
Analysis of Algorithms
Sorting

Andres Mendez-Vazquez

September 16, 2018

1 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

2 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

3 / 130



Sorting Problem

Input
A sequence of n numbers 〈a1, a2, ..., an〉.

Output
A permutation (reordering) 〈a′1, a′2, ..., a′n〉 such that a′1 ≤ a′2 ≤ ... ≤ a′n

4 / 130



Sorting Problem

Input
A sequence of n numbers 〈a1, a2, ..., an〉.

Output
A permutation (reordering) 〈a′1, a′2, ..., a′n〉 such that a′1 ≤ a′2 ≤ ... ≤ a′n

4 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

5 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Some Sorting Algorithms

Table of Sorting Algorithms
Algorithm Worst-case running time Expected running time

Insertion sort Θ(n2) Θ(n2)
Merge sort Θ(n log n) Θ(n log n)
Heapsort Θ(n log n) -
Quicksort Θ(n2) Θ(n log n)(expected)

Countingsort Θ(k + n) Θ(k + n)
Radix sort Θ(d(k + n)) Θ(d(k + n))
Bucket sort Θ(n2) Θ(n)(average-case)

6 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

7 / 130



Imagine 1964

The System/360 family was introduced by IBM
The slowest System/360, the Model 30, could perform up to 34,500
instructions per second, with memory from 8 to 64 KB.

Its main programming language was Basic Assembly Language (BAL)
You were basically EIGHT years from the first Fortran compiler (Also
IBM).

Additionally, POINTERS were invented this year barely
Therefore... back to first principles my dear Clarice....

8 / 130



Imagine 1964

The System/360 family was introduced by IBM
The slowest System/360, the Model 30, could perform up to 34,500
instructions per second, with memory from 8 to 64 KB.

Its main programming language was Basic Assembly Language (BAL)
You were basically EIGHT years from the first Fortran compiler (Also
IBM).

Additionally, POINTERS were invented this year barely
Therefore... back to first principles my dear Clarice....

8 / 130



Imagine 1964

The System/360 family was introduced by IBM
The slowest System/360, the Model 30, could perform up to 34,500
instructions per second, with memory from 8 to 64 KB.

Its main programming language was Basic Assembly Language (BAL)
You were basically EIGHT years from the first Fortran compiler (Also
IBM).

Additionally, POINTERS were invented this year barely
Therefore... back to first principles my dear Clarice....

8 / 130



Yepi

Yes... my dear Clarice...

9 / 130



Then, if you put all together

We have a memory structure like
TOWARD LOW MEMORY TOWARD HIGH MEMORY

Let us to think about it
How? We can assume a series of constraints....

10 / 130



Then, if you put all together

We have a memory structure like
TOWARD LOW MEMORY TOWARD HIGH MEMORY

Let us to think about it
How? We can assume a series of constraints....

10 / 130



Constraints

We want a system that allows for priorities such that
We do not want to scan the entire memory for that.
We want to avoid doing to a lot of shifting in the main memory.

Therefore
We want that allows the following ADT operations:

Insertion
Deletion
Search

In a Time LESS than

O (n)

11 / 130



Constraints

We want a system that allows for priorities such that
We do not want to scan the entire memory for that.
We want to avoid doing to a lot of shifting in the main memory.

Therefore
We want that allows the following ADT operations:

Insertion
Deletion
Search

In a Time LESS than

O (n)

11 / 130



Constraints

We want a system that allows for priorities such that
We do not want to scan the entire memory for that.
We want to avoid doing to a lot of shifting in the main memory.

Therefore
We want that allows the following ADT operations:

Insertion
Deletion
Search

In a Time LESS than

O (n)

11 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

12 / 130



Definitions

Definition
A heap is an array object that can be viewed as a nearly complete binary
tree.

8

6 3

4 5 1

0   1  2   3  4   5  6  7

8   6  3  4   5  1

1

2 3

4 5 6

13 / 130



Basic Attributes

Given an array A, we have that length[A]
It is the size of the storing array.

heap-size[A]
Tell us how many elements in the heap are stored in the array.

Thus, we have

0 ≤ heap-size[A] ≤ length[A] (1)

14 / 130



Basic Attributes

Given an array A, we have that length[A]
It is the size of the storing array.

heap-size[A]
Tell us how many elements in the heap are stored in the array.

Thus, we have

0 ≤ heap-size[A] ≤ length[A] (1)

14 / 130



Basic Attributes

Given an array A, we have that length[A]
It is the size of the storing array.

heap-size[A]
Tell us how many elements in the heap are stored in the array.

Thus, we have

0 ≤ heap-size[A] ≤ length[A] (1)

14 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

15 / 130



Heap Sort: Calculations given a Node i in the heap

Parent(i) - Parent Node

Parent(i) =
⌊

i
2

⌋
Left Node Child: Left(i)
Left(i) = 2i

Right Node Child: Right(i)
Right(i) = 2i + 1

16 / 130



Heap Sort: Calculations given a Node i in the heap

Parent(i) - Parent Node

Parent(i) =
⌊

i
2

⌋
Left Node Child: Left(i)
Left(i) = 2i

Right Node Child: Right(i)
Right(i) = 2i + 1

16 / 130



Heap Sort: Calculations given a Node i in the heap

Parent(i) - Parent Node

Parent(i) =
⌊

i
2

⌋
Left Node Child: Left(i)
Left(i) = 2i

Right Node Child: Right(i)
Right(i) = 2i + 1

16 / 130



Max/Min Heap Properties

Given that
A [i] returns the value of the key, we have that

Max Heap property
A [Parent(i)] ≥ A[i]

Min Heap property
A [Parent(i)] ≤ A [i]

17 / 130



Max/Min Heap Properties

Given that
A [i] returns the value of the key, we have that

Max Heap property
A [Parent(i)] ≥ A[i]

Min Heap property
A [Parent(i)] ≤ A [i]

17 / 130



Max/Min Heap Properties

Given that
A [i] returns the value of the key, we have that

Max Heap property
A [Parent(i)] ≥ A[i]

Min Heap property
A [Parent(i)] ≤ A [i]

17 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

18 / 130



What we want!!!

A function to keep the property of max or min heap
After all, remembering Kolmogorov, we are acting in a part of the array
trying to keep certain properties

Which ONE?

Remember

19 / 130



What we want!!!

A function to keep the property of max or min heap
After all, remembering Kolmogorov, we are acting in a part of the array
trying to keep certain properties

Which ONE?

Remember
Single nodes are always min heaps or max heaps

19 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Heap Sort: Max-Heapify
Algorithm (preserving the heap property) when somebody violates the
max/min property
Max-Heapify(A, i)

1 l = Left(i)
2 r = Right(i)
3 If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest]
10 Max-Heapify(A, largest)

Figure: A trickle down algorithm

20 / 130



Example keeping the heap property starting at i = 1
Here, you could imagine that somebody inserted a node at i = 1
3. If l ≤ heap− size [A] and A [l] > A [i]
4 largest = l

5 else largest = i

6 If r ≤ heap− size [A] and A [r] > A [largest]
7 largest = r

16 10

4

14 7 9 3

8 1 1

i=1

l=2 r=3

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

4 16 10

Violating Property

14 7 9 3 8 1 1

>? <?

