Analysis of Algorithms
 Medians and Order Statistics

Andres Mendez-Vazquez

September 30, 2018

Outline

(1) Introduction

- Finding the $k^{t h}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SELECT
(3) Selection in worst-case linear time
- Introduction
- Explanation

4 SELECT the i th element in n elements

- The Final Algorithm
- Complexity Analysis
- Introduction

Outline

(1) Introduction

- Finding the $k^{t h}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SELECT

3 Selection in worst-case linear time

- Introduction
- Explanation

4 SELECT the i th element in n elements

- The Final Algorithm
- Complexity Analysis

5 Summary
Introduction

Introduction

Fact:

The i th order statistic of a set of n elements is the i th smallest element.

Introduction

Fact:

The i th order statistic of a set of n elements is the i th smallest element.

Examples

- $i=1$ we are talking the minimum.

Introduction

Fact:

The i th order statistic of a set of n elements is the i th smallest element.

Examples

- $i=1$ we are talking the minimum.
- $i=n$ we are talking the maximum.

Introduction

Fact:

The i th order statistic of a set of n elements is the i th smallest element.

Examples

- $i=1$ we are talking the minimum.
- $i=n$ we are talking the maximum.
- When n is an odd number, the position i of the median is defined by $i=\frac{n+1}{2}$

Outline

- Finding the $k^{\text {th }}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SELECT
(3) Selection in worst-case linear time
- Introduction
- Explanation
(4) SELECT the i th element in n elements
- The Final Algorithm
- Complexity Analysis
(5) Summary
- Introduction

Selection Problem

Input:
A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

Selection Problem

Input:

A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

Output:

The element $x \in A$ that is larger than exactly $i-1$ other elements of A.

Outline

(1) Introduction

- Finding the $k^{\text {th }}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SELECT

3 Selection in worst-case linear time

- Introduction
- Explanation

4 SELECT the i th element in n elements

- The Final Algorithm
- Complexity Analysis
(5) Summary

Introduction

Minimum-Maximum

Minimum using $n-1$ comparissons

Minimum (A)

Minimum-Maximum

Minimum using $n-1$ comparissons
Minimum (A)

- $\min =A[1]$

Minimum-Maximum

Minimum using $n-1$ comparissons
Minimum (A)
(1) $\min =A[1]$
(c) for $i=2$ to A.length

Minimum-Maximum

Minimum using $n-1$ comparissons
Minimum (A)
(1) $\min =A[1]$
(2) for $i=2$ to A.length

- if $\min >A[i]$

Minimum-Maximum

Minimum using $n-1$ comparissons
Minimum (A)
(1) $\min =A[1]$
(2) for $i=2$ to A.length

0
if $\min >A[i]$
\bigcirc

$$
\min =A[i]
$$

Minimum-Maximum

Minimum using $n-1$ comparissons
Minimum (A)
(1) $\min =A[1]$
(2) for $i=2$ to A.length
-
if $\min >A[i]$
0

$$
\min =A[i]
$$

- return \min

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The i th order statistic corresponds to the i th element.

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The i th order statistic corresponds to the i th element.
- For the median:

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The i th order statistic corresponds to the i th element.
- For the median:
- If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element.

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The i th order statistic corresponds to the i th element.
- For the median:
- If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element.
- If n is even:

Using an $O(n \log n)$ Algorithm

Assumption

Suppose n elements are sorted by an $O(n \log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The i th order statistic corresponds to the i th element.
- For the median:
- If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element.
- If n is even:
* The lower median is equal to the $\left\lfloor\frac{n+1}{2}\right\rfloor$ th element.
\star The upper median is equal to the $\left\lceil\frac{n+1}{2}\right\rceil$ th element.

Using an $O(n \log n)$ Algorithm

Important fact!

All selections can be done in $O(1)$, so total: $O(n \log n)$.

Using an $O(n \log n)$ Algorithm

Important fact!

All selections can be done in $O(1)$, so total: $O(n \log n)$.

Question!!!

- Can we do better?
- How many comparisons are needed to get the max and min of n elements?

