Analysis of Algorithms Sorting

Andres Mendez-Vazquez

September 16, 2018

Outline

(1) Sorting problem

- Definition
- Classic Complexities
(2) Heaps
- Introduction
- Heaps
- Finding Parents and Children
- Max-Heapify
- Complexity of Max-Heapify
- Build Max Heap: Using Max-Heapify
- Heap Sort
(3) Applications of Heap Data Structure
- Main Applications of the Heap Data Structure
- Heap Sort: Exercises

4 Quicksort

- Introduction
- The Divide and Conquer Quicksort
- Complexity Analysis
- Unbalanced Partition

O It is Necessary to Model the Worst Case!!!

- Randomized Quicksort
- Expected Running Time
(5) Lower Bounds of Sorting
- Lower Bounds of Sorting
- Exercises

Outline

（1）Sorting problem
－Definition

－Classic Complexities
－Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Sorting Problem

> Input
> A sequence of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

Sorting Problem

Input

A sequence of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

Output

A permutation (reordering) $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$

Outline

(1) Sorting problem

- Classic Complexities
(2) Heaps
- Introduction
- Heaps
- Finding Parents and Children
- Max-Heapify
- Complexity of Max-Heapify
- Build Max Heap: Using Max-Heapify
- Heap Sort
(3) Applications of Heap Data Structure
- Main Applications of the Heap Data Structure
- Heap Sort: Exercises
(4) Quicksort
- Introduction
- The Divide and Conquer Quicksort
- Complexity Analysis
- Unbalanced Partition
- It is Necessary to Model the Worst Case!!!
- Randomized Quicksort
- Expected Running Time
(5) Lower Bounds of Sorting
- Lower Bounds of Sorting
- Exercises

Some Sorting Algorithms

Table of Sorting Algorithms

Algorithm	Worst-case running time	Expected running time
Insertion sort	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$

Some Sorting Algorithms

Table of Sorting Algorithms

Algorithm	Worst-case running time	Expected running time
Insertion sort	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Merge sort	$\Theta(n \log n)$	$\Theta(n \log n)$

Some Sorting Algorithms

Table of Sorting Algorithms

Algorithm	Worst-case running time	Expected running time
Insertion sort	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Merge sort	$\Theta(n \log n)$	$\Theta(n \log n)$
Heapsort	$\Theta(n \log n)$	-

Some Sorting Algorithms

Table of Sorting Algorithms

Algorithm	Worst-case running time	Expected running time
Insertion sort	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Merge sort	$\Theta(n \log n)$	$\Theta(n \log n)$
Heapsort	$\Theta(n \log n)$	-
Quicksort	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$ (expected)

Some Sorting Algorithms

Table of Sorting Algorithms

Algorithm	Worst-case running time	Expected running time
Insertion sort	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Merge sort	$\Theta(n \log n)$	$\Theta(n \log n)$
Heapsort	$\Theta(n \log n)$	-
Quicksort	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$ (expected)
Countingsort	$\Theta(k+n)$	$\Theta(k+n)$

Some Sorting Algorithms

Table of Sorting Algorithms

Algorithm	Worst-case running time	Expected running time
Insertion sort	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Merge sort	$\Theta(n \log n)$	$\Theta(n \log n)$
Heapsort	$\Theta(n \log n)$	-
Quicksort	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$ (expected)
Countingsort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(k+n))$	$\Theta(d(k+n))$

Some Sorting Algorithms

Table of Sorting Algorithms

Algorithm	Worst-case running time	Expected running time
Insertion sort	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Merge sort	$\Theta(n \log n)$	$\Theta(n \log n)$
Heapsort	$\Theta(n \log n)$	-
Quicksort	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)($ expected $)$
Countingsort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(k+n))$	$\Theta(d(k+n))$
Bucket sort	$\Theta\left(n^{2}\right)$	$\Theta(n)$ (average-case)

Outline

（1）Sorting problem
－Definition
－Classic Complexities

（2）Heaps

－Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Imagine 1964

The System/360 family was introduced by IBM
The slowest System/360, the Model 30, could perform up to 34,500 instructions per second, with memory from 8 to 64 KB .

Imagine 1964

The System/360 family was introduced by IBM

The slowest System/360, the Model 30, could perform up to 34,500 instructions per second, with memory from 8 to 64 KB .

Its main programming language was Basic Assembly Language (BAL)

You were basically EIGHT years from the first Fortran compiler (Also IBM).

Imagine 1964

The System/360 family was introduced by IBM

The slowest System/360, the Model 30, could perform up to 34,500 instructions per second, with memory from 8 to 64 KB .

Its main programming language was Basic Assembly Language (BAL)
You were basically EIGHT years from the first Fortran compiler (Also IBM).

Additionally, POINTERS were invented this year barely
Therefore... back to first principles my dear Clarice....

Yepi

Yes... my dear Clarice...

Then, if you put all together

We have a memory structure like

Then, if you put all together

We have a memory structure like

Let us to think about it

How? We can assume a series of constraints....

Constraints

We want a system that allows for priorities such that

- We do not want to scan the entire memory for that.
- We want to avoid doing to a lot of shifting in the main memory.

Constraints

We want a system that allows for priorities such that

- We do not want to scan the entire memory for that.
- We want to avoid doing to a lot of shifting in the main memory.

Therefore
We want that allows the following ADT operations:

- Insertion
- Deletion
- Search

Constraints

We want a system that allows for priorities such that

- We do not want to scan the entire memory for that.
- We want to avoid doing to a lot of shifting in the main memory.

Therefore

We want that allows the following ADT operations:

- Insertion
- Deletion
- Search

In a Time LESS than

$$
O(n)
$$

Outline

（1）Sorting problem
－Definition
－Classic Complexities

（2）Heaps

O Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Definitions

Definition

A heap is an array object that can be viewed as a nearly complete binary tree.

Basic Attributes

Given an array A , we have that length $[A]$
It is the size of the storing array.

Basic Attributes

Given an array A, we have that length $[A]$
It is the size of the storing array.
heap-size[A]
Tell us how many elements in the heap are stored in the array.

Basic Attributes

Given an array A, we have that length $[A]$

It is the size of the storing array.

heap-size $[A]$

Tell us how many elements in the heap are stored in the array.

