 1
n

m∑
i=1

E
[
n2
i

]
= m

n

[
α

(
1− 1

m

)
+ α2

]
= 1
α

[
α

(
1− 1

m

)
+ α2

]
= 1− 1

m
+ α

46 / 107

Then, we have that
Now we build an estimator of the mean of n2

i which is part of
C = m

n−1

[∑m

i=1 n
2
i

n
− 1

]
1
n

m∑
i=1

n2
i (10)

Thus, we ask what is the expected value of the mean of the variances

E

[
1
n

m∑
i=1

n2
i

]
= 1
n

m∑
i=1

E
[
n2
i

]
= m

n

[
α

(
1− 1

m

)
+ α2

]
= 1
α

[
α

(
1− 1

m

)
+ α2

]
= 1− 1

m
+ α

46 / 107

Then, we have that
Now we build an estimator of the mean of n2

i which is part of
C = m

n−1

[∑m

i=1 n
2
i

n
− 1

]
1
n

m∑
i=1

n2
i (10)

Thus, we ask what is the expected value of the mean of the variances

E

[
1
n

m∑
i=1

n2
i

]
= 1
n

m∑
i=1

E
[
n2
i

]
= m

n

[
α

(
1− 1

m

)
+ α2

]
= 1
α

[
α

(
1− 1

m

)
+ α2

]
= 1− 1

m
+ α

46 / 107

Then, we have that
Now we build an estimator of the mean of n2

i which is part of
C = m

n−1

[∑m

i=1 n
2
i

n
− 1

]
1
n

m∑
i=1

n2
i (10)

Thus, we ask what is the expected value of the mean of the variances

E

[
1
n

m∑
i=1

n2
i

]
= 1
n

m∑
i=1

E
[
n2
i

]
= m

n

[
α

(
1− 1

m

)
+ α2

]
= 1
α

[
α

(
1− 1

m

)
+ α2

]
= 1− 1

m
+ α

46 / 107

Finally, we analyze the Expected Value of C under uniform
hashing

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
1− 1

m
+ α− 1

]
= m

n− 1

[
n

m
− 1
m

]
= m

n− 1

[
n− 1
m

]
= 1

47 / 107

Finally, we analyze the Expected Value of C under uniform
hashing

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
1− 1

m
+ α− 1

]
= m

n− 1

[
n

m
− 1
m

]
= m

n− 1

[
n− 1
m

]
= 1

47 / 107

Finally, we analyze the Expected Value of C under uniform
hashing

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
1− 1

m
+ α− 1

]
= m

n− 1

[
n

m
− 1
m

]
= m

n− 1

[
n− 1
m

]
= 1

47 / 107

Finally, we analyze the Expected Value of C under uniform
hashing

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
1− 1

m
+ α− 1

]
= m

n− 1

[
n

m
− 1
m

]
= m

n− 1

[
n− 1
m

]
= 1

47 / 107

Finally, we analyze the Expected Value of C under uniform
hashing

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
1− 1

m
+ α− 1

]
= m

n− 1

[
n

m
− 1
m

]
= m

n− 1

[
n− 1
m

]
= 1

47 / 107

Explanation

Using a hash table that enforce a uniform distribution in the buckets
We get that C = 1 or the best distribution of keys

48 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
49 / 107

Now, we have a really horrible hash function ≡ It hits only
one of every b buckets
Thus

E [Xij] = E
[
X2
ij

]
= b

m
(11)

Thus, we have

E [ni] = αb (12)

Then, we have

E

[
1
n

m∑
i=1

n2
i

]
= 1
n

m∑
i=1

E
[
n2
i

]
= αb− b

m
+ 1

50 / 107

Now, we have a really horrible hash function ≡ It hits only
one of every b buckets
Thus

E [Xij] = E
[
X2
ij

]
= b

m
(11)

Thus, we have

E [ni] = αb (12)

Then, we have

E

[
1
n

m∑
i=1

n2
i

]
= 1
n

m∑
i=1

E
[
n2
i

]
= αb− b

m
+ 1

50 / 107

Now, we have a really horrible hash function ≡ It hits only
one of every b buckets
Thus

E [Xij] = E
[
X2
ij

]
= b

m
(11)

Thus, we have

E [ni] = αb (12)

