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We have the following problem [1, 2]

We have an image as a Query...
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Image Retrieval
We want to ask a large database of images for the most similar
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Scene Completion Problem

Then, we want to get the possible nearest elements to it
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A Common Problem

Problems
Many problems can be expressed as finding “similar” sets:

I Basically... Finding near-neighbors in high-dimensional space
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Examples

Pages with similar words
For duplicate detection, classification by topic...

Customers who purchased similar products
Products with similar customer sets...

Others
Images with similar features...
Users who visited the similar websites
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Given a database D with n items [3]

Define the following query NN (q, r, c) (Nearest Neighborhood (NN))
Given query q and two parameters r ≥ 0 and c ≥ 1.

If there exists x ∈ D such that D (q, x) ≤ r

Then report some y ∈ D such that D (y, r) ≤ cr

If there is no x ∈ D such that D (q, x) ≤ cr

Report Failure...
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Then, we have that

When c = 1
The query is precise

If there is a point at distance at most r from q, the algorithm reports
such a point

else it reports failure

Therefore
We can now perform binary search over r and compute the nearest
neighbor to an arbitrarily good approximation.
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When c is much larger than 1

Say 5
the algorithm is good for distinguishing two cases

If all points in D are very far away from q

At distance at least cr = 5r, the algorithm correctly reports failure.

If there is a point at most distance r from q

The algorithm will report some point, but this could be a point
further away at most 5r.

I Then, we need to do another test so look for equality
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Therefore

At the paper [3] by the legendary Rajeev Motwani
They described how to solve the Approximate Near-Neighbor Problem
using Point Location in Equal Balls (PLEB) defined as

B (x, r) = {p|d (x, p) ≤ r}

Point Location in Equal Balls
Given n radius r balls centered at C = {c1, c2, ..., cn} in Rd then
devise a data structure which for any query point q ∈ Rd does the
following

I If there exists ci ∈ C such that q ∈ B (ci, r) then return ci else return
NO

Note: Here n elements are the pre-processed elements at the
database.
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Therefore

The Question Arises
Given B (ci, r), How do we define a distance d?

B (x, r) = {p|d (x, p) ≤ r}
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Distance Measures

Goal
Find near-neighbors in high-dimensional space

I We formally define “near neighbors” as points that are a “small
distance” apart.

Application
For each application, we first need to define what “distance” means
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Jaccard Similarity

Jaccard Similarity/Distance of two sets is [4]
size of their intersection
the size of their union

This allows to define the function as

sim (C1, C2) = |C1 ∩ C2|
|C1 ∪ C2|

It allows to define a distance

d (C1, C2) = 1− |C1 ∩ C2|
|C1 ∪ C2|
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Example

Jaccard Similarity between sets
3 in intersection

8 in union
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Now, a concept on representations

Remember the Radix representation of a number

1011 = 1× 20 + 1× 21 + 0× 22 + 1× 23

This is a positional representation of a number
Each block is based in the position of a representative belonging to
the set {0, 1}:

Then, we have
This idea of representative... SHINGLES...

I A a rectangular tile of asphalt composite, wood, metal, or slate used on
walls or roofs.
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Finding Similar Documents

Goal
Given a large number (N in the millions or billions) of text
documents, find pairs that are “near duplicates.”
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What kind of problems can you have?

Problems
Many small pieces of one document can appear out of order in
another.
Too many documents to compare all pairs.
Documents are so large or so many that they cannot fit in main
memory.
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Therefore, we need do something

First, a representation of the documents
Documents consists of words

I One Shot Representation

Then, Shingle = Word
This works well for small documents, but a lot of them
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Another Example

Words in a Dictionary
Shingles = Fonts

Or something different?
Think about it...

25 / 131



Another Example

Words in a Dictionary
Shingles = Fonts

Or something different?
Think about it...

25 / 131



Outline
1 Introduction

Image Retrieval, Actually Any Kind of Retrieval
A Common Problem
Approximate Near-Neighbor Problem
Jaccard Similarity
Finding Similar Documents

2 Locality Sensitive Hashing Theory
Introduction
Sensitive Families of Hshing
Applying the Theorem to Distances
Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities
The Pipeline
Documents as High-Dimensional Data
Shingles
Similarity Metric for Shingles
A Possible Implementation of Jaccard
Now, Our Working Assumption
Encoding Sets
Finding Similar Columns
Generating Signatures
Min-Hashing
Implementation Tricks
Finally, Locality Sensitive Hashing
Locality Sensitive Hashing for Min-Hash
Partition M into b Bands
Playing the Probability Game
High Similarity Example
Low Similarity Example