Thus, we have

$$
\begin{equation*}
0 \leq \text { heap-size }[A] \leq \text { length }[A] \tag{1}
\end{equation*}
$$

Outline

（1）Sorting problem
－Definition
－Classic Complexities

（2）Heaps

－Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Heap Sort: Calculations given a Node i in the heap

Parent(i) - Parent Node

$\operatorname{Parent}(i)=\left\lfloor\frac{i}{2}\right\rfloor$

Heap Sort: Calculations given a Node i in the heap

Parent(i) - Parent Node
$\operatorname{Parent}(i)=\left\lfloor\frac{i}{2}\right\rfloor$
Left Node Child: Left(i)
Left $(i)=2 i$

Heap Sort: Calculations given a Node i in the heap

$$
\begin{aligned}
& \text { Parent }(i) \text { - Parent Node } \\
& \text { Parent }(i)=\left\lfloor\frac{i}{2}\right\rfloor
\end{aligned}
$$

Left Node Child: Left(i)

Left $(i)=2 i$

Right Node Child: Right(i)

$\operatorname{Right}(i)=2 i+1$

Max/Min Heap Properties

Given that

$A[i]$ returns the value of the key, we have that

Max/Min Heap Properties

Given that

$A[i]$ returns the value of the key, we have that

Max Heap property
 $A[$ Parent $(i)] \geq A[i]$

Max/Min Heap Properties

Given that

$A[i]$ returns the value of the key, we have that
Max Heap property
$A[$ Parent $(i)] \geq A[i]$
Min Heap property
$A[$ Parent $(i)] \leq A[i]$

Outline

（1）Sorting problem
－Definition
－Classic Complexities

（2）Heaps

－Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

What we want!!!

A function to keep the property of max or min heap
After all, remembering Kolmogorov, we are acting in a part of the array trying to keep certain properties

- Which ONE?

What we want!!!

A function to keep the property of max or min heap
After all, remembering Kolmogorov, we are acting in a part of the array trying to keep certain properties

- Which ONE?

Remember

Single nodes are always min heaps or max heaps

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(9) largest $=l$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(9) largest $=l$
(5) else largest $=i$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(1) largest $=l$
(5) else largest $=i$
(0) If $r \leq$ heap - size $[A]$ and $A[r]>A$ [largest $]$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(9) largest $=l$
(5) else largest $=i$
(0) If $r \leq$ heap - size $[A]$ and $A[r]>A$ [largest $]$
(1) largest $=r$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(9) largest $=l$
(5) else largest $=i$
(0) If $r \leq$ heap - size $[A]$ and $A[r]>A$ [largest $]$
(1) largest $=r$
(8) if largest $\neq i$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(9) largest $=l$
(5) else largest $=i$
(0) If $r \leq$ heap - size $[A]$ and $A[r]>A$ [largest $]$
(1) largest $=r$
(8) if largest $\neq i$
(0) exchange $A[i]$ with $A[$ largest $]$

Heap Sort: Max-Heapify

Algorithm (preserving the heap property) when somebody violates the max/min property

Max-Heapify (A, i)

(1) $l=\operatorname{Left}(i)$
(2) $r=\operatorname{Right}(\mathrm{i})$
(3) If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(9) largest $=l$
(5) else largest $=i$
(0) If $r \leq$ heap - size $[A]$ and $A[r]>A$ [largest $]$
(3) largest $=r$
(8) if largest $\neq i$
(9) exchange $A[i]$ with $A[$ largest $]$
(10) Max-Heapify (A, largest)

Figure: A trickle down algorithm

Example keeping the heap property starting at $i=1$

Here, you could imagine that somebody inserted a node at $i=1$
3. If $l \leq$ heap - size $[A]$ and $A[l]>A[i]$
(4) largest $=l$
(5) else largest $=i$
(6) If $r \leq$ heap - size $[A]$ and $A[r]>A$ [largest $]$
(7) largest $=r$

Example keeping the heap property starting at $i=1$

One of the children is chosen to be exchanged
8. if largest $\neq i$
9. exchange $A[i]$ with $A[$ largest $]$

Example: Now $i=$ largest

Make the excahnge and call the Max-Heapify

10.

Max-Heapify(A, largest)

Example: Now $i=$ largest

Keep going

Complexity of Max-Heapify

For this

It is possible to prove that the upper bound on the size of each children's subtrees is $\frac{2 n}{3}$ starting at the root (First Recursive Call!!!).

Complexity of Max-Heapify

For this

It is possible to prove that the upper bound on the size of each children's subtrees is $\frac{2 n}{3}$ starting at the root (First Recursive Call!!!).

Thus

In addition, we use the idea of height from the root node $(h=0)$ to leaves ($h=\log n-1$).

Then

We have that by using the nearly complete structure

(1) First for $n=1$, we have that the size of children's subtrees is $0<\frac{2}{3}$.

Then

We have that by using the nearly complete structure

(1) First for $n=1$, we have that the size of children's subtrees is $0<\frac{2}{3}$.
(2) For $n=2$, we have that the size of children's subtrees is at most $1<\frac{4}{3}$.

Then

We have that by using the nearly complete structure

(1) First for $n=1$, we have that the size of children's subtrees is $0<\frac{2}{3}$.
(2) For $n=2$, we have that the size of children's subtrees is at most $1<\frac{4}{3}$.
(3) For $n=3$, we have that the size of children's subtrees is at most $1<\frac{6}{3}=2$.

Then

We have that by using the nearly complete structure

(1) First for $n=1$, we have that the size of children's subtrees is $0<\frac{2}{3}$.
(2) For $n=2$, we have that the size of children's subtrees is at most $1<\frac{4}{3}$.
(3) For $n=3$, we have that the size of children's subtrees is at most $1<\frac{6}{3}=2$.
(4) For $n=4$, we have that the size of children's subtrees is at most $2<\frac{8}{3}$.

Then

We have that by using the nearly complete structure

(1) First for $n=1$, we have that the size of children's subtrees is $0<\frac{2}{3}$.
(2) For $n=2$, we have that the size of children's subtrees is at most $1<\frac{4}{3}$.
(3) For $n=3$, we have that the size of children's subtrees is at most $1<\frac{6}{3}=2$.
(4) For $n=4$, we have that the size of children's subtrees is at most $2<\frac{8}{3}$.
(5) etc...

Do you notice the following?

Imagine the following case

Do you notice the following?

Imagine the following case

The maximum number of nodes in both children assuming a full tree with n nodes

$$
\begin{equation*}
2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}+2^{\lceil\log n\rceil-1} \tag{2}
\end{equation*}
$$

Now

Imagine the following special case

Now

Imagine the following special case

The maximum number of nodes in one child is equal to

$$
\begin{equation*}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+\frac{2^{\lceil\log n\rceil-1}}{2} \tag{3}
\end{equation*}
$$

The total number of elements in a child's subtree

The total number of nodes in a CHILD is bounded

$$
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2}=1+2^{2}+\ldots+2^{\lceil\log n\rceil-3}+2^{\lceil\log n\rceil-2}
$$

The total number of elements in a child's subtree

The total number of nodes in a CHILD is bounded

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & =1+2^{2}+\ldots+2^{\lceil\log n\rceil-3}+2^{\lceil\log n\rceil-2} \\
& =\frac{1-2^{\lceil\log n\rceil-2}}{1-2}+2^{\lceil\log n\rceil-2}
\end{aligned}
$$

The total number of elements in a child's subtree

The total number of nodes in a CHILD is bounded

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & =1+2^{2}+\ldots+2^{\lceil\log n\rceil-3}+2^{\lceil\log n\rceil-2} \\
& =\frac{1-2^{\lceil\log n\rceil-2}}{1-2}+2^{\lceil\log n\rceil-2} \\
& =2^{\lceil\log n\rceil-2}-1+2^{\lceil\log n\rceil-2}
\end{aligned}
$$

