Introduction to Algorithms Locality Sensitive Hashing

Andres Mendez-Vazquez

September 27, 2020

イロン イヨン イヨン イヨン 三日

1/131

Outline

1 Introduction

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Outline

1 Introduction

Image Retrieval, Actually Any Kind of Retrieval

- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

We have the following problem [1, 2]

We have an image as a Query...

Image Retrieval

We want to ask a large database of images for the most similar

Scene Completion Problem

Then, we want to get the possible nearest elements to it

Outline

1 Introduction

Image Retrieval, Actually Any Kind of Retrieval

A Common Problem

- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

A Common Problem

Problems

- Many problems can be expressed as finding "similar" sets:
 - ► Basically... Finding near-neighbors in high-dimensional space

Examples

Pages with similar words

• For duplicate detection, classification by topic...

Customers who purchased similar products

Products with similar customer sets...

Others

- Images with similar features...
- Users who visited the similar websites

Examples

Pages with similar words

• For duplicate detection, classification by topic...

Customers who purchased similar products

• Products with similar customer sets...

Others

- Images with similar features...
- Users who visited the similar websites

Examples

Pages with similar words

• For duplicate detection, classification by topic...

Customers who purchased similar products

• Products with similar customer sets...

Others

- Images with similar features...
- Users who visited the similar websites

9/131

イロト イヨト イヨト

Outline

Introduction

Image Retrieval, Actually Any Kind of Retrieval
 A Common Problem

Approximate Near-Neighbor Problem

- Jaccard Similarity
- Finding Similar Documents

Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Given a database D with n items [3]

Define the following query $NN\left(q,r,c ight)$ (Nearest Neighborhood (NN))

• Given query q and two parameters $r \ge 0$ and $c \ge 1$.

there exists $x\in D$ such that $D\left(q,x ight)$

• Then report some $y \in D$ such that $D\left(y,r
ight) \leq cr$

If there is no $x\in D$ such that $D\left(q,x ight)\leq c$

• Report Failure...

Given a database D with n items [3]

Define the following query $NN\left(q,r,c
ight)$ (Nearest Neighborhood (NN))

• Given query q and two parameters $r \ge 0$ and $c \ge 1$.

If there exists $x \in D$ such that $D(q, x) \leq r$

• Then report some $y\in D$ such that $D\left(y,r\right)\leq cr$

If there is no $x\in D$ such that $D\left(q,x ight)$

• Report Failure...

Given a database D with n items [3]

Define the following query $NN\left(q,r,c
ight)$ (Nearest Neighborhood (NN))

• Given query q and two parameters $r \ge 0$ and $c \ge 1$.

If there exists $x \in D$ such that $D(q, x) \leq r$

• Then report some $y \in D$ such that $D\left(y,r\right) \leq cr$

If there is no $x \in D$ such that $D(q, x) \leq cr$

• Report Failure...

11/131

< ロ > < 同 > < 回 > < 回 >

Then, we have that

When c = 1

• The query is precise

If there is a point at distance at most r from q, the algorithm reports such a point

• else it reports failure

Therefore

 We can now perform binary search over r and compute the nearest neighbor to an arbitrarily good approximation.

12/131

イロト イヨト イヨト イヨト

Then, we have that

When c = 1

The query is precise

If there is a point at distance at most $r \mbox{ from } q,$ the algorithm reports such a point

else it reports failure

Therefore

 We can now perform binary search over r and compute the nearest neighbor to an arbitrarily good approximation.

Then, we have that

When c = 1

The query is precise

If there is a point at distance at most $r \mbox{ from } q,$ the algorithm reports such a point

• else it reports failure

Therefore

• We can now perform binary search over r and compute the nearest neighbor to an arbitrarily good approximation.

When c is much larger than 1

Say 5

• the algorithm is good for distinguishing two cases

If all points in D are very far away from

• At distance at least cr = 5r, the algorithm correctly reports failure.

If there is a point at most distance r from q

- The algorithm will report some point, but this could be a point further away at most 5r.
 - Then, we need to do another test so look for equality

When c is much larger than 1

Say 5

the algorithm is good for distinguishing two cases

If all points in D are very far away from q

• At distance at least cr = 5r, the algorithm correctly reports failure.

If there is a point at most distance r from

 The algorithm will report some point, but this could be a point further away at most 5r.

Then, we need to do another test so look for equality

When c is much larger than 1

Say 5

• the algorithm is good for distinguishing two cases

If all points in D are very far away from q

• At distance at least cr = 5r, the algorithm correctly reports failure.

If there is a point at most distance \boldsymbol{r} from \boldsymbol{q}

- The algorithm will report some point, but this could be a point further away at most 5r.
 - Then, we need to do another test so look for equality

Therefore

At the paper [3] by the legendary Rajeev Motwani

• They described how to solve the Approximate Near-Neighbor Problem using Point Location in Equal Balls (PLEB) defined as

$$B(x,r) = \{p|d(x,p) \le r\}$$

Point Location in Equal Balls

- Given n radius r balls centered at $C = \{c_1, c_2, ..., c_n\}$ in \mathbb{R}^d then devise a data structure which for any query point $q \in \mathbb{R}^d$ does the following
 - ▶ If there exists $c_i \in C$ such that $q \in B(c_i, r)$ then return c_i else return NO

Note: Here n elements are the pre-processed elements at the database.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>14/131

Therefore

At the paper [3] by the legendary Rajeev Motwani

• They described how to solve the Approximate Near-Neighbor Problem using Point Location in Equal Balls (PLEB) defined as

$$B(x,r) = \{p|d(x,p) \le r\}$$

Point Location in Equal Balls

- Given n radius r balls centered at $C = \{c_1, c_2, ..., c_n\}$ in \mathbb{R}^d then devise a data structure which for any query point $q \in \mathbb{R}^d$ does the following
 - ▶ If there exists $c_i \in C$ such that $q \in B(c_i, r)$ then return c_i else return NO

Note: Here n elements are the pre-processed elements at the database.

Therefore

The Question Arises

• Given $B(c_i, r)$, How do we define a distance d?

$$B(x,r) = \{p|d(x,p) \le r\}$$

イロト イヨト イヨト イヨト

Outline

1 Introduction

Image Retrieval, Actually Any Kind of Retrieval

- A Common Problem
- Approximate Near-Neighbor Problem

Jaccard Similarity

Finding Similar Documents

Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

16/131

< ロ > < 回 > < 回 > < 回 > < 回 >

Distance Measures

Goal

• Find near-neighbors in high-dimensional space

 We formally define "near neighbors" as points that are a "small distance" apart.

Application

For each application, we first need to define what "distance" means

Distance Measures

Goal

• Find near-neighbors in high-dimensional space

We formally define "near neighbors" as points that are a "small distance" apart.

Application

• For each application, we first need to define what "distance" means

17 / 131

イロト イヨト イヨト イヨト

Jaccard Similarity

Jaccard Similarity/Distance of two sets is [4]

 $\frac{\text{size of their intersection}}{\text{the size of their union}}$

This allows to define the function ass

 $sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$

to define a distance

$$d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

Jaccard Similarity

Jaccard Similarity/Distance of two sets is [4]

 $\frac{\text{size of their intersection}}{\text{the size of their union}}$

This allows to define the function as

$$sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

It allows to define a distance

 $l(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$

Jaccard Similarity

Jaccard Similarity/Distance of two sets is [4]

 $\frac{\text{size of their intersection}}{\text{the size of their union}}$

This allows to define the function as

$$sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

It allows to define a distance

$$d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

<ロト < 回 ト < 目 ト < 目 ト 目) へ () 18/131

Example

Jaccard Similarity between sets

イロト イロト イヨト イヨト

Now, a concept on representations

Remember the Radix representation of a number

$1011 = 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3$

This is a positional representation of a number

 Each block is based in the position of a representative belonging to the set {0,1}:

Then, we have

- This idea of representative... SHINGLES...
 - A a rectangular tile of asphalt composite, wood, metal, or slate used on walls or roofs.

Now, a concept on representations

Remember the Radix representation of a number

$$1011 = 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3$$

This is a positional representation of a number

• Each block is based in the position of a representative belonging to the set $\{0,1\}$:

hen, we have

- This idea of representative... SHINGLES...
 - A a rectangular tile of asphalt composite, wood, metal, or slate used on walls or roofs.

Now, a concept on representations

Remember the Radix representation of a number

$$1011 = 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3$$

This is a positional representation of a number

• Each block is based in the position of a representative belonging to the set $\{0,1\}$:

Then, we have

- This idea of representative... SHINGLES...
 - A a rectangular tile of asphalt composite, wood, metal, or slate used on walls or roofs.

Outline

1 Introduction

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

21 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

Finding Similar Documents

Goal

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates."

What kind of problems can you have?

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.
- Documents are so large or so many that they cannot fit in main memory.

What kind of problems can you have?

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.

Documents are so large or so many that they cannot fit in main memory.

What kind of problems can you have?

Problems

- Many small pieces of one document can appear out of order in another.
- Too many documents to compare all pairs.
- Documents are so large or so many that they cannot fit in main memory.

Therefore, we need do something

First, a representation of the documents

- Documents consists of words
 - One Shot Representation

This works well for small documents, but a lot of them

Therefore, we need do something

First, a representation of the documents

- Documents consists of words
 - One Shot Representation

Then, Shingle = Word

• This works well for small documents, but a lot of them

Another Example

Words in a Dictionary

• Shingles = Fonts

Or something different

Think about it...

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の < @ 25 / 131

Another Example

Words in a Dictionary

• Shingles = Fonts

Or something different?

• Think about it...

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

Locality Sensitive Hashing Theory Introduction

- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
- Low Similarity Example
- A Trade-off
- The Final Pipeline

26 / 131

イロト イヨト イヨト イヨト

Trying to solve the Approximate Near-Neighbor Problem

If we define the following idea of Neighbor Balls

 $B\left(x,r\right)=\left\{ p|d\left(x,p\right)\leq r\right\}$

It is possible to define two Neighbors to solve such problem.