21 / 130



Example keeping the heap property starting at i = 1

One of the children is chosen to be exchanged
8. if largest 6= i

9. exchange A[i] with A[largest]

16 10

4

14 7 9 3

8 1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

4 16 10

Violating Property

Larger

14 7 9 3 8 1 1

Exchange

l=2

i=1

r=3

22 / 130



Example: Now i = largest

Make the excahnge and call the Max-Heapify
10. Max-Heapify(A, largest)

16

104

14 7 9 3

8 1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

416 10 14 7 9 3 8 1 1

i=2 3Violating property?

1

23 / 130



Example: Now i = largest

Keep going

16

104

14 7 9 3

8 1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

416 10 14 7 9 3 8 1 1

i=2 3Violating property?

1

24 / 130



Example: Now i = largest

Keep going

16

104

14 7 9 3

8 1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

416 10 14 7 9 3 8 1 1

i=2 3Violating property?

1

25 / 130



Example: Now i = largest

Keep going

16

104

14 7 9 3

8 1 1

l=4 r=5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

416 10 14 7 9 3 8 1 1

i=2 3Violating property?

1

>

26 / 130



Example: Now i = largest

Keep going

16

10

4

14

7 9 3

8 1 1

i=4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

416 10 7 9 3 8 1 1

2 3

1

Exchange

14

27 / 130



Example: Now i = largest

Keep going

16

10

4

14

7 9 3

8 1 1

i=4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

416 10 7 9 3 8 1 1

2 3

1

14

>

Violating property?

28 / 130



Example: Now i = largest

Keep going

16

10

4

14

7 9 38

1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 38 1 1

2 3

1

14 4

29 / 130



Complexity of Max-Heapify

For this
It is possible to prove that the upper bound on the size of each children’s
subtrees is 2n

3 starting at the root (First Recursive Call!!!).

Thus
In addition, we use the idea of height from the root node (h = 0) to leaves
(h = log n− 1).

30 / 130



Complexity of Max-Heapify

For this
It is possible to prove that the upper bound on the size of each children’s
subtrees is 2n

3 starting at the root (First Recursive Call!!!).

Thus
In addition, we use the idea of height from the root node (h = 0) to leaves
(h = log n− 1).

30 / 130



Then

We have that by using the nearly complete structure
1 First for n = 1, we have that the size of children’s subtrees is 0 < 2

3 .
2 For n = 2, we have that the size of children’s subtrees is at most

1 < 4
3 .

3 For n = 3, we have that the size of children’s subtrees is at most
1 < 6

3 = 2.
4 For n = 4, we have that the size of children’s subtrees is at most

2 < 8
3 .

5 etc...

31 / 130



Then

We have that by using the nearly complete structure
1 First for n = 1, we have that the size of children’s subtrees is 0 < 2

3 .
2 For n = 2, we have that the size of children’s subtrees is at most

1 < 4
3 .

3 For n = 3, we have that the size of children’s subtrees is at most
1 < 6

3 = 2.
4 For n = 4, we have that the size of children’s subtrees is at most

2 < 8
3 .

5 etc...

31 / 130



Then

We have that by using the nearly complete structure
1 First for n = 1, we have that the size of children’s subtrees is 0 < 2

3 .
2 For n = 2, we have that the size of children’s subtrees is at most

1 < 4
3 .

3 For n = 3, we have that the size of children’s subtrees is at most
1 < 6

3 = 2.
4 For n = 4, we have that the size of children’s subtrees is at most

2 < 8
3 .

5 etc...

31 / 130



Then

We have that by using the nearly complete structure
1 First for n = 1, we have that the size of children’s subtrees is 0 < 2

3 .
2 For n = 2, we have that the size of children’s subtrees is at most

1 < 4
3 .

3 For n = 3, we have that the size of children’s subtrees is at most
1 < 6

3 = 2.
4 For n = 4, we have that the size of children’s subtrees is at most

2 < 8
3 .

5 etc...

31 / 130



Then

We have that by using the nearly complete structure
1 First for n = 1, we have that the size of children’s subtrees is 0 < 2

3 .
2 For n = 2, we have that the size of children’s subtrees is at most

1 < 4
3 .

3 For n = 3, we have that the size of children’s subtrees is at most
1 < 6

3 = 2.
4 For n = 4, we have that the size of children’s subtrees is at most

2 < 8
3 .

5 etc...

31 / 130



Do you notice the following?

Imagine the following case

The maximum number of nodes in both children assuming a full tree
with n nodes

21 + 22 + ... + 2dlog ne−2 + 2dlog ne−1 (2)

32 / 130



Do you notice the following?

Imagine the following case

The maximum number of nodes in both children assuming a full tree
with n nodes

21 + 22 + ... + 2dlog ne−2 + 2dlog ne−1 (2)

32 / 130



Now

Imagine the following special case

The maximum number of nodes in one child is equal to
21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−1

2 (3)

33 / 130



Now

Imagine the following special case

The maximum number of nodes in one child is equal to
21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−1

2 (3)

33 / 130



The total number of elements in a child’s subtree

The total number of nodes in a CHILD is bounded

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 = 1 + 22 + ... + 2dlog ne−3 + 2dlog ne−2

= 1− 2dlog ne−2

1− 2 + 2dlog ne−2

= 2dlog ne−2 − 1 + 2dlog ne−2

= 2× 2blog nc−2 − 1

= 2dlog ne−1 − 2
3 −

1
3

< 2dlog ne−1 − 2
3

34 / 130



The total number of elements in a child’s subtree

The total number of nodes in a CHILD is bounded

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 = 1 + 22 + ... + 2dlog ne−3 + 2dlog ne−2

= 1− 2dlog ne−2

1− 2 + 2dlog ne−2

= 2dlog ne−2 − 1 + 2dlog ne−2

= 2× 2blog nc−2 − 1

= 2dlog ne−1 − 2
3 −

1
3

< 2dlog ne−1 − 2
3

34 / 130



The total number of elements in a child’s subtree

The total number of nodes in a CHILD is bounded

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 = 1 + 22 + ... + 2dlog ne−3 + 2dlog ne−2

= 1− 2dlog ne−2

1− 2 + 2dlog ne−2

= 2dlog ne−2 − 1 + 2dlog ne−2

= 2× 2blog nc−2 − 1

= 2dlog ne−1 − 2
3 −

1
3

< 2dlog ne−1 − 2
3

34 / 130



The total number of elements in a child’s subtree

The total number of nodes in a CHILD is bounded

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 = 1 + 22 + ... + 2dlog ne−3 + 2dlog ne−2

= 1− 2dlog ne−2

1− 2 + 2dlog ne−2

= 2dlog ne−2 − 1 + 2dlog ne−2

= 2× 2blog nc−2 − 1

= 2dlog ne−1 − 2
3 −

1
3

< 2dlog ne−1 − 2
3

34 / 130



The total number of elements in a child’s subtree

The total number of nodes in a CHILD is bounded

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 = 1 + 22 + ... + 2dlog ne−3 + 2dlog ne−2

= 1− 2dlog ne−2

1− 2 + 2dlog ne−2

= 2dlog ne−2 − 1 + 2dlog ne−2

= 2× 2blog nc−2 − 1

= 2dlog ne−1 − 2
3 −

1
3

< 2dlog ne−1 − 2
3

34 / 130



The total number of elements in a child’s subtree

The total number of nodes in a CHILD is bounded

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 = 1 + 22 + ... + 2dlog ne−3 + 2dlog ne−2

= 1− 2dlog ne−2

1− 2 + 2dlog ne−2

= 2dlog ne−2 − 1 + 2dlog ne−2

= 2× 2blog nc−2 − 1

= 2dlog ne−1 − 2
3 −

1
3

< 2dlog ne−1 − 2
3

34 / 130



The total number of elements in a child’s subtree

Notice the following

2dlog ne <
4
3
[
2log n

]
(4)

When n = 2p − 1
For the case that that n ≤ 2p − 1 we can use the fact that
dlog ne = p for some power of 2.