The total number of elements in a child's subtree

The total number of nodes in a CHILD is bounded

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & =1+2^{2}+\ldots+2^{\lceil\log n\rceil-3}+2^{\lceil\log n\rceil-2} \\
& =\frac{1-2^{\lceil\log n\rceil-2}}{1-2}+2^{\lceil\log n\rceil-2} \\
& =2^{\lceil\log n\rceil-2}-1+2^{\lceil\log n\rceil-2} \\
& =2 \times 2^{\lfloor\log n\rfloor-2}-1
\end{aligned}
$$

The total number of elements in a child's subtree

The total number of nodes in a CHILD is bounded

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & =1+2^{2}+\ldots+2^{\lceil\log n\rceil-3}+2^{\lceil\log n\rceil-2} \\
& =\frac{1-2^{\lceil\log n\rceil-2}}{1-2}+2^{\lceil\log n\rceil-2} \\
& =2^{\lceil\log n\rceil-2}-1+2^{\lceil\log n\rceil-2} \\
& =2 \times 2^{\lfloor\log n\rfloor-2}-1 \\
& =2^{\lceil\log n\rceil-1}-\frac{2}{3}-\frac{1}{3}
\end{aligned}
$$

The total number of elements in a child's subtree

The total number of nodes in a CHILD is bounded

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & =1+2^{2}+\ldots+2^{\lceil\log n\rceil-3}+2^{\lceil\log n\rceil-2} \\
& =\frac{1-2^{\lceil\log n\rceil-2}}{1-2}+2^{\lceil\log n\rceil-2} \\
& =2^{\lceil\log n\rceil-2}-1+2^{\lceil\log n\rceil-2} \\
& =2 \times 2^{\lfloor\log n\rfloor-2}-1 \\
& =2^{\lceil\log n\rceil-1}-\frac{2}{3}-\frac{1}{3} \\
& <2^{\lceil\log n\rceil-1}-\frac{2}{3}
\end{aligned}
$$

The total number of elements in a child's subtree

Notice the following

$$
\begin{equation*}
2^{\lceil\log n\rceil}<\frac{4}{3}\left[2^{\log n}\right] \tag{4}
\end{equation*}
$$

- When $n=2^{p}-1$
- For the case that that $n \leq 2^{p}-1$ we can use the fact that $\lceil\log n\rceil=p$ for some power of 2 .

Induction to prove the previous statement

Step $n=1$

$$
\begin{equation*}
2^{\lceil\log 1\rceil}=2^{0}=1<\frac{4}{3} \times 2^{\log 1} \tag{5}
\end{equation*}
$$

Induction to prove the previous statement

Step $n=1$

$$
\begin{equation*}
2^{\lceil\log 1\rceil}=2^{0}=1<\frac{4}{3} \times 2^{\log 1} \tag{5}
\end{equation*}
$$

Assume is true for n

$$
\begin{equation*}
2^{\lceil\log n\rceil}<\frac{4}{3}\left[2^{\log n}\right] \tag{6}
\end{equation*}
$$

Induction to prove the previous statement

Now prove for $n+1$

$$
2^{\lceil\log (n+1)\rceil}=2^{\left\lceil\log \left(2^{p}-1+1\right)\right\rceil}
$$

Induction to prove the previous statement

Now prove for $n+1$

$$
\begin{aligned}
2^{\lceil\log (n+1)\rceil} & =2^{\left\lceil\log \left(2^{p}-1+1\right)\right\rceil} \\
& =2^{\lceil p\rceil}
\end{aligned}
$$

Induction to prove the previous statement

Now prove for $n+1$

$$
\begin{aligned}
2^{\lceil\log (n+1)\rceil} & =2^{\left\lceil\log \left(2^{p}-1+1\right)\right\rceil} \\
& =2^{\lceil p\rceil} \\
& =2^{p}
\end{aligned}
$$

Induction to prove the previous statement

Now prove for $n+1$

$$
\begin{aligned}
2^{\lceil\log (n+1)\rceil} & =2^{\left\lceil\log \left(2^{p}-1+1\right)\right\rceil} \\
& =2^{\lceil p\rceil} \\
& =2^{p} \\
& =2^{\log 2^{p}}
\end{aligned}
$$

Induction to prove the previous statement

Now prove for $n+1$

$$
\begin{aligned}
2^{\lceil\log (n+1)\rceil} & =2^{\left\lceil\log \left(2^{p}-1+1\right)\right\rceil} \\
& =2^{\lceil p\rceil} \\
& =2^{p} \\
& =2^{\log 2^{p}} \\
& <\frac{4}{3}\left[2^{\log 2^{p}}\right]
\end{aligned}
$$

Induction to prove the previous statement

Now prove for $n+1$

$$
\begin{aligned}
2^{\lceil\log (n+1)\rceil} & =2^{\left\lceil\log \left(2^{p}-1+1\right)\right\rceil} \\
& =2^{\lceil p\rceil} \\
& =2^{p} \\
& =2^{\log 2^{p}} \\
& <\frac{4}{3}\left[2^{\left.\log 2^{p}\right]}\right. \\
& =\frac{4}{3}\left[2^{\log (n+1)}\right]
\end{aligned}
$$

Therefore

We have that

$$
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2}<2^{\lceil\log n\rceil-1}-\frac{2}{3}
$$

Therefore

We have that

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & <2^{\lceil\log n\rceil-1}-\frac{2}{3} \\
& =\frac{2^{\lceil\log n\rceil}}{2}-\frac{2}{3}
\end{aligned}
$$

Therefore

We have that

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & <2^{\lceil\log n\rceil-1}-\frac{2}{3} \\
& =\frac{2^{\lceil\log n\rceil}}{2}-\frac{2}{3} \\
& <\frac{4}{3}\left[2^{\log n-1}\right]-\frac{2}{3}
\end{aligned}
$$

Therefore

We have that

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & <2^{\lceil\log n\rceil-1}-\frac{2}{3} \\
& =\frac{2^{\lceil\log n\rceil}}{2}-\frac{2}{3} \\
& <\frac{4}{3}\left[2^{\log n-1}\right]-\frac{2}{3} \\
& =\frac{2}{3}\left[2 \times 2^{\log n-1}-1\right]
\end{aligned}
$$

Therefore

We have that

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & <2^{\lceil\log n\rceil-1}-\frac{2}{3} \\
& =\frac{2^{\lceil\log n\rceil}}{2}-\frac{2}{3} \\
& <\frac{4}{3}\left[2^{\log n-1}\right]-\frac{2}{3} \\
& =\frac{2}{3}\left[2 \times 2^{\log n-1}-1\right] \\
& =\frac{2}{3}\left[2^{\log n}-1\right]
\end{aligned}
$$

Therefore

We have that

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & <2^{\lceil\log n\rceil-1}-\frac{2}{3} \\
& =\frac{2^{\lceil\log n\rceil}}{2}-\frac{2}{3} \\
& <\frac{4}{3}\left[2^{\log n-1}\right]-\frac{2}{3} \\
& =\frac{2}{3}\left[2 \times 2^{\log n-1}-1\right] \\
& =\frac{2}{3}\left[2^{\log n}-1\right] \\
& =\frac{2}{3}[n-1]
\end{aligned}
$$