Then, we have

E

[
1
n

m∑
i=1

n2
i

]
= 1
n

m∑
i=1

E
[
n2
i

]
= αb− b

m
+ 1

50 / 107

Finally

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
αb− b

m
+ 1− 1

]
= m

n− 1

[
nb

m
− b

m

]
= m

n− 1

[
b (n− 1)

m

]
= b

51 / 107

Finally

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
αb− b

m
+ 1− 1

]
= m

n− 1

[
nb

m
− b

m

]
= m

n− 1

[
b (n− 1)

m

]
= b

51 / 107

Finally

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
αb− b

m
+ 1− 1

]
= m

n− 1

[
nb

m
− b

m

]
= m

n− 1

[
b (n− 1)

m

]
= b

51 / 107

Finally

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
αb− b

m
+ 1− 1

]
= m

n− 1

[
nb

m
− b

m

]
= m

n− 1

[
b (n− 1)

m

]
= b

51 / 107

Finally

We can plug back on C using the expected value

E [C] = m

n− 1

[
E

[∑m
i=1 n

2
i

n

]
− 1

]

= m

n− 1

[
αb− b

m
+ 1− 1

]
= m

n− 1

[
nb

m
− b

m

]
= m

n− 1

[
b (n− 1)

m

]
= b

51 / 107

Explanation

Using a hash table that enforce a uniform distribution in the buckets
We get that C = b > 1 or a really bad distribution of the keys!!!

Thus, you only need the following to evaluate a hash function
1
n

m∑
i=1

n2
i (13)

52 / 107

Explanation

Using a hash table that enforce a uniform distribution in the buckets
We get that C = b > 1 or a really bad distribution of the keys!!!

Thus, you only need the following to evaluate a hash function
1
n

m∑
i=1

n2
i (13)

52 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
53 / 107

A Possible Solution, Universal Hashing

Issues
In practice, keys are not randomly distributed.
Any fixed hash function might yield retrieval Θ(n) time.

Goal
To find hash functions that produce uniform random table indexes
irrespective of the keys.

Idea
To select a hash function at random from a designed class of functions at
the beginning of the execution.

54 / 107

A Possible Solution, Universal Hashing

Issues
In practice, keys are not randomly distributed.
Any fixed hash function might yield retrieval Θ(n) time.

Goal
To find hash functions that produce uniform random table indexes
irrespective of the keys.

Idea
To select a hash function at random from a designed class of functions at
the beginning of the execution.

54 / 107

A Possible Solution, Universal Hashing

Issues
In practice, keys are not randomly distributed.
Any fixed hash function might yield retrieval Θ(n) time.

Goal
To find hash functions that produce uniform random table indexes
irrespective of the keys.

Idea
To select a hash function at random from a designed class of functions at
the beginning of the execution.

54 / 107

A Possible Solution, Universal Hashing

Issues
In practice, keys are not randomly distributed.
Any fixed hash function might yield retrieval Θ(n) time.

Goal
To find hash functions that produce uniform random table indexes
irrespective of the keys.

Idea
To select a hash function at random from a designed class of functions at
the beginning of the execution.

54 / 107

Universal hashing

Example

Set of hash functions

Choose a hash function randomly

(At the beginning of the execution)

HASH TABLE

55 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
56 / 107

Definition of Universal Hash Functions

Definition
Let H = {h : U → {0, 1, ...,m− 1}} be a family of hash functions. H is
called a universal family if

∀x, y ∈ U, x 6= y : Pr
h∈H

(h(x) = h(y)) ≤ 1
m

(14)

Main result
With universal hashing the chance of collision between distinct keys k and
l is no more than the 1

m chance of collision if locations h(k) and h(l) were
randomly and independently chosen from the set {0, 1, ...,m− 1}.

57 / 107

Definition of Universal Hash Functions

Definition
Let H = {h : U → {0, 1, ...,m− 1}} be a family of hash functions. H is
called a universal family if

∀x, y ∈ U, x 6= y : Pr
h∈H

(h(x) = h(y)) ≤ 1
m

(14)

Main result
With universal hashing the chance of collision between distinct keys k and
l is no more than the 1

m chance of collision if locations h(k) and h(l) were
randomly and independently chosen from the set {0, 1, ...,m− 1}.

57 / 107

Universal Hashing

Theorem 11.3
Suppose that a hash function h is chosen randomly from a universal
collection of hash functions and has been used to hash n keys into a
table T of size m, using chaining to resolve collisions.
If key k is not in the table, then the expected length E[nh(k)] of the
list that key k hashes to is at most the load factor α = n

m . If key k is
in the table, then the expected length E[nh(k)] of the list containing
key k is at most 1 + α.

Corollary 11.4
Using universal hashing and collision resolution by chaining in an initially
empty table with m slots, it takes expected time Θ(n) to handle any
sequence of n INSERT, SEARCH, and DELETE operations O(m) INSERT
operations.