Using an $O(n \log n)$ Algorithm

Important fact!

All selections can be done in $O(1)$, so total: $O(n \log n)$.

Question!!!

- Can we do better?
- How many comparisons are needed to get the max and min of n elements?

Minimum and Maximum at the same time... better choice

Naively

The naïve Maximum and Minimum at the same will take $2 n-2$ comparisons.

Minimum and Maximum at the same time... better choice

Naively

The naïve Maximum and Minimum at the same will take $2 n-2$ comparisons.

Something better?

- Take two elements at the same time.

Minimum and Maximum at the same time... better choice

Naively

The naïve Maximum and Minimum at the same will take $2 n-2$ comparisons.

Something better?

- Take two elements at the same time.
- Compare them to get the min and max in the tuple.

Minimum and Maximum at the same time... better choice

Naively

The naïve Maximum and Minimum at the same will take $2 n-2$ comparisons.

Something better?

- Take two elements at the same time.
- Compare them to get the min and max in the tuple.
- Compare the min in the tuple with the global min and do the same with the tuple max.

Minimum and Maximum at the same time... better choice

This will give you
$3\left\lfloor\frac{n}{2}\right\rfloor$ comparisons.

Minimum and Maximum at the same time... better choice

This will give you
$3\left\lfloor\frac{n}{2}\right\rfloor$ comparisons.

Why?
 Let's see!

Outline

(1) Introduction

- Finding the $k^{t h}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SELECT
(3) Selection in worst-case linear time
- Introduction
- Explanation
(4) SELECT the i th element in n elements
- The Final Algorithm
- Complexity Analysis
(5) Summary

Introduction

Selection in expected linear time $O(n)$

Selecting in expected linear time implies:

- Selecting the i th element.

Selection in expected linear time $O(n)$

Selecting in expected linear time implies:

- Selecting the i th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.

Selection in expected linear time $O(n)$

Selecting in expected linear time implies:

- Selecting the i th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.
- Similar to Quicksort, partition the input array recursively.

Selection in expected linear time $O(n)$

Selecting in expected linear time implies:

- Selecting the i th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.
- Similar to Quicksort, partition the input array recursively.
- Unlike Quicksort, which works on both sides of the partition, just work on one side of the partition. This is called PRUNE-AND-SEARCH, prune one side, just search the other.

Selection in expected linear time $O(n)$

Selecting in expected linear time implies:

- Selecting the i th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.
- Similar to Quicksort, partition the input array recursively.
- Unlike Quicksort, which works on both sides of the partition, just work on one side of the partition. This is called PRUNE-AND-SEARCH, prune one side, just search the other.

Homework

Please review or read Quicksort in Cormen's book (chapter 7).

Outline

(1) Introduction

- Finding the $k^{t h}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time

Using Randomizatior

- RANDOMIZED-SELECT
(3) Selection in worst-case linear time
- Introduction
- Explanation
(4) SELECT the i th element in n elements
- The Final Algorithm
- Complexity Analysis
(5) Summary

Introduction

Strategy

First partition the set of n elements

- How? Remember Randomized Quicksort!!!

Strategy

First partition the set of n elements

- How? Remember Randomized Quicksort!!!

Thus
We get a q from the random partition!!!

Example

Positions

Global Index Position

$p-q=3$ then $k=p-q+1=4$

Thus, the Strategy

If $i<k$
The possible i th smallest element is between p and $q-1$.

Thus, the Strategy

If $i<k$
The possible i th smallest element is between p and $q-1$.

If $i>k$

- The possible i th smallest element is between $q+1$ and r.

Thus, the Strategy

If $i<k$
The possible i th smallest element is between p and $q-1$.

If $i>k$

- The possible i th smallest element is between $q+1$ and r.
- But the new $i^{\prime}=i-k$, this will work because we start at $p=1$ and $r=n$.

Thus, the Strategy

If $i<k$
The possible i th smallest element is between p and $q-1$.

If $i>k$

- The possible i th smallest element is between $q+1$ and r.
- But the new $i^{\prime}=i-k$, this will work because we start at $p=1$ and $r=n$.

