
Analysis of Algorithms
Sorting

Andres Mendez-Vazquez

January 15, 2018

Contents
1 Introduction 2

2 Heapsort 2
2.1 Finding Parents and Children . 3
2.2 Max/Min Heap . 4
2.3 Max-Heapify . 4

2.3.1 The Complexity of the Max-Heapify Algorithm 5
2.4 Build Max-Heap . 7
2.5 Excercises . 7

3 Quick Sort Loop Invariance 7
3.1 Quicksort Analysis . 8

3.1.1 Worst case analysis of QS 8
3.1.2 Expected Running Time of QS 8

3.2 Excercises . 9

4 The Bounds of Sorting 9

1

1 Introduction
The process of sorting has been one of those problems in computer science
that have been around almost from the beginning of time. For example, the
tabulating machine (IBM, 1890’s Census) was the first early data processing
unit able to sort data cards for people in the USA (Remember the Babbage’s
Machine was only a dream). After all the first census took around 7 years to be
finished which makes the entire effort worthless. Therefore, the need to obtain
efficient algorithms and machines for sorting data on those times, and in these
times. Furthermore, studying different techniques of sorting allows for a more
precise introduction to the algorithm concept.

2 Heapsort
Instead of going directly to the Quicksort idea, requiring probabilistic analysis,
let us stop in a simpler version of sorting, heap sort. This is an earlier algorithm
from 1964 invented by J.W.J Williams based in the max/min heap property.

Definition 1. A binary heap data structures is an array A that can be viewed as
a nearly complete binary tree (Figure 1). This data structures has the following
attributes:

1. length [A] is the size of the storage array for the heap.

2. heap-size [A] is how many elements are stored in the array.

Thus, having 0 ≤ heap-size [A] ≤ length [A].

13

10 12

4 7 6 8

3 1 5

13 10 12 4 7 6 8 3 1 5A

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2 3

4 5 6 7

8 9 10

Figure 1: Nearly Complete Binary Tree

Now imagine numbering the nodes in the nearly complete binary tree in the
following way (Figure 1):

2

1. First, number the nodes starting at the root with the number one.

2. Then, we increment the count each time we move horizontally to the next
node (Level Order Walking).

3. Until, all the nodes are numbered.
This allows to map the nearly complete binary tree into the array A. Therefore,
The heap A has a really regular structure where walking around is quite simple.

2.1 Finding Parents and Children
It is clear that the numbering allows to look, in a quite simple way given the
position i, for the children and parent of the node at position i. For example
given (Figure) a nearly complete tree of branching of three, it is clear that
we can go to the left, middle or right child using simple regular functions. For
example, as we can see in the figure, if you are at a parent, it is possible to move
to the right child by using (Eq. 1).

w (x) = 3x + 1 (1)

1

2 3 4

5 6 7 8 9 10 11 12 13

14 15 16 17 18

Figure 2: A Tree with Branching Factor of three

In the case of binary heaps the This is done as follow given the node i:
1. The left child position can be found by the function Left [i] = 2i.

2. The left child position can be found by the function Right [i] = 2i + 1.

3. The parent can be found by the function Parent [i] =
⌊

i
2
⌋
.

This simple functions allow to find the relationship between A[i], A[Left[i]] and
A[Right[i]] in time Θ(1).

Now, it is necessary to add an extra property to be able to do the sorting
by this data structure.

3

2.2 Max/Min Heap
Once we have the heap structure, we add an extra field called key with the two
possible properties:

1. We have a Max Heap if and only if A [Parent(i)] ≥ A[i] for all i such that
0 < i ≤ heap-size [A].

2. We have a Min Heap if and only if A [Parent(i)] ≤ A [i] for all i such that
0 < i ≤ heap-size [A].

An example of a Max Heap can be seen in the figure (Figure 1) where the nodes
have the key values.

2.3 Max-Heapify
Given the fact that we want to maintain the Max/Min Heap structure, it is
desirable to have a procedure that achieves that. Thus, What kind of scenarios
do we have where the Max/Min Heap structure changes? Making necessary to
re-establish the Max/Min Heap properties, when decreasing or increasing the
keys.

Given that we only need to keep those properties, we have the following
interesting facts:

1. If you decrease the key in a child’s Max heap the parent’s key is still larger
than the child’s key.

2. If you increase the key in a child’s Min heap, the parent’s key is still
smaller than the child’s key.

Thus, What key should you put in place of the key that has decreased? Clearly
the ones at the left and right of such child by means of comparing them with the
key at the child. Furthermore, if that change violates the Max/Min property,
it is possibler to use a recursion procedure going down the binary heap to fix
the problem. This simple idea is the one at the center of the Max-Heapify
(Min-Heapify) algorithm (Algorithm 1).