A Trade-off
The Final Pipeline

26 / 131



Trying to solve the Approximate Near-Neighbor Problem

If we define the following idea of Neighbor Balls

B (x, r) = {p|d (x, p) ≤ r}

It is possible to define two Neighbors to solve such problem
Basically, a ball where the query is successful
An another ball where the query fails
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For this, we can define the following

Definition [3]
A family H = {h : S −→ U} is called (r1, r2, p1, p2)-sensitive for D if
for any q, p ∈ S

I If p ∈ B (q, r1) then PrH [h (q) = h (p)] ≥ p1
I If p /∈ B (q, r2) then PrH [h (q) = h (p)] ≤ p2

In order to have something useful
A Locality-Sensitive family to be useful, it has to satisfy p1 > p2 and
r1 < r2
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For example

We have rings and intervals

0 1
0 1
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They described the following algorithm

Locality Sensitive Hashing
Preprocessing

I Define a function family G =
{
g : S → Uk

}
such that

g (p) = [h1 (p) , ..., hk (p)] where hi ∈ H
I For an integer l, we choose l functions g1, ..., gl ∈ G independently and

uniformly at random.
I We store each p at the database through the use of Hashing into the

buckets.

Given a query q in the Search Process
1 We search all buckets g1 (q) , ..., gl (q)
2 If the number of points encountered are greater than 2l we interrupt

the search
3 Given the found points p1, ..., pt

1 For each pj , if pj ∈ B (q, r2) then return YES and pj else we return NO

30 / 131



They described the following algorithm

Locality Sensitive Hashing
Preprocessing

I Define a function family G =
{
g : S → Uk

}
such that

g (p) = [h1 (p) , ..., hk (p)] where hi ∈ H
I For an integer l, we choose l functions g1, ..., gl ∈ G independently and

uniformly at random.
I We store each p at the database through the use of Hashing into the

buckets.

Given a query q in the Search Process
1 We search all buckets g1 (q) , ..., gl (q)
2 If the number of points encountered are greater than 2l we interrupt

the search
3 Given the found points p1, ..., pt

1 For each pj , if pj ∈ B (q, r2) then return YES and pj else we return NO

30 / 131



They described the following algorithm

Locality Sensitive Hashing
Preprocessing

I Define a function family G =
{
g : S → Uk

}
such that

g (p) = [h1 (p) , ..., hk (p)] where hi ∈ H
I For an integer l, we choose l functions g1, ..., gl ∈ G independently and

uniformly at random.
I We store each p at the database through the use of Hashing into the

buckets.

Given a query q in the Search Process
1 We search all buckets g1 (q) , ..., gl (q)
2 If the number of points encountered are greater than 2l we interrupt

the search
3 Given the found points p1, ..., pt

1 For each pj , if pj ∈ B (q, r2) then return YES and pj else we return NO

30 / 131



They described the following algorithm

Locality Sensitive Hashing
Preprocessing

I Define a function family G =
{
g : S → Uk

}
such that

g (p) = [h1 (p) , ..., hk (p)] where hi ∈ H
I For an integer l, we choose l functions g1, ..., gl ∈ G independently and

uniformly at random.
I We store each p at the database through the use of Hashing into the

buckets.

Given a query q in the Search Process
1 We search all buckets g1 (q) , ..., gl (q)
2 If the number of points encountered are greater than 2l we interrupt

the search
3 Given the found points p1, ..., pt

1 For each pj , if pj ∈ B (q, r2) then return YES and pj else we return NO

30 / 131



They described the following algorithm

Locality Sensitive Hashing
Preprocessing

I Define a function family G =
{
g : S → Uk

}
such that

g (p) = [h1 (p) , ..., hk (p)] where hi ∈ H
I For an integer l, we choose l functions g1, ..., gl ∈ G independently and

uniformly at random.
I We store each p at the database through the use of Hashing into the

buckets.

Given a query q in the Search Process
1 We search all buckets g1 (q) , ..., gl (q)
2 If the number of points encountered are greater than 2l we interrupt

the search
3 Given the found points p1, ..., pt

1 For each pj , if pj ∈ B (q, r2) then return YES and pj else we return NO

30 / 131



They described the following algorithm

Locality Sensitive Hashing
Preprocessing

I Define a function family G =
{
g : S → Uk

}
such that

g (p) = [h1 (p) , ..., hk (p)] where hi ∈ H
I For an integer l, we choose l functions g1, ..., gl ∈ G independently and

uniformly at random.
I We store each p at the database through the use of Hashing into the

buckets.