35 / 130



Induction to prove the previous statement

Step n = 1

2dlog 1e = 20 = 1 <
4
3 × 2log 1 (5)

Assume is true for n

2dlog ne <
4
3
[
2log n

]
(6)

36 / 130



Induction to prove the previous statement

Step n = 1

2dlog 1e = 20 = 1 <
4
3 × 2log 1 (5)

Assume is true for n

2dlog ne <
4
3
[
2log n

]
(6)

36 / 130



Induction to prove the previous statement

Now prove for n + 1

2dlog(n+1)e = 2dlog(2p−1+1)e

= 2dpe

= 2p

= 2log 2p

<
4
3
[
2log 2p

]
= 4

3
[
2log(n+1)

]

37 / 130



Induction to prove the previous statement

Now prove for n + 1

2dlog(n+1)e = 2dlog(2p−1+1)e

= 2dpe

= 2p

= 2log 2p

<
4
3
[
2log 2p

]
= 4

3
[
2log(n+1)

]

37 / 130



Induction to prove the previous statement

Now prove for n + 1

2dlog(n+1)e = 2dlog(2p−1+1)e

= 2dpe

= 2p

= 2log 2p

<
4
3
[
2log 2p

]
= 4

3
[
2log(n+1)

]

37 / 130



Induction to prove the previous statement

Now prove for n + 1

2dlog(n+1)e = 2dlog(2p−1+1)e

= 2dpe

= 2p

= 2log 2p

<
4
3
[
2log 2p

]
= 4

3
[
2log(n+1)

]

37 / 130



Induction to prove the previous statement

Now prove for n + 1

2dlog(n+1)e = 2dlog(2p−1+1)e

= 2dpe

= 2p

= 2log 2p

<
4
3
[
2log 2p

]
= 4

3
[
2log(n+1)

]

37 / 130



Induction to prove the previous statement

Now prove for n + 1

2dlog(n+1)e = 2dlog(2p−1+1)e

= 2dpe

= 2p

= 2log 2p

<
4
3
[
2log 2p

]
= 4

3
[
2log(n+1)

]

37 / 130



Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3

38 / 130



Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3

38 / 130



Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3

38 / 130



Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3

38 / 130



Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3

38 / 130



Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3

38 / 130



Therefore
We have that

21 + 22 + ... + 2dlog ne−2

2 + 2dlog ne−2 < 2dlog ne−1 − 2
3

= 2dlog ne

2 − 2
3

<
4
3
[
2log n−1

]
− 2

3
= 2

3
[
2× 2log n−1 − 1

]
= 2

3
[
2log n − 1

]
= 2

3 [n− 1]

<
2n

3

38 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

39 / 130



Complexity of Max-Heapify
Knowing that the number of nodes in any child is bounded by

2n

3 (7)

Thus, given that T (n) represent the complexity of the Max-Heapify

T (n) = T (How many nodes will be touched by the recusrsion) + Θ (1)
(8)

Here
Θ (1) is the constant part of the algorithm before recursion.
T (How many nodes will be touched by the recusrsion) =

T

(∑ log2 n

2 −1
i=1 3

)
.

How? 40 / 130



Complexity of Max-Heapify
Knowing that the number of nodes in any child is bounded by

2n

3 (7)

Thus, given that T (n) represent the complexity of the Max-Heapify

T (n) = T (How many nodes will be touched by the recusrsion) + Θ (1)
(8)

Here
Θ (1) is the constant part of the algorithm before recursion.
T (How many nodes will be touched by the recusrsion) =

T

(∑ log2 n

2 −1
i=1 3

)
.

How? 40 / 130



Complexity of Max-Heapify
Knowing that the number of nodes in any child is bounded by

2n

3 (7)

Thus, given that T (n) represent the complexity of the Max-Heapify

T (n) = T (How many nodes will be touched by the recusrsion) + Θ (1)
(8)

Here
Θ (1) is the constant part of the algorithm before recursion.
T (How many nodes will be touched by the recusrsion) =

T

(∑ log2 n

2 −1
i=1 3

)
.

How? 40 / 130



Complexity of Max-Heapify
Knowing that the number of nodes in any child is bounded by

2n

3 (7)

Thus, given that T (n) represent the complexity of the Max-Heapify

T (n) = T (How many nodes will be touched by the recusrsion) + Θ (1)
(8)

Here
Θ (1) is the constant part of the algorithm before recursion.
T (How many nodes will be touched by the recusrsion) =

T

(∑ log2 n

2 −1
i=1 3

)
.

How? 40 / 130



Complexity of Max-Heapify
Knowing that the number of nodes in any child is bounded by

2n

3 (7)

Thus, given that T (n) represent the complexity of the Max-Heapify

T (n) = T (How many nodes will be touched by the recusrsion) + Θ (1)
(8)

Here
Θ (1) is the constant part of the algorithm before recursion.
T (How many nodes will be touched by the recusrsion) =

T

(∑ log2 n

2 −1
i=1 3

)
.

How? 40 / 130



Complexity of Max-Heapify

The Recursion Idea

3

3

3

41 / 130



Complexity of Max-Heapify
Thus

log2 n−1
2 −1∑
i=1

3 = 3
log2 n

2 − 1
3− 1 − 3

=

(
3

1
2
)log2 n

2 − 3

= n
log2

(
3

1
2
)

2 − 3

≤ n0.8

2

≤ 2n0.8

3
≤ 2n

3
42 / 130



Complexity of Max-Heapify
Thus

log2 n−1
2 −1∑
i=1

3 = 3
log2 n

2 − 1
3− 1 − 3

=

(
3

1
2
)log2 n

2 − 3

= n
log2

(
3

1
2
)

2 − 3

≤ n0.8

2

≤ 2n0.8

3
≤ 2n

3
42 / 130



Complexity of Max-Heapify
Thus

log2 n−1
2 −1∑
i=1

3 = 3
log2 n

2 − 1
3− 1 − 3

=

(
3

1
2
)log2 n

2 − 3

= n
log2

(
3

1
2
)