- Basically, a ball where the query is successful.
- An another ball where the query fails

Trying to solve the Approximate Near-Neighbor Problem

If we define the following idea of Neighbor Balls

$$B(x,r) = \{p|d(x,p) \le r\}$$

It is possible to define two Neighbors to solve such problem

- Basically, a ball where the query is successful
- An another ball where the query fails

27 / 131

< ロ > < 同 > < 回 > < 回)

For this, we can define the following

Definition [3]

- A family $\mathcal{H}=\{h:S\longrightarrow U\}$ is called $(r_1,r_2,p_1,p_2)\text{-sensitive for }D$ if for any $q,p\in S$
 - If $p \in B(q, r_1)$ then $Pr_{\mathcal{H}}[h(q) = h(p)] \ge p_1$
 - If $p \notin B(q, r_2)$ then $Pr_{\mathcal{H}}[h(q) = h(p)] \leq p_2$

In order to have something useful

• A Locality-Sensitive family to be useful, it has to satisfy $p_1 > p_2$ and $r_1 < r_2$

For this, we can define the following

Definition [3]

- A family $\mathcal{H}=\{h:S\longrightarrow U\}$ is called $(r_1,r_2,p_1,p_2)\text{-sensitive for }D$ if for any $q,p\in S$
 - If $p \in B(q, r_1)$ then $Pr_{\mathcal{H}}[h(q) = h(p)] \ge p_1$
 - ▶ If $p \notin B(q, r_2)$ then $Pr_{\mathcal{H}}[h(q) = h(p)] \leq p_2$

In order to have something useful

• A Locality-Sensitive family to be useful, it has to satisfy $p_1 > p_2$ and $r_1 < r_2$

For example

29/131

< ロ > < 回 > < 回 > < 回 > < 回 >

Locality Sensitive Hashing

- Preprocessing
 - Define a function family $G = \{g : S \to U^k\}$ such that
 - $g\left(p
 ight)=\left[h_{1}\left(p
 ight),...,h_{k}\left(p
 ight)
 ight]$ where $h_{i}\in\mathcal{H}$
 - For an integer *l*, we choose *l* functions *g*₁,...,*g*_l ∈ *G* independently and uniformly at random.
 - We store each p at the database through the use of Hashing into the buckets.

Locality Sensitive Hashing

Preprocessing

• Define a function family $G = \{g: S \to U^k\}$ such that

$$g(p) = [h_1(p), ..., h_k(p)]$$
 where $h_i \in \mathcal{H}$

We store each p at the database through the use of Hashing into the buckets.

- We search all buckets $g_{1}\left(q
 ight),...,g_{l}\left(q
 ight)$
- If the number of points encountered are greater than 2l we interrupt the search
- laces Given the found points $p_1,...,p_t$
 - For each p_j , if $p_j \in B\left(q,r_2
 ight)$ then return YES and p_j else we return NC

Locality Sensitive Hashing

Preprocessing

- ▶ Define a function family $G = \{g : S \to U^k\}$ such that $g(p) = [h_1(p), ..., h_k(p)]$ where $h_i \in \mathcal{H}$
- For an integer l, we choose l functions $g_1, ..., g_l \in G$ independently and uniformly at random.

at the database through the use of Hashing into the

- We search all buckets $g_{1}\left(q
 ight),...,g_{l}\left(q
 ight)$
- If the number of points encountered are greater than 2l we interrupt the search
- ullet Given the found points $p_1,...,p_t$
 - For each p_j , if $p_j \in B(q, r_2)$ then return YES and p_j else we return NG

Locality Sensitive Hashing

- Preprocessing
 - ▶ Define a function family $G = \{g : S \to U^k\}$ such that $g(p) = [h_1(p), ..., h_k(p)]$ where $h_i \in \mathcal{H}$
 - For an integer l, we choose l functions $g_1, ..., g_l \in G$ independently and uniformly at random.
 - ► We store each p at the database through the use of Hashing into the buckets.

- laces We search all buckets $g_{1}\left(q
 ight),...,g_{l}\left(q
 ight)$
- If the number of points encountered are greater than 2l we interrupt the search
- ullet Given the found points $p_1,...,p_l$
 - ullet For each p_j , if $p_j\in B\left(q,r_2
 ight)$ then return YES and p_j else we return NC

Locality Sensitive Hashing

- Preprocessing
 - ▶ Define a function family $G = \{g : S \to U^k\}$ such that $g(p) = [h_1(p), ..., h_k(p)]$ where $h_i \in \mathcal{H}$
 - For an integer l, we choose l functions $g_1, ..., g_l \in G$ independently and uniformly at random.
 - ▶ We store each *p* at the database through the use of Hashing into the buckets.

Given a query \boldsymbol{q} in the Search Process

- () We search all buckets $g_{1}\left(q
 ight),...,g_{l}\left(q
 ight)$
 - If the number of points encountered are greater than 2l we interrupt the search
 -) Given the found points $p_1,...,p_t$
 -) For each p_j , if $p_j \in B\left(q,r_2
 ight)$ then return YES and p_j else we return NC

Locality Sensitive Hashing

- Preprocessing
 - ▶ Define a function family $G = \{g : S \to U^k\}$ such that $g(p) = [h_1(p), ..., h_k(p)]$ where $h_i \in \mathcal{H}$
 - For an integer l, we choose l functions $g_1, ..., g_l \in G$ independently and uniformly at random.
 - ▶ We store each *p* at the database through the use of Hashing into the buckets.

Given a query q in the Search Process

- $\textcircled{We search all buckets } g_{1}\left(q\right),...,g_{l}\left(q\right)$
- **②** If the number of points encountered are greater than 2l we interrupt the search

) For each $p_j,$ if $p_j\in B\left(q,r_2
ight)$ then return YES and p_j else we return NC

Locality Sensitive Hashing

- Preprocessing
 - ▶ Define a function family $G = \{g : S \to U^k\}$ such that $g(p) = [h_1(p), ..., h_k(p)]$ where $h_i \in \mathcal{H}$
 - For an integer l, we choose l functions $g_1, ..., g_l \in G$ independently and uniformly at random.
 - ► We store each p at the database through the use of Hashing into the buckets.

- $\textcircled{We search all buckets } g_{1}\left(q\right),...,g_{l}\left(q\right)$
- **②** If the number of points encountered are greater than 2l we interrupt the search
- **③** Given the found points $p_1, ..., p_t$
 - **9** For each p_j , if $p_j \in B(q, r_2)$ then return YES and p_j else we return NO

Therefore

Then, we choose k and l to ensure that with constant probability the following properties hold

- If there exists $p \in B(q, r_1)$ then $g_j(p) = g_j(q)$ for some j = 1, ..., l.
- **②** The total number of collisions of q with points from $P B(q, r_1)$ is less than 2l:

$$\sum_{j=1}^{l} \left| P - B(q, r_1) \cap g_j^{-1}(g_j(q)) \right| < 2l$$

Something Notable

• If (1) and (2) hold, the algorithm is correct.

Therefore

Then, we choose k and l to ensure that with constant probability the following properties hold

- If there exists $p \in B(q, r_1)$ then $g_j(p) = g_j(q)$ for some j = 1, ..., l.
- **②** The total number of collisions of q with points from $P B(q, r_1)$ is less than 2l:

$$\sum_{j=1}^{l} \left| P - B(q, r_1) \cap g_j^{-1}(g_j(q)) \right| < 2l$$

Something Notable

• If (1) and (2) hold, the algorithm is correct.

31 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

Locality Sensitive Hashing Theory

Introduction

Sensitive Families of Hshing

- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

32 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

Theorem

(r_1, r_2, p_1, p_2) -sensitive family $\mathcal H$ for D $(p_1 > p_2$ and $r_1 < r_2)$

• Then, there exists and algorithm for (r_1, r_2) -Point Location in Equal Balls under measure D which uses $O\left(dn + n^{1+\rho}\right)$ space and $O\left(n^{\rho}\right)$ evaluations of the hash function for each query where

$$\rho = \frac{\log \frac{1}{p_1}}{\log \frac{1}{p_2}}$$

33 / 131

< ロ > < 同 > < 回 > < 回 >

For this, we only need (1) and (2) hold

\bullet With probability P_1 and P_2 strictly greater than half

Assume that $p \in B(q, r_1)$

• Set $k = \log_{\frac{1}{p_2}} n$, an arbitrary number of dimensions for $g(p) = [h_1(p), ..., h_k(p)]$

We have that

$$\left(\frac{1}{p_2}\right)^k = n \log_{\frac{1}{p_2}} \frac{1}{p_2} \Rightarrow p_2^k = \frac{1}{n}$$

For this, we only need (1) and (2) hold

 \bullet With probability P_1 and P_2 strictly greater than half

Assume that $p \in B(q, r_1)$

• Set $k = \log_{\frac{1}{p_2}} n$, an arbitrary number of dimensions for $g(p) = [h_1(p), ..., h_k(p)]$

We have that

$$\left(\frac{1}{p_2}\right)^k = n \log_{\frac{1}{p_2}} \frac{1}{p_2} \Rightarrow p_2^k = \frac{1}{n}$$

For this, we only need (1) and (2) hold

 \bullet With probability P_1 and P_2 strictly greater than half

Assume that $p \in B(q, r_1)$

• Set $k = \log_{\frac{1}{p_2}} n$, an arbitrary number of dimensions for $g(p) = [h_1(p), ..., h_k(p)]$

We have that

$$\left(\frac{1}{p_2}\right)^k = n \log_{\frac{1}{p_2}} \frac{1}{p_2} \Rightarrow p_2^k = \frac{1}{n}$$

34 / 131

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Then the probability that g(p) = g(q) for $p \in P - B(q, r_2)$

• It is at most $p_2^k = \frac{1}{n}$ assuming that the hash functions are randomly independently selected.