Given a query q in the Search Process
1 We search all buckets g1 (q) , ..., gl (q)
2 If the number of points encountered are greater than 2l we interrupt

the search
3 Given the found points p1, ..., pt

1 For each pj , if pj ∈ B (q, r2) then return YES and pj else we return NO

30 / 131



They described the following algorithm

Locality Sensitive Hashing
Preprocessing

I Define a function family G =
{
g : S → Uk

}
such that

g (p) = [h1 (p) , ..., hk (p)] where hi ∈ H
I For an integer l, we choose l functions g1, ..., gl ∈ G independently and

uniformly at random.
I We store each p at the database through the use of Hashing into the

buckets.

Given a query q in the Search Process
1 We search all buckets g1 (q) , ..., gl (q)
2 If the number of points encountered are greater than 2l we interrupt

the search
3 Given the found points p1, ..., pt

1 For each pj , if pj ∈ B (q, r2) then return YES and pj else we return NO

30 / 131



Therefore

Then, we choose k and l to ensure that with constant probability the
following properties hold

1 If there exists p ∈ B (q, r1) then gj (p) = gj (q) for some j = 1, ..., l.
2 The total number of collisions of q with points from P −B (q, r1) is

less than 2l:

l∑
j=1

∣∣∣P −B (q, r1) ∩ g−1
j (gj (q))

∣∣∣ < 2l

Something Notable
If (1) and (2) hold, the algorithm is correct.
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Theorem

(r1, r2, p1, p2)-sensitive family H for D (p1 > p2 and r1 < r2)
Then, there exists and algorithm for (r1, r2)-Point Location in Equal
Balls under measure D which uses O

(
dn+ n1+ρ) space and O (nρ)

evaluations of the hash function for each query where

ρ =
log 1

p1

log 1
p2
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Proof

For this, we only need (1) and (2) hold
With probability P1 and P2 strictly greater than half

Assume that p ∈ B (q, r1)
Set k = log 1

p2
n, an arbitrary number of dimensions for

g (p) = [h1 (p) , ..., hk (p)]

We have that ( 1
p2

)k
= n log 1

p2

1
p2
⇒ pk2 = 1

n
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Proof

Then the probability that g (p) = g (q) for p ∈ P −B (q, r2)
It is at most pk2 = 1

n assuming that the hash functions are randomly
independently selected.

Thus, the expected number of elements from P −B (q, r2)
Colliding with q under fixed gj is at most 1.

Then, the expected number of such collisions with any gj is at most l
Then we can use the Markov inequality
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Markov Inequality

If X is a non-negative random variable and a > 0
Then, the probability that X is at least a is at most the expectation
of X divided by a:

P (X ≥ a) ≤ E (X)
a

Therefore for any gj a random variable

P (gj ≥ 2l) ≤ E (gj)
2l = l

2l = 1
2
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Then

At property (2)
The total number of collisions of q with points from P −B (q, r1) is
less than 2l:

l∑
j=1

∣∣∣P −B (q, r1) ∩ g−1
j (gj (q))

∣∣∣ < 2l
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Therefore, we have

Then, we have that ∑l
j=1

∣∣∣P −B (q, r1) ∩ g−1
j (gj (q))

∣∣∣ = ∗ is also a
random variable

P (∗ < 2l) = 1− P (∗ ≥ 2l)

> 1− 1
2 = 1

2
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Now

Consider now the probability of gj (p) = gj (q)
Given that p ∈ B (q, r1) then PrH [h (q) = h (p)] ≥ p1

P (gj (p) = gj (q)) ≥ (p1)k = p
log 1

p2
n

1 = n
− log 1/p1

log 1/p2 = n−ρ

Thus, the probability that such a gj exists is at least

P1 ≥ 1−
(
1− n−ρ

)l
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Why?

We have P (gj (p) 6= gj (q)) = 1− P (gj (p) = gj (q)) ≤ 1− n−ρ

Thus, we have
P1 = P (p∈B(q, r1) then gj (p)=gj (q) for some j = 1, ..., l)

P (p∈B(q, r1) then gj (p)=gj (q), for some j = 1, ..., l) ≥ 1−
(
1− n−ρ

)l
By Setting l = nρ

P1 > 1− 1
e
>

1
2 Q.E.D.
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We can use this [3]

That Jaccard Similarity is a way to define distance
There are others, for example the Hamming Distance...

For example
Consider the Hamming cube {0, 1}d the there is `1 − distance
defined has

D (x, y) =
d∑
i=1
|xk − yk|

I It simply counts the number of coordinates where the points differ.
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Now, What if we introduce a hash family?

