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Sorting Problem

Input
A sequence of n numbers 〈a1, a2, ..., an〉.

Output
A permutation (reordering) 〈a′1, a′2, ..., a′n〉 such that a′1 ≤ a′2 ≤ ... ≤ a′n
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Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

7 / 130



Imagine 1964

The System/360 family was introduced by IBM
The slowest System/360, the Model 30, could perform up to 34,500
instructions per second, with memory from 8 to 64 KB.

Its main programming language was Basic Assembly Language (BAL)
You were basically EIGHT years from the first Fortran compiler (Also
IBM).

Additionally, POINTERS were invented this year barely
Therefore... back to first principles my dear Clarice....
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Yepi

Yes... my dear Clarice...
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Then, if you put all together

We have a memory structure like
TOWARD LOW MEMORY TOWARD HIGH MEMORY

Let us to think about it
How? We can assume a series of constraints....
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Constraints

We want a system that allows for priorities such that
We do not want to scan the entire memory for that.
We want to avoid doing to a lot of shifting in the main memory.

Therefore
We want that allows the following ADT operations:

Insertion
Deletion
Search

In a Time LESS than

O (n)
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Definitions

Definition
A heap is an array object that can be viewed as a nearly complete binary
tree.

8

6 3

4 5 1

0   1  2   3  4   5  6  7

8   6  3  4   5  1

1

2 3

4 5 6

13 / 130



Basic Attributes

Given an array A, we have that length[A]
It is the size of the storing array.

heap-size[A]
Tell us how many elements in the heap are stored in the array.

Thus, we have

0 ≤ heap-size[A] ≤ length[A] (1)
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Heap Sort: Calculations given a Node i in the heap

Parent(i) - Parent Node

Parent(i) =
⌊

i
2

⌋
Left Node Child: Left(i)
Left(i) = 2i

Right Node Child: Right(i)
Right(i) = 2i + 1
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Max/Min Heap Properties

Given that
A [i] returns the value of the key, we have that

Max Heap property
A [Parent(i)] ≥ A[i]

Min Heap property
A [Parent(i)] ≤ A [i]
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What we want!!!

A function to keep the property of max or min heap
After all, remembering Kolmogorov, we are acting in a part of the array
trying to keep certain properties

Which ONE?

Remember
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After all, remembering Kolmogorov, we are acting in a part of the array
trying to keep certain properties

Which ONE?

Remember
Single nodes are always min heaps or max heaps
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Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm
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Example keeping the heap property starting at i = 1
Here, you could imagine that somebody inserted a node at i = 1
3. If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

16 10

4

14 7 9 3

8 1 1

i=1

l=2 r=3

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

4 16 10

Violating Property

14 7 9 3 8 1 1

>? <?
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Example keeping the heap property starting at i = 1

One of the children is chosen to be exchanged
8. if largest 6= i

9. exchange A[i] with A[largest]

16 10

4

14 7 9 3

8 1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

4 16 10

Violating Property

Larger

14 7 9 3 8 1 1

Exchange

l=2

i=1

r=3
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Example: Now i = largest

Make the excahnge and call the Max-Heapify
10. Max-Heapify(A, largest)

16

104

14 7 9 3

8 1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

416 10 14 7 9 3 8 1 1

i=2 3Violating property?

1
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14 7 9 3
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l=4 r=5 6 7

8 9 10
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Example: Now i = largest

Keep going

16

10

4

14

7 9 3

8 1 1

i=4 5 6 7

8 9 10
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1

Exchange
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Example: Now i = largest

Keep going

16

10

4

14

7 9 38

1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 38 1 1

2 3

1

14 4
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Complexity of Max-Heapify

For this
It is possible to prove that the upper bound on the size of each children’s
subtrees is 2n

3 starting at the root (First Recursive Call!!!).

Thus
In addition, we use the idea of height from the root node (h = 0) to leaves
(h = log n− 1).
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Then

We have that by using the nearly complete structure
1 First for n = 1, we have that the size of children’s subtrees is 0 < 2

3 .
2 For n = 2, we have that the size of children’s subtrees is at most

1 < 4
3 .

3 For n = 3, we have that the size of children’s subtrees is at most
1 < 6

3 = 2.
4 For n = 4, we have that the size of children’s subtrees is at most

2 < 8
3 .

5 etc...
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Do you notice the following?