If $i==k \leftarrow$ We need to convert this to local index too

- return $A[q]$

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)
(9) $k=q-p+1 / /$ Local Index

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)
(9) $k=q-p+1 / /$ Local Index
(0) if $i==k / /$ The Answer

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)
(9) $k=q-p+1 / /$ Local Index
(3) if $i==k / /$ The Answer
(0) return $A[q]$

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)
(9) $k=q-p+1 / /$ Local Index
(3) if $i==k / /$ The Answer
(0) return $A[q]$
(1) elseif $i<k$

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)
(4) $k=q-p+1 / /$ Local Index
(3) if $i==k / /$ The Answer
(0) return $A[q]$
(1) elseif $i<k$
(8) return Randomized-Select $(A, p, q-1, i)$

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)
(9) $k=q-p+1 / /$ Local Index
(3) if $i==k / /$ The Answer
(0) return $A[q]$
(1) elseif $i<k$
(8) return Randomized-Sel
// Converting to local index
(0) else return Randomized-Select $(A, q+1, r, i-k)$

RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm

Randomized-Select (A, p, r, i)
(1) if $p==r$
(2) return $A[p]$
(3) $q=$ Randomized-Partition (A, p, r)
(9) $k=q-p+1 / /$ Local Index
(3) if $i==k / /$ The Answer
(0) return $A[q]$
(1) elseif $i<k$
(8) return Randomized-Sel
// Converting to local index
(0) else return Randomized-Select $(A, q+1, r, i-k)$

Analysis of RANDOMIZED-SELECT

Worst-case running time $\Theta\left(n^{2}\right)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where $m=n, n-1, \ldots, 2$. Thus in total

Analysis of RANDOMIZED-SELECT

Worst-case running time $\Theta\left(n^{2}\right)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where $m=n, n-1, \ldots, 2$. Thus in total

$$
\Theta(n)+\Theta(n-1)+\ldots+\Theta(2)=\Theta\left(\frac{n(n-1)}{2}-1\right)=\Theta\left(n^{2}\right) .
$$

Analysis of RANDOMIZED-SELECT

Worst-case running time $\Theta\left(n^{2}\right)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where $m=n, n-1, \ldots, 2$. Thus in total

$$
\Theta(n)+\Theta(n-1)+\ldots+\Theta(2)=\Theta\left(\frac{n(n-1)}{2}-1\right)=\Theta\left(n^{2}\right)
$$

Moreover

- No particular input elicits the worst-case behavior.

Analysis of RANDOMIZED-SELECT

Worst-case running time $\Theta\left(n^{2}\right)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where $m=n, n-1, \ldots, 2$. Thus in total

$$
\Theta(n)+\Theta(n-1)+\ldots+\Theta(2)=\Theta\left(\frac{n(n-1)}{2}-1\right)=\Theta\left(n^{2}\right)
$$

Moreover

- No particular input elicits the worst-case behavior.
- In average, RANDOMIZED-SELECT is good because of the randomness.

Outline

```
(1) Introduction
    - Finding the }\mp@subsup{k}{}{th}\mathrm{ statistics
    - Selection problem
    O Minimum-Maximum
```

(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SEIECT
(3) Selection in worst-case linear time - Introduction

- Explanation

4 SELECT the i th element in n elements

- The Final Algorithm
- Complexity Analysis
(5) Summary

Introduction

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
- Let $x \in S$, and partition S into three subsets.

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
- Let $x \in S$, and partition S into three subsets.
- $S_{1}=\left\{a_{j} \mid a_{j}<x\right\}, S_{2}=\left\{a_{j} \mid a_{j}=x\right\}, S_{3}=\left\{a_{j} \mid a_{j}>x\right\}$.

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
- Let $x \in S$, and partition S into three subsets.
- $S_{1}=\left\{a_{j} \mid a_{j}<x\right\}, S_{2}=\left\{a_{j} \mid a_{j}=x\right\}, S_{3}=\left\{a_{j} \mid a_{j}>x\right\}$.
- If $\left|S_{1}\right|>i$, search ith smallest elements in S_{1} recursively, (prune S_{2} and S_{3} away).

