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Introduction

Fact:
The ith order statistic of a set of n elements is the ith smallest element.

Examples
i = 1 we are talking the minimum.
i = n we are talking the maximum.
When n is an odd number, the position i of the median is defined by
i = n+1

2
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Selection Problem

Input:
A set A of n (distinct) numbers and an integer i, with 1 ≤ i ≤ n.

Output:
The element x ∈ A that is larger than exactly i− 1 other elements of A.
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Minimum-Maximum

Minimum using n− 1 comparissons
Minimum(A)

1 min = A [1]
2 for i = 2 to A.length
3 if min > A [i]
4 min = A [i]
5 return min
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Using an O(n log n) Algorithm

Assumption
Suppose n elements are sorted by an O(n log n) algorithm, e.g.,
MERGE-SORT.

Then the following properties hold for the ordered set
Minimum: The first element.
Maximum: The last element.
The ith order statistic corresponds to the ith element.
For the median:

I If n is odd, then the median is equal to the n+1
2 th element.

I If n is even:
F The lower median is equal to the b n+1

2 c th element.
F The upper median is equal to the d n+1

2 e th element.
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Using an O(n log n) Algorithm

Important fact!
All selections can be done in O(1), so total: O(n log n).

Question!!!
Can we do better?
How many comparisons are needed to get the max and min of n
elements?
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Minimum and Maximum at the same time... better choice

Naively
The naïve Maximum and Minimum at the same will take 2n− 2
comparisons.

Something better?
Take two elements at the same time.
Compare them to get the min and max in the tuple.
Compare the min in the tuple with the global min and do the same
with the tuple max.
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Minimum and Maximum at the same time... better choice

This will give you
3bn

2 ccomparisons.

Why?
Let’s see!
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Selection in expected linear time O(n)

Selecting in expected linear time implies:
Selecting the ith element.
Use the divide and conquer algorithm RANDOMIZED-SELECT.

I Similar to Quicksort, partition the input array recursively.
I Unlike Quicksort, which works on both sides of the partition, just work

on one side of the partition. This is called PRUNE-AND-SEARCH,
prune one side, just search the other.

Homework
Please review or read Quicksort in Cormen’s book (chapter 7).
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Strategy

First partition the set of n elements
How? Remember Randomized Quicksort!!!

Thus
We get a q from the random partition!!!
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Example

Positions

p rq

1   2   3   4   5   6   7   

1   2   3   4   5   6   7  8   9   10 
Global Index Position

Local Index Position

p-q=3 then k=p-q+1 =4
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Thus, the Strategy

If i < k

The possible ith smallest element is between p and q − 1.

If i > k

The possible ith smallest element is between q + 1 and r.
But the new i′ = i− k, this will work because we start at p = 1 and
r = n.

If i == k ← We need to convert this to local index too
return A [q]

18 / 40
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RANDOMIZED-SELECT

RANDOMIZED-SELECT Algorithm
Randomized-Select(A, p, r, i)

1 if p == r

2 return A [p]
3 q = Randomized-Partition(A, p, r)
4 k = q − p + 1 // Local Index
5 if i == k // The Answer
6 return A [q]
7 elseif i < k

8 return Randomized-Select(A, p, q − 1, i)
// Converting to local index

9 else return Randomized-Select(A, q + 1, r, i− k)
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Analysis of RANDOMIZED-SELECT

Worst-case running time Θ(n2). Why?
An empty side and a side with remaining elements. So every partitioning of
m elements will take Θ(m) time where m = n, n− 1, ..., 2. Thus in total

Θ(n) + Θ(n− 1) + ... + Θ(2) = Θ(n(n−1)
2 − 1) = Θ(n2).

Moreover
No particular input elicits the worst-case behavior.
In average, RANDOMIZED-SELECT is good because of the
randomness.

20 / 40
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Selection in worst-case linear time O(n).
Goal:
Select the ith smallest element of S = {a1, a2, ..., an}.