Thus, the expected number of elements from $P-B\left(q,r_{2} ight)$

• Colliding with q under fixed g_j is at most 1.

Then, the expected number of such collisions with any g_{i} is at most l

• Then we can use the Markov inequality

Then the probability that g(p) = g(q) for $p \in P - B(q, r_2)$

• It is at most $p_2^k = \frac{1}{n}$ assuming that the hash functions are randomly independently selected.

Thus, the expected number of elements from $P-B\left(q,r_{2} ight)$

• Colliding with q under fixed g_j is at most 1.

Then, the expected number of such collisions with any g_i is at most l

• Then we can use the Markov inequality

Then the probability that $g\left(p ight)=g\left(q ight)$ for $p\in P-B\left(q,r_{2} ight)$

• It is at most $p_2^k = \frac{1}{n}$ assuming that the hash functions are randomly independently selected.

Thus, the expected number of elements from $P-B\left(q,r_{2} ight)$

• Colliding with q under fixed g_j is at most 1.

Then, the expected number of such collisions with any g_j is at most l

• Then we can use the Markov inequality

Markov Inequality

If X is a non-negative random variable and a > 0

• Then, the probability that X is at least a is at most the expectation of X divided by a:

$$P\left(X \ge a\right) \le \frac{E\left(X\right)}{a}$$

Therefore for any g_i a random variable

 $P(g_j \ge 2l) \le \frac{E(g_j)}{2l} = \frac{l}{2l} = \frac{1}{2}$

Markov Inequality

If X is a non-negative random variable and a > 0

• Then, the probability that X is at least a is at most the expectation of X divided by a:

$$P\left(X \ge a\right) \le \frac{E\left(X\right)}{a}$$

Therefore for any g_i a random variable

$$P\left(g_{j} \geq 2l\right) \leq \frac{E\left(g_{j}\right)}{2l} = \frac{l}{2l} = \frac{1}{2}$$

36 / 131

< ロ > < 同 > < 回 > < 回 >

At property (2)

• The total number of collisions of q with points from $P-B\left(q,r_{1}\right)$ is less than 2l:

$$\sum_{j=1}^{l} \left| P - B(q, r_1) \cap g_j^{-1}(g_j(q)) \right| < 2l$$

Therefore, we have

Then, we have that $\sum_{j=1}^{l} |P - B(q, r_1) \cap g_j^{-1}(g_j(q))| = *$ is also a random variable

$$\begin{split} P\left(* < 2l\right) &= 1 - P\left(* \geq 2l\right) \\ &> 1 - \frac{1}{2} = \frac{1}{2} \end{split}$$

Now

Consider now the probability of $g_{j}(p) = g_{j}(q)$

• Given that $p \in B\left(q,r_{1}\right)$ then $Pr_{\mathcal{H}}\left[h\left(q\right)=h\left(p\right)\right] \geq p_{1}$

$$P(g_j(p) = g_j(q)) \ge (p_1)^k = p_1^{\log_{\frac{1}{p_2}} n} = n^{-\frac{\log^{1/p_1}}{\log^{1/p_2}}} = n^{-\rho}$$

Thus, the probability that such a g_{i} exists is at least

 $P_1 \ge 1 - (1 - n^{-\rho})^l$

39/131

イロト イロト イヨト イヨト

Now

Consider now the probability of $g_{j}(p) = g_{j}(q)$

• Given that $p \in B\left(q,r_{1}\right)$ then $Pr_{\mathcal{H}}\left[h\left(q\right)=h\left(p\right)\right] \geq p_{1}$

$$P(g_j(p) = g_j(q)) \ge (p_1)^k = p_1^{\log_{\frac{1}{p_2}} n} = n^{-\frac{\log 1/p_1}{\log 1/p_2}} = n^{-\rho}$$

Thus, the probability that such a g_j exists is at least

$$P_1 \ge 1 - (1 - n^{-\rho})^l$$

39/131

イロト イロト イヨト イヨト
Why?

We have $P(g_j(p) \neq g_j(q)) = 1 - P(g_j(p) = g_j(q)) \le 1 - n^{-\rho}$

Thus, we have

 $P_{1}=P\left(p{\in}\mathsf{B}(q,r_{1})\text{ then }g_{j}\left(p\right){=}g_{j}\left(q\right)\text{ for some }j=1,...,l\right)$

$$P\left(p\in\mathsf{B}(q,r_{1}) \text{ then } g_{j}\left(p
ight)=g_{j}\left(q
ight)$$
, for some $j=1,...,l
ight)\geq1-\left(1-n^{-
ho}
ight)^{l}$

By Setting l =

40 / 131

・ロト ・四ト ・ヨト ・ヨト

Why?

We have $P(g_j(p) \neq g_j(q)) = 1 - P(g_j(p) = g_j(q)) \le 1 - n^{-\rho}$

Thus, we have

 $P_{1}=P\left(p{\in}\mathsf{B}(q,r_{1})\text{ then }g_{j}\left(p\right){=}g_{j}\left(q\right)\text{ for some }j=1,...,l\right)$

$$P\left(p\in\mathsf{B}(q,r_{1}) ext{ then } g_{j}\left(p
ight)=g_{j}\left(q
ight), ext{ for some } j=1,...,l
ight)\geq1-\left(1-n^{-
ho}
ight)^{l}$$

By Setting $l = n^{\rho}$

$$P_1 > 1 - \frac{1}{e} > \frac{1}{2}$$
 Q.E.D.

40/131

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing

Applying the Theorem to Distances

Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

41 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

We can use this [3]

That Jaccard Similarity is a way to define distance

• There are others, for example the Hamming Distance...

For example

 Consider the Hamming cube {0,1}^d the there is l₁ - distance defined has

$$D(x,y) = \sum_{i=1}^{d} |x_k - y_k|$$

It simply counts the number of coordinates where the points differ

We can use this [3]

That Jaccard Similarity is a way to define distance

• There are others, for example the Hamming Distance...

For example

• Consider the Hamming cube $\{0,1\}^d$ the there is $\ell_1 - distance$ defined has

$$D(x,y) = \sum_{i=1}^{d} |x_k - y_k|$$

It simply counts the number of coordinates where the points differ.

42 / 131

Now, What if we introduce a hash family?

Consider the following hash family of functions

$$\mathcal{H} = \left\{ h_k | h_k \left(x \right) = k^{th} \text{ bit of } x \right\}$$

43/131

イロト イヨト イヨト イヨト

Then, a Direct Application

Proposition - remember $p_1 > p_2$ and $r_1 < r_2$ for utility

• Let $S = \mathcal{H}^d$ and D(p,q) be a Hamming metric. Then for any $r, \epsilon > 0$ then \mathcal{H} is $\left(r, r(1+\epsilon), 1 - \frac{r}{d}, 1 - \frac{r(1+\epsilon)}{d}\right)$ -senstive.

From this the following Corollary [3]

For any ε > 0, there exists an algorithm for ε-PLEB in H^d or l^d_p for any p ∈ [1,2] using O (dn + n^{1+1/1+ε}) space and O (n^{1/1+ε}) hash function for each query (n is the size of the database). The hash function can be evaluated using O (d) operations.

Then, a Direct Application

Proposition - remember $p_1 > p_2$ and $r_1 < r_2$ for utility

• Let $S = \mathcal{H}^d$ and D(p,q) be a Hamming metric. Then for any $r, \epsilon > 0$ then \mathcal{H} is $\left(r, r(1+\epsilon), 1 - \frac{r}{d}, 1 - \frac{r(1+\epsilon)}{d}\right)$ -senstive.

From this the following Corollary [3]

• For any $\epsilon > 0$, there exists an algorithm for ϵ -PLEB in \mathcal{H}^d or l_p^d for any $p \in [1,2]$ using $O\left(dn + n^{1+\frac{1}{1+\epsilon}}\right)$ space and $O\left(n^{\frac{1}{1+\epsilon}}\right)$ hash function for each query (n is the size of the database). The hash function can be evaluated using $O\left(d\right)$ operations.

44 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

From this

We can actually do better

• If we assume sparse data

Proposition

• Let S be the set of all subsets of $X = \{1, ..., x\}$ (Shingles/Set Representation) and let D be the set resemblance measure (Jaccard). Then, for $1 > r_1 > r_2 > 0$ the following hash family is (r_1, r_2, r_1, r_2) -sensitive

$$\mathcal{H}=\left\{ h_{\pi}|h_{\pi}\left(A
ight)=\max_{a\in A}\pi\left(a
ight),\pi$$
 is a permutation of X

From this

We can actually do better

• If we assume sparse data

Proposition

• Let S be the set of all subsets of $X = \{1, ..., x\}$ (Shingles/Set Representation) and let D be the set resemblance measure (Jaccard). Then, for $1 > r_1 > r_2 > 0$ the following hash family is (r_1, r_2, r_1, r_2) -sensitive

$$\mathcal{H} = \left\{ h_{\pi} | h_{\pi} \left(A \right) = \max_{a \in A} \pi \left(a \right), \pi \text{ is a permutation of } X \right.$$

46 / 131

< ロ > < 同 > < 回 > < 回 >

Here

Shingles

• A way to represent objects using power set elements when having basic set construction elements of such objects

For example, in short documents

 You can disregard the order (Although in modern algorithms, we have seen the utility of such order) and have a set representation of the document

Where the elements

They are the words at the language dictionary.

Here

Shingles

• A way to represent objects using power set elements when having basic set construction elements of such objects

For example, in short documents

• You can disregard the order (Although in modern algorithms, we have seen the utility of such order) and have a set representation of the document

Where the elements

They are the words at the language dictionary

Here

Shingles

• A way to represent objects using power set elements when having basic set construction elements of such objects

For example, in short documents

• You can disregard the order (Although in modern algorithms, we have seen the utility of such order) and have a set representation of the document

Where the elements

• They are the words at the language dictionary.

