Analysis of Algorithms Medians and Order Statistics

Andres Mendez-Vazquez

September 30, 2018

イロン イボン イヨン トヨ

1/40

Outline

- Finding the kth statistics
- Selection problem
- Minimum-Maximum

2/40

э

イロト イボト イヨト イヨト

Outline

Selection in worst-case linear time Introduction Explanation

SELECT the *i*th element in *n* elements
 The Final Algorithm
 Complexity Analysis

Fact:

The ith order statistic of a set of n elements is the ith smallest element.

4 / 40

イロト イロト イヨト イヨト 二日

Fact:

The ith order statistic of a set of n elements is the ith smallest element.

Examples

• i = 1 we are talking the minimum.

• When n is an odd number, the position i of the median is defined by $i=\frac{n+1}{2}$

Fact:

The ith order statistic of a set of n elements is the ith smallest element.

Examples

- i = 1 we are talking the minimum.
- i = n we are talking the maximum.

4 / 40

< ロ > < 回 > < 回 > < 回 > < 回 >

Fact:

The ith order statistic of a set of n elements is the ith smallest element.

Examples

- i = 1 we are talking the minimum.
- *i* = *n* we are talking the maximum.
- $\bullet\,$ When n is an odd number, the position i of the median is defined by $i=\frac{n+1}{2}$

4 / 40

イロト イヨト イヨト イヨト

Outline

Using Randomization RANDOMIZED-SELECT

Introduction Explanation

The Final Algorithm Complexity Analysis

Selection Problem

Input:

A set A of n (distinct) numbers and an integer i, with $1 \le i \le n$.

Output:

The element $x\in A$ that is larger than exactly i-1 other elements of A.

Selection Problem

Input:

A set A of n (distinct) numbers and an integer i, with $1 \le i \le n$.

Output:

The element $x \in A$ that is larger than exactly i - 1 other elements of A.

Outline

Minimum-Maximum

Introduction Explanation

The Final Algorithm Complexity Analysis

Minimum using n-1 comparissons

Minimum(A)

• for i = 2 to A.length • if min > A[i]• min = A[i]

• return min

8 / 40

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimum using n - 1 comparissons **Minimum(**A**)** • min = A [1]

cinyestay

8 / 40

э

イロン イ団 とく ヨン イヨン

Minimum using n - 1 comparissons Minimum(A) • min = A[1]• for i = 2 to A.length

8 / 40

(日)

Minimum using n - 1 comparisons Minimum(A) min = A[1]for i = 2 to A.length find min > A[i]

8 / 40

イロン 不通 とうせい イロン

Minimum using n-1 comparissons Minimum(A)

- min = A[1]• for i = 2 to A.length
- if min > A[i]• min = A[i]

Cirvestar

8 / 40

イロン 不通 とうせい イロン

Minimum using n-1 comparissons

Minimum(A)

$$\bullet \ min = A \left[1 \right]$$

a for
$$i = 2$$
 to A.length

$$if min > A[i]$$

•
$$min = A [i]$$

• return min

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The *i*th order statistic corresponds to the *i*th element.
- For the median:
 - ▶ If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element
 - ▶ If *n* is even:
 - ***** The lower median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element.
 - * The upper median is equal to the $\lceil \frac{n+1}{2} \rceil$ th element

cinvestav

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The *i*th order statistic corresponds to the *i*th element.

• For the median:

- ▶ If *n* is odd, then the median is equal to the $\frac{n+1}{2}$ th element
- ▶ If *n* is even:
 - * The lower median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element.
 - * The upper median is equal to the $\lceil \frac{n+1}{2} \rceil$ th element

cinvestav

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The *i*th order statistic corresponds to the *i*th element.

If n is odd, then the median is equal to the n+1/2 th element.
 If n is even:

***** The lower median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element.

• The upper median is equal to the $\lceil \frac{n+1}{2} \rceil$ th element

cinvestav

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The *i*th order statistic corresponds to the *i*th element.
- For the median:

If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element. If n is even:

The lower median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element. The upper median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element.

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The *i*th order statistic corresponds to the *i*th element.
- For the median:
 - If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element.

The lower median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element. The upper median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element.

9/40

イロン イロン イヨン イヨン

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The *i*th order statistic corresponds to the *i*th element.
- For the median:
 - If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element.
 - If n is even:

ower median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element.

9/40

イロト イボト イヨト イヨト

Assumption

Suppose n elements are sorted by an $O(n\log n)$ algorithm, e.g., MERGE-SORT.

Then the following properties hold for the ordered set

- Minimum: The first element.
- Maximum: The last element.
- The *i*th order statistic corresponds to the *i*th element.
- For the median:
 - If n is odd, then the median is equal to the $\frac{n+1}{2}$ th element.
 - If n is even:
 - ★ The lower median is equal to the $\lfloor \frac{n+1}{2} \rfloor$ th element.
 - ★ The upper median is equal to the $\lceil \frac{n+1}{2} \rceil$ th element.

cinvestav

9/40

イロト 不得 トイヨト イヨト

Important fact!