2 − 3

≤ n0.8

2

≤ 2n0.8

3
≤ 2n

3
42 / 130



Complexity of Max-Heapify
Thus

log2 n−1
2 −1∑
i=1

3 = 3
log2 n

2 − 1
3− 1 − 3

=

(
3

1
2
)log2 n

2 − 3

= n
log2

(
3

1
2
)

2 − 3

≤ n0.8

2

≤ 2n0.8

3
≤ 2n

3
42 / 130



Complexity of Max-Heapify
Thus

log2 n−1
2 −1∑
i=1

3 = 3
log2 n

2 − 1
3− 1 − 3

=

(
3

1
2
)log2 n

2 − 3

= n
log2

(
3

1
2
)

2 − 3

≤ n0.8

2

≤ 2n0.8

3
≤ 2n

3
42 / 130



Complexity of Max-Heapify
Thus

log2 n−1
2 −1∑
i=1

3 = 3
log2 n

2 − 1
3− 1 − 3

=

(
3

1
2
)log2 n

2 − 3

= n
log2

(
3

1
2
)

2 − 3

≤ n0.8

2

≤ 2n0.8

3
≤ 2n

3
42 / 130



Complexity of Max-Heapify

Thus, if we assume that T is an increasing monotone function

T (n) = T


log2 n

2 −1∑
i=1

3

+ Θ (1)

≤ T

(2n

3

)
+ Θ (1)

Algorithm Complexity

This is by the master the master theorem O (log2 n).

43 / 130



Complexity of Max-Heapify

Thus, if we assume that T is an increasing monotone function

T (n) = T


log2 n

2 −1∑
i=1

3

+ Θ (1)

≤ T

(2n

3

)
+ Θ (1)

Algorithm Complexity

This is by the master the master theorem O (log2 n).

43 / 130



Complexity of Max-Heapify

Thus, if we assume that T is an increasing monotone function

T (n) = T


log2 n

2 −1∑
i=1

3

+ Θ (1)

≤ T

(2n

3

)
+ Θ (1)

Algorithm Complexity

This is by the master the master theorem O (log2 n).

43 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

44 / 130



Heap Sort: Using Max-Heapify

Algorithm Build-Max-Heap
Build-Max-Heap(A)

1 heap− size[A] = length[A]
2 for i = blength[A]/2c downto 1
3 Max-Heapify(A, i)

Figure: Building a Heap

45 / 130



Question?
Why from blength[A]/2c?
Look at this

1

2 3

4 5 6 7

8 9 10 11

Thus, the nodes blength[A]/2c+ 1, blength[A]/2c+ 2, ..., n

They are actually leaves.
This can be proved by induction on n!!!

I I leave this to you.
46 / 130



Question?
Why from blength[A]/2c?
Look at this

1

2 3

4 5 6 7

8 9 10 11

Thus, the nodes blength[A]/2c+ 1, blength[A]/2c+ 2, ..., n

They are actually leaves.
This can be proved by induction on n!!!

I I leave this to you.
46 / 130



Question?
Why from blength[A]/2c?
Look at this

1

2 3

4 5 6 7

8 9 10 11

Thus, the nodes blength[A]/2c+ 1, blength[A]/2c+ 2, ..., n

They are actually leaves.
This can be proved by induction on n!!!

I I leave this to you.
46 / 130



Question?
Why from blength[A]/2c?
Look at this

1

2 3

4 5 6 7

8 9 10 11

Thus, the nodes blength[A]/2c+ 1, blength[A]/2c+ 2, ..., n

They are actually leaves.
This can be proved by induction on n!!!

I I leave this to you.
46 / 130



Question?

What about the loop invariance?
Look at the Board!!!

47 / 130



Build Max Heap: Using Max-Heapify

Example

16

10

4

14

7

9

3

8

1

1

4 i=5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

161079 3 811

2 3

1

144

Exchange

48 / 130



Build Max Heap: Using Max-Heapify

Example

16 10

4

14 7

9

3

8

1

1

4 i=5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 79 3 811

2 3

1

144

Exchange

49 / 130



Build Max Heap: Using Max-Heapify

Example

16 10

4

14 7

9

3

8

1

1

i=4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 79 3 811

2 3

1

144

Exchange

50 / 130



Build Max Heap: Using Max-Heapify

Example

16 10

4

14

7

9

3

81

1

i=4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 79 3 811

2 3

1

144

Exchange

51 / 130



Build Max Heap: Using Max-Heapify

Example

16 10

4

14

7

9

3

81

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 79 3 811

2 i=3

1

144

Exchange

52 / 130



Build Max Heap: Using Max-Heapify

Example

16

104

14

7

9 3

81

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

1610 79 3 811

2 i=3

1

144

Exchange

53 / 130



Build Max Heap: Using Max-Heapify

Example

16

104

14

7

9 3

81

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

1610 79 3 811

i=2 3

1

144

Exchange

54 / 130



Build Max Heap: Using Max-Heapify

Example

16 10

4

14 7 9 3

81

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 3 811

i=2 3

1

14 4

55 / 130



Build Max Heap: Using Max-Heapify

Example

16 10

4

14 7 9 3

81

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 3 811

2 3

i=1

14 4

Exchange

56 / 130



Build Max Heap: Using Max-Heapify

Example

16

10

4

14 7 9 3

81

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 3 811

2 3

i=1

14 4

Exchange

57 / 130



Build Max Heap: Using Max-Heapify

Example

16

10

4

14

7 9 3

81

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 3 811

2 3

i=1

14 4

Exchange

58 / 130



Build Max Heap: Using Max-Heapify

Example

16

10

4

14

7 9 38

1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 38 1 1

2 3

i=1

14 4

59 / 130



Height h of the Heap for Complexity of Build-Max-Heap

We can use the height of a three to derive a tight bound
The height h is the number of edges on the longest simple downward
path from the node to a leaf.
You have at most

⌈
n

2h+1

⌉
nodes at height h, where n is the total

number of nodes.

60 / 130



Height h of the Heap for Complexity of Build-Max-Heap

We can use the height of a three to derive a tight bound
The height h is the number of edges on the longest simple downward
path from the node to a leaf.
You have at most

⌈
n

2h+1

⌉
nodes at height h, where n is the total

number of nodes.