Solution:
Use the so called PRUNE-AND-SEARCH technique:

I Let x ∈ S, and partition S into three subsets.
I S1 = {aj |aj < x}, S2 = {aj |aj = x}, S3 = {aj |aj > x}.
I If |S1| > i, search ith smallest elements in S1 recursively, (prune S2

and S3 away).
I Else If |S1|+ |S2| > i, then return x (the ith smallest element).
I Else search the (i− (|S1|+ |S2|))th element in S3 recursively (prune S1

and S2 away).

A question arises
How to select x such that S1 and S3 are nearly equal in cardinality? Force
an even search!!!

22 / 40
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I Else search the (i− (|S1|+ |S2|))th element in S3 recursively (prune S1

and S2 away).

A question arises
How to select x such that S1 and S3 are nearly equal in cardinality? Force
an even search!!!

22 / 40



Selection in worst-case linear time O(n).
Goal:
Select the ith smallest element of S = {a1, a2, ..., an}.

Solution:
Use the so called PRUNE-AND-SEARCH technique:

I Let x ∈ S, and partition S into three subsets.
I S1 = {aj |aj < x}, S2 = {aj |aj = x}, S3 = {aj |aj > x}.
I If |S1| > i, search ith smallest elements in S1 recursively, (prune S2

and S3 away).
I Else If |S1|+ |S2| > i, then return x (the ith smallest element).
I Else search the (i− (|S1|+ |S2|))th element in S3 recursively (prune S1

and S2 away).

A question arises
How to select x such that S1 and S3 are nearly equal in cardinality? Force
an even search!!!

22 / 40



Selection in worst-case linear time O(n).
Goal:
Select the ith smallest element of S = {a1, a2, ..., an}.

Solution:
Use the so called PRUNE-AND-SEARCH technique:

I Let x ∈ S, and partition S into three subsets.
I S1 = {aj |aj < x}, S2 = {aj |aj = x}, S3 = {aj |aj > x}.
I If |S1| > i, search ith smallest elements in S1 recursively, (prune S2

and S3 away).
I Else If |S1|+ |S2| > i, then return x (the ith smallest element).
I Else search the (i− (|S1|+ |S2|))th element in S3 recursively (prune S1

and S2 away).

A question arises
How to select x such that S1 and S3 are nearly equal in cardinality? Force
an even search!!!

22 / 40



Selection in worst-case linear time O(n).
Goal:
Select the ith smallest element of S = {a1, a2, ..., an}.

Solution:
Use the so called PRUNE-AND-SEARCH technique:

I Let x ∈ S, and partition S into three subsets.
I S1 = {aj |aj < x}, S2 = {aj |aj = x}, S3 = {aj |aj > x}.
I If |S1| > i, search ith smallest elements in S1 recursively, (prune S2

and S3 away).
I Else If |S1|+ |S2| > i, then return x (the ith smallest element).
I Else search the (i− (|S1|+ |S2|))th element in S3 recursively (prune S1

and S2 away).

A question arises
How to select x such that S1 and S3 are nearly equal in cardinality? Force
an even search!!!

22 / 40



Selection in worst-case linear time O(n).
Goal:
Select the ith smallest element of S = {a1, a2, ..., an}.

Solution:
Use the so called PRUNE-AND-SEARCH technique:

I Let x ∈ S, and partition S into three subsets.
I S1 = {aj |aj < x}, S2 = {aj |aj = x}, S3 = {aj |aj > x}.
I If |S1| > i, search ith smallest elements in S1 recursively, (prune S2

and S3 away).
I Else If |S1|+ |S2| > i, then return x (the ith smallest element).
I Else search the (i− (|S1|+ |S2|))th element in S3 recursively (prune S1

and S2 away).

A question arises
How to select x such that S1 and S3 are nearly equal in cardinality? Force
an even search!!!