4

Algorithm 1 A trickle down algorithm
Max-Heapify(A, i)

1. l = Left(i)

2. r = Right(i)

3. If l ≤ heap− size [A] and A [l] > A [i]

4. largest = l

5. else largest = i

6. If r ≤ heap− size [A] and A [r] > A [largest]

7. largest = r

8. if largest 6= i

9. exchange A[i] with A[largest]

10. Max-Heapify(A, largest)

2.3.1 The Complexity of the Max-Heapify Algorithm

Here, the recursion used to calculate the complexity is not so simple to obtain
because the amount of work that is passed down the recursion. However, it
is possible to prove an upper bound for that work by proving that the size
children’s subtrees is 2n

3 . For this, look at the following example

1. First for n = 1, we have that the size of children’s subtrees is 0.

2. For n = 2, we have that the size of children’s subtrees is at most 1 < 4
3 .

3. For n = 3, we have that the size of children’s subtrees is at most 1 < 6
3 = 2.

4. For n = 4, we have that the size of children’s subtrees is at most 2 < 8
3 .

5. etc...

Thus, we can use a full binary tree to try to obtain a bound for the number of
nodes in each child (Fig.) by recognizing that

1. The number of nodes between the root and the last level of the full binary
tree is equal to

21 + 22 + ... + 2dlog2 ne−2 (2)

2. The number of nodes in the last level of the full binary tree

(3)

5

Figure 3: Given n nodes , we can use the ceil function to calculate the total
number of nodes below the root.

Now, the total number of nodes in both children, assuming a full tree with
n nodes

21 + 22 + ... + 2dlog ne−2 + 2dlog ne−1 (4)

Now, Thus, we look at the limiting case in the structure of the
Then, we have that in the worst case the total number of elements in a

children’s subtree is:

21 + 22 + ... + 2blog nc

2 = 1 + 22 + ... + 2blog nc−1

= 1− 2blog nc

1− 2
= 2blog nc − 1

<
4
32blog nc − 2

3 −
1
3

<
4
32blog nc − 2

3
<

2
3

[
2blog nc − 1

]
= 2

3 [n− 1]

<
2n

3

Therefore, we have that n > −6 is true for n > 0. Then, we have the
following recursion T (n) = T

(2n
3
)
+Θ(1), and from the Master Theorem T (n) =

O(log n).

6

2.4 Build Max-Heap
The Build algorithm keeps the properties of the max heap. This can be seen
through the following induction

Loop-Invariance At the start of each iteration of the for loop of lines 2–3,
each node i + 1, i + 2, ..., n is the root of a max-heap.

Initialization Each node
⌊

n
2
⌋

+ 1,
⌊

n
2
⌋

+ 2, ..., n is a leaf, therefore is a trivial
max-heap

Maintenance It is easy to see that the children of root i are higher in value
than the parent. Then, you call Max-heapify preserves the property that
nodes i + 1, i + 2, ..., n are all roots of max heaps. Once that call is ter-
minated i is the root of a max heap, then when i is decremented we keep
the property of loop-invariance.

Termination Once you reach i = 0. Then, each node 1, 2, 3, ..., n is the root
pf a max heap!!! In particular node 1.

Using the algorithm and a naive counting we can assume that the cost of building
the max-heap is O(n log n). A more tight solution is giving by the following facts:

1. Height of the heap blog nc.

2. You have at most
⌈

n
2h+1

⌉
nodes of any height, where the height h is the

number of edges on the longest simple downward path from the node to
a leaf, and it is being measured from the bottom to the top.

3. The time required of Max-Heapify when called on height h is O(h) to
trickle down to leaf level.

Then, we have that, first
⌈

n
2h+1

⌉
O(h) work for level and

∑blog nc
h=0

⌈
n

2h+1

⌉
O(h)

as total work.

2.5 Excercises

3 Quick Sort Loop Invariance
While looking to the loop invariance at the slides, we can device the following
proof for loop invariance

Initialization Prior to the first equation, i = p− 1 and j = p. Then, no value
lies in [p, i] or [i + 1, j − 1].

Maintenance 1. Case I - A[j] > x then j is incremented and condition 2
holds for A[j − 1].

2. Case II - A[j] ≤ x then i is incremented, swap A[i] and A[j] and j is
incremented. Now, A[i] ≤ x and condition 1 is satisfied. In addition,
A[j − 1] > x.

7

Termination At termination j = r. The array is partitioned in three sets:
those less or equal to x, a singleton containing x and those greater than
x.