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
- Let $x \in S$, and partition S into three subsets.
- $S_{1}=\left\{a_{j} \mid a_{j}<x\right\}, S_{2}=\left\{a_{j} \mid a_{j}=x\right\}, S_{3}=\left\{a_{j} \mid a_{j}>x\right\}$.
- If $\left|S_{1}\right|>i$, search ith smallest elements in S_{1} recursively, (prune S_{2} and S_{3} away).
- Else If $\left|S_{1}\right|+\left|S_{2}\right|>i$, then return x (the i th smallest element).

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
- Let $x \in S$, and partition S into three subsets.
- $S_{1}=\left\{a_{j} \mid a_{j}<x\right\}, S_{2}=\left\{a_{j} \mid a_{j}=x\right\}, S_{3}=\left\{a_{j} \mid a_{j}>x\right\}$.
- If $\left|S_{1}\right|>i$, search ith smallest elements in S_{1} recursively, (prune S_{2} and S_{3} away).
- Else If $\left|S_{1}\right|+\left|S_{2}\right|>i$, then return x (the i th smallest element).
- Else search the $\left(i-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)\right)$ th element in S_{3} recursively (prune S_{1} and S_{2} away).

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
- Let $x \in S$, and partition S into three subsets.
- $S_{1}=\left\{a_{j} \mid a_{j}<x\right\}, S_{2}=\left\{a_{j} \mid a_{j}=x\right\}, S_{3}=\left\{a_{j} \mid a_{j}>x\right\}$.
- If $\left|S_{1}\right|>i$, search ith smallest elements in S_{1} recursively, (prune S_{2} and S_{3} away).
- Else If $\left|S_{1}\right|+\left|S_{2}\right|>i$, then return x (the i th smallest element).
- Else search the $\left(i-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)\right)$ th element in S_{3} recursively (prune S_{1} and S_{2} away).

A question arises

How to select x such that S_{1} and S_{3} are nearly equal in cardinality? Force an even search!!!

Selection in worst-case linear time $O(n)$.

Goal:

Select the i th smallest element of $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
- Let $x \in S$, and partition S into three subsets.
- $S_{1}=\left\{a_{j} \mid a_{j}<x\right\}, S_{2}=\left\{a_{j} \mid a_{j}=x\right\}, S_{3}=\left\{a_{j} \mid a_{j}>x\right\}$.
- If $\left|S_{1}\right|>i$, search ith smallest elements in S_{1} recursively, (prune S_{2} and S_{3} away).
- Else If $\left|S_{1}\right|+\left|S_{2}\right|>i$, then return x (the i th smallest element).
- Else search the $\left(i-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)\right)$ th element in S_{3} recursively (prune S_{1} and S_{2} away).

A question arises

How to select x such that S_{1} and S_{3} are nearly equal in cardinality? Force an even search!!!

Outline

```
(1) Introduction
    - Finding the }\mp@subsup{k}{}{th}\mathrm{ statistics
    - Selection problem
    O Minimum-Maximum
```

(2) Selection in Expected Linear Time

- Using Randomization
- RANDOMIZED-SELECT
(3) Selection in worst-case linear time Introduction
- Explanation
(4) SELECT the i th element in n elements
- The Final Algorithm
- Complexity Analysis
(5) Summary

Introduction

The way to select x

Divide elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements each and find the median of each one

- We cannot say anything about the order between elements, but between median an elements

The way to select x

Divide elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements each and find the median of each one

- We cannot say anything about the order between elements, but between median an elements
- Thus, arrows go from less to greater!!!

The way to select x

Divide elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements each and find the median of each one

- We cannot say anything about the order between elements, but between median an elements
- Thus, arrows go from less to greater!!!

The way to select x

Find the Median of the Medians

- Again the arrows indicate the order from greater to less

The way to select x

Find the Median of the Medians

- Again the arrows indicate the order from greater to less

The way to select x

We have (Here, again the worst case scenario!!!)

- At least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ possible groups with 3 elements greater than x

The way to select x

We have (Here, again the worst case scenario!!!)