All selections can be done in O(1), so total: $O(n \log n)$.

Question!!

• Can we do better?

Important fact!

All selections can be done in O(1), so total: $O(n \log n)$.

Question!!!

• Can we do better?

• How many comparisons are needed to get the max and min of n elements?

Important fact!

All selections can be done in O(1), so total: $O(n \log n)$.

Question!!!

• Can we do better?

• How many comparisons are needed to get the max and min of n elements?

Naively

The naïve Maximum and Minimum at the same will take 2n-2 comparisons.

Naively

The naïve Maximum and Minimum at the same will take 2n-2 comparisons.

Something better?

- Take two elements at the same time.
- Compare them to get the min and max in the tuple.
- Compare the min in the tuple with the global min and do the same with the tuple max.

Naively

The naïve Maximum and Minimum at the same will take 2n-2 comparisons.

Something better?

- Take two elements at the same time.
- Compare them to get the min and max in the tuple.

 Compare the min in the tuple with the global min and do the same with the tuple max.

Naively

The naïve Maximum and Minimum at the same will take 2n-2 comparisons.

Something better?

- Take two elements at the same time.
- Compare them to get the min and max in the tuple.
- Compare the min in the tuple with the global min and do the same with the tuple max.

11/40

< ロ > < 同 > < 回 > < 回 >

This will give you

 $3\lfloor \frac{n}{2} \rfloor$ comparisons.

Why

Let's see

12 / 40

э

イロト イヨト イヨト イヨト

This will give you

 $3\lfloor \frac{n}{2} \rfloor$ comparisons.

Why?

Let's see!

Outline

• Finding the k^{th} statistics

Selection problem

Minimum-Maximum

Selection in worst-case linear time Introduction Explanation

SELECT the *i*th element in *n* elements
 The Final Algorithm
 Complexity Analysis

13 / 40

< ロ > < 回 > < 回 > < 回 > < 回 >

Selection in expected linear time O(n)

Selecting in expected linear time implies:

- Selecting the *i*th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.
 - Similar to Quicksort, partition the input array recursively.
 Unlike Quicksort, which works on both sides of the partition, just work on one side of the partition. This is called PRUNE-AND-SEARCH, prune one side, just search the other.

Selecting in expected linear time implies:

- Selecting the *i*th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.

 Similar to Quicksort, partition the input array recursively.
 Unlike Quicksort, which works on both sides of the partition, just work on one side of the partition. This is called PRUNE-AND-SEARCH, prune one side, just search the other.

Homework

Please review or read Quicksort in Cormen's book (chapter 7)

Selecting in expected linear time implies:

- Selecting the *i*th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.
 - ► Similar to Quicksort, partition the input array recursively.
 - Unlike Quicksort, which works on both sides of the partition, just work on one side of the partition. This is called PRUNE-AND-SEARCH, prune one side, just search the other.

Homework

Please review or read Quicksort in Cormen's book (chapter 7)

Selecting in expected linear time implies:

- Selecting the *i*th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.
 - Similar to Quicksort, partition the input array recursively.
 - Unlike Quicksort, which works on both sides of the partition, just work on one side of the partition. This is called PRUNE-AND-SEARCH, prune one side, just search the other.

Please review or read Quicksort in Cormen's book (chapter 7)

Selecting in expected linear time implies:

- Selecting the *i*th element.
- Use the divide and conquer algorithm RANDOMIZED-SELECT.
 - Similar to Quicksort, partition the input array recursively.
 - Unlike Quicksort, which works on both sides of the partition, just work on one side of the partition. This is called PRUNE-AND-SEARCH, prune one side, just search the other.

Homework

Please review or read Quicksort in Cormen's book (chapter 7).

14 / 40

< ロ > < 同 > < 回 > < 回 >

Outline

• Finding the k^{th} statistics

Selection problem

Minimum-Maximum

Selection in worst-case linear time Introduction Explanation

SELECT the *i*th element in *n* elements
 The Final Algorithm
 Complexity Analysis

15 / 40

< ロ > < 回 > < 回 > < 回 > < 回 >

First partition the set of n elements

• How? Remember Randomized Quicksort!!!

Thus

We get a q from the random partition!!!

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (C) 16 / 40

First partition the set of n elements

• How? Remember Randomized Quicksort!!!

Thus

We get a q from the random partition!!!

Example

17 / 40

э

イロト イボト イヨト イヨト

If i < k

The possible *i*th smallest element is between p and q-1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If i < k

The possible *i*th smallest element is between p and q-1.

If i > k

• The possible *i*th smallest element is between q + 1 and r.

If i < k

The possible *i*th smallest element is between p and q-1.