60 / 130



Example

h = 1

8

7 3

4 5 1

h=3

2

3

61 / 130



Furthermore

h = 3

8

7 3

4 5 1

h=2

2

3

62 / 130



Furthermore

h = 1

8

7 3

4 5 1

h=1

2

3

63 / 130



Furthermore

h = 1

8

7 3

4 5 1

h=1

2

3

64 / 130



Furthermore

h = 0

8

7 3

4 5 1

h=0

2

3

65 / 130



Cost of Building the Build-Max-Heap

Possible cost

O (n log2 n) (9)

66 / 130



Cost of Building the Build-Max-Heap
We have that you have

The number of nodes explored horizontally by the “for” loop can be
bounded by ⌈

n

2h+1

⌉
(10)

The depth of the Max-Heapify is

O (h) (11)

Therefore we have the following total tighter cost

blog nc∑
h=0

⌈
n

2h+1

⌉
O(h) = O

n

blog nc∑
h=0

h

2h


67 / 130



Cost of Building the Build-Max-Heap
We have that you have

The number of nodes explored horizontally by the “for” loop can be
bounded by ⌈

n

2h+1

⌉
(10)

The depth of the Max-Heapify is

O (h) (11)

Therefore we have the following total tighter cost

blog nc∑
h=0

⌈
n

2h+1

⌉
O(h) = O

n

blog nc∑
h=0

h

2h


67 / 130



Cost of Building the Build-Max-Heap
We have that you have

The number of nodes explored horizontally by the “for” loop can be
bounded by ⌈

n

2h+1

⌉
(10)

The depth of the Max-Heapify is

O (h) (11)

Therefore we have the following total tighter cost

blog nc∑
h=0

⌈
n

2h+1

⌉
O(h) = O

n

blog nc∑
h=0

h

2h


67 / 130



Cost of Building the Build-Max-Heap
We have that you have

The number of nodes explored horizontally by the “for” loop can be
bounded by ⌈

n

2h+1

⌉
(10)

The depth of the Max-Heapify is

O (h) (11)

Therefore we have the following total tighter cost

blog nc∑
h=0

⌈
n

2h+1

⌉
O(h) = O

n

blog nc∑
h=0

h

2h


67 / 130



Cost of Building the Build-Max-Heap
We have that you have

The number of nodes explored horizontally by the “for” loop can be
bounded by ⌈

n

2h+1

⌉
(10)

The depth of the Max-Heapify is

O (h) (11)

Therefore we have the following total tighter cost

blog nc∑
h=0

⌈
n

2h+1

⌉
O(h) = O

n

blog nc∑
h=0

h

2h


67 / 130



Thus
From (A.8) at Cormen’s

∞∑
k=0

kxk = x

(1− x)2

Thus, we have that

O

n

blog nc∑
h=0

h

2h

 = O

(
n
∞∑

h=0

h

2h

)

= O

(
n
∞∑

h=0
h

(1
2

)h
)

= O

n

 1
2(

1− 1
2

)2




= O (n)
68 / 130



Thus
From (A.8) at Cormen’s

∞∑
k=0

kxk = x

(1− x)2

Thus, we have that

O

n

blog nc∑
h=0

h

2h

 = O

(
n
∞∑

h=0

h

2h

)

= O

(
n
∞∑

h=0
h

(1
2

)h
)

= O

n

 1
2(

1− 1
2

)2




= O (n)
68 / 130



Thus
From (A.8) at Cormen’s

∞∑
k=0

kxk = x

(1− x)2

Thus, we have that

O

n

blog nc∑
h=0

h

2h

 = O

(
n
∞∑

h=0

h

2h

)

= O

(
n
∞∑

h=0
h

(1
2

)h
)

= O

n

 1
2(

1− 1
2

)2




= O (n)
68 / 130



Thus
From (A.8) at Cormen’s

∞∑
k=0

kxk = x

(1− x)2

Thus, we have that

O

n

blog nc∑
h=0

h

2h

 = O

(
n
∞∑

h=0

h

2h

)

= O

(
n
∞∑

h=0
h

(1
2

)h
)

= O

n

 1
2(

1− 1
2

)2




= O (n)
68 / 130



Thus
From (A.8) at Cormen’s

∞∑
k=0

kxk = x

(1− x)2

Thus, we have that

O

n

blog nc∑
h=0

h

2h

 = O

(
n
∞∑

h=0

h

2h

)

= O

(
n
∞∑

h=0
h

(1
2

)h
)

= O

n

 1
2(

1− 1
2

)2




= O (n)
68 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

69 / 130



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

70 / 130



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

70 / 130



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

70 / 130



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

70 / 130



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

70 / 130



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

70 / 130



Heap Sort: Using Max-Heapify

Heapsort Algorithm
Heapsort(A)

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] with A[i]
4 heap− size[A] = heap− size[A]− 1
5 Max-Heapify(A, 1)

Figure: Heapsort

70 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

To be exchanged

16

10

4

14

7 9 38

1 1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

16 10 7 9 38 1 1

2 3

i=1

14 4

71 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

16

10

4

14

7 9 3
8

1 1

4 5 6 7

8 9 i=10

0         1 2 3         4 5 6         7 8 9         10

10 7 9 38 1 1

2 3

1

144 16

Max-Heapify(A,1)

72 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

16

104

14

7 9 3
8

1 1

4 5 6 7

8 9 i=10

0         1 2 3         4 5 6         7 8 9         10

10 7 9 38 1 1

2 3

1

14 4 16

To be exchanged

73 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

16

10

4

14

7 9 3

8

1 1

4 5 6 7

8 9 i=10

0         1 2 3         4 5 6         7 8 9         10

10 7 9 38 1 1

2 3

1

14 4 16

74 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

16

10

4

14

7 9 3

8

1 1

4 5 6 7

8 9 i=10

0         1 2 3         4 5 6         7 8 9         10

10 7 9 38 1 1

2 3

1

14 4 16

To be exchanged

75 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

16

10

4

14

7 9 3

8

1

1

4 5 6 7

8 i=9 10

0         1 2 3         4 5 6         7 8 9         10

10 7 9 38 11

2 3

1

144 16

To be exchanged
Max-Heapify(A,1)

76 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

16

10

4

14

7 9 3

8

1

1

4 5 6 7

8 i=9 10

0         1 2 3         4 5 6         7 8 9         10

7 9 38 11

2 3

1

144 16

To be exchanged

10

77 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

16

10

4

14

7

9

3

8

1

1

4 5 6 7

8 i=9 10

0         1 2 3         4 5 6         7 8 9         10

7 9 38 11

2 3

1

144 16

To be exchanged

10

78 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7

9

3

8

1

1

4 5 6 7

i=8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 9 381 1

2 3

1

144 16

To be exchanged

10

Max-Heapify(A,1)

79 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7

9

3

8 1

1

4 5 6 7

i=8 9 10

0         1 2 3         4 5 6         7 8 9         10

79 38 11

2 3

1

144 16

To be exchanged

10

80 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7

9

38

11

4 5 6 7

i=8 9 10

0         1 2 3         4 5 6         7 8 9         10

79 38 11

2 3

1

144 16

To be exchanged

10

81 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

38

1

1

4 5 6 i=7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 9381 1

2 3

1

144 16

To be exchanged

10

Max-Heapify(A,1)

82 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1

1

4 5 6 i=7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 938 1 1

2 3

1

144 16

To be exchanged

10

83 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7

9

3

8

1 1

4 5 6 i=7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 938 1 1

2 3

1

144 16

To be exchanged

10

84 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7

9

3

81

1

4 5 i=6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 811

2 3

1

144 16

To be exchanged

10

Max-Heapify(A,1)

85 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7

9

3

81

1

4 5 i=6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 811

2 3

1

144 16

To be exchanged

10

86 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7

9

3

811

4 5 i=6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 811

2 3

1

144 16

To be exchanged

10

87 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1

1

4 i=5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 81 1

2 3

1

144 16

To be exchanged

10

Max-Heapify(A,1)

88 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1

1

4 i=5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 811

2 3

1

144 1610

To be exchanged

89 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1

1

i=4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 81 1

2 3

1

144 1610

To be exchangedMax-Heapify(A,1)

90 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1 1

i=4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 811

2 3

1

144 1610

To be exchanged

91 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 81 1

2 i=3

1

144 1610

Max-Heapify(A,1)

92 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 81 1

i=2 3

1

144 1610

Max-Heapify(A,1)

93 / 130



Heap Sort: Using Max-Heapify

Example: Heapsort in action! By Moving the top element to the
bottom position!!!