58 / 107

Universal Hashing

Theorem 11.3
Suppose that a hash function h is chosen randomly from a universal
collection of hash functions and has been used to hash n keys into a
table T of size m, using chaining to resolve collisions.
If key k is not in the table, then the expected length E[nh(k)] of the
list that key k hashes to is at most the load factor α = n

m . If key k is
in the table, then the expected length E[nh(k)] of the list containing
key k is at most 1 + α.

Corollary 11.4
Using universal hashing and collision resolution by chaining in an initially
empty table with m slots, it takes expected time Θ(n) to handle any
sequence of n INSERT, SEARCH, and DELETE operations O(m) INSERT
operations.

58 / 107

Universal Hashing

Theorem 11.3
Suppose that a hash function h is chosen randomly from a universal
collection of hash functions and has been used to hash n keys into a
table T of size m, using chaining to resolve collisions.
If key k is not in the table, then the expected length E[nh(k)] of the
list that key k hashes to is at most the load factor α = n

m . If key k is
in the table, then the expected length E[nh(k)] of the list containing
key k is at most 1 + α.

Corollary 11.4
Using universal hashing and collision resolution by chaining in an initially
empty table with m slots, it takes expected time Θ(n) to handle any
sequence of n INSERT, SEARCH, and DELETE operations O(m) INSERT
operations.

58 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Example of Universal Hash

Proceed as follows:
Choose a primer number p large enough so that every possible key k is in the
range [0, ..., p− 1]

Zp = {0, 1, ..., p− 1}and Z∗
p = {1, ..., p− 1}

Define the following hash function:

ha,b(k) = ((ak + b) mod p) mod m,∀a ∈ Z∗
pand b ∈ Zp

The family of all such hash functions is:

Hp,m = {ha,b : a ∈ Z∗
pand b ∈ Zp}

Important
a and b are chosen randomly at the beginning of execution.
The class Hp,m of hash functions is universal.

59 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
60 / 107

Example

Example
p = 977, m = 50, a and b random numbers

I ha,b(k) = ((ak + b) mod p) mod m

61 / 107

Example of key distribution

Example, mean = 488.5 and dispersion = 5

62 / 107

Example with 10 keys

Universal Hashing Vs Division Method

63 / 107

Example with 50 keys

Universal Hashing Vs Division Method

64 / 107

Example with 100 keys

Universal Hashing Vs Division Method

65 / 107

Example with 200 keys

An example of P (Θ|X) = P (X|Θ) P (Θ)

66 / 107

Another Example: Matrix Method
Then

Let us say keys are u-bits long.
Say the table size M is power of 2.
an index is b-bits long with M = 2b.

The h function
Pick h to be a random b-by-u 0/1 matrix, and define h(x) = hx
where after the inner product we apply mod 2

Example

h

b

 1 0 0 0
0 1 1 1
1 1 1 0

u

x
1
0
1
0

 =

h (x) 1
1
0

67 / 107

Another Example: Matrix Method
Then

Let us say keys are u-bits long.
Say the table size M is power of 2.
an index is b-bits long with M = 2b.

The h function
Pick h to be a random b-by-u 0/1 matrix, and define h(x) = hx
where after the inner product we apply mod 2

Example

h

b

 1 0 0 0
0 1 1 1
1 1 1 0

u

x
1
0
1
0

 =

h (x) 1
1
0

67 / 107

Another Example: Matrix Method
Then

Let us say keys are u-bits long.
Say the table size M is power of 2.
an index is b-bits long with M = 2b.

The h function
Pick h to be a random b-by-u 0/1 matrix, and define h(x) = hx
where after the inner product we apply mod 2

Example

h

b

 1 0 0 0
0 1 1 1
1 1 1 0

u

x
1
0
1
0

 =

h (x) 1
1
0

67 / 107

Another Example: Matrix Method
Then

Let us say keys are u-bits long.
Say the table size M is power of 2.
an index is b-bits long with M = 2b.

The h function
Pick h to be a random b-by-u 0/1 matrix, and define h(x) = hx
where after the inner product we apply mod 2

Example

h

b

 1 0 0 0
0 1 1 1
1 1 1 0

u

x
1
0
1
0

 =

h (x) 1
1
0

67 / 107

Another Example: Matrix Method
Then

Let us say keys are u-bits long.
Say the table size M is power of 2.
an index is b-bits long with M = 2b.