Consider the following hash family of functions

H =
{
hk|hk (x) = kth bit of x

}
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Then, a Direct Application

Proposition - remember p1 > p2 and r1 < r2 for utility
Let S = Hd and D (p, q) be a Hamming metric. Then for any r, ε > 0
then H is

(
r, r (1 + ε) , 1− r

d , 1−
r(1+ε)
d

)
-senstive.

From this the following Corollary [3]
For any ε > 0, there exists an algorithm for ε-PLEB in Hd or ldp for
any p ∈ [1, 2] using O

(
dn+ n1+ 1

1+ε
)
space and O

(
n

1
1+ε
)
hash

function for each query (n is the size of the database). The hash
function can be evaluated using O (d) operations.

44 / 131



Then, a Direct Application

Proposition - remember p1 > p2 and r1 < r2 for utility
Let S = Hd and D (p, q) be a Hamming metric. Then for any r, ε > 0
then H is

(
r, r (1 + ε) , 1− r

d , 1−
r(1+ε)
d

)
-senstive.

From this the following Corollary [3]
For any ε > 0, there exists an algorithm for ε-PLEB in Hd or ldp for
any p ∈ [1, 2] using O

(
dn+ n1+ 1

1+ε
)
space and O

(
n

1
1+ε
)
hash

function for each query (n is the size of the database). The hash
function can be evaluated using O (d) operations.

44 / 131



Outline
1 Introduction

Image Retrieval, Actually Any Kind of Retrieval
A Common Problem
Approximate Near-Neighbor Problem
Jaccard Similarity
Finding Similar Documents

2 Locality Sensitive Hashing Theory
Introduction
Sensitive Families of Hshing
Applying the Theorem to Distances
Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities
The Pipeline
Documents as High-Dimensional Data
Shingles
Similarity Metric for Shingles
A Possible Implementation of Jaccard
Now, Our Working Assumption
Encoding Sets
Finding Similar Columns
Generating Signatures
Min-Hashing
Implementation Tricks
Finally, Locality Sensitive Hashing
Locality Sensitive Hashing for Min-Hash
Partition M into b Bands
Playing the Probability Game
High Similarity Example
Low Similarity Example

A Trade-off
The Final Pipeline

45 / 131



From this

We can actually do better
If we assume sparse data

Proposition
Let S be the set of all subsets of X = {1, ..., x} (Shingles/Set
Representation) and let D be the set resemblance measure (Jaccard).
Then, for 1 > r1 > r2 > 0 the following hash family is (r1, r2, r1, r2)-
sensitive

H =
{
hπ|hπ (A) = max

a∈A
π (a) , π is a permutation of X

}

46 / 131



From this

We can actually do better
If we assume sparse data

Proposition
Let S be the set of all subsets of X = {1, ..., x} (Shingles/Set
Representation) and let D be the set resemblance measure (Jaccard).
Then, for 1 > r1 > r2 > 0 the following hash family is (r1, r2, r1, r2)-
sensitive

H =
{
hπ|hπ (A) = max

a∈A
π (a) , π is a permutation of X

}

46 / 131



Here

Shingles
A way to represent objects using power set elements when having
basic set construction elements of such objects

For example, in short documents
You can disregard the order (Although in modern algorithms, we have
seen the utility of such order) and have a set representation of the
document

Where the elements
They are the words at the language dictionary.
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Therefore

We have the following Corollary
For 0 < ε, r < 1, there exists an algorithm for (r, εr)-PLEB under D
using O

(
dn+ n1+ρ) space and O (nρ) evaluations for each query,

where ρ = log r
log εr .
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The Pipeline for the Locality Sensitive Hashing

The Process of Identification

Candidate Pairs

Shingling Min Hashing

Locality Sensitive Hashing

in the document
of length k that appear

The Set of Strings short integer vectors

Signatures

that represent the sets,

and the reflect their similarity

Pairs to be Tested

Documents
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Documents as High-Dimensional Data

Step 1: Shingling
Convert documents to sets.

We can define
Document = set of words appearing in document.
Document = set of “important” words.
Problem, they do not work well for this application. Why?

We want to avoid to get tangled in the text structure
Avoid taking in account the ordering of words!
Think about Sets: Use Shingles!!!
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Shingles

k-shingle
A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc.

I Tokens can be characters, words or something else, depending on the
application.

I Assume tokens = characters for the examples.