1610

4

14

7 9

3

8

1

1

4 5 6 7

8 9 10

0         1 2 3         4 5 6         7 8 9         10

7 93 81 1

2 3

i=1

144 1610

Max-Heapify(A,1)

94 / 130



Heap Sort: Using Max-Heapify

Cost
O(n log n)

95 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

96 / 130



Applications of Heap Data Structure

Priority Queues
Here, Heaps can be modified to support insert(), delete() and extractmax(),
decreaseKey() operations in O(logn) time

This has direct applications
1 Bandwidth management:

1 Many modern protocols for Local Area Networks include the concept of
Priority Queues at the Media Access Control (MAC).

2 Discrete Event Simulations
3 Schedulers
4 Huffman coding
5 The Real-time Optimally Adapting Meshes (ROAM)

1 It computes a dynamically changing triangulation of a terrain using two
priority queues.

97 / 130



Applications of Heap Data Structure

Priority Queues
Here, Heaps can be modified to support insert(), delete() and extractmax(),
decreaseKey() operations in O(logn) time

This has direct applications
1 Bandwidth management:

1 Many modern protocols for Local Area Networks include the concept of
Priority Queues at the Media Access Control (MAC).

2 Discrete Event Simulations
3 Schedulers
4 Huffman coding
5 The Real-time Optimally Adapting Meshes (ROAM)

1 It computes a dynamically changing triangulation of a terrain using two
priority queues.

97 / 130



Applications of Heap Data Structure

Priority Queues
Here, Heaps can be modified to support insert(), delete() and extractmax(),
decreaseKey() operations in O(logn) time

This has direct applications
1 Bandwidth management:

1 Many modern protocols for Local Area Networks include the concept of
Priority Queues at the Media Access Control (MAC).

2 Discrete Event Simulations
3 Schedulers
4 Huffman coding
5 The Real-time Optimally Adapting Meshes (ROAM)

1 It computes a dynamically changing triangulation of a terrain using two
priority queues.

97 / 130



Applications of Heap Data Structure

Priority Queues
Here, Heaps can be modified to support insert(), delete() and extractmax(),
decreaseKey() operations in O(logn) time

This has direct applications
1 Bandwidth management:

1 Many modern protocols for Local Area Networks include the concept of
Priority Queues at the Media Access Control (MAC).

2 Discrete Event Simulations
3 Schedulers
4 Huffman coding
5 The Real-time Optimally Adapting Meshes (ROAM)

1 It computes a dynamically changing triangulation of a terrain using two
priority queues.

97 / 130



Applications of Heap Data Structure

Priority Queues
Here, Heaps can be modified to support insert(), delete() and extractmax(),
decreaseKey() operations in O(logn) time

This has direct applications
1 Bandwidth management:

1 Many modern protocols for Local Area Networks include the concept of
Priority Queues at the Media Access Control (MAC).

2 Discrete Event Simulations
3 Schedulers
4 Huffman coding
5 The Real-time Optimally Adapting Meshes (ROAM)

1 It computes a dynamically changing triangulation of a terrain using two
priority queues.

97 / 130



Applications of Heap Data Structure

Priority Queues
Here, Heaps can be modified to support insert(), delete() and extractmax(),
decreaseKey() operations in O(logn) time

This has direct applications
1 Bandwidth management:

1 Many modern protocols for Local Area Networks include the concept of
Priority Queues at the Media Access Control (MAC).

2 Discrete Event Simulations
3 Schedulers
4 Huffman coding
5 The Real-time Optimally Adapting Meshes (ROAM)

1 It computes a dynamically changing triangulation of a terrain using two
priority queues.

97 / 130



Applications of Heap Data Structure

Heap Sort of Arrays
Clearly, if the list of numbers is stored in an array!!!

98 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

99 / 130



Heap Sort: Exercices

From Cormen’s book
6.1-1
6.1-4
6.1-7
6.2-5
6.2-6
6.3-3
6.4-2
6.4-3
6.4-4

100 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

101 / 130



Who invented Quicksort?

Imagine this
The Quicksort algorithm was developed in 1960 by Tony Hoare (He has a
postgraduate certificate in Statistics) while in the Soviet Union, as a
visiting student at Moscow State University.

Why?
At that time, Hoare worked in a project on machine translation for the
National Physical Laboratory.

To do
He developed the algorithm in order to sort the words to be translated.

102 / 130



Who invented Quicksort?

Imagine this
The Quicksort algorithm was developed in 1960 by Tony Hoare (He has a
postgraduate certificate in Statistics) while in the Soviet Union, as a
visiting student at Moscow State University.

Why?
At that time, Hoare worked in a project on machine translation for the
National Physical Laboratory.

To do
He developed the algorithm in order to sort the words to be translated.

102 / 130



Who invented Quicksort?

Imagine this
The Quicksort algorithm was developed in 1960 by Tony Hoare (He has a
postgraduate certificate in Statistics) while in the Soviet Union, as a
visiting student at Moscow State University.

Why?
At that time, Hoare worked in a project on machine translation for the
National Physical Laboratory.

To do
He developed the algorithm in order to sort the words to be translated.

102 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

103 / 130



Imagine the following...

First Attempt

We want an algorithm that can sort by using the Divide and Conquer
method

Now, we have the following constraint
We need to use the same array to do the sorting!!! Sorting in place!!!

What if we use the following strategy

Given a number in the array!!!
Move some elements to the left of the number!!!
Move some other elements to the right of the number!!!

104 / 130



Imagine the following...

First Attempt

We want an algorithm that can sort by using the Divide and Conquer
method

Now, we have the following constraint
We need to use the same array to do the sorting!!! Sorting in place!!!

What if we use the following strategy

Given a number in the array!!!
Move some elements to the left of the number!!!
Move some other elements to the right of the number!!!

104 / 130



Imagine the following...

First Attempt

We want an algorithm that can sort by using the Divide and Conquer
method

Now, we have the following constraint
We need to use the same array to do the sorting!!! Sorting in place!!!

What if we use the following strategy

Given a number in the array!!!
Move some elements to the left of the number!!!
Move some other elements to the right of the number!!!

104 / 130



Something like

We have...

Now What?
Any Ideas?
What about our old friend? Recursion!!!

105 / 130



Something like

We have...

Now What?
Any Ideas?
What about our old friend? Recursion!!!

105 / 130



The Divide and Conquer Quicksort

Divide Process
1 Compute the index q as part of this partitioning procedure.
2 Partition (rearrange) the array A[p, ..., r] into two (possibly empty)

sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r]
1 each element of A[p, ..., q − 1] is less than or equal to A[q].
2 A[q] is less than or equal to each element of A[q + 1, ..., r].