Therefore

We have the following Corollary

• For $0 < \epsilon, r < 1$, there exists an algorithm for $(r, \epsilon r)$ -PLEB under D using $O(dn + n^{1+\rho})$ space and $O(n^{\rho})$ evaluations for each query, where $\rho = \frac{\log r}{\log \epsilon r}$.

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

Locality Sensitive Hashing Practicalities The Pipeline

- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

The Pipeline for the Locality Sensitive Hashing

50 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

The Pipeline

Documents as High-Dimensional Data

- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

51/131

< ロ > < 回 > < 回 > < 回 > < 回 >

Step 1: Shingling

• Convert documents to sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Step 1: Shingling

Convert documents to sets.

We can define

- **Document = set of words** appearing in document.
 - Document = set of "important" words.
- Problem, they do not work well for this application. Why?

Step 1: Shingling

Convert documents to sets.

We can define

- **Document = set of words** appearing in document.
- Document = set of "important" words.

want to avoid to get tangled in the text structure

Avoid taking in account the ordering of words!

Think about Sets: Use Shingles!!!

Step 1: Shingling

Convert documents to sets.

We can define

- **Document = set of words** appearing in document.
- Document = set of "important" words.
- Problem, they do not work well for this application. Why?

We want to avoid to get tangled in the text structure

Avoid taking in account the ordering of words!
Think about Sets: Use Shingles!!!

Step 1: Shingling

Convert documents to sets.

We can define

- **Document = set of words** appearing in document.
- Document = set of "important" words.
- Problem, they do not work well for this application. Why?

We want to avoid to get tangled in the text structure

• Avoid taking in account the ordering of words!

Step 1: Shingling

Convert documents to sets.

We can define

- **Document = set of words** appearing in document.
- Document = set of "important" words.
- Problem, they do not work well for this application. Why?

We want to avoid to get tangled in the text structure

- Avoid taking in account the ordering of words!
- Think about Sets: Use Shingles!!!

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data

Shingles

- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

k-shingle

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - ► Tokens can be characters, words or something else, depending on the application.

Assume tokens = characters for the examples

Example

• k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

 Another possible option: Shingles as a bag (multiset). Thus, count ab twice: S'(D₁) = {ab, bc, ca, ab}

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

k = 2; document D₁ = abcab Set of 2-shingles: S(D₁) = {ab, bc, ca} Another possible option: Shingles as a bag (multiset). Thus, count ab twice: S'(D₁) = {ab, bc, ca, ab}

k-shingle

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

Example

• k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

54 / 131

イロト イヨト イヨト

k-shingle

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for the examples.

Example

- k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - ► Another possible option: Shingles as a bag (multiset). Thus, count *ab* twice: S'(D₁) = {*ab*, *bc*, *ca*, *ab*}

54 / 131

イロト イヨト イヨト

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

<ロト < □ ト < □ ト < 亘 ト < 亘 ト = の Q (C) 55 / 131

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

• Represent a doc by the set of hash values of its *k*-shingles (Use the sensitivity hash family).

55 / 131

イロト イヨト イヨト

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

• Represent a doc by the set of hash values of its *k*-shingles (Use the sensitivity hash family).

Example

• k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

ing the Universal Hash method to a hash table.

Compress

• To compress long shingles, we can hash them to (say) 4 bytes.

Represent a doc

• Represent a doc by the set of hash values of its *k*-shingles (Use the sensitivity hash family).

Example

- k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
- Hash the shingles using the Universal Hash method to a hash table.

55 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles

Similarity Metric for Shingles

- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Similarity Metric for Shingles

Document

• Document D_1 = set of k-shingles $C_1 = S(D_1)$

Document

• Document D_1 = set of k-shingles $C_1 = S(D_1)$

0/1 vector

• Equivalently, each document is a 0/1 vector in the space of k-shingles

Document

• Document D_1 = set of k-shingles $C_1 = S(D_1)$

0/1 vector

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension.

Document

• Document D_1 = set of k-shingles $C_1 = S(D_1)$

0/1 vector

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension.
 - Problem!!! Vectors are very sparse.

Document

• Document D_1 = set of k-shingles $C_1 = S(D_1)$

0/1 vector

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension.
 - Problem!!! Vectors are very sparse.
 - ★ We need a measure that can handle this situation.

Document

• Document D_1 = set of k-shingles $C_1 = S(D_1)$

0/1 vector

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension.
 - Problem!!! Vectors are very sparse.
 - ★ We need a measure that can handle this situation.

A natural similarity measure is the Jaccard similarity

$$sim(D_1, D_2) = \frac{|D_1 \cap D_2|}{|D_1 \cup D_2|}$$

Cirvestav

(1)

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles

A Possible Implementation of Jaccard

- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

However

This is assuming a non-sparse representation

• But using an array of int to represent the shingles at the documents by bits 0 or 1

However

We can use sparse vector (Hit in speed but less space)

59/131

イロン イロン イヨン イヨン

However

This is assuming a non-sparse representation

• But using an array of int to represent the shingles at the documents by bits 0 or 1

However

• We can use sparse vector (Hit in speed but less space)

How do we can implement this? SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

```
// This works only in 32 bits
int PopCount(int vector){
  int i = vector;
  i = i - ((i >> 1) \& 0 \times 55555555);
  i = (i \& 0 \times 33333333) + ((i >> 2) \& 0 \times 33333333);
  i = (((i + (i >> 4)) \& 0 \times 0F0F0F0F) * 0 \times 01010101) >> 24;
  return i:
```

How do we can implement this? SWAR-Popcount

Code - SWAR-Popcount - Divide and Conquer

```
// This works only in 32 bits
int PopCount(int vector){
    int i = vector;
    i = i - ((i >> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
    i = (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
    return i;
}
```

We can use this (There are better)

Together with AND and OR to implement the Jaccard similarity

Therefore

We have

```
long Jacard(int *C1, int *C2, int n){
        int i:
        long union, intersection;
        union = 0;
        intersection = 0;
        for (i = 0; i < n; i++)
                 union = union +\ldots
                         (long)PopCount( C1[i] | C2[i] );
                intersection = intersection +...
                         (long)PopCount( C1[i] & C2[i] );
        }
        return union/intersection;
```


61/131

イロト 不得 トイヨト イヨト 二日

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard

Now, Our Working Assumption

- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

• You must pick k large enough, or most documents will have most shingles.

k = 5 is OK for short documents.

 $\cdot \, \, k = 10$ is better for long documents.

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that

63 / 131

< ロ > < 同 > < 回 > < 回 >

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that
 - k = 5 is OK for short documents.

63 / 131

イロト イヨト イヨト

Similar text

• Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Caveat

- You must pick k large enough, or most documents will have most shingles.
- It seems to be that
 - k = 5 is OK for short documents.
 - k = 10 is better for long documents.

63 / 131

イロト イヨト イヨト

Imagine the following

• We need to find near-duplicate documents with data sets of size in the millions, for example, N=1,000,000.

Imagine the following

• We need to find near-duplicate documents with data sets of size in the millions, for example, N=1,000,000.

Compute pairwise Jaccard similarities

• Naively, we would have to compute pairwise Jaccard similarities for every pair of docs.

Imagine the following

• We need to find near-duplicate documents with data sets of size in the millions, for example, N=1,000,000.

Compute pairwise Jaccard similarities

- Naively, we would have to compute pairwise Jaccard similarities for every pair of docs.
 - ▶ Not a god idea when, $\frac{N(N-1)}{2} \approx 5 * 10^{11}$ comparisons.

For N = 10 million, it takes more than a year..

Imagine the following

• We need to find near-duplicate documents with data sets of size in the millions, for example, N=1,000,000.

Compute pairwise Jaccard similarities

- Naively, we would have to compute pairwise Jaccard similarities for every pair of docs.
 - Not a god idea when, $\frac{N(N-1)}{2} \approx 5 * 10^{11}$ comparisons.
 - At 10^5 seconds per day and 10^6 comparisons per second, it would take 5 days.

Imagine the following

• We need to find near-duplicate documents with data sets of size in the millions, for example, N=1,000,000.

Compute pairwise Jaccard similarities

- Naively, we would have to compute pairwise Jaccard similarities for every pair of docs.
 - Not a god idea when, $\frac{N(N-1)}{2} \approx 5 * 10^{11}$ comparisons.
 - At 10^5 seconds per day and 10^6 comparisons per second, it would take 5 days.

For something larger

• For N = 10 million, it takes more than a year...

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption

Encoding Sets

- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection.

- Encode sets using 0/1 (bit, Boolean) vectors.
 - One dimension per element in the universal set.

Encoding Sets as Bit Vectors

As we said it

Interpret set intersection as bit-wise AND, and set union as bit-wise OR.

$C_1 = 10111$ and $C_2 = 10011$

• Size of intersection = 3 and size of union = 4,

Jaccard similarity

$sim\left(C_{1},C_{2} ight) =rac{3}{4}$

Thus, the distance

 $d(C_1, C_2) = 1 - \frac{3}{4} = \frac{1}{4}$

$C_1 = 10111$ and $C_2 = 10011$

• Size of intersection = 3 and size of union = 4,

Jaccard similarity

$$sim\left(C_1, C_2\right) = \frac{3}{4}$$

Thus, the distance

 $d(C_1, C_2) = 1 - \frac{3}{4} = \frac{1}{4}$

$C_1 = 10111$ and $C_2 = 10011$

• Size of intersection = 3 and size of union = 4,

Jaccard similarity

$$sim\left(C_1,C_2\right) = \frac{3}{4}$$

Thus, the distance

$$d(C_1, C_2) = 1 - \frac{3}{4} = \frac{1}{4}$$

69/131

Rows	•	• (•	
• Rows are equal to elements (shingles)	•	• >		•	
Columns	$\overline{0}$	1	0	$\overline{1}$	
• The Columns are equal to sets (documents)	1	1	1	0	
• ONE in row e and column s if and	1	0	1	0	
only if e is a member of s	0	0	0	1	
similarity of the corresponding sets	1	1	0	0	
(rows with value ONE)	1	0	0	0	
	1	1	0	1	

イロト イヨト イヨト イヨト э 69/131

Rows • Rows are equal to elements (shingles) 0 () Columns 1 1 1 () • The Columns are equal to sets (documents) ONE in row e and column s if and 0 1 0 only if e is a member of s0 0 0 1 0 1 0 0 0 Ω 0

Rows

• Rows are equal to elements (shingles)

Columns

• The Columns are equal to sets (documents)

- ONE in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value ONE)

Here, a problem arises

Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

• Such matrix is typically sparse!