3.1 Quicksort Analysis
As with any other algorithm, at least two analysis need to be performed: The
Worst Case and the Average Case. The first one tells us how bad the Quicksort
can be, but strangely the quick sort really requires a bad selection of a pivot,
and this happens when:

1. Array is already sorted in same order.

2. Array is already sorted in reverse order.

3. All elements are same (special case of case 1 and 2)

Thus, if the array elements are coming form a uniform distribution, this should
happen quite rarely.

3.1.1 Worst case analysis of QS

Using the substitution and the guess T (n) ≤ cn2, we can prove that T (n) =
max0≤q≤n−1 {T (q) + T (n− q − 1) + Θ(n)} = O(n2).

T (n) ≤ max0≤q≤n−1
{

cq2 + c(n− q − 1)2}+ Θ(n)

T (n) ≤ c ∗max0≤q≤n−1
{

q2 + (n− q − 1)2}+ Θ(n)

But we have that d2[q2+(n−q−1)2]
d2q = 4. Then, q2 + (n − q − 1)2] is a convex

function with maximum at either point 0 or n− 1. Thus,

T (n) ≤ c ∗max0≤q≤n−1
{

q2 + (n− q − 1)2}+ Θ(n) ≤ c(n− 1)2 + Θ(n).

This implies T (n) ≤ cn2.

3.1.2 Expected Running Time of QS

First, we have the following Lemma to describe the behavior of the Quick Sort.

Lemma 7.1
X be the number of comparisons performed in line 4 of PARTITION over
the entire execution of QUICKSORT on an n-element array. Then the
running time of QUICKSORT is O(n + X).

8

Proof: Imagine the following, you partition the array, first one time at height
zero, then two times at height one, etc. The interesting thing is that the
partition is always done, even in the case where the array has the worst
possible partition given the random partition. Therefore, we have the
following count for the number of partitions or pivot selection

20 + 21 + 22 + ...2log n = 1− 2log n+1

1− 2 = 1− 2n

−1 = 2n− 1 = O(n)

Thus, we have that the number of partitions is bounded by O(n). Now,
we have work done at the level of the loop in line 4. For now, the amount
of work done at that level will be called X. Then, the QUICKSORT is
bounded by O(n + X)

Now, we need to calculate the quantity X. For this, we will assume the following
definitions and constraint:

1. A = 〈z1, z2, ..., zn〉 the original array.

2. Zij = {zi, zi+1, ..., zj}.

3. The fact that two elements are compared only if one of them is a pivot.

Then if we define Xij = I{zi comparess with zj}. It is possible to define X =∑n−1
i=1

∑n
j=i+1 Xij ⇒ E[X] = E

[∑n−1
i=1

∑n
j=i+1 Xij

]
=
∑n−1

i=1
∑n

j=i+1 E[Xij],
but E[Xij] = Pr {zi is compared to zj} .The final magic is as follows

Pr {zi is compared to zj} = Pr {zi or zj is first pivot chosen from Zij}

= Pr {zi is choosen as pivot chosen from Zij}+Pr {zj is choosen as pivot chosen from Zij}

= 1
j − i + 1 + 1

j − i + 1 = 2
j − i + 1 .

Then, E[X] =
∑n−1

i=1
∑n

j=i+1 E[Xij] =
∑n−1

i=1
∑n

j=i+1
2

j−i+1 =
∑n−1

i=1
∑n

k=1
2

k+1
which gives us E[X] =

∑n−1
i=1

∑n
k=1

2
k+1 <

∑n−1
i=1

∑n
k=1

2
k =

∑n−1
i=1 O(log n) =

O(n log n). From this, we have that QUICKSORT is bounded by O(n log n).

3.2 Excercises

4 The Bounds of Sorting
In this section, we are going to analyze the bound of sorting based in the fact
that the main sorting algorithms are based in the comparisons. Then, imagine

9

the following decision-tree as a way to find all possible permutations for an set
of three elements (3!).

Figure 4: Decision three for three elements

This is the basis for the proof of the following theorem.

Theorem 8.1
Any comparison sort algorithm requires Ω(n log n) comparisons in the
worst case.

Proof:

Consider a decision three of height h with l reachable leaves where each
leave is an end decision or sort. We know that for n possible elements we
have n! possible ways of sorting those element using comparisons. Then,
we have that n! ≤ l ≤ 2h. After all when taking a full tree with height h,
any binary tree full or not full should have less leaves. This implies that
log n! ≤ h⇒ h = Ω(n log n). QED

From this theorem the corollary 8.2 is evident.

10