If i > k

- The possible *i*th smallest element is between q + 1 and r.
- But the new i' = i k, this will work because we start at p = 1 and r = n.

If i < k

The possible *i*th smallest element is between p and q - 1.

If i > k

- The possible *i*th smallest element is between q + 1 and r.
- But the new i' = i k, this will work because we start at p = 1 and r = n.

If $i == k \leftarrow$ We need to convert this to local index too • return A[q]

18/40

イロト イロト イヨト イヨト

RANDOMIZED-SELECT Algorithm

 $\mathsf{Randomized}\text{-}\mathsf{Select}(A, p, r, i)$

- q = Randomized-Partition(A, p, r)
- $\bigcirc \ k = q p + 1 \ // \ {\rm Local \ Index}$
- if i == k / / The Answer
- **o** return A[q]
- \bigcirc elseif i < k
 - **return** Randomized-Select(A, p, q 1, i)
 - // Converting to local index
- else return Randomized-Select(A, q+1, r, i-k)

RANDOMIZED-SELECT Algorithm

 $\mathsf{Randomized}\operatorname{-Select}(A, p, r, i)$

- $\bullet \ \ \, \text{if} \ p == r$
- e return A[p]
- $q = \mathsf{Randomized}\operatorname{Partition}(A, p, r)$
- k = q p + 1 // Local Index
- if i == k / / The Answer
- **o** return A[q]
- elseif i < k
 - **return** Randomized-Select(A, p, q 1, i)
 - // Converting to local index
- else return Randomized-Select(A, q + 1, r, i k)

RANDOMIZED-SELECT Algorithm

 $\mathsf{Randomized}\text{-}\mathsf{Select}(A, p, r, i)$

- $\bullet \ \ \, \text{if} \ \, p == r$
- $q = \mathsf{Randomized}\operatorname{-Partition}(A, p, r)$
- k = q p + 1 / / Local Index
- if i == k / / The Answer
- **o** return A[q]
- \bigcirc elseif i < k
 - **return** Randomized-Select(A, p, q 1, i)
 - // Converting to local index
- else return Randomized-Select(A, q+1, r, i-k)

RANDOMIZED-SELECT Algorithm

 $\mathsf{Randomized}\operatorname{-Select}(A, p, r, i)$

- $\bullet \quad \text{if } p == r$
- **2**return <math>A[p]
- q = Randomized-Partition(A, p, r)
- **Q** if $i = \frac{k}{2} /$ The Answer
- elseif i < k
 - **return** Randomized-Select(A, p, q 1, i)
 - // Converting to local index
- else return Randomized-Select(A, q + 1, r, i k)

RANDOMIZED-SELECT Algorithm

Randomized-Select(A, p, r, i)

- $\bullet \quad \text{if} \ p == r$
- **2** return A[p]
- q = Randomized-Partition(A, p, r)
- k = q p + 1 // Local Index
- **(a)** if i == k / / The Ansv
- return A[q]
- elseif i < k
 - **return** Randomized-Select(A, p, q 1, i)
 - // Converting to local index
- else return Randomized-Select(A, q + 1, r, i k)

RANDOMIZED-SELECT Algorithm

Randomized-Select(A, p, r, i)

- $\bullet \quad \text{if} \ p == r$
- **2** return A[p]
- q = Randomized-Partition(A, p, r)
- k = q p + 1 // Local Index
- (a) if i == k // The Answer
 - return A[q]
- \bigcirc elseif i < k
 - return Randomized-Select(A, p, q-1, i)
 - // Converting to local index
- else return Randomized-Select(A, q + 1, r, i k)

RANDOMIZED-SELECT Algorithm

 $\mathsf{Randomized}\operatorname{-Select}(A, p, r, i)$

- $\bullet \quad \text{if } p == r$
- **2** return A[p]
- q = Randomized-Partition(A, p, r)
- k = q p + 1 // Local Index
- (a) if i == k // The Answer
- **6** return A[q]

• elseif i < k

return Randomized-Select(A, p, q-1, i)

- // Converting to local index
- else return Randomized-Select(A, q + 1, r, i k)

cinvestav

RANDOMIZED-SELECT Algorithm

 $\mathsf{Randomized}\operatorname{-Select}(A, p, r, i)$

- $\bullet \quad \text{if } p == r$
- **2** return A[p]
- q = Randomized-Partition(A, p, r)
- k = q p + 1 // Local Index
- **3** if i == k // The Answer
- **6** return A[q]
- elseif i < k

return Randomized-Select(A, p, q-1, i)

- // Converting to local index
- else return Randomized-Select(A, q + 1, r, i k)

cinvestav

RANDOMIZED-SELECT Algorithm

 $\mathsf{Randomized}\operatorname{-Select}(A, p, r, i)$

- $\bullet \quad \text{if } p == r$
- **2** return A[p]
- q = Randomized-Partition(A, p, r)
- k = q p + 1 // Local Index
- (a) if i == k // The Answer
- **6** return A[q]
- elseif i < k