Therefore

We have that

$$
\begin{aligned}
\frac{2^{1}+2^{2}+\ldots+2^{\lceil\log n\rceil-2}}{2}+2^{\lceil\log n\rceil-2} & <2^{\lceil\log n\rceil-1}-\frac{2}{3} \\
& =\frac{2^{\lceil\log n\rceil}}{2}-\frac{2}{3} \\
& <\frac{4}{3}\left[2^{\log n-1}\right]-\frac{2}{3} \\
& =\frac{2}{3}\left[2 \times 2^{\log n-1}-1\right] \\
& =\frac{2}{3}\left[2^{\log n}-1\right] \\
& =\frac{2}{3}[n-1] \\
& <\frac{2 n}{3}
\end{aligned}
$$

Outline

（1）Sorting problem
－Definition
－Classic Complexities

（2）Heaps

－Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort

3 Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Complexity of Max-Heapify

Knowing that the number of nodes in any child is bounded by

$$
\frac{2 n}{3}
$$

Complexity of Max-Heapify

Knowing that the number of nodes in any child is bounded by

$$
\begin{equation*}
\frac{2 n}{3} \tag{7}
\end{equation*}
$$

Thus, given that $T(n)$ represent the complexity of the Max-Heapify
$T(n)=T$ (How many nodes will be touched by the recusrsion) $+\Theta(1)$

Complexity of Max-Heapify

Knowing that the number of nodes in any child is bounded by

$$
\begin{equation*}
\frac{2 n}{3} \tag{7}
\end{equation*}
$$

Thus, given that $T(n)$ represent the complexity of the Max-Heapify
$T(n)=T$ (How many nodes will be touched by the recusrsion) $+\Theta(1)$

Here

- $\Theta(1)$ is the constant part of the algorithm before recursion.

Complexity of Max-Heapify

Knowing that the number of nodes in any child is bounded by

$$
\begin{equation*}
\frac{2 n}{3} \tag{7}
\end{equation*}
$$

Thus, given that $T(n)$ represent the complexity of the Max-Heapify
$T(n)=T$ (How many nodes will be touched by the recusrsion) $+\Theta(1)$

Here

- $\Theta(1)$ is the constant part of the algorithm before recursion.
- T (How many nodes will be touched by the recusrsion) $=$
$T\left(\sum_{i=1}^{\frac{\log _{2} n}{2}-1} 3\right)$.

Complexity of Max-Heapify

Knowing that the number of nodes in any child is bounded by

$$
\begin{equation*}
\frac{2 n}{3} \tag{7}
\end{equation*}
$$

Thus, given that $T(n)$ represent the complexity of the Max-Heapify
$T(n)=T$ (How many nodes will be touched by the recusrsion) $+\Theta(1)$

Here

- $\Theta(1)$ is the constant part of the algorithm before recursion.
- T (How many nodes will be touched by the recusrsion) $=$
$T\left(\sum_{i=1}^{\frac{\log _{2} n}{2}-1} 3\right)$.
- How?

Complexity of Max-Heapify

The Recursion Idea

Complexity of Max-Heapify

Thus

$$
\sum_{i=1}^{\frac{\log _{2} n-1}{2}-1} 3=\frac{3^{\frac{\log _{2} n}{2}}-1}{3-1}-3
$$

Complexity of Max-Heapify

Thus

$$
\begin{aligned}
\sum_{i=1}^{\frac{\log _{2} n-1}{2}-1} 3 & =\frac{3^{\frac{\log _{2} n}{2}}-1}{3-1}-3 \\
& =\frac{\left(3^{\frac{1}{2}}\right)^{\log _{2} n}}{2}-3
\end{aligned}
$$

Complexity of Max-Heapify

Thus

$$
\begin{aligned}
\sum_{i=1}^{\frac{\log _{2} n-1}{2}-1} 3 & =\frac{3^{\frac{\log _{2} n}{2}}-1}{3-1}-3 \\
& =\frac{\left(3^{\frac{1}{2}}\right)^{\log _{2} n}}{2}-3 \\
& =\frac{n^{\log _{2}\left(3^{\frac{1}{2}}\right)}}{2}-3
\end{aligned}
$$

Complexity of Max-Heapify

Thus

$$
\begin{aligned}
\sum_{i=1}^{\frac{\log _{2} n-1}{2}-1} 3 & =\frac{3^{\frac{\log _{2} n}{2}}-1}{3-1}-3 \\
& =\frac{\left(3^{\frac{1}{2}}\right)^{\log _{2} n}}{2}-3 \\
& =\frac{n^{\log _{2}\left(3^{\frac{1}{2}}\right)}}{2}-3 \\
& \leq \frac{n^{0.8}}{2}
\end{aligned}
$$

Complexity of Max-Heapify

Thus

$$
\begin{aligned}
\sum_{i=1}^{\frac{\log _{2} n-1}{2}-1} 3 & =\frac{3^{\frac{\log _{2} n}{2}}-1}{3-1}-3 \\
& =\frac{\left(3^{\frac{1}{2}}\right)^{\log _{2} n}}{2}-3 \\
& =\frac{n^{\log _{2}\left(3^{\frac{1}{2}}\right)}}{2}-3 \\
& \leq \frac{n^{0.8}}{2} \\
& \leq \frac{2 n^{0.8}}{3}
\end{aligned}
$$

Complexity of Max-Heapify

Thus

$$
\begin{aligned}
\sum_{i=1}^{\frac{\log _{2} n-1}{2}-1} 3 & =\frac{3^{\frac{\log _{2} n}{2}}-1}{3-1}-3 \\
& =\frac{\left(3^{\frac{1}{2}}\right)^{\log _{2} n}}{2}-3 \\
& =\frac{n^{\log _{2}\left(3^{\frac{1}{2}}\right)}}{2}-3 \\
& \leq \frac{n^{0.8}}{2} \\
& \leq \frac{2 n^{0.8}}{3} \\
& \leq \frac{2 n}{3}
\end{aligned}
$$

Complexity of Max-Heapify

Thus, if we assume that T is an increasing monotone function

$$
T(n)=T\left(\sum_{i=1}^{\frac{\log _{2} n}{2}-1} 3\right)+\Theta(1)
$$

Complexity of Max-Heapify

Thus, if we assume that T is an increasing monotone function

$$
\begin{aligned}
T(n) & =T\left(\sum_{i=1}^{\frac{\log _{2} n}{2}-1} 3\right)+\Theta(1) \\
& \leq T\left(\frac{2 n}{3}\right)+\Theta(1)
\end{aligned}
$$

Algorithm Complexity

Complexity of Max-Heapify

Thus, if we assume that T is an increasing monotone function

$$
\begin{aligned}
T(n) & =T\left(\sum_{i=1}^{\frac{\log _{2} n}{2}-1} 3\right)+\Theta(1) \\
& \leq T\left(\frac{2 n}{3}\right)+\Theta(1)
\end{aligned}
$$

Algorithm Complexity

This is by the master the master theorem $O\left(\log _{2} n\right)$.