The h function
Pick h to be a random b-by-u 0/1 matrix, and define h(x) = hx
where after the inner product we apply mod 2

Example

h

b

 1 0 0 0
0 1 1 1
1 1 1 0

u

x
1
0
1
0

 =

h (x) 1
1
0

67 / 107

First than anything

What is the meaning of multiply h by x

We can think of it as adding some of the columns of h where the 1
bits in indicate which to add

Without loosing generality assume the following
1 li 6= mi ⇒ for example li = 0 and mi = 1
2 lj = mj ∀j 6= i

68 / 107

First than anything

What is the meaning of multiply h by x

We can think of it as adding some of the columns of h where the 1
bits in indicate which to add

Without loosing generality assume the following
1 li 6= mi ⇒ for example li = 0 and mi = 1
2 lj = mj ∀j 6= i

68 / 107

First than anything

What is the meaning of multiply h by x

We can think of it as adding some of the columns of h where the 1
bits in indicate which to add

Without loosing generality assume the following
1 li 6= mi ⇒ for example li = 0 and mi = 1
2 lj = mj ∀j 6= i

68 / 107

Now Proof of being a Universal Family

Thus
The column i does not contribute to the final answer of h (l) because
of the zero!!!

h

b

 1 0 0 0
0 1 1 1
1 1 1 0

u

x
1
0
1
0

 =

h (x) 1
1
0

Now
Imagine that we fix all the other columns in h, and we allow the ith
column you have free choices

69 / 107

Now Proof of being a Universal Family

Thus
The column i does not contribute to the final answer of h (l) because
of the zero!!!

h

b

 1 0 0 0
0 1 1 1
1 1 1 0

u

x
1
0
1
0

 =

h (x) 1
1
0

Now
Imagine that we fix all the other columns in h, and we allow the ith
column you have free choices

69 / 107

Now, we do something strange

But having xi = 0 make h (x) to have a fix value, for example 1 0 0 0
0 1 1 1
1 1 1 0

1
1
0
1

 =

 1
0
1

In the contrary, we have y and with respect to a specific flipping
column of h 1 0 0 0

0 1 1 1
1 1 1 0

1
1
1
1

 =

 1
1
0

70 / 107

Now, we do something strange

But having xi = 0 make h (x) to have a fix value, for example 1 0 0 0
0 1 1 1
1 1 1 0

1
1
0
1

 =

 1
0
1

In the contrary, we have y and with respect to a specific flipping
column of h 1 0 0 0

0 1 1 1
1 1 1 0

1
1
1
1

 =

 1
1
0

70 / 107

We have others

For example 1 0 1 0
0 1 0 1
1 1 1 0

1
1
1
1

 =

 0
0
1

How many of them, when flipping on the ith column

2b

71 / 107

We have others

For example 1 0 1 0
0 1 0 1
1 1 1 0

1
1
1
1

 =

 0
0
1

How many of them, when flipping on the ith column

2b

71 / 107

Even the one that looks like

We have

 1 0 0 0
0 1 0 1
1 1 1 0

1
1
1
1

 =

 0
0
1

What is the probability of getting the same values i.e.

h (l) = h (m)

72 / 107

Even the one that looks like

We have

 1 0 0 0
0 1 0 1
1 1 1 0

1
1
1
1

 =

 0
0
1

What is the probability of getting the same values i.e.

h (l) = h (m)

72 / 107

Quite easy

Thus, given the randomness of the zeros and ones
The probability that we get equality is

P (h (l) = h (m)) = 1
2b

Or more formally

P (h (l) = h (m)) ≤ 1
2b

73 / 107

Quite easy

Thus, given the randomness of the zeros and ones
The probability that we get equality is

P (h (l) = h (m)) = 1
2b

Or more formally

P (h (l) = h (m)) ≤ 1
2b

73 / 107

Implementation of the column*vector mod 2

Code

i n t p roduc t (i n t row , i n t v e c t o r){

i n t i = row & ve c t o r ;

i = i − ((i >> 1) & 0x55555555) ;
i = (i & 0x33333333) + ((i >> 2) & 0x33333333) ;
i = (((i + (i >> 4)) & 0x0F0F0F0F) ∗ 0x01010101) >> 24 ;

r e t u r n i & i & 0x00000001 ;

}

74 / 107

Advantages of universal hashing

Advantages
Universal hashing provides good results on average, independently of
the keys to be stored.
Guarantees that no input will always elicit the worst-case behavior.
Poor performance occurs only when the random choice returns an
inefficient hash function; this has a small probability.

75 / 107

Advantages of universal hashing

Advantages
Universal hashing provides good results on average, independently of
the keys to be stored.
Guarantees that no input will always elicit the worst-case behavior.
Poor performance occurs only when the random choice returns an
inefficient hash function; this has a small probability.

75 / 107

Advantages of universal hashing

Advantages
Universal hashing provides good results on average, independently of
the keys to be stored.
Guarantees that no input will always elicit the worst-case behavior.
Poor performance occurs only when the random choice returns an
inefficient hash function; this has a small probability.