8

return Randomized-Select(A, p, q-1, i)

// Converting to local index

) else return Randomized-Select(A, q+1, r, i-k)

19/40

RANDOMIZED-SELECT Algorithm

Randomized-Select(A, p, r, i)

- $\bullet \quad \text{if } p == r$
- **2** return A[p]
- q = Randomized-Partition(A, p, r)
- k = q p + 1 // Local Index
- **6** if i == k // The Answer
- **6** return A[q]
- elseif i < k

return Randomized-Select(A, p, q - 1, i)
 // Converting to local index
 else return Randomized-Select(A, q + 1, r, i - k)

cinvestav

RANDOMIZED-SELECT Algorithm

Randomized-Select(A, p, r, i)

- $\bullet \quad \text{if } p == r$
- **2** return A[p]
- q = Randomized-Partition(A, p, r)
- k = q p + 1 // Local Index
- **6** if i == k // The Answer
- **6** return A[q]
- elseif i < k

return Randomized-Select(A, p, q - 1, i)
 // Converting to local index
 else return Randomized-Select(A, q + 1, r, i - k)

cinvesta

Worst-case running time $\Theta(n^2)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where m = n, n - 1, ..., 2. Thus in total

 $\Theta(n) + \Theta(n-1) + \dots + \Theta(2) = \Theta(\frac{n(n-1)}{2} - 1) = \Theta(n^2)$

20 / 40

イロト イロト イヨト イヨト

Worst-case running time $\Theta(n^2)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where m = n, n - 1, ..., 2. Thus in total

$$\Theta(n) + \Theta(n-1) + \dots + \Theta(2) = \Theta(\frac{n(n-1)}{2} - 1) = \Theta(n^2).$$

• No particular input elicits the worst-case behavior

 In average, RANDOMIZED-SELECT is good because of the randomness.

Worst-case running time $\Theta(n^2)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where m = n, n - 1, ..., 2. Thus in total

$$\Theta(n) + \Theta(n-1) + \dots + \Theta(2) = \Theta(\frac{n(n-1)}{2} - 1) = \Theta(n^2).$$

Moreover

• No particular input elicits the worst-case behavior.

Worst-case running time $\Theta(n^2)$. Why?

An empty side and a side with remaining elements. So every partitioning of m elements will take $\Theta(m)$ time where m = n, n - 1, ..., 2. Thus in total

$$\Theta(n) + \Theta(n-1) + \dots + \Theta(2) = \Theta(\frac{n(n-1)}{2} - 1) = \Theta(n^2).$$

Moreover

- No particular input elicits the worst-case behavior.
- In average, RANDOMIZED-SELECT is good because of the randomness.

20 / 40

イロト イヨト イヨト

Outline

• Finding the k^{th} statistics

Selection problem

Minimum-Maximum

SELECT the *i*th element in *n* elements
 The Final Algorithm
 Complexity Analysis

21 / 40

< ロ > < 回 > < 回 > < 回 > < 回 >

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - ▶ S₁ = {a_j|a_j < x}, S₂ = {a_j|a_j = x}, S₃ = {a_j|a_j > x}.
 ▶ If |S₁| > i, search ith smallest elements in S₁ recursively, (prune S₂ and S₃ away).
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).
 - ► Else search the (i − (|S₁| + |S₂|))th element in S₃ recursively (prune S₁ and S₂ away).

A question arises

How to select x such that S_1 and S_3 are nearly equal in cardinality? Force an even search!!!

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - Let $x \in S$, and partition S into three subsets.
 - If |S₁| > i, search ith smallest elements in S₁ recursively, (prune S₂ and S₃ away).
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element)
 - ► Else search the (i (|S₁| + |S₂|))th element in S₃ recursively (prune S₁ and S₂ away).

A question arises

How to select x such that S_1 and S_3 are nearly equal in cardinality? Force an even search!!!

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - Let $x \in S$, and partition S into three subsets.

►
$$S_1 = \{a_j | a_j < x\}$$
, $S_2 = \{a_j | a_j = x\}$, $S_3 = \{a_j | a_j > x\}$.

Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).

How to select x such that S_1 and S_3 are nearly equal in cardinality? Forci an even search!!!

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - Let $x \in S$, and partition S into three subsets.
 - $S_1 = \{a_j | a_j < x\}, S_2 = \{a_j | a_j = x\}, S_3 = \{a_j | a_j > x\}.$
 - If $|S_1| > i$, search ith smallest elements in S_1 recursively, (prune S_2 and S_3 away).

 $\cdot \, i$, then return x (the ith smallest element)

How to select x such that S_1 and S_3 are nearly equal in cardinality? Force an even search!!!