Outline

(1) Sorting problem

- Definition
- Classic Complexities

(2) Heaps

- Introduction
- Heaps
- Finding Parents and Children
- Max-Heapify
- Complexity of Max-Heapify
- Build Max Heap: Using Max-Heapify
- Heap Sort

3 Applications of Heap Data Structure

- Main Applications of the Heap Data Structure
- Heap Sort: Exercises

4 Quicksort

- Introduction
- The Divide and Conquer Quicksort
- Complexity Analysis
- Unbalanced Partition

O It is Necessary to Model the Worst Case!!!

- Randomized Quicksort
- Expected Running Time
(5) Lower Bounds of Sorting
- Lower Bounds of Sorting
- Exercises

Heap Sort: Using Max-Heapify

Algorithm Build-Max-Heap

Build-Max-Heap (A)
(1) heap - size $[A]=$ length $[A]$
(2) for $i=\lfloor$ length $[A] / 2\rfloor$ downto 1
(3) Max-Heapify (A, i)

Figure: Building a Heap

Question?

Why from \lfloor length $\lfloor A \mid / 2\rfloor$?

Look at this

Question?

Why from \lfloor length $\lfloor A \mid / 2\rfloor$?

Look at this

Thus, the nodes \lfloor length $[A] / 2\rfloor+1,\lfloor$ length $\lfloor A\rfloor / 2\rfloor+2, \ldots, n$

- They are actually leaves.

Question?

Why from \lfloor length $\lfloor A \mid / 2\rfloor$?

Look at this

Thus, the nodes \lfloor length $\lfloor A] / 2\rfloor+1,\lfloor$ length $\lfloor A\rfloor / 2\rfloor+2, \ldots, n$

- They are actually leaves.
- This can be proved by induction on $n!!!$

Question?

Why from \lfloor length $\lfloor A \mid / 2\rfloor$?

Look at this

Thus, the nodes \lfloor length $\lfloor A] / 2\rfloor+1,\lfloor$ length $\lfloor A\rfloor / 2\rfloor+2, \ldots, n$

- They are actually leaves.
- This can be proved by induction on $n!!!$
- I leave this to you.

Question?

What about the loop invariance?
Look at the Board!!!

Build Max Heap: Using Max-Heapify

Example

Height h of the Heap for Complexity of Build-Max-Heap

We can use the height of a three to derive a tight bound

- The height h is the number of edges on the longest simple downward path from the node to a leaf.

Height h of the Heap for Complexity of Build-Max-Heap

We can use the height of a three to derive a tight bound

- The height h is the number of edges on the longest simple downward path from the node to a leaf.
- You have at most $\left[\frac{n}{2^{h+1}}\right\rceil$ nodes at height h, where n is the total number of nodes.

Example

$h=1$

Furthermore

$h=3$

Furthermore

$h=1$

Furthermore

$h=1$

Furthermore

$$
h=0
$$

Cost of Building the Build-Max-Heap

Possible cost

$$
O\left(n \log _{2} n\right)
$$

Cost of Building the Build-Max-Heap

We have that you have

- The number of nodes explored horizontally by the "for" loop can be bounded by

Cost of Building the Build-Max-Heap

We have that you have

- The number of nodes explored horizontally by the "for" loop can be bounded by

$$
\begin{equation*}
\left\lceil\frac{n}{2^{h+1}}\right\rceil \tag{10}
\end{equation*}
$$

Cost of Building the Build-Max-Heap

We have that you have

- The number of nodes explored horizontally by the "for" loop can be bounded by

$$
\begin{equation*}
\left\lceil\frac{n}{2^{h+1}}\right\rceil \tag{10}
\end{equation*}
$$

- The depth of the Max-Heapify is

Cost of Building the Build-Max-Heap

We have that you have

- The number of nodes explored horizontally by the "for" loop can be bounded by

$$
\begin{equation*}
\left\lceil\frac{n}{2^{h+1}}\right\rceil \tag{10}
\end{equation*}
$$

- The depth of the Max-Heapify is

$$
\begin{equation*}
O(h) \tag{11}
\end{equation*}
$$

Cost of Building the Build-Max-Heap

We have that you have

- The number of nodes explored horizontally by the "for" loop can be bounded by

$$
\begin{equation*}
\left\lceil\frac{n}{2^{h+1}}\right\rceil \tag{10}
\end{equation*}
$$

- The depth of the Max-Heapify is

$$
\begin{equation*}
O(h) \tag{11}
\end{equation*}
$$

Therefore we have the following total tighter cost

$$
\sum_{h=0}^{\lfloor\log n\rfloor}\left[\frac{n}{2^{h+1}}\right\rceil O(h)=O\left(n \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}\right)
$$

Thus

From (A.8) at Cormen's

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
$$

Thus

From (A.8) at Cormen's

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
$$

Thus, we have that

$$
O\left(n \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}\right)=O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)
$$

Thus

From (A.8) at Cormen's

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
$$

Thus, we have that

$$
\begin{aligned}
O\left(n \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}\right) & =O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right) \\
& =O\left(n \sum_{h=0}^{\infty} h\left(\frac{1}{2}\right)^{h}\right)
\end{aligned}
$$

Thus

From (A.8) at Cormen's

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
$$

Thus, we have that

$$
\begin{aligned}
O\left(n \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}\right) & =O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right) \\
& =O\left(n \sum_{h=0}^{\infty} h\left(\frac{1}{2}\right)^{h}\right) \\
& =O\left(n\left[\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}\right]\right)
\end{aligned}
$$

Thus

From (A.8) at Cormen's

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
$$

Thus, we have that

$$
\begin{aligned}
O\left(n \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}\right) & =O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right) \\
& =O\left(n \sum_{h=0}^{\infty} h\left(\frac{1}{2}\right)^{h}\right) \\
& =O\left(n\left[\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}\right]\right) \\
& =O(n)
\end{aligned}
$$

Outline

（1）Sorting problem
－Definition
－Classic Complexities

（2）Heaps

Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
Build Max Heap：Using Max－Heapify
－Heap Sort

3 Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort (A)

Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort (A)
(1) Build-Max-Heap (A)

Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort (A)
(1) Build-Max-Heap (A)
(2) for $i=$ length $[A]$ downto 2

Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort (A)
(1) Build-Max-Heap (A)
(2) for $i=$ length $[A]$ downto 2
(3) exchange $A[1]$ with $A[i]$

Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort (A)
(1) Build-Max-Heap (A)
(2) for $i=$ length $[A]$ downto 2
(3) exchange $A[1]$ with $A[i]$
(9) heap $-\operatorname{size}[A]=$ heap $-\operatorname{size}[A]-1$

Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort (A)
(1) Build-Max-Heap (A)
(2) for $i=$ length $[A]$ downto 2
(3) exchange $A[1]$ with $A[i]$
(9) heap - size $[A]=$ heap - size $[A]-1$
(5) $\operatorname{Max-Heapify}(A, 1)$

Heap Sort: Using Max-Heapify

Heapsort Algorithm

Heapsort (A)
(1) Build-Max-Heap (A)
(2) for $i=$ length $[A]$ downto 2
(3) exchange $A[1]$ with $A[i]$
(9) heap - size $[A]=$ heap - size $[A]-1$
(5) $\operatorname{Max-Heapify}(A, 1)$

Figure: Heapsort

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the bottom position!!!