75 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
76 / 107

Open addressing

Definition
All the elements occupy the hash table itself.

What is it?
We systematically examine table slots until either we find the desired
element or we have ascertained that the element is not in the table.

Advantages
The advantage of open addressing is that it avoids pointers altogether.

77 / 107

Open addressing

Definition
All the elements occupy the hash table itself.

What is it?
We systematically examine table slots until either we find the desired
element or we have ascertained that the element is not in the table.

Advantages
The advantage of open addressing is that it avoids pointers altogether.

77 / 107

Open addressing

Definition
All the elements occupy the hash table itself.

What is it?
We systematically examine table slots until either we find the desired
element or we have ascertained that the element is not in the table.

Advantages
The advantage of open addressing is that it avoids pointers altogether.

77 / 107

Insert in Open addressing

Extended hash function to probe
Instead of being fixed in the order 0, 1, 2, ...,m− 1 with Θ (n) search
time.
Extend the hash function to
h : U × {0, 1, ...,m− 1} → {0, 1, ...,m− 1}.
This gives the probe sequence 〈h(k, 0), h(k, 1), ..., h(k,m− 1)〉.

I A permutation of 〈0, 1, 2, ...,m− 1〉

78 / 107

Insert in Open addressing

Extended hash function to probe
Instead of being fixed in the order 0, 1, 2, ...,m− 1 with Θ (n) search
time.
Extend the hash function to
h : U × {0, 1, ...,m− 1} → {0, 1, ...,m− 1}.
This gives the probe sequence 〈h(k, 0), h(k, 1), ..., h(k,m− 1)〉.

I A permutation of 〈0, 1, 2, ...,m− 1〉

78 / 107

Insert in Open addressing

Extended hash function to probe
Instead of being fixed in the order 0, 1, 2, ...,m− 1 with Θ (n) search
time.
Extend the hash function to
h : U × {0, 1, ...,m− 1} → {0, 1, ...,m− 1}.
This gives the probe sequence 〈h(k, 0), h(k, 1), ..., h(k,m− 1)〉.

I A permutation of 〈0, 1, 2, ...,m− 1〉

78 / 107

Insert in Open addressing

Extended hash function to probe
Instead of being fixed in the order 0, 1, 2, ...,m− 1 with Θ (n) search
time.
Extend the hash function to
h : U × {0, 1, ...,m− 1} → {0, 1, ...,m− 1}.
This gives the probe sequence 〈h(k, 0), h(k, 1), ..., h(k,m− 1)〉.

I A permutation of 〈0, 1, 2, ...,m− 1〉

78 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
79 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == NIL
5 T [j] = k
6 return j
7 else i = i + 1
8 until i == m

9 error “Hash Table Overflow”

80 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Hashing methods in Open Addressing

HASH-SEARCH(T,k)
1 i = 0
2 repeat
3 j = h (k, i)
4 if T [j] == k
5 return j
6 i = i + 1
7 until T [j] == NIL or i == m

8 return NIL

81 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
82 / 107

Linear probing: Definition and properties

Hash function
Given an ordinary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) =
(
h′(k) + i

)
mod m, (15)

Sequence of probes
Given key k, we first probe T [h′(k)], then T [h′(k) + 1] and so on until
T [m− 1]. Then, we wrap around T [0] to T [h′(k)− 1].

Distinct probes
Because the initial probe determines the entire probe sequence, there are
m distinct probe sequences.

83 / 107

Linear probing: Definition and properties

Hash function
Given an ordinary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) =
(
h′(k) + i

)
mod m, (15)

Sequence of probes
Given key k, we first probe T [h′(k)], then T [h′(k) + 1] and so on until
T [m− 1]. Then, we wrap around T [0] to T [h′(k)− 1].

Distinct probes
Because the initial probe determines the entire probe sequence, there are
m distinct probe sequences.

83 / 107

Linear probing: Definition and properties

Hash function
Given an ordinary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) =
(
h′(k) + i

)
mod m, (15)

Sequence of probes
Given key k, we first probe T [h′(k)], then T [h′(k) + 1] and so on until
T [m− 1]. Then, we wrap around T [0] to T [h′(k)− 1].

Distinct probes
Because the initial probe determines the entire probe sequence, there are
m distinct probe sequences.

83 / 107

Linear probing: Definition and properties

Disadvantages
Linear probing suffers of primary clustering.
Long runs of occupied slots build up increasing the average search
time.
Long runs of occupied slots tend to get longer, and the average
search time increases.