- At least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ possible groups with 3 elements greater than x

The way to select x

We have (Here, again the worst case scenario!!!)

- At least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ possible groups with 3 elements less than x

The way to select x

We have (Here, again the worst case scenario!!!)

- At least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ possible groups with 3 elements less than x

Thus, we have

First

$3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2\right)=\frac{3 n}{10}-6$ elements $<x$

Thus, we have

First

$3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2\right)=\frac{3 n}{10}-6$ elements $<x$

Second

$3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2\right)=\frac{3 n}{10}-6$ elements $>x$

Outline

(1) Introduction

- Finding the $k^{t h}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED SEIECT
(3) Selection in worst-case linear time
- Introduction
- Explanation

4 SELECT the i th element in n elements

- The Final Algorithm
- Complexity Analysis
(5) Summary

Introduction

SELECT the i th element in n elements

Proceed as follows:

(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.

SELECT the i th element in n elements

Proceed as follows:

(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.
(2) Find the median of each group.

SELECT the i th element in n elements

Proceed as follows:
(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.
(2) Find the median of each group.
(3) Use SELECT recursively to find the median x of the above $\left\lceil\frac{n}{5}\right\rceil$ medians.

SELECT the i th element in n elements

Proceed as follows:
(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.
(2) Find the median of each group.
(3) Use SELECT recursively to find the median x of the above $\left\lceil\frac{n}{5}\right\rceil$ medians.
(9) Partition n elements around x into S_{1}, S_{2}, and S_{3}.

SELECT the i th element in n elements

Proceed as follows:
(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.
(2) Find the median of each group.
(3) Use SELECT recursively to find the median x of the above $\left\lceil\frac{n}{5}\right\rceil$ medians.
(9) Partition n elements around x into S_{1}, S_{2}, and S_{3}.
(5) If $\left|S_{1}\right|>i$, search i th smallest element in S_{1} recursively.

SELECT the i th element in n elements

Proceed as follows:
(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.
(2) Find the median of each group.
(3) Use SELECT recursively to find the median x of the above $\left\lceil\frac{n}{5}\right\rceil$ medians.
(9) Partition n elements around x into S_{1}, S_{2}, and S_{3}.
(5) If $\left|S_{1}\right|>i$, search i th smallest element in S_{1} recursively.

- Else If $\left|S_{1}\right|+\left|S_{2}\right|>i$, then return x (the i th smallest element).

SELECT the i th element in n elements

Proceed as follows:

(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.
(2) Find the median of each group.
(3) Use SELECT recursively to find the median x of the above $\left\lceil\frac{n}{5}\right\rceil$ medians.
(9) Partition n elements around x into S_{1}, S_{2}, and S_{3}.
(5) If $\left|S_{1}\right|>i$, search i th smallest element in S_{1} recursively.

- Else If $\left|S_{1}\right|+\left|S_{2}\right|>i$, then return x (the i th smallest element).
- Else search $\left(i-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)\right)$ th in S_{3} recursively

SELECT the i th element in n elements

Proceed as follows:

(1) Divide n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups of 5 elements.
(2) Find the median of each group.
(3) Use SELECT recursively to find the median x of the above $\left\lceil\frac{n}{5}\right\rceil$ medians.
(9) Partition n elements around x into S_{1}, S_{2}, and S_{3}.
(5) If $\left|S_{1}\right|>i$, search i th smallest element in S_{1} recursively.

- Else If $\left|S_{1}\right|+\left|S_{2}\right|>i$, then return x (the i th smallest element).
- Else search $\left(i-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)\right)$ th in S_{3} recursively

Outline

(1) Introduction

- Finding the $k^{t h}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SELECT
(3) Selection in worst-case linear time
- Introduction
- Explanation

4 SELECT the i th element in n elements
The Final Algorithm

- Complexity Analysis
(5) Summary

Introduction

Analysis of SELECT

Analysing complexity

- Steps 1,2 and 4 take $O(n)$.

Analysis of SELECT

Analysing complexity

- Steps 1,2 and 4 take $O(n)$.
- Step 3 takes $T\left(\left\lceil\frac{n}{5}\right\rceil\right)$.