Heap Sort: Using Max-Heapify

Cost
 $O(n \log n)$

Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure －Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Applications of Heap Data Structure

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey () operations in $\mathrm{O}(\operatorname{logn})$ time

Applications of Heap Data Structure

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey() operations in $\mathrm{O}(\operatorname{logn})$ time

This has direct applications

(1) Bandwidth management:
(1) Many modern protocols for Local Area Networks include the concept of Priority Queues at the Media Access Control (MAC).

Applications of Heap Data Structure

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey () operations in $\mathrm{O}(\operatorname{logn})$ time

This has direct applications

(1) Bandwidth management:
(1) Many modern protocols for Local Area Networks include the concept of Priority Queues at the Media Access Control (MAC).
(2) Discrete Event Simulations

Applications of Heap Data Structure

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey() operations in O(logn) time

This has direct applications

(1) Bandwidth management:
(1) Many modern protocols for Local Area Networks include the concept of Priority Queues at the Media Access Control (MAC).
(2) Discrete Event Simulations
(3) Schedulers

Applications of Heap Data Structure

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey () operations in $\mathrm{O}(\operatorname{logn})$ time

This has direct applications

(1) Bandwidth management:
(1) Many modern protocols for Local Area Networks include the concept of Priority Queues at the Media Access Control (MAC).
(2) Discrete Event Simulations
(3) Schedulers
(4) Huffman coding

Applications of Heap Data Structure

Priority Queues

Here, Heaps can be modified to support insert(), delete() and extractmax(), decreaseKey () operations in $\mathrm{O}(\operatorname{logn})$ time

This has direct applications

(1) Bandwidth management:
(1) Many modern protocols for Local Area Networks include the concept of Priority Queues at the Media Access Control (MAC).
(2) Discrete Event Simulations
(3) Schedulers
(4) Huffman coding
(5) The Real-time Optimally Adapting Meshes (ROAM)
(1) It computes a dynamically changing triangulation of a terrain using two priority queues.

Applications of Heap Data Structure

Heap Sort of Arrays

Clearly, if the list of numbers is stored in an array!!!

Outline

(1) Sorting problem

- Definition
- Classic Complexities
- Introduction
- Heaps
- Finding Parents and Children
- Max-Heapify
- Complexity of Max-Heapify
- Build Max Heap: Using Max-Heapify
- Heap Sort
(3) Applications of Heap Data Structure

Main Applications of the Heap Data Structure

- Heap Sort: Exercises
(4) Quicksort
- Introduction

The Divide and Conquer Quicksort

- Complexity Analysis
- Unbalanced Partition
- It is Necessary to Model the Worst Case!!!
- Randomized Quicksort
- Expected Running Time
(5) Lower Bounds of Sorting
- Lower Bounds of Sorting
- Exercises

Heap Sort: Exercices

From Cormen's book

- 6.1-1
- 6.1-4
- 6.1-7
- 6.2-5
- 6.2-6
- 6.3-3
- 6.4-2
- 6.4-3
- 6.4-4

Outline

（1）Sorting problem
－Definition
－Classic Complexities
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises
（4）Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Who invented Quicksort?

Imagine this

The Quicksort algorithm was developed in 1960 by Tony Hoare (He has a postgraduate certificate in Statistics) while in the Soviet Union, as a visiting student at Moscow State University.

Who invented Quicksort?

Abstract

Imagine this The Quicksort algorithm was developed in 1960 by Tony Hoare (He has a postgraduate certificate in Statistics) while in the Soviet Union, as a visiting student at Moscow State University.

Why?

At that time, Hoare worked in a project on machine translation for the National Physical Laboratory.

Who invented Quicksort?

Imagine this

The Quicksort algorithm was developed in 1960 by Tony Hoare (He has a postgraduate certificate in Statistics) while in the Soviet Union, as a visiting student at Moscow State University.

Why?

At that time, Hoare worked in a project on machine translation for the National Physical Laboratory.

To do

He developed the algorithm in order to sort the words to be translated.

Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heaps
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises
（4）Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exereises

Imagine the following...

First Attempt

We want an algorithm that can sort by using the Divide and Conquer method

Imagine the following...

First Attempt

We want an algorithm that can sort by using the Divide and Conquer method

Now, we have the following constraint
We need to use the same array to do the sorting!!! Sorting in place!!!

Imagine the following...

First Attempt

We want an algorithm that can sort by using the Divide and Conquer method

Now, we have the following constraint
We need to use the same array to do the sorting!!! Sorting in place!!!

What if we use the following strategy

Given a number in the array!!!

- Move some elements to the left of the number!!!
- Move some other elements to the right of the number!!!

Something like

We have...

9	8	2	4	5	10	6	3	7				
2	4	3	5	9	8	10	6	7				

Something like

We have...

Now What?

- Any Ideas?
- What about our old friend? Recursion!!!

The Divide and Conquer Quicksort

Divide Process

(1) Compute the index q as part of this partitioning procedure.

The Divide and Conquer Quicksort

Divide Process

(1) Compute the index q as part of this partitioning procedure.
(2) Partition (rearrange) the array $A[p, \ldots, r]$ into two (possibly empty) sub-arrays $A[p, \ldots, q-1]$ and $A[q+1, \ldots, r]$

The Divide and Conquer Quicksort

Divide Process

(1) Compute the index q as part of this partitioning procedure.
(2) Partition (rearrange) the array $A[p, \ldots, r]$ into two (possibly empty) sub-arrays $A[p, \ldots, q-1]$ and $A[q+1, \ldots, r]$
(1) each element of $A[p, \ldots, q-1]$ is less than or equal to $A[q]$.

The Divide and Conquer Quicksort

Divide Process

(1) Compute the index q as part of this partitioning procedure.
(2) Partition (rearrange) the array $A[p, \ldots, r]$ into two (possibly empty) sub-arrays $A[p, \ldots, q-1]$ and $A[q+1, \ldots, r]$
(1) each element of $A[p, \ldots, q-1]$ is less than or equal to $A[q]$.
(2) $A[q]$ is less than or equal to each element of $A[q+1, \ldots, r]$.

The Divide and Conquer Quicksort

Conquer

Sort the two sub-arrays $A[p, \ldots, q-1]$ and $A[q+1, \ldots, r]$ by recursive calls to quicksort.

The Divide and Conquer Quicksort

Conquer

Sort the two sub-arrays $A[p, \ldots, q-1]$ and $A[q+1, \ldots, r]$ by recursive calls to quicksort.

Combine

Since the sub-arrays are sorted in place, no work is needed to combine them: the entire array $A[p, \ldots, r]$ is now sorted.