Imagine the following case

The maximum number of nodes in both children assuming a full tree
with n nodes

21 + 22 + ... + 2dlog ne−2 + 2dlog ne−1 (2)
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Now

Imagine the following special case

The maximum number of nodes in one child is equal to
21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−1

2 (3)
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The total number of elements in a child’s subtree

The total number of nodes in a CHILD is bounded

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 = 1 + 22 + ... + 2dlog ne−3 + 2dlog ne−2

= 1− 2dlog ne−2

1− 2 + 2dlog ne−2

= 2dlog ne−2 − 1 + 2dlog ne−2

= 2× 2blog nc−2 − 1

= 2dlog ne−1 − 2
3 −

1
3

< 2dlog ne−1 − 2
3
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The total number of elements in a child’s subtree

Notice the following

2dlog ne <
4
3
[
2log n

]
(4)

When n = 2p − 1
For the case that that n ≤ 2p − 1 we can use the fact that
dlog ne = p for some power of 2.
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Induction to prove the previous statement

Step n = 1

2dlog 1e = 20 = 1 <
4
3 × 2log 1 (5)

Assume is true for n

2dlog ne <
4
3
[
2log n

]
(6)
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Induction to prove the previous statement

Now prove for n + 1

2dlog(n+1)e = 2dlog(2p−1+1)e

= 2dpe

= 2p

= 2log 2p

<
4
3
[
2log 2p

]
= 4

3
[
2log(n+1)

]
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Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3
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Complexity of Max-Heapify
Knowing that the number of nodes in any child is bounded by

2n

3 (7)

Thus, given that T (n) represent the complexity of the Max-Heapify

T (n) = T (How many nodes will be touched by the recusrsion) + Θ (1)
(8)

Here
Θ (1) is the constant part of the algorithm before recursion.
T (How many nodes will be touched by the recusrsion) =

T

(∑ log2 n

2 −1
i=1 3

)
.

How? 40 / 130
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Complexity of Max-Heapify

The Recursion Idea

3

3

3
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Complexity of Max-Heapify
Thus

log2 n−1
2 −1∑
i=1

3 = 3
log2 n

2 − 1
3− 1 − 3

=

(
3

1
2
)log2 n

2 − 3

= n
log2

(
3

1
2
)

2 − 3

≤ n0.8

2

≤ 2n0.8

3
≤ 2n

3
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Complexity of Max-Heapify

Thus, if we assume that T is an increasing monotone function

T (n) = T


log2 n

2 −1∑
i=1

3

+ Θ (1)

≤ T

(2n

3

)
+ Θ (1)

Algorithm Complexity

This is by the master the master theorem O (log2 n).
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Heap Sort: Using Max-Heapify

Algorithm Build-Max-Heap
Build-Max-Heap(A)

1 heap− size[A] = length[A]
2 for i = blength[A]/2c downto 1
3 Max-Heapify(A, i)

Figure: Building a Heap
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Question?
Why from blength[A]/2c?
Look at this

1

2 3

4 5 6 7

8 9 10 11

Thus, the nodes blength[A]/2c+ 1, blength[A]/2c+ 2, ..., n

They are actually leaves.
This can be proved by induction on n!!!

I I leave this to you.
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Question?

What about the loop invariance?
Look at the Board!!!
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Build Max Heap: Using Max-Heapify

Example

16

10

4

14

7

9

3

8

1

1

4 i=5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

161079 3 811

2 3

1

144

Exchange
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Build Max Heap: Using Max-Heapify

Example
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14

7 9 38
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16 10 7 9 38 1 1
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Height h of the Heap for Complexity of Build-Max-Heap

We can use the height of a three to derive a tight bound
The height h is the number of edges on the longest simple downward
path from the node to a leaf.
You have at most

⌈
n

2h+1

⌉
nodes at height h, where n is the total

number of nodes.
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Example

h = 1

8

7 3

4 5 1

h=3

2

3
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Furthermore

h = 3

8

7 3

4 5 1

h=2

2

3
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Furthermore

h = 0

8

7 3

4 5 1

h=0

2

3
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Cost of Building the Build-Max-Heap

Possible cost

O (n log2 n) (9)
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Cost of Building the Build-Max-Heap
We have that you have

The number of nodes explored horizontally by the “for” loop can be
bounded by ⌈

n

2h+1

⌉
(10)

The depth of the Max-Heapify is

O (h) (11)

Therefore we have the following total tighter cost

blog nc∑
h=0

⌈
n

2h+1

⌉
O(h) = O

n

blog nc∑
h=0

h

2h
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Thus
From (A.8) at Cormen’s

∞∑
k=0

kxk = x

(1− x)2

Thus, we have that

O

n

blog nc∑
h=0

h

2h

 = O

(
n
∞∑

h=0

h

2h

)

= O

(
n
∞∑

h=0
h

(1
2

)h
)

= O

n

 1
2(

1− 1
2

)2




= O (n)
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Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort
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Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

To be exchanged

16

10

4

14

7 9 38

1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 38 1 1

2 3

i=1

14 4
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Heap Sort: Using Max-Heapify
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Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
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Heap Sort: Using Max-Heapify
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Heap Sort: Using Max-Heapify
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Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!
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Heap Sort: Using Max-Heapify

Cost
O(n log n)
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Applications of Heap Data Structure

Priority Queues
Here, Heaps can be modified to support insert(), delete() and extractmax(),
decreaseKey() operations in O(logn) time

This has direct applications
1 Bandwidth management:

1 Many modern protocols for Local Area Networks include the concept of
Priority Queues at the Media Access Control (MAC).