Analysis of SELECT

Analysing complexity

- Steps 1,2 and 4 take $O(n)$.
- Step 3 takes $T\left(\left\lceil\frac{n}{5}\right\rceil\right)$.

Let us see step 5:

- At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ groups contribute 3 elements which are greater or equal than x. i.e., $3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3 n}{10}-6$.

Analysis of SELECT

Analysing complexity

- Steps 1,2 and 4 take $O(n)$.
- Step 3 takes $T\left(\left\lceil\frac{n}{5}\right\rceil\right)$.

Let us see step 5:

- At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ groups contribute 3 elements which are greater or equal than x. i.e., $3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3 n}{10}-6$.
- Similarly, the number of elements less or equal than x is also at least $\frac{3 n}{10}-6$.

Analysis of SELECT

Analysing complexity

- Steps 1,2 and 4 take $O(n)$.
- Step 3 takes $T\left(\left\lceil\frac{n}{5}\right\rceil\right)$.

Let us see step 5 :

- At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ groups contribute 3 elements which are greater or equal than x. i.e., $3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3 n}{10}-6$.
- Similarly, the number of elements less or equal than x is also at least $\frac{3 n}{10}-6$.
- Thus, $\left|S_{1}\right|$ is at most $\frac{7 n}{10}+6$, similarly for $\left|S_{3}\right|$.

Analysis of SELECT

Analysing complexity

- Steps 1,2 and 4 take $O(n)$.
- Step 3 takes $T\left(\left\lceil\frac{n}{5}\right\rceil\right)$.

Let us see step 5 :

- At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2$ groups contribute 3 elements which are greater or equal than x. i.e., $3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3 n}{10}-6$.
- Similarly, the number of elements less or equal than x is also at least $\frac{3 n}{10}-6$.
- Thus, $\left|S_{1}\right|$ is at most $\frac{7 n}{10}+6$, similarly for $\left|S_{3}\right|$.
- Thus SELECT in step 5 is called recursively on at most $\frac{7 n}{10}+6$ elements.

Final Recursion

We have then

$$
T(n)= \begin{cases}O(1) & \text { if } n<\text { some value (i.e. 140) } \\ T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+O(n) & \text { if } n \geq \text { some value (i.e. 140) }\end{cases}
$$

Solve recurrence by substitution

Suppose $T(n) \leq c n$ for some c

$$
T(n) \leq c\left\lceil\frac{n}{5}\right\rceil+c\left(\frac{7 n}{10}+6\right)+a n
$$

Solve recurrence by substitution

Suppose $T(n) \leq c n$ for some c

$$
\begin{aligned}
T(n) & \leq c\left\lceil\frac{n}{5}\right\rceil+c\left(\frac{7 n}{10}+6\right)+a n \\
& \leq \frac{1}{5} c n+c+\frac{7}{10} c n+6 c+a n
\end{aligned}
$$

Solve recurrence by substitution

Suppose $T(n) \leq c n$ for some c

$$
\begin{aligned}
T(n) & \leq c\left\lceil\frac{n}{5}\right\rceil+c\left(\frac{7 n}{10}+6\right)+a n \\
& \leq \frac{1}{5} c n+c+\frac{7}{10} c n+6 c+a n \\
& \leq \frac{9}{10} c n+7 c+a n
\end{aligned}
$$

Solve recurrence by substitution

Suppose $T(n) \leq c n$ for some c

$$
\begin{aligned}
T(n) & \leq c\left\lceil\frac{n}{5}\right\rceil+c\left(\frac{7 n}{10}+6\right)+a n \\
& \leq \frac{1}{5} c n+c+\frac{7}{10} c n+6 c+a n \\
& \leq \frac{9}{10} c n+7 c+a n \\
& \leq c n+\left(-\frac{1}{10} c n+a n+7 c\right)
\end{aligned}
$$

Solve recurrence by substitution.
$T(n)$ is at most $c n$

- If $-\frac{1}{10} c n+a n+7 c<0$.