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - Let $x \in S$, and partition S into three subsets.
 - $S_1 = \{a_j | a_j < x\}, S_2 = \{a_j | a_j = x\}, S_3 = \{a_j | a_j > x\}.$
 - If $|S_1| > i$, search ith smallest elements in S_1 recursively, (prune S_2 and S_3 away).
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).

How to select x such that S_1 and S_3 are nearly equal in cardinality? Force an even search!!!

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - Let $x \in S$, and partition S into three subsets.
 - $S_1 = \{a_j | a_j < x\}, S_2 = \{a_j | a_j = x\}, S_3 = \{a_j | a_j > x\}.$
 - If $|S_1| > i$, search ith smallest elements in S_1 recursively, (prune S_2 and S_3 away).
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).
 - Else search the $(i (|S_1| + |S_2|))$ th element in S_3 recursively (prune S_1 and S_2 away).

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - Let $x \in S$, and partition S into three subsets.

•
$$S_1 = \{a_j | a_j < x\}, S_2 = \{a_j | a_j = x\}, S_3 = \{a_j | a_j > x\}.$$

- If $|S_1| > i$, search ith smallest elements in S_1 recursively, (prune S_2 and S_3 away).
- Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).
- Else search the $(i (|S_1| + |S_2|))$ th element in S_3 recursively (prune S_1 and S_2 away).

A question arises

How to select x such that $S_1 \mbox{ and } S_3$ are nearly equal in cardinality? Force an even search!!!

Selection in worst-case linear time O(n).

Goal:

Select the *i*th smallest element of $S = \{a_1, a_2, ..., a_n\}$.

Solution:

- Use the so called PRUNE-AND-SEARCH technique:
 - Let $x \in S$, and partition S into three subsets.

•
$$S_1 = \{a_j | a_j < x\}, S_2 = \{a_j | a_j = x\}, S_3 = \{a_j | a_j > x\}.$$

- If $|S_1| > i$, search ith smallest elements in S_1 recursively, (prune S_2 and S_3 away).
- Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).
- Else search the $(i (|S_1| + |S_2|))$ th element in S_3 recursively (prune S_1 and S_2 away).

A question arises

How to select x such that $S_1 \mbox{ and } S_3$ are nearly equal in cardinality? Force an even search!!!

Outline

Finding the kth statistics

Selection problem

Minimum-Maximum

SELECT the *i*th element in *n* elements
 The Final Algorithm
 Complexity Analysis

23 / 40

Divide elements into $\left\lceil \frac{n}{5} \right\rceil$ groups of 5 elements each and find the median of each one

- We cannot say anything about the order between elements, but between median an elements
- Thus, arrows go from less to greater!!!

Divide elements into $\left\lceil \frac{n}{5} \right\rceil$ groups of 5 elements each and find the median of each one

- We cannot say anything about the order between elements, but between median an elements
- Thus, arrows go from less to greater!!!

Divide elements into $\left\lceil \frac{n}{5} \right\rceil$ groups of 5 elements each and find the median of each one

- We cannot say anything about the order between elements, but between median an elements
- Thus, arrows go from less to greater!!!

Find the Median of the Medians

• Again the arrows indicate the order from greater to less

Find the Median of the Medians

• Again the arrows indicate the order from greater to less

We have (Here, again the worst case scenario!!!)

• At least $\frac{1}{2} \left[\frac{n}{5} \right] - 2$ possible groups with 3 elements greater than x

We have (Here, again the worst case scenario!!!)

• At least $\frac{1}{2} \left[\frac{n}{5} \right] - 2$ possible groups with 3 elements greater than x

We have (Here, again the worst case scenario!!!)

• At least $\frac{1}{2} \left\lceil \frac{n}{5} \right\rceil - 2$ possible groups with 3 elements less than x

We have (Here, again the worst case scenario!!!)

• At least $\frac{1}{2} \left\lceil \frac{n}{5} \right\rceil - 2$ possible groups with 3 elements less than x

Thus, we have

First

$$3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil - 2\right) = \frac{3n}{10} - 6 \text{ elements} < x$$

Second

$3\left(rac{1}{2}\left\lceilrac{n}{5} ight ceil-2 ight)=rac{3n}{10}-6$ elements >x

Thus, we have

First

$$3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil - 2\right) = \frac{3n}{10} - 6 \text{ elements} < x$$

Second

$$3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2\right) = \frac{3n}{10} - 6 \text{ elements} > x$$

Outline

• Finding the k^{th} statistics

Selection problem

Minimum-Maximum

Selection in Expected Linear Time Using Randomization RANDOMIZED-SELECT

Selection in worst-case linear time Introduction Explanation

5 Summary Introduction

29 / 40

- **①** Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
 - Find the median of each group.
- Use SELECT recursively to find the median x of the above [ⁿ/₅] medians.
- Partition n elements around x into S₁, S₂, and S₃.
- If $|S_1| > i$, search ith smallest element in S₁ recursively.
 - ▶ Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element)
 - Else search $(i (|S_1| + |S_2|))$ th in S_3 recursively