2 Discrete Event Simulations
3 Schedulers
4 Huffman coding
5 The Real-time Optimally Adapting Meshes (ROAM)

1 It computes a dynamically changing triangulation of a terrain using two
priority queues.
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Applications of Heap Data Structure

Heap Sort of Arrays
Clearly, if the list of numbers is stored in an array!!!
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Heap Sort: Exercices

From Cormen’s book
6.1-1
6.1-4
6.1-7
6.2-5
6.2-6
6.3-3
6.4-2
6.4-3
6.4-4
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Who invented Quicksort?

Imagine this
The Quicksort algorithm was developed in 1960 by Tony Hoare (He has a
postgraduate certificate in Statistics) while in the Soviet Union, as a
visiting student at Moscow State University.

Why?
At that time, Hoare worked in a project on machine translation for the
National Physical Laboratory.

To do
He developed the algorithm in order to sort the words to be translated.
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Imagine the following...

First Attempt

We want an algorithm that can sort by using the Divide and Conquer
method

Now, we have the following constraint
We need to use the same array to do the sorting!!! Sorting in place!!!

What if we use the following strategy

Given a number in the array!!!
Move some elements to the left of the number!!!
Move some other elements to the right of the number!!!
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Something like

We have...

Now What?
Any Ideas?
What about our old friend? Recursion!!!
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The Divide and Conquer Quicksort

Divide Process
1 Compute the index q as part of this partitioning procedure.
2 Partition (rearrange) the array A[p, ..., r] into two (possibly empty)

sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r]
1 each element of A[p, ..., q − 1] is less than or equal to A[q].
2 A[q] is less than or equal to each element of A[q + 1, ..., r].
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The Divide and Conquer Quicksort

Conquer
Sort the two sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r] by recursive calls
to quicksort.

Combine
Since the sub-arrays are sorted in place, no work is needed to combine
them: the entire array A[p, ..., r] is now sorted.
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Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)

1 if p < r

2 q = Partition (A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)
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Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1
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Quicksort: What is the Invariance?

Loop Invariance
1 If p ≤ k ≤ i, then A[k] ≤ x.
2 If i + 1 ≤ k ≤ j − 1, then A[k] > x.
3 If k = r , then A[k] = x.
4 UNKNOWN

Proof of the Loop Invariance
Look at the Board.
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Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

113 / 130



What about a No So Unbalanced Partition?

What are you talking about?

T (n) = T

(
n

10

)
+ T

(9n

10

)
+ Θ (n) (13)

This can happen when
The pivot split the array in two sub-array...

x1 pivot x2 x3 x4 x5 x6 x7 x8 x9

Even when this happen

Using the tree method!!! We notice something weird!!!
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Unbalanced Partition Tree Method Analysis

Unbalanced partitioning returns a O (n log n)
After certain level, the total steps are ≤ than cn!!!

115 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

116 / 130



Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!
After all, we can split the sub-arrays in any way we want!!!

T (q) + T (n− q − 1) (14)

We can get the worst case asking

max
0≤q≤n−1

(T (q) + T (n− q − 1)) (15)
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Worst Case Complexity Analysis

Worst-case Recursion

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n) (16)

By substitution, we can prove
Complexity O(n2).

This can be proved as follows
BLACKBOARD!
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Remember?

The use of uniform distribution
To get the average behavior!!!

In many cases
It is better than the worst case scenario....

Thus
We can introduce randomization in the Quicksort.
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Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)
Randomized-Quicksort(A, p, r)

1 if p < r

2 q =Randomized-Partition(A, p, r)
3 Randomized-Quicksort(A, p, q − 1)
4 Randomized-Quicksort(A, q + 1, r)

RANDOMIZED-PARTITION(A,p,r)
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Expected Running Time of Randomized Quicksort

Expected running time
The expected running time for the Randomized Quicksort algorithm arises
from the following lemma.

Lemma 7.1 (Cormen’s book)
Let X be the number of comparisons performed in line 4 of
PARTITION algorithm over the entire execution of QUICKSORT on
an n-element array.
Then, the running time of QUICKSORT is O(n + X).

Now the proof of the expected running time.
BLACKBOARD!
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Therefore

It is possible to conclude that
The Average Time Complexity of the Quicksort is O(n log n)
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Applications

Sorting in Special Environments
Example: Using Massive Parallel Stream Processors.

Multi-Objective Optimization
Yes!!! Numerical Analysis using the Quick Sort!!!

Real-Time Visualization of Large Time-Varying Molecules
Use the distance of the atoms to the viewers - the Painters Algorithms!!!
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Basic Concepts

Mergesort and Heapsort
They are algorithms that sort in O(n log n).
It is more we can give a sequence such that Ω(n log n).

Property
The sorted order they determine is based only on comparisons
between the input elements.
We call such sorting algorithms comparison sorts.
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Theorem and Corollary

Theorem
Any comparison sort algorithm requires Ω(n log n) comparisons in the
worst case.

Corollary
Heapsort and Mergesort are asymptotically optimal comparison sorts.
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Exercises

Cormen’s Chapter 7
7.1-4
7.2-3
7.2-5
7.4-1
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