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}

I Another possible option: Shingles as a bag (multiset). Thus, count ab
twice: S’(D1) = {ab, bc, ca, ab}
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Compressing Shingles

Compress
To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc
Represent a doc by the set of hash values of its k-shingles (Use the
sensitivity hash family).

Example
k = 2; document D1 = abcab Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles using the Universal Hash method to a hash table.
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Similarity Metric for Shingles

Document
Document D1 = set of k-shingles C1 = S(D1)

0/1 vector
Equivalently, each document is a 0/1 vector in the space of k-shingles

I Each unique shingle is a dimension.
I Problem!!! Vectors are very sparse.

F We need a measure that can handle this situation.

A natural similarity measure is the Jaccard similarity

sim (D1, D2) = |D1 ∩D2|
|D1 ∪D2|

(1)
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However

This is assuming a non-sparse representation
But using an array of int to represent the shingles at the documents
by bits 0 or 1

However
We can use sparse vector (Hit in speed but less space)
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How do we can implement this? SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

// This works on l y i n 32 b i t s
i n t PopCount ( i n t v e c t o r ){

i n t i = v e c t o r ;

i = i − ( ( i >> 1) & 0 x55555555 ) ;
i = ( i & 0 x33333333 ) + ( ( i >> 2) & 0 x33333333 ) ;
i = ( ( ( i + ( i >> 4)) & 0x0F0F0F0F ) ∗ 0 x01010101 ) >> 24 ;

r e t u r n i ;

}

We can use this (There are better )
Together with AND and OR to implement the Jaccard similarity
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Therefore

We have

l ong Jaca rd ( i n t ∗C1 , i n t ∗C2 , i n t n ){
i n t i ;
l ong union , i n t e r s e c t i o n ;
un ion = 0 ;
i n t e r s e c t i o n = 0 ;
f o r ( i = 0 ; i < n ; i ++){

un ion = un ion + . . .
( l ong ) PopCount ( C1 [ i ] | C2 [ i ] ) ;

i n t e r s e c t i o n = i n t e r s e c t i o n + . . .
( l ong ) PopCount ( C1 [ i ] & C2 [ i ] ) ;

}
r e t u r n un ion / i n t e r s e c t i o n ;

}
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Working Assumption

Similar text
Documents that have lots of shingles in common have similar text,
even if the text appears in different order.

Caveat
You must pick k large enough, or most documents will have most
shingles.
It seems to be that

I k = 5 is OK for short documents.
I k = 10 is better for long documents.
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Another Motivation for Min-Hash/Locality Sensitive
Hashing

Imagine the following
We need to find near-duplicate documents with data sets of size in
the millions, for example, N = 1, 000, 000.

Compute pairwise Jaccard similarities
Naively, we would have to compute pairwise Jaccard similarities for
every pair of docs.

I Not a god idea when, N(N−1)
2 ≈ 5 ∗ 1011 comparisons.

I At 105 seconds per day and 106 comparisons per second, it would take
5 days.

For something larger
For N = 10 million, it takes more than a year...
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Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that
have significant intersection.

Encode sets using 0/1 (bit, Boolean) vectors.
I One dimension per element in the universal set.
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Encoding Sets as Bit Vectors

As we said it
Interpret set intersection as bit-wise AND, and set union as bit-wise
OR.
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Example

C1 = 10111 and C2 = 10011
Size of intersection = 3 and size of union = 4,

Jaccard similarity

sim (C1, C2) = 3
4

Thus, the distance

d (C1, C2) = 1− 3
4 = 1

4
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From Sets to Boolean Matrices

Rows
Rows are equal to elements (shingles)

Columns
The Columns are equal to sets (documents)

I ONE in row e and column s if and
only if e is a member of s

I Column similarity is the Jaccard
similarity of the corresponding sets
(rows with value ONE)
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Here, a problem arises

Column similarity is the Jaccard similarity of the corresponding sets (rows with
value 1)

Such matrix is typically sparse!

We need to solve this
After all sparsity is problematic for the use of memory.
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Finding Similar Columns

Documents → Sets of shingles
We have been able to represent them as sets vectors in a matrix

We can now try to reduce the size of the sparse representations
Using a technique called Min-Hash to find small signatures...

However, we still have a problem
Because comparing all pairs is too expansive...

72 / 131



Finding Similar Columns

Documents → Sets of shingles
We have been able to represent them as sets vectors in a matrix

We can now try to reduce the size of the sparse representations
Using a technique called Min-Hash to find small signatures...

However, we still have a problem
Because comparing all pairs is too expansive...

72 / 131



Finding Similar Columns

Documents → Sets of shingles
We have been able to represent them as sets vectors in a matrix

We can now try to reduce the size of the sparse representations
Using a technique called Min-Hash to find small signatures...