We need to solve this

After all sparsity is problematic for the use of memory.

70/131

イロン イロン イヨン イヨン

Here, a problem arises

Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

Such matrix is typically sparse!

We need to solve this

• After all sparsity is problematic for the use of memory.

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets

Finding Similar Columns

- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Finding Similar Columns

$\mathsf{Documents} \to \mathsf{Sets} \text{ of shingles}$

• We have been able to represent them as sets vectors in a matrix

We can now try to reduce the size of the sparse representations

• Using a technique called Min-Hash to find small signatures...

However, we still have a problem

Because comparing all pairs is too expansive...

Finding Similar Columns

$\mathsf{Documents} \to \mathsf{Sets} \text{ of shingles}$

• We have been able to represent them as sets vectors in a matrix

We can now try to reduce the size of the sparse representations

• Using a technique called Min-Hash to find small signatures...

However, we still have a problem

Because comparing all pairs is too expansive...

Finding Similar Columns

$\mathsf{Documents} \to \mathsf{Sets} \text{ of shingles}$

• We have been able to represent them as sets vectors in a matrix

We can now try to reduce the size of the sparse representations

• Using a technique called Min-Hash to find small signatures...

However, we still have a problem

Because comparing all pairs is too expansive...

72 / 131

< ロ > < 同 > < 回 > < 回 >

How do we accomplish something like that

First than anything

• What are going to be our signatures of columns?

Which in addition keeps a specific property!!!

Which property

Once new signatures are generated...

• if $s\left(C_{1},C_{2}
ight)
ightarrow 1$, the similarity of such signatures is also high!!!

How do we accomplish something like that

First than anything

- What are going to be our signatures of columns?
 - Which in addition keeps a specific property!!!

Which property?

- Once new signatures are generated...
 - if $s(C_1, C_2) \rightarrow 1$, the similarity of such signatures is also high!!!

73 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns

Generating Signatures

- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
- Low Similarity Example
- A Trade-off
- The Final Pipeline

74 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

We can use Hashing!!!

Hashing the Columns

• Hash each column C to a small signature h(C)

Such that

h(C) is small enough that the signature fits in RAM
sim (C₁, C₂) is the same as the "similarity" of signatures h (C₁) and h (C₂)

75 / 131

<ロ> <四> <ヨ> <ヨ>

We can use Hashing!!!

Hashing the Columns

• Hash each column C to a small signature h(C)

Such that

- $\bullet \ h(C)$ is small enough that the signature fits in RAM
- $sim\left(C_{1},C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$

75 / 131

イロト イヨト イヨト イヨト

Therefore, we want

Find a hash function $h(\cdot)$ such that

- if $sim(C_1, C_2)$ is high, then with high probability $h(C_1) = h(C_2)$.
- if $sim(C_1, C_2)$ is low, then with high probability $h(C_1) \neq h(C_2)$.

We can use the buckets of the Hash Table for this

Therefore, we want

Find a hash function $h(\cdot)$ such that

- if $sim(C_1, C_2)$ is high, then with high probability $h(C_1) = h(C_2)$.
- if $sim(C_1, C_2)$ is low, then with high probability $h(C_1) \neq h(C_2)$.

Thus, we can do the following

Thus, we hash documents into buckets

 And we expect that the hash respect the similarity of "near" duplicates.

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures

Min-Hashing

- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
- Low Similarity Example
- A Trade-off
- The Final Pipeline

Min-Hashing

Similarity Metric

• Clearly, the hash function depends on the similarity metric:

79/131

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Min-Hashing

Similarity Metric

• Clearly, the hash function depends on the similarity metric:

▶ Not all similarity metrics have a suitable hash function.

• There is a suitable hash function for the Jaccard similarity, Min-Hashing

Min-Hashing

Similarity Metric

• Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function.

Hash Functions

• There is a suitable hash function for the Jaccard similarity, Min-Hashing

79/131

< ロ > < 回 > < 回 > < 回 > < 回 >

Remember the Corollary about the Permutation Hash Family

Random permutation

 \bullet Imagine the rows of the Boolean matrix permuted under random permutation π .

Define a Hash function $h_\pi(C)$

h_π(C) = the number of the first row, in order π, in which column C has value 1,

$h_{\pi}(C) = \min_{\pi} \left\{ \pi(C) \right\}$

Thus, we can use this permutations

Use many independent hash functions to create a signature of a column.

× مر رو ⊗ م ر 80 / 131

イロト イヨト イヨト

Remember the Corollary about the Permutation Hash Family

Random permutation

 \bullet Imagine the rows of the Boolean matrix permuted under random permutation π .

Define a Hash function $h_{\pi}(C)$

• $h_{\pi}(C) =$ the number of the first row, in order π , in which column C has value 1,

$$h_{\pi}(C) = \min_{\pi} \left\{ \pi(C) \right\}$$

Thus, we can use this permutations

Use many independent hash functions to create a signature of a column.

UI YOOVOV

80 / 131

< ロ > < 同 > < 回 > < 回 >

Remember the Corollary about the Permutation Hash Family

Random permutation

 \bullet Imagine the rows of the Boolean matrix permuted under random permutation π .

Define a Hash function $h_{\pi}(C)$

• $h_{\pi}(C) =$ the number of the first row, in order π , in which column C has value 1,

$$h_{\pi}(C) = \min_{\pi} \left\{ \pi(C) \right\}$$

Thus, we can use this permutations

Use many independent hash functions to create a signature of a column.

MINDAVE

Min-Hashing Example

We have the following mapping

81/131

イロト イヨト イヨト

Surprising Property

When choosing a random permutation $\boldsymbol{\pi}$

• We claim having the following equality:

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$$

How is this possible?

• Let X be a document (set of shingles)

We have that given |X| shingles, then under random uniform permutation

$$Pr\left[\pi\left(x\right) = \min\left(\pi\left(X\right)\right)\right] = \frac{1}{|X|}$$

Surprising Property

When choosing a random permutation π

• We claim having the following equality:

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$$

How is this possible?

• Let X be a document (set of shingles)

We have that given |X| shingles, then under random uniform permutation

$$Pr\left[\pi\left(x\right) = \min\left(\pi\left(X\right)\right)\right] = \frac{1}{|X|}$$

Surprising Property

When choosing a random permutation $\boldsymbol{\pi}$

• We claim having the following equality:

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$$

How is this possible?

• Let X be a document (set of shingles)

We have that given $\left|X\right|$ shingles, then under random uniform permutation

$$Pr[\pi(x) = \min(\pi(X))] = \frac{1}{|X|}$$

Why is this possible

It is equally likely that any $x \in X$ is mapped to the min element

 $\bullet\,$ Thus, we have an x such that

$$\pi\left(x\right) = \min\left[\pi\left(C_1\bigcup C_2\right)\right]$$

I hen either

• $\pi(x) = \min\left(\pi\left(C_1
ight)
ight)$ if $x \in C_1$, or $\pi(x) = \min\left(\pi\left(C_2
ight)
ight)$ if $x \in C_2$

Thus, we have

• One of the two cols had to have 1 at position x.

83/131

< ロ > < 同 > < 回 > < 回 >

Why is this possible

It is equally likely that any $x \in X$ is mapped to the min element

 $\bullet\,$ Thus, we have an x such that

$$\pi\left(x\right) = \min\left[\pi\left(C_1\bigcup C_2\right)\right]$$

Then either

•
$$\pi(x) = \min(\pi(C_1))$$
 if $x \in C_1$, or $\pi(x) = \min(\pi(C_2))$ if $x \in C_2$

Fhus, we have

ullet One of the two cols had to have 1 at position x

Why is this possible

It is equally likely that any $x \in X$ is mapped to the min element

• Thus, we have an x such that

$$\pi\left(x\right) = \min\left[\pi\left(C_1\bigcup C_2\right)\right]$$

Then either

•
$$\pi(x) = \min(\pi(C_1))$$
 if $x \in C_1$, or $\pi(x) = \min(\pi(C_2))$ if $x \in C_2$

Thus, we have

• One of the two cols had to have 1 at position x.

Then, we have that

We realize that when $x = C_1 \cap C_2$

$$Pr\left[\min\left(\pi\left(C_{1}\right)\right) = \min\left(\pi\left(C_{2}\right)\right)\right] = \frac{|C_{1} \cap C_{2}|}{|C_{1} \cup C_{2}|} = sim\left(C_{1}, C_{2}\right)$$

≣ ∽ ९ ୯ 84 / 131

イロン イ団 とく ヨン イヨン

Now, we have Four Types of Rows between Documents

Given cols \mathcal{C}_1 and \mathcal{C}_2 , rows may be classified based on its similarity

	C_1	C_2
А	1	1
В	1	0
С	0	1
D	0	0

Then, we define

The following cardinalities

- **1** a =Number of Rows of type A,
- **2** b =Number of Rows of type B,
- **③** c =Number of Rows of type C,
- d = Number of Rows of type D.

Then, we have

Then, we define

The following cardinalities

- **1** a =Number of Rows of type A,
- **2** b = Number of Rows of type B,
- **③** c =Number of Rows of type C,
- d = Number of Rows of type D.