22 / 40



Outline

1 Introduction
Finding the kth statistics
Selection problem
Minimum-Maximum

2 Selection in Expected Linear Time
Using Randomization
RANDOMIZED-SELECT

3 Selection in worst-case linear time
Introduction
Explanation

4 SELECT the ith element in n elements
The Final Algorithm
Complexity Analysis

5 Summary
Introduction

23 / 40



The way to select x

Divide elements into
⌈

n
5

⌉
groups of 5 elements each and find the median of each one

We cannot say anything about the order between elements, but between median
an elements

Thus, arrows go from less to greater!!!
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The way to select x

Find the Median of the Medians
Again the arrows indicate the order from greater to less
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The way to select x

We have (Here, again the worst case scenario!!!)
At least 1

2
⌈

n
5
⌉
− 2 possible groups with 3 elements greater than x
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Thus, we have

First
3
(

1
2
⌈

n
5
⌉
− 2

)
= 3n

10 − 6 elements < x

Second
3
(

1
2
⌈

n
5
⌉
− 2

)
= 3n

10 − 6 elements > x
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SELECT the ith element in n elements

Proceed as follows:
1 Divide n elements into dn

5 e groups of 5 elements.
2 Find the median of each group.
3 Use SELECT recursively to find the median x of the

abovedn
5 emedians.

4 Partition n elements around x into S1, S2, and S3.
5 If |S1| > i, search ith smallest element in S1 recursively.

I Else If |S1|+ |S2| > i, then return x (the ith smallest element).
I Else search (i− (|S1|+ |S2|)) th in S3 recursively
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Analysis of SELECT

Analysing complexity
Steps 1,2 and 4 take O(n).
Step 3 takes T (dn

5 e).

Let us see step 5:
At least half of the medians in step 2 are greater or equal than x,
thus at least 1

2d
n
5 e − 2 groups contribute 3 elements which are greater

or equal than x. i.e., 3(
⌈

1
2d

n
5 e
⌉
− 2) ≥ 3n

10 − 6.
Similarly, the number of elements less or equal than x is also at least
3n
10 − 6.
Thus, |S1| is at most 7n

10 + 6, similarly for |S3|.
Thus SELECT in step 5 is called recursively on at most 7n

10 + 6
elements.
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Final Recursion

We have then

T (n) =

O(1) if n < some value (i.e. 140)
T
(⌈

n
5
⌉)

+ T
(

7n
10 + 6

)
+ O (n) if n ≥ some value (i.e. 140)
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Solve recurrence by substitution

Suppose T (n) ≤ cn for some c

T (n) ≤ cdn5 e+ c

(7n

10 + 6
)

+ an

≤ 1
5cn + c + 7

10cn + 6c + an

≤ 9
10cn + 7c + an

≤ cn +
(
− 1

10cn + an + 7c

)
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Solve recurrence by substitution.

T (n) is at most cn

If − 1
10cn + an + 7c < 0.

I i.e., c ≥ 10a( n
n−70 ) when n > 70.

So, select n = 140, and then c ≥ 20a.

Note:
n may not be 140, any integer greater than 70 is OK.
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Final Thoughts

Why group of size 5?
Using groups of 3 does not work, you can try and plug it into the
claculations

What about 7 or bigger odd number
It does not change the computations, only by a constant
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Applications

Computer Vision
In the Median Filter:

Given a neighborhood of n members of x, you need to find the
median to substitute the value in x

Statistical Applications
Confidence intervals for quantiles

A machine may run on 10 batteries and shuts off when the ith
battery dies. You will want to know the distribution of X(i).
In machine-learning if you want to convert a continuous valued
feature into Boolean features by bucketing it, one common approach
is to partition it by percentile so that the cardinality of each Boolean
feature is somewhat similar.
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Summary.

The ith order statistic of n elements
S = {a1, a2, ..., an}:ith smallest elements:

Minimum and maximum.
Median, lower median, upper median.

Selection in expected average linear time
Worst case running time
PRUNE-AND-SEARCH

Selection in worst-case linear time
The fast randomized version is due to Hoare.
It is still unknown exactly how many comparisons are needed to
determine the median.
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Exercises

From Cormen’s Book Chapter 9
9.1-1
9.2-3
9.3-4
9.3-8
9.2
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