Solve recurrence by substitution.
$T(n)$ is at most $c n$

- If $-\frac{1}{10} c n+a n+7 c<0$.
- i.e., $c \geq 10 a\left(\frac{n}{n-70}\right)$ when $n>70$.

Solve recurrence by substitution.

$T(n)$ is at most $c n$

- If $-\frac{1}{10} c n+a n+7 c<0$.
- i.e., $c \geq 10 a\left(\frac{n}{n-70}\right)$ when $n>70$.
- So, select $n=140$, and then $c \geq 20 a$.

Solve recurrence by substitution.
$T(n)$ is at most $c n$

- If $-\frac{1}{10} c n+a n+7 c<0$.
- i.e., $c \geq 10 a\left(\frac{n}{n-70}\right)$ when $n>70$.
- So, select $n=140$, and then $c \geq 20 a$.

Note:

n may not be 140 , any integer greater than 70 is OK.

Final Thoughts

Why group of size 5?

Using groups of 3 does not work, you can try and plug it into the claculations

Final Thoughts

Why group of size 5 ?

Using groups of 3 does not work, you can try and plug it into the claculations

What about 7 or bigger odd number
It does not change the computations, only by a constant

Applications

Computer Vision

In the Median Filter:

- Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Applications

Computer Vision

In the Median Filter:

- Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Statistical Applications

Confidence intervals for quantiles

- A machine may run on 10 batteries and shuts off when the i th battery dies. You will want to know the distribution of $X_{(i)}$.

Applications

Computer Vision

In the Median Filter:

- Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Statistical Applications

Confidence intervals for quantiles

- A machine may run on 10 batteries and shuts off when the i th battery dies. You will want to know the distribution of $X_{(i)}$.
- In machine-learning if you want to convert a continuous valued feature into Boolean features by bucketing it, one common approach is to partition it by percentile so that the cardinality of each Boolean feature is somewhat similar.

Applications

Computer Vision

In the Median Filter:

- Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Statistical Applications

Confidence intervals for quantiles

- A machine may run on 10 batteries and shuts off when the i th battery dies. You will want to know the distribution of $X_{(i)}$.
- In machine-learning if you want to convert a continuous valued feature into Boolean features by bucketing it, one common approach is to partition it by percentile so that the cardinality of each Boolean feature is somewhat similar.

Outline

(1) Introduction

- Finding the $k^{t h}$ statistics
- Selection problem
- Minimum-Maximum
(2) Selection in Expected Linear Time
- Using Randomization
- RANDOMIZED-SEIECT
(3) Selection in worst-case linear time
- Introduction
- Explanation
(4) SELECT the i th element in n elements
- The Final Algorithm
- Complexity Anatysis
(5) Summary
- Introduction

Summary.

The i th order statistic of n elements
$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements:

Summary.

The i th order statistic of n elements
$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements:

- Minimum and maximum.

Summary.

The i th order statistic of n elements
$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements:

- Minimum and maximum.
- Median, lower median, upper median.

Summary.

The i th order statistic of n elements
$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements:

- Minimum and maximum.
- Median, lower median, upper median.

Selection in expected average linear time

- Worst case running time

Summary.

The i th order statistic of n elements
$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements:

- Minimum and maximum.
- Median, lower median, upper median.

Selection in expected average linear time

- Worst case running time
- PRUNE-AND-SEARCH

Summary.

The i th order statistic of n elements
$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements:

- Minimum and maximum.
- Median, lower median, upper median.

Selection in expected average linear time

- Worst case running time
- PRUNE-AND-SEARCH

Selection in worst-case linear time

- The fast randomized version is due to Hoare.

Summary.

The i th order statistic of n elements

$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements:

- Minimum and maximum.
- Median, lower median, upper median.

Selection in expected average linear time

- Worst case running time
- PRUNE-AND-SEARCH

Selection in worst-case linear time

- The fast randomized version is due to Hoare.
- It is still unknown exactly how many comparisons are needed to determine the median.

Exercises

From Cormen's Book Chapter 9

- 9.1-1
- 9.2-3
- 9.3-4
- 9.3-8
- 9.2