Then, we have

$$sim\left(C_1, C_2\right) = \frac{a}{a+b+c}$$

86 / 131

< ロ > < 同 > < 回 > < 回 >

Then, we have

Look down the cols C_1 and C_2 until we see a 1

$$Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$$

Something Notable

- If it's a type-A row, then $h(C_1) = h(C_2)$
- If a type-B or type-C row, then not.

Finally, as they say

$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

Then, we have

Look down the cols C_1 and C_2 until we see a 1

$$Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$$

Something Notable

- If it's a type-A row, then $h(C_1) = h(C_2)$
- If a type-B or type-C row, then not.

Finally, as they say

$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

Then, we have

Look down the cols C_1 and C_2 until we see a 1

$$Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$$

Something Notable

- If it's a type-A row, then $h(C_1) = h(C_2)$
- If a type-B or type-C row, then not.

Finally, as they say

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$$

Similarity for Signatures

We know $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

• Now generalize to multiple hash functions

Similarity

 The similarity of two signatures is the fraction of the hash functions in which they agree

Similarity for Signatures

We know $Pr[h_{\pi}(C_{1}) = h_{\pi}(C_{2})] = sim(C_{1}, C_{2})$

• Now generalize to multiple hash functions

Similarity

• The similarity of two signatures is the fraction of the hash functions in which they agree

Note

 Because of the Minhash property, the similarity of columns is the same as the expected similarity of their signatures

88/131

< ロ > < 同 > < 回 > < 回 >

Similarity for Signatures

We know $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

• Now generalize to multiple hash functions

Similarity

• The similarity of two signatures is the fraction of the hash functions in which they agree

Note

• Because of the Minhash property, the similarity of columns is the same as the expected similarity of their signatures

88 / 131

イロト イヨト イヨト

Min-Hashing Example

Example

	Similarity			$C_1 C_2$	$C_1 C_3$	$C_1 C_4$	$C_2 C_3$	$C_2 C_4$	$C_{3} C_{4}$			
	Vector Shingles				$\frac{3}{6}$	$\frac{2}{5}$	$\frac{1}{7}$	$\frac{1}{5}$	25	0		
	Vector Signatures				1 3	$\frac{2}{3}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0		
Permutations					Shingle Matrix					Sign	ature Matrix	
	3	1	2	7		0	1)	1	1	$2 \ 1 \ 3$
	2	7	1	6		1	1	1		0	2	$1 \ 2 \ 1$
	1	2	3	5		1	0	1		0	1	1 1 2
	4	4	5	4		0	0	()	1		3 5 3
	7	6	4	1		1	1	() (0		
	5	3	6	2		1	0	() (0		
	6	5	7	3		1	1	()	1		

ъ.

ヘロト ヘロト ヘヨト ヘヨト

We can see that

We have the following

Similarity	$C_1 C_2$	$C_1 C_3$	$C_1 C_4$	$C_2 C_3$	$C_2 C_4$	$C_{3} C_{4} $
Vector Shingles	$\frac{3}{6}$	$\frac{2}{5}$	$\frac{1}{7}$	$\frac{1}{5}$	$\frac{2}{5}$	0
Vector Signatures	$\frac{1}{3}$	$\frac{2}{3}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0

Therefore the need to have more permutations

• Remember the Corollary?

We can see that

We have the following

Similarity	$C_1 C_2$	$C_1 C_3$	$C_1 C_4$	$C_2 C_3$	$C_2 C_4$	$C_{3} C_{4} $
Vector Shingles	$\frac{3}{6}$	$\frac{2}{5}$	$\frac{1}{7}$	$\frac{1}{5}$	$\frac{2}{5}$	0
Vector Signatures	$\frac{1}{3}$	$\frac{2}{3}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0

Therefore the need to have more permutations

• Remember the Corollary?

After Many Proofs

Corollary [3]

• For $0 < \epsilon, r < 1$, there exists an algorithm for $(r, \epsilon r)$ -PLEB under D using $O(dn + n^{1+\rho})$ space and $O(n^{\rho})$ evaluations for each query, where $\rho = \frac{\log r}{\log \epsilon r}$.

Min-Hash Signatures

We increase the number of signatures too look more like the original sim Vector Shingle based

- Pick K = 100 random permutations of the rows.
- Think of sig(C) (Signature of C) as a column vector.

We have that

 sig (C) [i] =according to the ith permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = \min(\pi[i(C)])$

• The signature of the document can be made small ~ 100 bytes!

Min-Hash Signatures

We increase the number of signatures too look more like the original sim Vector Shingle based

- Pick K = 100 random permutations of the rows.
- Think of sig(C) (Signature of C) as a column vector.

We have that

• $sig\left(C\right)\left[i\right]$ =according to the i^{th} permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = \min(\pi[i(C)])$

• The signature of the document can be made small ~ 100 bytes!

92 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing

Implementation Tricks

- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

93 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

Implementation Trick

However

• Permuting rows is prohibitive !!!

And Hashing come to the rescue again!!

- Pick K = 100 hash functions g_i
- Ordering under g_i gives a random row permutation!

Implementation Trick

However

• Permuting rows is prohibitive !!!

And Hashing come to the rescue again!!!

- Pick K = 100 hash functions g_i
- Ordering under g_i gives a random row permutation!

For each column C and hash-function $g_i \mbox{ keep a ``slot" for the min-hash value }$

- **1** Initialize all $sig(C)[i] = \infty$
 - Suppose row j has 1 in column C
 - Then for each g_i :
 - If $g_{i}(j) < sig(C)[i]$, then $sig(C)[i] = g_{i}(j)$

For each column C and hash-function $g_i \mbox{ keep a "slot" for the min-hash value }$

- Initialize all $sig(C)[i] = \infty$
- 2 Scan rows looking for 1's

95 / 131

ヘロト 人間ト 人目下 人目下

For each column C and hash-function g_i keep a "slot" for the min-hash value

- Initialize all $sig(C)[i] = \infty$
- 2 Scan rows looking for 1's
- O Suppose row j has 1 in column C

If $g_{i}\left(j
ight) < sig\left(C
ight)\left[i
ight]$, then $sig\left(C
ight)\left[i
ight] = g_{i}\left(j
ight)$

For each column C and hash-function g_i keep a "slot" for the min-hash value

- $\textbf{ Initialize all } sig\left(C\right)\left[i\right] = \infty$
- **2** Scan rows looking for 1's
- **③** Suppose row j has 1 in column C
- Then for each g_i :

95/131

< ロ > < 同 > < 回 > < 回 >

For each column C and hash-function $g_i \mbox{ keep a ``slot" for the min-hash value }$

- $\textbf{ Initialize all } sig\left(C\right)\left[i\right] = \infty$
- **2** Scan rows looking for 1's
- O Suppose row j has 1 in column C
- Then for each g_i :

Selecting such hash functions

How to pick a random hash function h(x)?

• Universal Hashing

For example, $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where:

• a, b random integers

• p a prime number (p > N)

Selecting such hash functions

How to pick a random hash function h(x)?

Universal Hashing

For example, $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$ where:

- *a*, *b* random integers
- p a prime number (p > N)

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks

Finally, Locality Sensitive Hashing

- Locality Sensitive Hashing for Min-Hash
- Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
- Low Similarity Example
- A Trade-off
- The Final Pipeline

Locality Sensitive Hashing

Find documents with Jaccard similarity at least \boldsymbol{s}

• For some similarity threshold, for example, $s=0.8\,$

Locality Sensitive Hashing – General idea

• Use a function f(x,y) that tells whether x and y is a candidate pair

A pair of elements whose similarity must be evaluated.

For Min-Hash matrices

• Hash columns of signature matrix M to many buckets.

Thus, each pair of documents that hashes into the same bucket is a candidate pair.

Locality Sensitive Hashing

Find documents with Jaccard similarity at least s

• For some similarity threshold, for example, s = 0.8

Locality Sensitive Hashing - General idea

 \bullet Use a function f(x,y) that tells whether x and y is a candidate pair

A pair of elements whose similarity must be evaluated.

For Min-Hash matrices

Hash columns of signature matrix M to many buckets.
 Thus, each pair of documents that hashes into the same line intothe same line intothe same line into the same linto the same

Thus, each pair of documents that hashes into the same bucket is a candidate pair.

Locality Sensitive Hashing

Find documents with Jaccard similarity at least s

• For some similarity threshold, for example, s = 0.8

Locality Sensitive Hashing - General idea

 \bullet Use a function f(x,y) that tells whether x and y is a candidate pair

A pair of elements whose similarity must be evaluated.

For Min-Hash matrices

- Hash columns of signature matrix M to many buckets.
 - Thus, each pair of documents that hashes into the same bucket is a candidate pair.

Candidates from Min-Hash

Pick a similarity threshold $s \ (0 < s < 1)$

• Around this, we need to design the Min-Hash

Columns x and y of M are a candidate pair

if their signatures agree on at least fraction s of their rows:
 M(i, x) = M(i, y) for at least fraction s of values of i.

Candidates from Min-Hash

Pick a similarity threshold s (0 < s < 1)

• Around this, we need to design the Min-Hash

Columns x and y of M are a candidate pair

• if their signatures agree on at least fraction s of their rows:

• M(i, x) = M(i, y) for at least fraction s of values of i.

Why

Remember

• For $0 < \epsilon, r < 1$, there exists an algorithm for $(r, \epsilon r)$ -PLEB under D using $O(dn + n^{1+\rho})$ space and $O(n^{\rho})$ evaluations for each query, where $\rho = \frac{\log r}{\log \epsilon r}$.

Something Notable

 We expect documents x and y to have the same (Jaccard) similarity as is the similarity of their signatures

100 / 131

・ロト ・四ト ・ヨト ・ヨト

Why

Remember

• For $0 < \epsilon, r < 1$, there exists an algorithm for $(r, \epsilon r)$ -PLEB under D using $O(dn + n^{1+\rho})$ space and $O(n^{\rho})$ evaluations for each query, where $\rho = \frac{\log r}{\log \epsilon r}$.