However, we still have a problem
Because comparing all pairs is too expansive...

72 / 131



How do we accomplish something like that

First than anything
What are going to be our signatures of columns?

I Which in addition keeps a specific property!!!

Which property?
Once new signatures are generated...

I if s (C1, C2)→ 1, the similarity of such signatures is also high!!!
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We can use Hashing!!!

Hashing the Columns
Hash each column C to a small signature h(C)

Such that
h(C) is small enough that the signature fits in RAM
sim (C1, C2) is the same as the “similarity” of signatures h (C1) and
h (C2)
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Therefore, we want

Find a hash function h(·) such that
if sim (C1, C2) is high, then with high probability h (C1) = h (C2).
if sim (C1, C2) is low, then with high probability h (C1) 6= h (C2).

We can use the buckets of the Hash Table for this
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Thus, we can do the following

Thus, we hash documents into buckets
And we expect that the hash respect the similarity of “near”
duplicates.
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Min-Hashing

Similarity Metric
Clearly, the hash function depends on the similarity metric:

I Not all similarity metrics have a suitable hash function.

Hash Functions
There is a suitable hash function for the Jaccard similarity,
Min-Hashing
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Remember the Corollary about the Permutation Hash
Family

Random permutation
Imagine the rows of the Boolean matrix permuted under random
permutation π .

Define a Hash function hπ(C)
hπ(C) = the number of the first row, in order π, in which column C
has value 1,

hπ(C) = minπ {π(C)}

Thus, we can use this permutations
Use many independent hash functions to create a signature of a
column.
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Min-Hashing Example

We have the following mapping
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Surprising Property

When choosing a random permutation π
We claim having the following equality:

Pr [hπ (C1) = hπ (C2)] = sim (C1, C2)

How is this possible?
Let X be a document (set of shingles)

We have that given |X| shingles, then under random uniform
permutation

Pr [π (x) = min (π (X))] = 1
|X|
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Why is this possible

It is equally likely that any x ∈ X is mapped to the min element
Thus, we have an x such that

π (x) = min
[
π
(
C1
⋃
C2
)]

Then either
π (x) = min (π (C1)) if x ∈ C1 , or π(x) = min (π (C2)) if x ∈ C2

Thus, we have
One of the two cols had to have 1 at position x.
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Then, we have that

We realize that when x = C1 ∩ C2

Pr [min (π (C1)) = min (π (C2))] = |C1 ∩ C2|
|C1 ∪ C2|

= sim (C1, C2)
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Now, we have Four Types of Rows between Documents

Given cols C1 and C2, rows may be classified based on its similarity

C1 C2

A 1 1
B 1 0
C 0 1
D 0 0
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Then, we define

The following cardinalities
1 a =Number of Rows of type A,
2 b =Number of Rows of type B,
3 c =Number of Rows of type C,
4 d =Number of Rows of type D.

Then, we have

sim (C1, C2) = a

a+ b+ c
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Then, we have

Look down the cols C1 and C2 until we see a 1

Pr [h (C1) = h (C2)] = sim (C1, C2)

Something Notable
If it’s a type-A row, then h (C1) = h (C2)
If a type-B or type-C row, then not.

Finally, as they say

Pr [hπ (C1) = hπ (C2)] = sim (C1, C2)
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Similarity for Signatures

We know Pr [hπ (C1) = hπ (C2)] = sim (C1, C2)
Now generalize to multiple hash functions

Similarity
The similarity of two signatures is the fraction of the hash functions
in which they agree

Note
Because of the Minhash property, the similarity of columns is the
same as the expected similarity of their signatures
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Min-Hashing Example

Example
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We can see that

We have the following
Similarity C1|C2 C1|C3 C1|C4 C2|C3 C2|C4 C3|C4

Vector Shingles 3
6

2
5

1
7

1
5

2
5 0

Vector Signatures 1
3

2
3 0 1

4
1
4 0

Therefore the need to have more permutations
Remember the Corollary?
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After Many Proofs

Corollary [3]
For 0 < ε, r < 1, there exists an algorithm for (r, εr)-PLEB under D
using O

(
dn+ n1+ρ) space and O (nρ) evaluations for each query,

where ρ = log r
log εr .
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Min-Hash Signatures

We increase the number of signatures too look more like the original
sim Vector Shingle based

Pick K = 100 random permutations of the rows.
Think of sig(C) (Signature of C) as a column vector.