- **①** Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
- Find the median of each group.
- Use SELECT recursively to find the median x of the above [ⁿ/₅] medians.
- Partition n elements around x into S₁, S₂, and S₃.
- If $|S_1| > i$, search ith smallest element in S_1 recursively.
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element)
 - Else search $(i (|S_1| + |S_2|))$ th in S_3 recursively

- **①** Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
- Find the median of each group.
- **③** Use SELECT recursively to find the median x of the above $\lceil \frac{n}{5} \rceil$ medians.
- $igodoldsymbol{
 m O}$ Partition n elements around x into S_1 , S_2 , and S_3 .
-) If $|S_1| > i$, search ith smallest element in S_1 recursively.
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element)
 - Else search $(i (|S_1| + |S_2|))$ th in S_3 recursively

- **①** Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
- Find the median of each group.
- Solution Use SELECT recursively to find the median x of the above $\lceil \frac{n}{5} \rceil$ medians.
- Partition n elements around x into S_1 , S_2 , and S_3 .
- If $|S_1| > i$, search ith smallest element in S_1 recursively.
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).
 - Else search $(i (|S_1| + |S_2|))$ th in S_3 recursively

Proceed as follows:

- **①** Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
- Find the median of each group.
- Solution Use SELECT recursively to find the median x of the above $\lceil \frac{n}{5} \rceil$ medians.
- Partition n elements around x into S_1 , S_2 , and S_3 .
- If $|S_1| > i$, search *i*th smallest element in S_1 recursively.
 - ▶ Else If |S₁| + |S₂| > i, then return x (the ith smallest element).
 ▶ Else search (i (|S₁| + |S₂|)) th in S₃ recursively

30 / 40

イロト イヨト イヨト

Proceed as follows:

- Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
- Find the median of each group.
- Use SELECT recursively to find the median x of the above $\lceil \frac{n}{5} \rceil$ medians.
- Partition n elements around x into S_1 , S_2 , and S_3 .
- If $|S_1| > i$, search *i*th smallest element in S_1 recursively.
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).

30 / 40

(日) (日) (日) (日) (日)

Proceed as follows:

- Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
- Find the median of each group.
- Use SELECT recursively to find the median x of the above $\lceil \frac{n}{5} \rceil$ medians.
- Partition n elements around x into S_1 , S_2 , and S_3 .
- If $|S_1| > i$, search *i*th smallest element in S_1 recursively.
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).
 - Else search $(i (|S_1| + |S_2|))$ th in S_3 recursively

30 / 40

Proceed as follows:

- Divide n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements.
- Find the median of each group.
- Use SELECT recursively to find the median x of the above [ⁿ/₅] medians.
- Partition n elements around x into S_1 , S_2 , and S_3 .
- If $|S_1| > i$, search *i*th smallest element in S_1 recursively.
 - Else If $|S_1| + |S_2| > i$, then return x (the *i*th smallest element).
 - Else search $(i (|S_1| + |S_2|))$ th in S_3 recursively

30 / 40

Outline

• Finding the k^{th} statistics

Selection problem

Minimum-Maximum

Selection in Expected Linear Time Using Randomization RANDOMIZED-SELECT

Selection in worst-case linear time Introduction Explanation

Summary Introduction

31 / 40

Analysing complexity

• Steps 1,2 and 4 take O(n).

Analysing complexity

- Steps 1,2 and 4 take O(n).
- Step 3 takes $T(\lceil \frac{n}{5} \rceil)$.

.et us see step b

- At least half of the medians in step 2 are greater or equal than x, thus at least ¹/₂ [ⁿ/₅] − 2 groups contribute 3 elements which are greater or equal than x. i.e., 3([¹/₂ [ⁿ/₅]] − 2) ≥ ³ⁿ/₁₀ − 6.
- Similarly, the number of elements less or equal than x is also at least $\frac{3n}{10} 6$.
 -) Thus, $|S_1|$ is at most $rac{7n}{10}+6$, similarly for $|S_3|$

Thus SELECT in step 5 is called recursively on at most $\frac{7n}{10} + 6$ elements.

Analysing complexity

- Steps 1,2 and 4 take O(n).
- Step 3 takes $T(\lceil \frac{n}{5} \rceil)$.

Let us see step 5:

• At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2} \lceil \frac{n}{5} \rceil - 2$ groups contribute 3 elements which are greater or equal than x. i.e., $3(\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil - 2) \ge \frac{3n}{10} - 6$.

Thus, $|S_1|$ is at most $\frac{7n}{10} + 6$, similarly for $|S_3|$. Thus SELECT in step 5 is called recursively on at most $\frac{7n}{10}$ +

> ••...• ••) Q (0 32 / 40

< ロ > < 同 > < 回 > < 回 >

Analysing complexity

- Steps 1,2 and 4 take O(n).
- Step 3 takes $T(\lceil \frac{n}{5} \rceil)$.