Quicksort Algorithm

Quicksort Algorithm
Quicksort (A, p, r)
(1) if $p<r$

Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)
(1) if $p<r$
(3) $q=\operatorname{Partition}(A, p, r)$

Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)
(1) if $p<r$
(3) $q=\operatorname{Partition}(A, p, r)$

- Quicksort $(A, p, q-1)$

Quicksort Algorithm

Quicksort Algorithm
Quicksort (A, p, r)
(1) if $p<r$
(2) $\quad q=\operatorname{Partition}(A, p, r)$
(3) Quicksort $(A, p, q-1)$
(9) Quicksort $(A, q+1, r)$

Quicksort Algorithm

Quicksort Algorithm
Quicksort (A, p, r)
(1) if $p<r$
(2) $\quad q=\operatorname{Partition}(A, p, r)$
(3) Quicksort $(A, p, q-1)$
(9) Quicksort $(A, q+1, r)$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)

(1) $x=A[r]$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)

(1) $x=A[r]$
(3) $i=p-1$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)
(1) $x=A[r]$
(2) $i=p-1$
(for $j=p$ to $r-1$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)
(1) $x=A[r]$
(3) $i=p-1$

- for $j=p$ to $r-1$
- if $A[j] \leq x$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)
(1) $x=A[r]$
(3) $i=p-1$
(for $j=p$ to $r-1$

- if $A[j] \leq x$
-

$$
i=i+1
$$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)
(1) $x=A[r]$
(2) $i=p-1$
(for $j=p$ to $r-1$

- if $A[j] \leq x$
- $\quad i=i+1$
- exchange $A[i]$ with $A[j]$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)
(1) $x=A[r]$
(3) $i=p-1$
(for $j=p$ to $r-1$

- if $A[j] \leq x$
- $\quad i=i+1$
- exchange $A[i]$ with $A[j]$
(O) exchange $A[i+1]$ with $A[r]$

Partition Algorithm

Quicksort Partition

Partition (A, p, r)
(1) $x=A[r]$
(2) $i=p-1$
(3) for $j=p$ to $r-1$
(9) if $A[j] \leq x$
(6) $i=i+1$
© exchange $A[i]$ with $A[j]$
(1) exchange $A[i+1]$ with $A[r]$
(3) return $i+1$

Quicksort: What is the Invariance?

Loop Invariance

(1) If $p \leq k \leq \mathbf{i}$, then $A[k] \leq x$.

Quicksort: What is the Invariance?

Loop Invariance

(1) If $p \leq k \leq \mathbf{i}$, then $A[k] \leq x$.
(2) If $i+1 \leq k \leq j-1$, then $A[k]>x$.

Quicksort: What is the Invariance?

Loop Invariance

(1) If $p \leq k \leq \mathbf{i}$, then $A[k] \leq x$.
(2) If $i+1 \leq k \leq j-1$, then $A[k]>x$.
(3) If $k=r$, then $A[k]=x$.

Quicksort: What is the Invariance?

Loop Invariance

(1) If $p \leq k \leq \mathbf{i}$, then $A[k] \leq x$.
(2) If $i+1 \leq k \leq j-1$, then $A[k]>x$.
(3) If $k=r$, then $A[k]=x$.
(9) UNKNOWN

Quicksort: What is the Invariance?

Loop Invariance

(1) If $p \leq k \leq \mathbf{i}$, then $A[k] \leq x$.
(2) If $i+1 \leq k \leq j-1$, then $A[k]>x$.
(3) If $k=r$, then $A[k]=x$.
(9) UNKNOWN

Quicksort: What is the Invariance?

Loop Invariance

(1) If $p \leq k \leq \mathbf{i}$, then $A[k] \leq x$.
(2) If $i+1 \leq k \leq j-1$, then $A[k]>x$.
(3) If $k=r$, then $A[k]=x$.
(c) UNKNOWN

Proof of the Loop Invariance

Look at the Board.

Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

（4）Quicksort

－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Complexity Analysis

Best-case Analysis

- Partition returns two arrays size $\frac{n}{2}$ and $\frac{n}{2}-1$.

Complexity Analysis

Best-case Analysis

- Partition returns two arrays size $\frac{n}{2}$ and $\frac{n}{2}-1$.
- Then, we have the recurrence $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)$.

Complexity Analysis

Best-case Analysis

- Partition returns two arrays size $\frac{n}{2}$ and $\frac{n}{2}-1$.
- Then, we have the recurrence $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)$.

What about the Worst-Case?

- Partition returns two arrays, one of size 0 and one of size $n-1$.

Complexity Analysis

Best-case Analysis

- Partition returns two arrays size $\frac{n}{2}$ and $\frac{n}{2}-1$.
- Then, we have the recurrence $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)$.

What about the Worst-Case?

- Partition returns two arrays, one of size 0 and one of size $n-1$.
- Then, we have the recurrence:

Complexity Analysis

Best-case Analysis

- Partition returns two arrays size $\frac{n}{2}$ and $\frac{n}{2}-1$.
- Then, we have the recurrence $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)$.

What about the Worst-Case?

- Partition returns two arrays, one of size 0 and one of size $n-1$.
- Then, we have the recurrence:

$$
\begin{equation*}
T(n)=T(n-1)+\Theta(n)=O\left(n^{2}\right) \tag{12}
\end{equation*}
$$

Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises
（4）Quicksort
－Introduction
－The Divide and Conquer Quicksort
Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

What about a No So Unbalanced Partition?

What are you talking about?

$$
\begin{equation*}
T(n)=T\left(\frac{n}{10}\right)+T\left(\frac{9 n}{10}\right)+\Theta(n) \tag{13}
\end{equation*}
$$

What about a No So Unbalanced Partition?

What are you talking about?

$$
\begin{equation*}
T(n)=T\left(\frac{n}{10}\right)+T\left(\frac{9 n}{10}\right)+\Theta(n) \tag{13}
\end{equation*}
$$

This can happen when

The pivot split the array in two sub-array...

x_{1}	pivot	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}

What about a No So Unbalanced Partition?

What are you talking about?

$$
\begin{equation*}
T(n)=T\left(\frac{n}{10}\right)+T\left(\frac{9 n}{10}\right)+\Theta(n) \tag{13}
\end{equation*}
$$

This can happen when

The pivot split the array in two sub-array...

x_{1}	pivot	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}

Even when this happen

Using the tree method!!! We notice something weird!!!

Unbalanced Partition Tree Method Analysis

Unbalanced partitioning returns a $O(n \log n)$

After certain level, the total steps are \leq than cn!!!

Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises
（4）Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!

After all, we can split the sub-arrays in any way we want!!!

Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!

After all, we can split the sub-arrays in any way we want!!!

$$
T(q)+T(n-q-1)
$$

We can get the worst case asking

Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!

After all, we can split the sub-arrays in any way we want!!!

$$
\begin{equation*}
T(q)+T(n-q-1) \tag{14}
\end{equation*}
$$

We can get the worst case asking

Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!