106 / 130



The Divide and Conquer Quicksort

Divide Process
1 Compute the index q as part of this partitioning procedure.
2 Partition (rearrange) the array A[p, ..., r] into two (possibly empty)

sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r]
1 each element of A[p, ..., q − 1] is less than or equal to A[q].
2 A[q] is less than or equal to each element of A[q + 1, ..., r].

106 / 130



The Divide and Conquer Quicksort

Divide Process
1 Compute the index q as part of this partitioning procedure.
2 Partition (rearrange) the array A[p, ..., r] into two (possibly empty)

sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r]
1 each element of A[p, ..., q − 1] is less than or equal to A[q].
2 A[q] is less than or equal to each element of A[q + 1, ..., r].

106 / 130



The Divide and Conquer Quicksort

Divide Process
1 Compute the index q as part of this partitioning procedure.
2 Partition (rearrange) the array A[p, ..., r] into two (possibly empty)

sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r]
1 each element of A[p, ..., q − 1] is less than or equal to A[q].
2 A[q] is less than or equal to each element of A[q + 1, ..., r].

106 / 130



The Divide and Conquer Quicksort

Conquer
Sort the two sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r] by recursive calls
to quicksort.

Combine
Since the sub-arrays are sorted in place, no work is needed to combine
them: the entire array A[p, ..., r] is now sorted.

107 / 130



The Divide and Conquer Quicksort

Conquer
Sort the two sub-arrays A[p, ..., q − 1] and A[q + 1, ..., r] by recursive calls
to quicksort.

Combine
Since the sub-arrays are sorted in place, no work is needed to combine
them: the entire array A[p, ..., r] is now sorted.

107 / 130



Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)

1 if p < r

2 q = Partition (A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)

108 / 130



Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)

1 if p < r

2 q = Partition (A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)

108 / 130



Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)

1 if p < r

2 q = Partition (A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)

108 / 130



Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)

1 if p < r

2 q = Partition (A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)

108 / 130



Quicksort Algorithm

Quicksort Algorithm
Quicksort(A, p, r)

1 if p < r

2 q = Partition (A, p, r)
3 Quicksort(A, p, q − 1)
4 Quicksort(A, q + 1, r)

108 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Partition Algorithm

Quicksort Partition
Partition(A, p, r)

1 x = A[r]
2 i = p− 1
3 for j = p to r − 1
4 if A[j] ≤ x

5 i = i + 1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i + 1

109 / 130



Quicksort: What is the Invariance?

Loop Invariance
1 If p ≤ k ≤ i, then A[k] ≤ x.
2 If i + 1 ≤ k ≤ j − 1, then A[k] > x.
3 If k = r , then A[k] = x.
4 UNKNOWN

Proof of the Loop Invariance
Look at the Board.

110 / 130



Quicksort: What is the Invariance?

Loop Invariance
1 If p ≤ k ≤ i, then A[k] ≤ x.
2 If i + 1 ≤ k ≤ j − 1, then A[k] > x.
3 If k = r , then A[k] = x.
4 UNKNOWN

Proof of the Loop Invariance
Look at the Board.

110 / 130



Quicksort: What is the Invariance?

Loop Invariance
1 If p ≤ k ≤ i, then A[k] ≤ x.
2 If i + 1 ≤ k ≤ j − 1, then A[k] > x.
3 If k = r , then A[k] = x.
4 UNKNOWN

Proof of the Loop Invariance
Look at the Board.

110 / 130



Quicksort: What is the Invariance?

Loop Invariance
1 If p ≤ k ≤ i, then A[k] ≤ x.
2 If i + 1 ≤ k ≤ j − 1, then A[k] > x.
3 If k = r , then A[k] = x.
4 UNKNOWN

Proof of the Loop Invariance
Look at the Board.

110 / 130



Quicksort: What is the Invariance?

Loop Invariance
1 If p ≤ k ≤ i, then A[k] ≤ x.
2 If i + 1 ≤ k ≤ j − 1, then A[k] > x.
3 If k = r , then A[k] = x.
4 UNKNOWN

     p                  i   i+1               j-1

r

A[k]<x A[k]>x

Proof of the Loop Invariance
Look at the Board.

110 / 130



Quicksort: What is the Invariance?

Loop Invariance
1 If p ≤ k ≤ i, then A[k] ≤ x.
2 If i + 1 ≤ k ≤ j − 1, then A[k] > x.
3 If k = r , then A[k] = x.
4 UNKNOWN

     p                  i   i+1               j-1

r

A[k]<x A[k]>x

Proof of the Loop Invariance
Look at the Board.

110 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

111 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Complexity Analysis

Best-case Analysis
Partition returns two arrays size n

2 and n
2 − 1.

Then, we have the recurrence T (n) = 2T
(

n
2
)

+ Θ(n).

What about the Worst-Case?
Partition returns two arrays, one of size 0 and one of size n− 1.
Then, we have the recurrence:

T (n) = T (n− 1) + Θ(n) = O(n2). (12)

112 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

113 / 130



What about a No So Unbalanced Partition?

What are you talking about?

T (n) = T

(
n

10

)
+ T

(9n

10

)
+ Θ (n) (13)

This can happen when
The pivot split the array in two sub-array...

x1 pivot x2 x3 x4 x5 x6 x7 x8 x9

Even when this happen

Using the tree method!!! We notice something weird!!!

114 / 130



What about a No So Unbalanced Partition?

What are you talking about?

T (n) = T

(
n

10

)
+ T

(9n

10

)
+ Θ (n) (13)

This can happen when
The pivot split the array in two sub-array...

x1 pivot x2 x3 x4 x5 x6 x7 x8 x9

Even when this happen

Using the tree method!!! We notice something weird!!!

114 / 130



What about a No So Unbalanced Partition?

What are you talking about?

T (n) = T

(
n

10

)
+ T

(9n

10

)
+ Θ (n) (13)

This can happen when
The pivot split the array in two sub-array...

x1 pivot x2 x3 x4 x5 x6 x7 x8 x9

Even when this happen

Using the tree method!!! We notice something weird!!!

114 / 130



Unbalanced Partition Tree Method Analysis

Unbalanced partitioning returns a O (n log n)
After certain level, the total steps are ≤ than cn!!!

115 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

116 / 130



Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!
After all, we can split the sub-arrays in any way we want!!!

T (q) + T (n− q − 1) (14)

We can get the worst case asking

max
0≤q≤n−1

(T (q) + T (n− q − 1)) (15)

117 / 130



Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!
After all, we can split the sub-arrays in any way we want!!!

T (q) + T (n− q − 1) (14)

We can get the worst case asking

max
0≤q≤n−1

(T (q) + T (n− q − 1)) (15)

117 / 130



Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!
After all, we can split the sub-arrays in any way we want!!!

T (q) + T (n− q − 1) (14)

We can get the worst case asking

max
0≤q≤n−1

(T (q) + T (n− q − 1)) (15)

117 / 130



Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!
After all, we can split the sub-arrays in any way we want!!!