Let us see step 5:

- At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2} \lceil \frac{n}{5} \rceil 2$ groups contribute 3 elements which are greater or equal than x. i.e., $3(\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil 2) \ge \frac{3n}{10} 6$.
- Similarly, the number of elements less or equal than x is also at least $\frac{3n}{10} 6$.

Thus SELECT in step 5 is called recursively on at most $\frac{7n}{10} + 6$

المربيب وراسي

32 / 40

イロン 不通 とうせい イロン

Analysing complexity

- Steps 1,2 and 4 take O(n).
- Step 3 takes $T(\lceil \frac{n}{5} \rceil)$.

Let us see step 5:

- At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2} \lceil \frac{n}{5} \rceil 2$ groups contribute 3 elements which are greater or equal than x. i.e., $3(\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil 2) \ge \frac{3n}{10} 6$.
- Similarly, the number of elements less or equal than x is also at least $\frac{3n}{10} 6$.
- Thus, $|S_1|$ is at most $\frac{7n}{10} + 6$, similarly for $|S_3|$.

32 / 40

イロト イボト イヨト イヨト

Analysing complexity

- Steps 1,2 and 4 take O(n).
- Step 3 takes $T(\lceil \frac{n}{5} \rceil)$.

Let us see step 5:

- At least half of the medians in step 2 are greater or equal than x, thus at least $\frac{1}{2} \lceil \frac{n}{5} \rceil 2$ groups contribute 3 elements which are greater or equal than x. i.e., $3(\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil 2) \ge \frac{3n}{10} 6$.
- Similarly, the number of elements less or equal than x is also at least $\frac{3n}{10} 6$.
- Thus, $|S_1|$ is at most $\frac{7n}{10} + 6$, similarly for $|S_3|$.
- Thus SELECT in step 5 is called recursively on at most $\frac{7n}{10} + 6$ elements.

-

Final Recursion

We have then

$$T(n) = \begin{cases} O(1) & \text{if } n < \text{some value (i.e. 140)} \\ T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 6\right) + O(n) & \text{if } n \ge \text{some value (i.e. 140)} \end{cases}$$

୬ ୯.୦ 33 / 40

イロト イヨト イヨト イヨト 二日

Suppose $T(n) \leq cn$ for some c

$$T(n) \le c \lceil \frac{n}{5} \rceil + c \left(\frac{7n}{10} + 6 \right) + an$$

34 / 40

Suppose $T(n) \leq cn$ for some c

$$T(n) \le c \lceil \frac{n}{5} \rceil + c \left(\frac{7n}{10} + 6 \right) + an$$
$$\le \frac{1}{5}cn + c + \frac{7}{10}cn + 6c + an$$

34 / 40

Suppose $T(n) \leq cn$ for some c

$$T(n) \le c \lceil \frac{n}{5} \rceil + c \left(\frac{7n}{10} + 6 \right) + an$$
$$\le \frac{1}{5}cn + c + \frac{7}{10}cn + 6c + an$$
$$\le \frac{9}{10}cn + 7c + an$$

34 / 40

Suppose $T(n) \leq cn$ for some c

$$T(n) \le c \lceil \frac{n}{5} \rceil + c \left(\frac{7n}{10} + 6 \right) + an$$
$$\le \frac{1}{5}cn + c + \frac{7}{10}cn + 6c + an$$
$$\le \frac{9}{10}cn + 7c + an$$
$$\le cn + \left(-\frac{1}{10}cn + an + 7c \right)$$

34 / 40

$\overline{T(n)}$ is at most cn

• If
$$-\frac{1}{10}cn + an + 7c < 0$$
.

 $c \ge 10a(\frac{n}{n-70})$ when n > 70.

ullet So, select n=140, and then $c\geq 20a$

$\overline{T(n)}$ is at most cn

• If
$$-\frac{1}{10}cn + an + 7c < 0.$$

• i.e.,
$$c \ge 10a(\frac{n}{n-70})$$
 when $n > 70$.

ullet So, select n=140, and then $c\geq 20a$

Note:

n may not be 140, any integer greater than 70 is OK.

Solve recurrence by substitution.

T(n) is at most cn

• If
$$-\frac{1}{10}cn + an + 7c < 0.$$

• i.e.,
$$c \ge 10a(\frac{n}{n-70})$$
 when $n > 70$.

So, select
$$n = 140$$
, and then $c \ge 20a$.

n may not be 140, any integer greater than 70 is OK.

Solve recurrence by substitution.

T(n) is at most cn

• If
$$-\frac{1}{10}cn + an + 7c < 0$$
.

• i.e.,
$$c \ge 10a(\frac{n}{n-70})$$
 when $n > 70$.

So, select
$$n = 140$$
, and then $c \ge 20a$.

Note:

 \boldsymbol{n} may not be 140, any integer greater than 70 is OK.