After all, we can split the sub-arrays in any way we want!!!

$$
\begin{equation*}
T(q)+T(n-q-1) \tag{14}
\end{equation*}
$$

We can get the worst case asking

$$
\begin{equation*}
\max _{0 \leq q \leq n-1}(T(q)+T(n-q-1)) \tag{15}
\end{equation*}
$$

Worst Case Complexity Analysis

Worst-case Recursion

$$
\begin{equation*}
T(n)=\max _{0 \leq q \leq n-1}(T(q)+T(n-q-1))+\Theta(n) \tag{16}
\end{equation*}
$$

Worst Case Complexity Analysis

Worst-case Recursion

$$
\begin{equation*}
T(n)=\max _{0 \leq q \leq n-1}(T(q)+T(n-q-1))+\Theta(n) \tag{16}
\end{equation*}
$$

By substitution, we can prove

Complexity $O\left(n^{2}\right)$.

Worst Case Complexity Analysis

Worst-case Recursion

$$
\begin{equation*}
T(n)=\max _{0 \leq q \leq n-1}(T(q)+T(n-q-1))+\Theta(n) \tag{16}
\end{equation*}
$$

By substitution, we can prove
Complexity $O\left(n^{2}\right)$.

This can be proved as follows

 BLACKBOARD!
Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises
（4）Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Remember?

The use of uniform distribution
To get the average behavior!!!

Remember?

The use of uniform distribution
To get the average behavior!!!

In many cases

It is better than the worst case scenario....

Remember?

The use of uniform distribution
To get the average behavior!!!

In many cases

It is better than the worst case scenario....
Thus
We can introduce randomization in the Quicksort.

Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)

Randomized-Quicksort (A, p, r)
(1) if $p<r$

Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)

Randomized-Quicksort (A, p, r)
(1) if $p<r$
(2) $\quad q=$ Randomized-Partition (A, p, r)

Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)

Randomized-Quicksort (A, p, r)
(1) if $p<r$
(2) $\quad q=$ Randomized-Partition (A, p, r)
(3) Randomized-Quicksort $(A, p, q-1)$

Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)

Randomized-Quicksort (A, p, r)
(1) if $p<r$
(2) $\quad q=$ Randomized-Partition (A, p, r)
(3) Randomized-Quicksort $(A, p, q-1)$
(4) Randomized-Quicksort $(A, q+1, r)$

Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)

Randomized-Quicksort (A, p, r)
(1) if $p<r$
(2) $\quad q=$ Randomized-Partition (A, p, r)
(3) Randomized-Quicksort $(A, p, q-1)$
(9) Randomized-Quicksort $(A, q+1, r)$

RANDOMIZED-PARTITION(A,p,r)

Randomized-Partition (A, p, r)
(1) $i=\operatorname{Random}(p, r)$
(2) exchange $A[r]$ with $A[i]$
(3) return Partition (A, p, r)

Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises
4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
－It is Necessary to Model the Worst Case！！！
O Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
－Lower Bounds of Sorting
－Exercises

Expected Running Time of Randomized Quicksort

Expected running time

The expected running time for the Randomized Quicksort algorithm arises from the following lemma.

Expected Running Time of Randomized Quicksort

Expected running time

The expected running time for the Randomized Quicksort algorithm arises from the following lemma.

Lemma 7.1 (Cormen's book)

- Let X be the number of comparisons performed in line 4 of PARTITION algorithm over the entire execution of QUICKSORT on an n-element array.
- Then, the running time of QUICKSORT is $O(n+X)$.

Expected Running Time of Randomized Quicksort

Expected running time

The expected running time for the Randomized Quicksort algorithm arises from the following lemma.

Lemma 7.1 (Cormen's book)

- Let X be the number of comparisons performed in line 4 of PARTITION algorithm over the entire execution of QUICKSORT on an n-element array.
- Then, the running time of QUICKSORT is $O(n+X)$.

Now the proof of the expected running time. BLACKBOARD!

Therefore

It is possible to conclude that
The Average Time Complexity of the Quicksort is $O(n \log n)$

Applications

Sorting in Special Environments

Example: Using Massive Parallel Stream Processors.

Applications

Sorting in Special Environments

Example: Using Massive Parallel Stream Processors.

Multi-Objective Optimization

Yes!!! Numerical Analysis using the Quick Sort!!!

Applications

Sorting in Special Environments

Example: Using Massive Parallel Stream Processors.

Multi-Objective Optimization
 Yes!!! Numerical Analysis using the Quick Sort!!!

Real-Time Visualization of Large Time-Varying Molecules

Use the distance of the atoms to the viewers - the Painters Algorithms!!!

Outline

(1) Sorting problem

- Definition
- Classic Complexities
- Introduction
- Heaps
- Finding Parents and Children
- Max-Heapify
- Complexity of Max-Heapify
- Build Max Heap: Using Max-Heapify
- Heap Sort
(3) Applications of Heap Data Structure
- Main Applications of the Heap Data Structure
- Heap Sort: Exercises
(4) Quicksort
- Introduction
- The Divide and Conquer Quicksort
- Complexity Analysis
- Unbalanced Partition
- It is Necessary to Model the Worst Case!!!
- Randomized Quicksort
- Expected Running Time
(5) Lower Bounds of Sorting
- Lower Bounds of Sorting
- Exercises

Basic Concepts

Mergesort and Heapsort

- They are algorithms that sort in $O(n \log n)$.

Basic Concepts

Mergesort and Heapsort

- They are algorithms that sort in $O(n \log n)$.
- It is more we can give a sequence such that $\Omega(n \log n)$.

Basic Concepts

Mergesort and Heapsort

- They are algorithms that sort in $O(n \log n)$.
- It is more we can give a sequence such that $\Omega(n \log n)$.

Property

- The sorted order they determine is based only on comparisons between the input elements.

Basic Concepts

Mergesort and Heapsort

- They are algorithms that sort in $O(n \log n)$.
- It is more we can give a sequence such that $\Omega(n \log n)$.

Property

- The sorted order they determine is based only on comparisons between the input elements.
- We call such sorting algorithms comparison sorts.

Theorem and Corollary

Theorem

Any comparison sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Theorem and Corollary

Theorem

Any comparison sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Corollary

Heapsort and Mergesort are asymptotically optimal comparison sorts.

Outline

（1）Sorting problem
－Definition
－Classic Complexities
（2）Heaps
－Introduction
－Heans
－Finding Parents and Children
－Max－Heapify
－Complexity of Max－Heapify
－Build Max Heap：Using Max－Heapify
－Heap Sort
（3）Applications of Heap Data Structure
－Main Applications of the Heap Data Structure
－Heap Sort：Exercises

4 Quicksort
－Introduction
－The Divide and Conquer Quicksort
－Complexity Analysis
－Unbalanced Partition
O It is Necessary to Model the Worst Case！！！
－Randomized Quicksort
－Expected Running Time
（5）Lower Bounds of Sorting
Lower Bounds of Sorting
－Exercises

Exercises

Cormen's Chapter 7

- 7.1-4
- 7.2-3
- 7.2-5
- 7.4-1