We have that
sig (C) [i] =according to the ith permutation, the index of the first
row that has a 1 in column C

sig (C) [i] = min (π [i (C)])

The signature of the document can be made small ∼ 100 bytes!
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Implementation Trick

However
Permuting rows is prohibitive!!!

And Hashing come to the rescue again!!!
Pick K = 100 hash functions gi
Ordering under gi gives a random row permutation!
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One-pass implementation

For each column C and hash-function gi keep a “slot” for the
min-hash value

1 Initialize all sig (C) [i] =∞
2 Scan rows looking for 1′s
3 Suppose row j has 1 in column C
4 Then for each gi:
5 If gi (j) < sig (C) [i] , then sig (C) [i] = gi (j)
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Selecting such hash functions

How to pick a random hash function h(x)?
Universal Hashing

For example, ha,b (x) = ((a · x+ b) mod p) mod N where:
a, b random integers
p a prime number (p > N)
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Locality Sensitive Hashing

Find documents with Jaccard similarity at least s
For some similarity threshold, for example, s = 0.8

Locality Sensitive Hashing – General idea
Use a function f(x, y) that tells whether x and y is a candidate pair

I A pair of elements whose similarity must be evaluated.

For Min-Hash matrices
Hash columns of signature matrix M to many buckets.

I Thus, each pair of documents that hashes into the same bucket is a
candidate pair.
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Candidates from Min-Hash

Pick a similarity threshold s (0 < s < 1)
Around this, we need to design the Min-Hash

Columns x and y of M are a candidate pair
if their signatures agree on at least fraction s of their rows:

I M(i, x) = M(i, y) for at least fraction s of values of i.
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Why

Remember
For 0 < ε, r < 1, there exists an algorithm for (r, εr)-PLEB under D
using O

(
dn+ n1+ρ) space and O (nρ) evaluations for each query,

where ρ = log r
log εr .

Something Notable
We expect documents x and y to have the same (Jaccard) similarity
as is the similarity of their signatures
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Locality Sensitive Hashing for Min-Hash

Big idea
Hash columns of signature matrix M several times

Likely to hash
Arrange that (only) similar columns are likely to hash to the same
bucket, with high probability

Candidate pairs
Candidate pairs are those that hash to the same bucket
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Basically

From the main Theorem with ρ =
log 1

p1
log 1

p2

P (p∈B(q, r1) then gj (p)=gj (q), for some j = 1, ..., l) ≥ 1−
(
1− n−ρ

)l
Given that (Under p1 > p2)

n−ρ = pk1
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Therefore

Then, if each signature is split in l bands and k bits
Then, we have that two signatures at a certain band are equal with
probability greater than a certain threshold s:

P (All elements at the band ae equal) ≥ (s)k

Then
We need to play with l and r to reach our objectives.
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Partition M into b Bands

Example
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For this

Partition M into l Bands
Divide matrix M into l bands of r rows.

For each band
Hash its portion of each column to a hash table with k buckets.

Therefore
Make k as large as possible
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Then, the candidates have certain properties

Proposition
Candidate column pairs are those that hash to the same bucket for
≥ 1 bands.

Catch most similar pairs
Tune l and k to catch most similar pairs, but few non-similar pairs.
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Hashing Bands
Example

Buckets
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Simplifying Assumption

Identical
There are enough buckets that columns are unlikely to hash to the
same bucket unless they are identical in a particular band

Same bucket
Then, we assume that “same bucket” means “identical in that band”

Not for correctness
Assumption needed only to simplify analysis, not for the correctness
of algorithm
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Example of Bands

Assume the following case
Suppose 100, 000 columns of M (100, 000 documents)
Signatures of 100 integers (rows) each integer taking 32 bits = 4
bytes
Therefore, signatures can take around 38 Megabytes of Memory Space

If we choose l = 20 bands of k = 5 integers/band, our objective is
To find pairs of documents that are at least s = 0.8 similar
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Now, if C1,C2 have a high 80% similarity

Find pairs of ≥ s = 0.8 similarity
set l = 20 and k = 5

If sim (C1, C2) = 0.8
We want C1, C2 to be a candidate pair

I We want them to hash to at least 1 common bucket (at least one band
is identical)

In one particular band
We have that the probability C1, C2 are identical in one particular
band li is

P
(
C li11 = C li12 , ..., C lik1 = C lik2

)
=

k∏
j=1

P
(
C
lij
1 = C

lij
2

)
= (0.8)5 = 0.328
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What is the Probability of not being similar at all?