84 / 107

Linear probing: Definition and properties

Disadvantages
Linear probing suffers of primary clustering.
Long runs of occupied slots build up increasing the average search
time.
Long runs of occupied slots tend to get longer, and the average
search time increases.

84 / 107

Linear probing: Definition and properties

Disadvantages
Linear probing suffers of primary clustering.
Long runs of occupied slots build up increasing the average search
time.
Long runs of occupied slots tend to get longer, and the average
search time increases.

84 / 107

Why?

Clusters arise because an empty slot preceded by i full slots gets filled
next with probability i+1

m
.

h(key)

i Slots

Empty
Slot

Thus
The probability of getting a collision increases dramatically after each
insertion.

85 / 107

Why?

Clusters arise because an empty slot preceded by i full slots gets filled
next with probability i+1

m
.

h(key)

i Slots

Empty
Slot

Thus
The probability of getting a collision increases dramatically after each
insertion.

85 / 107

Example

Example using keys uniformly distributed
It was generated using the division method

Then

86 / 107

Example
Example using keys uniformly distributed
It was generated using the division method

Then

86 / 107

Example

Example using Gaussian keys
It was generated using the division method

Then

87 / 107

Example
Example using Gaussian keys
It was generated using the division method

Then

87 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
88 / 107

Linear Probing, Insertion and Deletion

Constraints
Divisor = m (number of buckets) = 17.
Home bucket = key % 17.

Then
Put in pairs whose keys are 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

We have

89 / 107

Linear Probing, Insertion and Deletion

Constraints
Divisor = m (number of buckets) = 17.
Home bucket = key % 17.

Then
Put in pairs whose keys are 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

We have

89 / 107

Linear Probing, Insertion and Deletion

Constraints
Divisor = m (number of buckets) = 17.
Home bucket = key % 17.

Then
Put in pairs whose keys are 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

We have

89 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
90 / 107

Linear Probing – Remove

Example

remove(0)

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

91 / 107

Linear Probing – Remove

Example

remove(0)

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

91 / 107

Linear Probing – Remove

Example

remove(0)

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

91 / 107

Linear Probing – remove(34)

Example

remove(34)

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

92 / 107

Linear Probing – remove(34)

Example

remove(34)

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

92 / 107

Linear Probing – remove(34)
Example

remove(34)

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

92 / 107

Linear Probing – remove(29)

Example

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

93 / 107

Linear Probing – remove(29)

Example

Compact Cluster
Search cluster for pair (if any) to fill vacated bucket.

93 / 107

Code for Removing
We have the following

p u b l i c vo i d remove (key){
i n t p o s i t i o n sChe c k ed = 1 ;
i n t i = F i ndS l o t (Key) ;
i f (Table [i] == n u l l)

r e t u r n ; // key i s not i n the t a b l e
j = i ;
wh i l e (p o s i t i o n sCh e c k ed <= Table . l e n g t h){

j = (j +1) % Table . l e n g t h ;
i f (Table [j] == n u l l) b reak ;
k = Hashing (Table [j] . key) ;
i f (i < j && (k <= i | | k > j)) | |

(j < i && (k <= i && k > j)) {
Table [i] = Table [j] ;
i = j ;

}
po s i t i o nChe ck ed++;

}
Table [i] = n u l l ;

}
94 / 107

Explanation

First
For all records in a cluster, there must be no vacant slots between their
natural hash position and their current position (else lookups will
terminate before finding the record).

Second
k is the raw hash where the record at j would naturally land in the
hash table if there were no collisions.

Thus
This test is asking if the record at j is invalidly positioned with respect to
the required properties of a cluster now that i is vacant.

95 / 107

Explanation

First
For all records in a cluster, there must be no vacant slots between their
natural hash position and their current position (else lookups will
terminate before finding the record).

Second
k is the raw hash where the record at j would naturally land in the
hash table if there were no collisions.

Thus
This test is asking if the record at j is invalidly positioned with respect to
the required properties of a cluster now that i is vacant.

95 / 107

Explanation

First
For all records in a cluster, there must be no vacant slots between their
natural hash position and their current position (else lookups will
terminate before finding the record).

Second
k is the raw hash where the record at j would naturally land in the
hash table if there were no collisions.

Thus
This test is asking if the record at j is invalidly positioned with respect to
the required properties of a cluster now that i is vacant.

95 / 107

Case 1

We have the following
Case 1

i j

k k

we have i < j

If i < k ≤ j then moving j to the i position will be incorrect... Why?

96 / 107

Case 2

We have the following
Case 2

ij

k

We have j < i

If k ≤ j < or i < k then moving j to the i position will be
incorrect... Why?