Final Thoughts

Why group of size 5?

Using groups of 3 does not work, you can try and plug it into the claculations

What about 7 or bigger odd number

It does not change the computations, only by a constant

Final Thoughts

Why group of size 5?

Using groups of 3 does not work, you can try and plug it into the claculations

What about 7 or bigger odd number

It does not change the computations, only by a constant

Computer Vision

In the Median Filter:

 $\bullet\,$ Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Statistical Applications

Confidence intervals for quantiles

Computer Vision

In the Median Filter:

• Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Statistical Applications

Confidence intervals for quantiles

• A machine may run on 10 batteries and shuts off when the *i*th battery dies. You will want to know the distribution of $X_{(i)}$.

feature into Boolean features by bucketing it, one common approach is to partition it by percentile so that the cardinality of each Boolean feature is somewhat similar.

Computer Vision

In the Median Filter:

• Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Statistical Applications

Confidence intervals for quantiles

- A machine may run on 10 batteries and shuts off when the *i*th battery dies. You will want to know the distribution of $X_{(i)}$.
- In machine-learning if you want to convert a continuous valued feature into Boolean features by bucketing it, one common approach is to partition it by percentile so that the cardinality of each Boolean feature is somewhat similar.

Computer Vision

In the Median Filter:

• Given a neighborhood of n members of x, you need to find the median to substitute the value in x

Statistical Applications

Confidence intervals for quantiles

- A machine may run on 10 batteries and shuts off when the *i*th battery dies. You will want to know the distribution of $X_{(i)}$.
- In machine-learning if you want to convert a continuous valued feature into Boolean features by bucketing it, one common approach is to partition it by percentile so that the cardinality of each Boolean feature is somewhat similar.

Outline

• Finding the k^{th} statistics

Selection problem

Minimum-Maximum

Selection in worst-case linear time Introduction Explanation

SELECT the *i*th element in *n* elements
 The Final Algorithm
 Complexity Analysis

38 / 40

< ロ > < 回 > < 回 > < 回 > < 回 >

The ith order statistic of n elements

 $S = \{a_1, a_2, ..., a_n\}$:*i*th smallest elements:

Median, lower median, upper median

The ith order statistic of n elements

- $S = \{a_1, a_2, ..., a_n\}$:*i*th smallest elements:
 - Minimum and maximum.
 - Median, lower median, upper median.

election in expected average linear time

- Worst case running time
- PRUNE-AND-SEARCH

cinvestav	
・ロン・(型)・・ヨン・ヨン・ヨー りんぐ	
39/40	

The ith order statistic of n elements

- $S = \{a_1, a_2, ..., a_n\}$:*i*th smallest elements:
 - Minimum and maximum.
 - Median, lower median, upper median.

• Worst case running time

PRUNE-AND-SEARCH

Selection in worst-case linear time

- The fast randomized version is due to Hoare.
- It is still unknown exactly how many comparisons are needed to determine the median.

cinvestav

39 / 40

The ith order statistic of n elements

- $S = \{a_1, a_2, ..., a_n\}$:*i*th smallest elements:
 - Minimum and maximum.
 - Median, lower median, upper median.

Selection in expected average linear time

• Worst case running time

- Selection in worst-case linear time
 - The fast randomized version is due to Hoare.
 - It is still unknown exactly how many comparisons are needed to determine the median.

cinvestav

39 / 40

The ith order statistic of n elements

- $S = \{a_1, a_2, ..., a_n\}$:*i*th smallest elements:
 - Minimum and maximum.
 - Median, lower median, upper median.

Selection in expected average linear time

- Worst case running time
- PRUNE-AND-SEARCH

Selection in worst-case linear time

- The fast randomized version is due to Hoare.
- It is still unknown exactly how many comparisons are needed to determine the median.

cinvestav

39 / 40

< ロ > < 同 > < 回 > < 回 >

The ith order statistic of n elements

- $S = \{a_1, a_2, ..., a_n\}$:*i*th smallest elements:
 - Minimum and maximum.
 - Median, lower median, upper median.

Selection in expected average linear time

- Worst case running time
- PRUNE-AND-SEARCH

Selection in worst-case linear time

• The fast randomized version is due to Hoare.

39 / 40

< ロ > < 同 > < 回 > < 回 >

The ith order statistic of n elements

- $S = \{a_1, a_2, ..., a_n\}$:*i*th smallest elements:
 - Minimum and maximum.
 - Median, lower median, upper median.

Selection in expected average linear time

- Worst case running time
- PRUNE-AND-SEARCH

Selection in worst-case linear time

- The fast randomized version is due to Hoare.
- It is still unknown exactly how many comparisons are needed to determine the median.

cinvestav

Exercises

From Cormen's Book Chapter 9

- 9.1-1
- 9.2-3
- 9.3-4
- 9.3-8
- 9.2

40 / 40

2

イロン イ団 とく ヨン イヨン