We use the complement to answer that over l = 20

P
(
C li11 6= C li12 , ..., C lik1 6= C lik2

)
=

1−
k∏
j=1

P
(
C
lij
1 = C

lij
2

)20

Thus, we have that

P
(
C li11 6= C li12 , ..., C lik1 6= C lik2

)
= 0.00035
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Meaning

We have that

About
(

1
3000

)th
of the 80% similar column pairs are false negatives

i.e. we miss them

But, and this is important
We would find 99.965% pairs of truly similar documents
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Now, if C1,C2 have a low 30% similarity

Find pairs of ≥ s = 0.3 similarity
set l = 20 and k = 5

If sim (C1, C2) = 0.3
We want C1, C2 to be a candidate pair

I We want them to hash to at least 1 common bucket (at least one band
is identical)

In one particular band
We have that the probability C1, C2 are identical in one particular
band li is

P
(
C li11 = C li12 , ..., C lik1 = C lik2

)
=

k∏
j=1

P
(
C
lij
1 = C

lij
2

)
= (0.3)5 = 0.00243
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Meaning

We have that
In other words, approximately 4.74% pairs of docs with similarity
0.3% end up becoming candidate pairs.

They are false positives
Since we will have to examine them (they are candidate pairs) but
then it will turn out their similarity is below threshold s.

118 / 131



Meaning

We have that
In other words, approximately 4.74% pairs of docs with similarity
0.3% end up becoming candidate pairs.

They are false positives
Since we will have to examine them (they are candidate pairs) but
then it will turn out their similarity is below threshold s.

118 / 131



Outline
1 Introduction

Image Retrieval, Actually Any Kind of Retrieval
A Common Problem
Approximate Near-Neighbor Problem
Jaccard Similarity
Finding Similar Documents

2 Locality Sensitive Hashing Theory
Introduction
Sensitive Families of Hshing
Applying the Theorem to Distances
Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities
The Pipeline
Documents as High-Dimensional Data
Shingles
Similarity Metric for Shingles
A Possible Implementation of Jaccard
Now, Our Working Assumption
Encoding Sets
Finding Similar Columns
Generating Signatures
Min-Hashing
Implementation Tricks
Finally, Locality Sensitive Hashing
Locality Sensitive Hashing for Min-Hash
Partition M into b Bands
Playing the Probability Game
High Similarity Example
Low Similarity Example

A Trade-off
The Final Pipeline

119 / 131



Locality Sensitive Hashing Involves a Trade-off

You need to pick
The number of Min-Hashes (rows of M).
The number of bands l.
The number of rows k per band to balance false positives/negatives.

Example
if we had only 15 bands of 5 rows, the number of false positives
would go down, but the number of false negatives would go up
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Analysis of Locality Sensitive Hashing - What We Want

The Ideal detection of similar objects
1.0
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What One Band of One Row Gives You

Not Great at ALL
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Given that probability of two documents agree in a row is s

We can calculate the probability that these documents become a
candidate pair as follows

1 The probability that the signatures agree in all rows of one particular
band is sk.

2 The probability that the signatures disagree in at least one row of a
particular band is 1− sk .

3 The probability that the signatures disagree in at least one row of
each of the bands is

(
1− sk

)l
.

4 The probability that the signatures agree in all the rows of at least
one band, and therefore become a candidate pair, is 1−

(
1− sk

)l
.
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If you fix k and l

Something Notable
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Example: l = 20; k = 5

Given
Similarity threshold s

Similarity threshold s Prob. that at least 1 band is identical

s 1−
(
1− sk

)l
.2 0.006
.3 0.047
.4 0.186
.5 0.470
.6 0.802
.7 0.975
.8 0.9996
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Picking k and l: The S-curve

Picking k and l to get the best S-curve
For example, for 50 hash-functions (k = 5, l = 10)
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Locality Sensitive Hashing, a Brief Summary

Tune M , l, k
Tune M , l, k to get almost all pairs with similar signatures, but
eliminate most pairs that do not have similar signatures

Check in main memory
Check in main memory that candidate pairs really do have similar
signatures

Optional
In another pass through data, check that the remaining candidate
pairs really represent similar documents
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The Final Pipeline

Convert Objects using Vector Shingling Representation
Convert Objects into sets via shingling

Convert large sets to short signatures, while preserving similarity using
Min-hashing

Use similarity preserving hashing to generate signatures with property

P r [hπ (C1) = hπ (C2)] = sim (C1, C2) .

Use hashing to get around generating random permutations.
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Finally

Locality-Sensitive Hashing
Them, focus on pairs of signatures that are likely to be from similar
documents.

I Use hashing to find candidate pairs of similarity ≥ s
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