97 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
98 / 107

Quadratic probing: Definition and properties

Hash function
Given an auxiliary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) = (h′(k) + c1i+ c2i
2) mod m, (16)

where c1, c2 are auxiliary constants

Sequence of probes
Given key k, we first probe T [h′(k)], later positions probed are offset
by amounts that depend in a quadratic manner on the probe number
i.
The initial probe determines the entire sequence, and so only m
distinct probe sequences are used.

99 / 107

Quadratic probing: Definition and properties

Hash function
Given an auxiliary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) = (h′(k) + c1i+ c2i
2) mod m, (16)

where c1, c2 are auxiliary constants

Sequence of probes
Given key k, we first probe T [h′(k)], later positions probed are offset
by amounts that depend in a quadratic manner on the probe number
i.
The initial probe determines the entire sequence, and so only m
distinct probe sequences are used.

99 / 107

Quadratic probing: Definition and properties

Hash function
Given an auxiliary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) = (h′(k) + c1i+ c2i
2) mod m, (16)

where c1, c2 are auxiliary constants

Sequence of probes
Given key k, we first probe T [h′(k)], later positions probed are offset
by amounts that depend in a quadratic manner on the probe number
i.
The initial probe determines the entire sequence, and so only m
distinct probe sequences are used.

99 / 107

Quadratic probing: Definition and properties

Hash function
Given an auxiliary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) = (h′(k) + c1i+ c2i
2) mod m, (16)

where c1, c2 are auxiliary constants

Sequence of probes
Given key k, we first probe T [h′(k)], later positions probed are offset
by amounts that depend in a quadratic manner on the probe number
i.
The initial probe determines the entire sequence, and so only m
distinct probe sequences are used.

99 / 107

Quadratic probing: Definition and properties

Hash function
Given an auxiliary hash function h′ : U → {0, 1, ...,m− 1} for
i = 0, 1, ...,m− 1, we get the extended hash function

h(k, i) = (h′(k) + c1i+ c2i
2) mod m, (16)

where c1, c2 are auxiliary constants

Sequence of probes
Given key k, we first probe T [h′(k)], later positions probed are offset
by amounts that depend in a quadratic manner on the probe number
i.
The initial probe determines the entire sequence, and so only m
distinct probe sequences are used.

99 / 107

Quadratic probing: Definition and properties

Advantages
This method works much better than linear probing, but to make full use
of the hash table, the values of c1,c2, and m are constrained.

Disadvantages
If two keys have the same initial probe position, then their probe sequences
are the same, since h(k1, 0) = h(k2, 0) implies h(k1, i) = h(k2, i). This
property leads to a milder form of clustering, called secondary clustering.

100 / 107

Quadratic probing: Definition and properties

Advantages
This method works much better than linear probing, but to make full use
of the hash table, the values of c1,c2, and m are constrained.

Disadvantages
If two keys have the same initial probe position, then their probe sequences
are the same, since h(k1, 0) = h(k2, 0) implies h(k1, i) = h(k2, i). This
property leads to a milder form of clustering, called secondary clustering.

100 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
101 / 107

Definition and properties

Hash function
Double hashing uses a hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m, (17)

where i = 0, 1, ...,m− 1 and h1, h2 are auxiliary hash functions (Normally
for a Universal family)

Sequence of probes
Given key k, we first probe T [h1(k)], successive probe positions are
offset from previous positions by the amount h2(k) mod m.
Thus, unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key k, since the initial
probe position, the offset, or both, may vary.

102 / 107

Definition and properties

Hash function
Double hashing uses a hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m, (17)

where i = 0, 1, ...,m− 1 and h1, h2 are auxiliary hash functions (Normally
for a Universal family)

Sequence of probes
Given key k, we first probe T [h1(k)], successive probe positions are
offset from previous positions by the amount h2(k) mod m.
Thus, unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key k, since the initial
probe position, the offset, or both, may vary.

102 / 107

Definition and properties

Hash function
Double hashing uses a hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m, (17)

where i = 0, 1, ...,m− 1 and h1, h2 are auxiliary hash functions (Normally
for a Universal family)

Sequence of probes
Given key k, we first probe T [h1(k)], successive probe positions are
offset from previous positions by the amount h2(k) mod m.
Thus, unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key k, since the initial
probe position, the offset, or both, may vary.

102 / 107

Definition and properties

Hash function
Double hashing uses a hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m, (17)

where i = 0, 1, ...,m− 1 and h1, h2 are auxiliary hash functions (Normally
for a Universal family)

Sequence of probes
Given key k, we first probe T [h1(k)], successive probe positions are
offset from previous positions by the amount h2(k) mod m.
Thus, unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key k, since the initial
probe position, the offset, or both, may vary.