Something Notable

• We expect documents x and y to have the same (Jaccard) similarity as is the similarity of their signatures

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing

Locality Sensitive Hashing for Min-Hash

- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Locality Sensitive Hashing for Min-Hash

Big idea

 $\bullet\,$ Hash columns of signature matrix M several times

Likely to hash

 Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs

• Candidate pairs are those that hash to the same bucket

102 / 131

イロト イヨト イヨト イヨト

Locality Sensitive Hashing for Min-Hash

Big idea

 $\bullet\,$ Hash columns of signature matrix M several times

Likely to hash

• Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs

• Candidate pairs are those that hash to the same bucket

Locality Sensitive Hashing for Min-Hash

Big idea

 $\bullet\,$ Hash columns of signature matrix M several times

Likely to hash

• Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs

• Candidate pairs are those that hash to the same bucket

102 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash

• Partition M into b Bands

- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

Basically

From the main Theorem with $ho = rac{\log rac{1}{p_1}}{\log rac{1}{p_2}}$

$$P\left(p\in\mathsf{B}(q,r_{1})\text{ then }g_{j}\left(p
ight)=g_{j}\left(q
ight)$$
, for some $j=1,...,l
ight)\geq1-\left(1-n^{-
ho}
ight)^{l}$

Given that (Under $p_1>p_2$

ヘロト ヘロト ヘヨト ヘヨト

Basically

From the main Theorem with $ho = rac{\log rac{1}{p_1}}{\log rac{1}{p_2}}$

$$P\left(p\in\mathsf{B}(q,r_{1})\text{ then }g_{j}\left(p
ight)=g_{j}\left(q
ight)$$
, for some $j=1,...,l
ight)\geq1-\left(1-n^{-
ho}
ight)^{l}$

Given that (Under $p_1 > p_2$)

$$n^{-\rho} = p_1^k$$

≣ ∽ ९ C 104 / 131

イロン イ団 とく ヨン イヨン

Therefore

Then, if each signature is split in l bands and k bits

• Then, we have that two signatures at a certain band are equal with probability greater than a certain threshold *s*:

 $P(\text{All elements at the band ae equal}) \geq (s)^k$

hen

ullet We need to play with l and r to reach our objectives

Therefore

Then, if each signature is split in l bands and k bits

• Then, we have that two signatures at a certain band are equal with probability greater than a certain threshold *s*:

 $P(\text{All elements at the band ae equal}) \geq (s)^k$

Then

• We need to play with *l* and *r* to reach our objectives.

Partition \boldsymbol{M} into \boldsymbol{b} Bands

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへで 106 / 131

For this

Partition M into l Bands

• Divide matrix M into l bands of r rows.

For each band

• Hash its portion of each column to a hash table with k buckets.

Cherefore

• Make k as large as possible

For this

Partition M into l Bands

• Divide matrix M into l bands of r rows.

For each band

• Hash its portion of each column to a hash table with k buckets.

Fherefore

Make k as large as possible

For this

Partition M into l Bands

• Divide matrix M into l bands of r rows.

For each band

• Hash its portion of each column to a hash table with k buckets.

Therefore

• Make k as large as possible

Then, the candidates have certain properties

Proposition

 Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q (C 108 / 131
Then, the candidates have certain properties

Proposition

 $\bullet\,$ Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Catch most similar pairs

Tune *l* and *k* to catch most similar pairs, but few non-similar pairs.

108 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

Then, the candidates have certain properties

Proposition

 $\bullet\,$ Candidate column pairs are those that hash to the same bucket for ≥ 1 bands.

Catch most similar pairs

• Tune l and k to catch most similar pairs, but few non-similar pairs.

108 / 131

イロト イヨト イヨト

Hashing Bands

109/131

Simplifying Assumption

Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

• Then, we assume that "same bucket" means "identical in that band

Not for correctness

 Assumption needed only to simplify analysis, not for the correctness of algorithm

110/131

イロト イヨト イヨト イヨト

Simplifying Assumption

Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

• Then, we assume that "same bucket" means "identical in that band"

Not for correctness

 Assumption needed only to simplify analysis, not for the correctness of algorithm

110 / 131

イロト イヨト イヨト

Simplifying Assumption

Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Same bucket

Then, we assume that "same bucket" means "identical in that band"

Not for correctness

 Assumption needed only to simplify analysis, not for the correctness of algorithm

110 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands

Playing the Probability Game

- High Similarity Example
- Low Similarity Example
- A Trade-off
- The Final Pipeline

Assume the following case

- Suppose 100,000 columns of M (100,000 documents)
- Signatures of 100 integers (rows) each integer taking 32 bits = 4 bytes
- Therefore, signatures can take around 38 Megabytes of Memory Space

Assume the following case

- Suppose 100,000 columns of M (100,000 documents)
- Signatures of 100 integers (rows) each integer taking 32 bits = 4 bytes

• Therefore, signatures can take around 38 Megabytes of Memory Space

we choose l = 20 bands of k = 5 integers/band, our objective is
To find pairs of documents that are at least s = 0.8 similar

Assume the following case

- Suppose 100,000 columns of M (100,000 documents)
- Signatures of 100 integers (rows) each integer taking 32 bits = 4 bytes
- Therefore, signatures can take around 38 Megabytes of Memory Space

ullet To find pairs of documents that are at least s=0.8 similar

Assume the following case

- Suppose 100,000 columns of M (100,000 documents)
- Signatures of 100 integers (rows) each integer taking 32 bits = 4 bytes
- Therefore, signatures can take around 38 Megabytes of Memory Space

If we choose l = 20 bands of k = 5 integers/band, our objective is

• To find pairs of documents that are at least s = 0.8 similar

112 / 131

イロン イロン イヨン イヨン

Now, if C_1, C_2 have a high 80% similarity

Find pairs of $\geq s = 0.8$ similarity

• set l = 20 and k = 5

If $sim(C_1, C_2) = 0.8$

ullet We want C_1 , C_2 to be a candidate pair

 We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

 We have that the probability C₁, C₂ are identical in one particular band l_i is

$P\left(C_1^{l_{i1}} = C_2^{l_{i1}}, ..., C_1^{l_{ik}} = C_2^{l_{ik}}\right) = \prod_{j=1}^{\kappa} P\left(C_1^{l_{ij}} = C_2^{l_{ij}}\right) = (0.8)^5 = 0.328$

cinvestav

113/131

・ロット (雪) (キョット・ヨット

Now, if C_1, C_2 have a high 80% similarity

Find pairs of $\geq s = 0.8$ similarity

• set l = 20 and k = 5

If $sim(C_1, C_2) = 0.8$

• We want C_1 , C_2 to be a candidate pair

► We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

 We have that the probability C₁, C₂ are identical in one particular band l_i is

$P\left(C_1^{l_{i1}} = C_2^{l_{i1}}, ..., C_1^{l_{ik}} = C_2^{l_{ik}}\right) = \prod_{j=1}^{\kappa} P\left(C_1^{l_{ij}} = C_2^{l_{ij}}\right) = (0.8)^5 = 0.328$

cinvestav

Now, if C_1, C_2 have a high 80% similarity

Find pairs of $\geq s = 0.8$ similarity

• set l = 20 and k = 5

If $sim(C_1, C_2) = 0.8$

• We want C_1 , C_2 to be a candidate pair

 We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

• We have that the probability C_1 , C_2 are identical in one particular band l_i is

$$P\left(C_1^{l_{i1}} = C_2^{l_{i1}}, \dots, C_1^{l_{ik}} = C_2^{l_{ik}}\right) = \prod_{j=1}^k P\left(C_1^{l_{ij}} = C_2^{l_{ij}}\right) = (0.8)^5 = 0.328$$

cinvesta

What is the Probability of not being similar at all?

We use the complement to answer that over l = 20

$$P\left(C_{1}^{l_{i1}} \neq C_{2}^{l_{i1}}, ..., C_{1}^{l_{ik}} \neq C_{2}^{l_{ik}}\right) = \left[1 - \prod_{j=1}^{k} P\left(C_{1}^{l_{ij}} = C_{2}^{l_{ij}}\right)\right]^{20}$$

Thus, we have that

 $P\left(C_1^{l_{i1}} \neq C_2^{l_{i1}}, ..., C_1^{l_{ik}} \neq C_2^{l_{ik}}\right) = 0.00035$

114 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

What is the Probability of not being similar at all?

We use the complement to answer that over l = 20

$$P\left(C_{1}^{l_{i1}} \neq C_{2}^{l_{i1}}, ..., C_{1}^{l_{ik}} \neq C_{2}^{l_{ik}}\right) = \left[1 - \prod_{j=1}^{k} P\left(C_{1}^{l_{ij}} = C_{2}^{l_{ij}}\right)\right]^{20}$$

Thus, we have that

$$P\left(C_1^{l_{i1}} \neq C_2^{l_{i1}}, ..., C_1^{l_{ik}} \neq C_2^{l_{ik}}\right) = 0.00035$$

114/131

< ロ > < 回 > < 回 > < 回 > < 回 >

Meaning

We have that

• About $\left(\frac{1}{3000}\right)^{th}$ of the 80% similar column pairs are false negatives i.e. we miss them

But, and this is important

We would find 99.965% pairs of truly similar documents

Meaning

We have that

• About $\left(\frac{1}{3000}\right)^{th}$ of the 80% similar column pairs are false negatives i.e. we miss them

But, and this is important

 \bullet We would find 99.965% pairs of truly similar documents

115 / 131

イロト イヨト イヨト イヨト

Now, if C_1, C_2 have a low 30% similarity

Find pairs of $\geq s = 0.3$ similarity

• set l = 20 and k = 5

If $sim(C_1, C_2) = 0.3$

ullet We want C_1 , C_2 to be a candidate pair

We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

 We have that the probability C₁, C₂ are identical in one particular band l_i is

$P\left(C_{1}^{l_{i1}} = C_{2}^{l_{i1}}, ..., C_{1}^{l_{ik}} = C_{2}^{l_{ik}}\right) = \prod_{j=1}^{\kappa} P\left(C_{1}^{l_{ij}} = C_{2}^{l_{ij}}\right) = (0.3)^{5} = 0.00243$

cinvestav

116 / 131

A D A A B A A B A A B A

Now, if C_1, C_2 have a low 30% similarity

Find pairs of $\geq s = 0.3$ similarity

• set l = 20 and k = 5

If $sim(C_1, C_2) = 0.3$

• We want C_1 , C_2 to be a candidate pair

▶ We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

 We have that the probability C₁, C₂ are identical in one particular band l_i is

$P\left(C_{1}^{l_{i1}} = C_{2}^{l_{i1}}, ..., C_{1}^{l_{ik}} = C_{2}^{l_{ik}}\right) = \prod_{j=1}^{\kappa} P\left(C_{1}^{l_{ij}} = C_{2}^{l_{ij}}\right) = (0.3)^{5} = 0.00243$

cinvestav

Now, if C_1, C_2 have a low 30% similarity

Find pairs of $\geq s = 0.3$ similarity

• set l = 20 and k = 5

If $sim(C_1, C_2) = 0.3$

• We want C_1 , C_2 to be a candidate pair

 We want them to hash to at least 1 common bucket (at least one band is identical)

In one particular band

• We have that the probability C_1 , C_2 are identical in one particular band l_i is

$$P\left(C_1^{l_{i1}} = C_2^{l_{i1}}, \dots, C_1^{l_{ik}} = C_2^{l_{ik}}\right) = \prod_{j=1}^k P\left(C_1^{l_{ij}} = C_2^{l_{ij}}\right) = (0.3)^5 = 0.00243$$

cinvesta

What is the Probability of not being similar at all?

We use the complement to answer that over l = 20

$$P\left(C_{1}^{l_{i1}} \neq C_{2}^{l_{i1}}, ..., C_{1}^{l_{ik}} \neq C_{2}^{l_{ik}}\right) = \left[1 - \prod_{j=1}^{k} P\left(C_{1}^{l_{ij}} = C_{2}^{l_{ij}}\right)\right]^{20}$$

Thus, we have that

 $P\left(C_1^{l_{i1}} \neq C_2^{l_{i1}}, ..., C_1^{l_{ik}} \neq C_2^{l_{ik}}\right) = 0.0474$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q @ 117/131

What is the Probability of not being similar at all?

We use the complement to answer that over l = 20

$$P\left(C_{1}^{l_{i1}} \neq C_{2}^{l_{i1}}, ..., C_{1}^{l_{ik}} \neq C_{2}^{l_{ik}}\right) = \left[1 - \prod_{j=1}^{k} P\left(C_{1}^{l_{ij}} = C_{2}^{l_{ij}}\right)\right]^{20}$$

Thus, we have that

$$P\left(C_1^{l_{i1}} \neq C_2^{l_{i1}}, \dots, C_1^{l_{ik}} \neq C_2^{l_{ik}}\right) = 0.0474$$

117 / 131

イロト イヨト イヨト イヨト

Meaning

We have that

• In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.

They are false positives

• Since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold *s*.

118 / 131

イロト イヨト イヨト イヨト

Meaning

We have that

• In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.

They are false positives

• Since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold *s*.

118 / 131

イロト イヨト イヨト

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

You need to pick

- The number of Min-Hashes (rows of *M*).
 - The number of bands *l*.
 - The number of rows k per band to balance false positives/negatives.

You need to pick

- The number of Min-Hashes (rows of M).
- The number of bands *l*.

he number of rows k per band to balance false positives/negatives.

Example

if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

You need to pick

- The number of Min-Hashes (rows of M).
- The number of bands *l*.
- $\bullet\,$ The number of rows k per band to balance false positives/negatives.

 if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

You need to pick

- The number of Min-Hashes (rows of M).
- The number of bands *l*.
- The number of rows k per band to balance false positives/negatives.

Example

• if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

120 / 131

Analysis of Locality Sensitive Hashing - What We Want

121 / 131

イロト イヨト イヨト

What One Band of One Row Gives You

122 / 131

< ロ > < 回 > < 回 > < 回 > < 回 >

We can calculate the probability that these documents become a candidate pair as follows

- $\hfill \bullet$ The probability that the signatures disagree in at least one row of a particular band is $1-s^k$.
- The probability that the signatures disagree in at least one row of each of the bands is (1 s^k)^l.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1-\left(1-s^k\right)^l$

We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is s^k .
- ⁽²⁾ The probability that the signatures disagree in at least one row of a particular band is $1-s^k$.

The probability that the signatures disagree in at least one row of each of the bands is $(1-s^k)^l$.

• The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1 - (1 - s^k)^l$

We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is s^k .
- $\textcircled{\sc 0}$ The probability that the signatures disagree in at least one row of a particular band is $1-s^k$.
- The probability that the signatures disagree in at least one row of each of the bands is $(1 s^k)^l$.

The probability that the signatures agree in all the rows of at least

one band, and therefore become a candidate pair, is 1-ig(1-s

We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is s^k .
- $\textcircled{\sc 0}$ The probability that the signatures disagree in at least one row of a particular band is $1-s^k$.
- The probability that the signatures disagree in at least one row of each of the bands is $(1 s^k)^l$.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1 (1 s^k)^l$.

123 / 131
If you fix $k \mbox{ and } l$

Something Notable

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 124/131 Example: l = 20; k = 5

Given

• Similarity threshold s

Similarity threshold s Prob. that at least 1 band is identical

イロト イヨト イヨト イヨト

Example: l = 20; k = 5

Given

• Similarity threshold \boldsymbol{s}

Similarity threshold s Prob. that at least 1 band is identical

s	$1 - \left(1 - s^k\right)^l$
.2	0.006
.3	0.047
.4	0.186
.5	0.470
.6	0.802
.7	0.975
.8	0.9996

Picking k and l: The S-curve

Picking k and l to get the best S-curve

• For example, for 50 hash-functions $\left(k=5, l=10\right)$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (や 126 / 131

Locality Sensitive Hashing, a Brief Summary

Tune M , l , k

• Tune M, l, k to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

 Check in main memory that candidate pairs really do have similar signatures

Optional

 In another pass through data, check that the remaining candidate pairs really represent similar documents

Locality Sensitive Hashing, a Brief Summary

Tune M, l, k

• Tune M, l, k to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

Check in main memory that candidate pairs really do have similar signatures

Optional

 In another pass through data, check that the remaining candidate pairs really represent similar documents

Locality Sensitive Hashing, a Brief Summary

Tune M, l, k

• Tune M, l, k to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory

Check in main memory that candidate pairs really do have similar signatures

Optional

• In another pass through data, check that the remaining candidate pairs really represent similar documents

Outline

Introductio

- Image Retrieval, Actually Any Kind of Retrieval
- A Common Problem
- Approximate Near-Neighbor Problem
- Jaccard Similarity
- Finding Similar Documents

2 Locality Sensitive Hashing Theory

- Introduction
- Sensitive Families of Hshing
- Applying the Theorem to Distances
- Permutations as Hash Functions

3 Locality Sensitive Hashing Practicalities

- The Pipeline
- Documents as High-Dimensional Data
- Shingles
- Similarity Metric for Shingles
- A Possible Implementation of Jaccard
- Now, Our Working Assumption
- Encoding Sets
- Finding Similar Columns
- Generating Signatures
- Min-Hashing
- Implementation Tricks
- Finally, Locality Sensitive Hashing
- Locality Sensitive Hashing for Min-Hash
- \bigcirc Partition M into b Bands
- Playing the Probability Game
 - High Similarity Example
 - Low Similarity Example
- A Trade-off
- The Final Pipeline

The Final Pipeline

Convert Objects using Vector Shingling Representation

• Convert Objects into sets via shingling

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 129 / 131

The Final Pipeline

Convert Objects using Vector Shingling Representation

Convert Objects into sets via shingling

Convert large sets to short signatures, while preserving similarity using Min-hashing

• Use similarity preserving hashing to generate signatures with property

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2).$$

Use hashing to get around generating random permutations.

The Final Pipeline

Convert Objects using Vector Shingling Representation

Convert Objects into sets via shingling

Convert large sets to short signatures, while preserving similarity using Min-hashing

• Use similarity preserving hashing to generate signatures with property

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2).$$

• Use hashing to get around generating random permutations.

129 / 131

< ロ > < 同 > < 回 > < 回 >

Locality-Sensitive Hashing

- Them, focus on pairs of signatures that are likely to be from similar documents.
 - Jse hashing to find candidate pairs of similarity \geq

Finally

Locality-Sensitive Hashing

- Them, focus on pairs of signatures that are likely to be from similar documents.
 - Use hashing to find candidate pairs of similarity $\geq s$

- Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, "Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval," *IEEE transactions on pattern analysis and machine intelligence*, vol. 35, no. 12, pp. 2916–2929, 2012.
- M. Muja and D. G. Lowe, "Scalable nearest neighbor algorithms for high dimensional data," *IEEE transactions on pattern analysis and machine intelligence*, vol. 36, no. 11, pp. 2227–2240, 2014.
- P. Indyk and R. Motwani, "Approximate nearest neighbors: towards removing the curse of dimensionality," in *Proceedings of the thirtieth annual ACM symposium on Theory of computing*, pp. 604–613, 1998.
- M. Levandowsky and D. Winter, "Distance between sets," *Nature*, vol. 234, no. 5323, pp. 34–35, 1971.

∃ ∽ Q ⊂ 131 / 131

イロト 不得 トイヨト イヨト