102 / 107

Definition and properties

Hash function
Double hashing uses a hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m, (17)

where i = 0, 1, ...,m− 1 and h1, h2 are auxiliary hash functions (Normally
for a Universal family)

Sequence of probes
Given key k, we first probe T [h1(k)], successive probe positions are
offset from previous positions by the amount h2(k) mod m.
Thus, unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key k, since the initial
probe position, the offset, or both, may vary.

102 / 107

Definition and properties

Advantages
When m is prime or a power of 2, double hashing improves over linear
or quadratic probing in that Θ(m2) probe sequences are used, rather
than Θ(m) since each possible (h1(k), h2(k)) pair yields a distinct
probe sequence.
The performance of double hashing appears to be very close to the
performance of the “ideal” scheme of uniform hashing.

103 / 107

Definition and properties

Advantages
When m is prime or a power of 2, double hashing improves over linear
or quadratic probing in that Θ(m2) probe sequences are used, rather
than Θ(m) since each possible (h1(k), h2(k)) pair yields a distinct
probe sequence.
The performance of double hashing appears to be very close to the
performance of the “ideal” scheme of uniform hashing.

103 / 107

Example

Jumping around to insert 14 with h1 (k) = k mod 13 and
h2 (k) = 1 + (k mod 11)

104 / 107

Outline
1 Basic Data Structures and Operations

The Basics

2 Hash tables
Concepts
The Small and Large Universe of Keys
Collisions and Chaining
Analysis of hashing under Chaining
The Successful and Unsuccessful Search

3 Hashing Methods
Which Hash Function?
The Division Method
The Multiplication Method
Clustering Analysis of Hashing Functions

First, Enforcing the Uniform Hash Distribution
Second, There is no Uniform Hash Distribution

A Possible Solution, Universal Hashing
Universal Hash Functions
Example by a Posteriori Idea

4 Open Addressing
Introduction
Hashing Methods
Linear Probing
Linear Probing, Insertion and Deletion

Now, A Problem
Quadratic Probing
Double Hashing
Analysis of Open Addressing

5 Exercises
105 / 107

Analysis of Open Addressing

Theorem 11.6
Given an open-address hash table with load factor α = n

m < 1, the
expected number of probes in an unsuccessful search is at most 1

1−α
assuming uniform hashing.

Corollary
Inserting an element into an open-address hash table with load factor̨
requires at most 1

1−α probes on average, assuming uniform hashing.

Theorem 11.8
Given an open-address hash table with load factor α < 1, the expected
number of probes in a successful search is at most 1

α ln 1
1−α assuming

uniform hashing and assuming that each key in the table is equally likely
to be searched for.

106 / 107

Analysis of Open Addressing

Theorem 11.6
Given an open-address hash table with load factor α = n

m < 1, the
expected number of probes in an unsuccessful search is at most 1

1−α
assuming uniform hashing.

Corollary
Inserting an element into an open-address hash table with load factor̨
requires at most 1

1−α probes on average, assuming uniform hashing.

Theorem 11.8
Given an open-address hash table with load factor α < 1, the expected
number of probes in a successful search is at most 1

α ln 1
1−α assuming

uniform hashing and assuming that each key in the table is equally likely
to be searched for.

106 / 107

Analysis of Open Addressing

Theorem 11.6
Given an open-address hash table with load factor α = n

m < 1, the
expected number of probes in an unsuccessful search is at most 1

1−α
assuming uniform hashing.

Corollary
Inserting an element into an open-address hash table with load factor̨
requires at most 1

1−α probes on average, assuming uniform hashing.

Theorem 11.8
Given an open-address hash table with load factor α < 1, the expected
number of probes in a successful search is at most 1

α ln 1
1−α assuming

uniform hashing and assuming that each key in the table is equally likely
to be searched for.

106 / 107

Exercise’s

From Cormen’s book, chapters 11
11.1-2
11.2-1
11.2-2
11.2-3
11.3-1
11.3-3

107 / 107

	Basic Data Structures and Operations
	The Basics

	Hash tables
	Concepts
	The Small and Large Universe of Keys
	Collisions and Chaining
	Analysis of hashing under Chaining
	The Successful and Unsuccessful Search

	Hashing Methods
	Which Hash Function?
	The Division Method
	The Multiplication Method
	Clustering Analysis of Hashing Functions
	A Possible Solution, Universal Hashing
	Universal Hash Functions
	Example by a Posteriori Idea

	Open Addressing
	Introduction
	Hashing Methods
	Linear Probing
	Linear Probing, Insertion and Deletion
	Quadratic Probing
	Double Hashing
	Analysis of Open Addressing

	Exercises