T (q) + T (n− q − 1) (14)

We can get the worst case asking

max
0≤q≤n−1

(T (q) + T (n− q − 1)) (15)

117 / 130



Worst Case Complexity Analysis

We do not know which pivot gets the worst case

Thus, Why do not ask the recursion each possible pivot?

Remember!!!
After all, we can split the sub-arrays in any way we want!!!

T (q) + T (n− q − 1) (14)

We can get the worst case asking

max
0≤q≤n−1

(T (q) + T (n− q − 1)) (15)

117 / 130



Worst Case Complexity Analysis

Worst-case Recursion

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n) (16)

By substitution, we can prove
Complexity O(n2).

This can be proved as follows
BLACKBOARD!

118 / 130



Worst Case Complexity Analysis

Worst-case Recursion

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n) (16)

By substitution, we can prove
Complexity O(n2).

This can be proved as follows
BLACKBOARD!

118 / 130



Worst Case Complexity Analysis

Worst-case Recursion

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n) (16)

By substitution, we can prove
Complexity O(n2).

This can be proved as follows
BLACKBOARD!

118 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

119 / 130



Remember?

The use of uniform distribution
To get the average behavior!!!

In many cases
It is better than the worst case scenario....

Thus
We can introduce randomization in the Quicksort.

120 / 130



Remember?

The use of uniform distribution
To get the average behavior!!!

In many cases
It is better than the worst case scenario....

Thus
We can introduce randomization in the Quicksort.

120 / 130



Remember?

The use of uniform distribution
To get the average behavior!!!

In many cases
It is better than the worst case scenario....

Thus
We can introduce randomization in the Quicksort.

120 / 130



Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)
Randomized-Quicksort(A, p, r)

1 if p < r

2 q =Randomized-Partition(A, p, r)
3 Randomized-Quicksort(A, p, q − 1)
4 Randomized-Quicksort(A, q + 1, r)

RANDOMIZED-PARTITION(A,p,r)

121 / 130



Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)
Randomized-Quicksort(A, p, r)

1 if p < r

2 q =Randomized-Partition(A, p, r)
3 Randomized-Quicksort(A, p, q − 1)
4 Randomized-Quicksort(A, q + 1, r)

RANDOMIZED-PARTITION(A,p,r)

121 / 130



Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)
Randomized-Quicksort(A, p, r)

1 if p < r

2 q =Randomized-Partition(A, p, r)
3 Randomized-Quicksort(A, p, q − 1)
4 Randomized-Quicksort(A, q + 1, r)

RANDOMIZED-PARTITION(A,p,r)

121 / 130



Randomized Quicksort

RANDOMIZED-QUICKSORT(A,p,r)
Randomized-Quicksort(A, p, r)

1 if p < r

2 q =Randomized-Partition(A, p, r)
3 Randomized-Quicksort(A, p, q − 1)
4 Randomized-Quicksort(A, q + 1, r)

RANDOMIZED-PARTITION(A,p,r)

121 / 130



Randomized Quicksort
RANDOMIZED-QUICKSORT(A,p,r)
Randomized-Quicksort(A, p, r)

1 if p < r

2 q =Randomized-Partition(A, p, r)
3 Randomized-Quicksort(A, p, q − 1)
4 Randomized-Quicksort(A, q + 1, r)

RANDOMIZED-PARTITION(A,p,r)
Randomized-Partition(A, p, r)

1 i =Random(p, r)
2 exchange A[r] with A[i]
3 return Partition(A, p, r)

121 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

122 / 130



Expected Running Time of Randomized Quicksort

Expected running time
The expected running time for the Randomized Quicksort algorithm arises
from the following lemma.

Lemma 7.1 (Cormen’s book)
Let X be the number of comparisons performed in line 4 of
PARTITION algorithm over the entire execution of QUICKSORT on
an n-element array.
Then, the running time of QUICKSORT is O(n + X).

Now the proof of the expected running time.
BLACKBOARD!

123 / 130



Expected Running Time of Randomized Quicksort

Expected running time
The expected running time for the Randomized Quicksort algorithm arises
from the following lemma.

Lemma 7.1 (Cormen’s book)
Let X be the number of comparisons performed in line 4 of
PARTITION algorithm over the entire execution of QUICKSORT on
an n-element array.
Then, the running time of QUICKSORT is O(n + X).

Now the proof of the expected running time.
BLACKBOARD!

123 / 130



Expected Running Time of Randomized Quicksort

Expected running time
The expected running time for the Randomized Quicksort algorithm arises
from the following lemma.

Lemma 7.1 (Cormen’s book)
Let X be the number of comparisons performed in line 4 of
PARTITION algorithm over the entire execution of QUICKSORT on
an n-element array.
Then, the running time of QUICKSORT is O(n + X).

Now the proof of the expected running time.
BLACKBOARD!

123 / 130



Therefore

It is possible to conclude that
The Average Time Complexity of the Quicksort is O(n log n)

124 / 130



Applications

Sorting in Special Environments
Example: Using Massive Parallel Stream Processors.

Multi-Objective Optimization
Yes!!! Numerical Analysis using the Quick Sort!!!

Real-Time Visualization of Large Time-Varying Molecules
Use the distance of the atoms to the viewers - the Painters Algorithms!!!

125 / 130



Applications

Sorting in Special Environments
Example: Using Massive Parallel Stream Processors.

Multi-Objective Optimization
Yes!!! Numerical Analysis using the Quick Sort!!!

Real-Time Visualization of Large Time-Varying Molecules
Use the distance of the atoms to the viewers - the Painters Algorithms!!!

125 / 130



Applications

Sorting in Special Environments
Example: Using Massive Parallel Stream Processors.

Multi-Objective Optimization
Yes!!! Numerical Analysis using the Quick Sort!!!

Real-Time Visualization of Large Time-Varying Molecules
Use the distance of the atoms to the viewers - the Painters Algorithms!!!

125 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

126 / 130



Basic Concepts

Mergesort and Heapsort
They are algorithms that sort in O(n log n).
It is more we can give a sequence such that Ω(n log n).

Property
The sorted order they determine is based only on comparisons
between the input elements.
We call such sorting algorithms comparison sorts.

127 / 130



Basic Concepts

Mergesort and Heapsort
They are algorithms that sort in O(n log n).
It is more we can give a sequence such that Ω(n log n).

Property
The sorted order they determine is based only on comparisons
between the input elements.
We call such sorting algorithms comparison sorts.

127 / 130



Basic Concepts

Mergesort and Heapsort
They are algorithms that sort in O(n log n).
It is more we can give a sequence such that Ω(n log n).

Property
The sorted order they determine is based only on comparisons
between the input elements.
We call such sorting algorithms comparison sorts.

127 / 130



Basic Concepts

Mergesort and Heapsort
They are algorithms that sort in O(n log n).
It is more we can give a sequence such that Ω(n log n).

Property
The sorted order they determine is based only on comparisons
between the input elements.
We call such sorting algorithms comparison sorts.

127 / 130



Theorem and Corollary

Theorem
Any comparison sort algorithm requires Ω(n log n) comparisons in the
worst case.

Corollary
Heapsort and Mergesort are asymptotically optimal comparison sorts.

128 / 130



Theorem and Corollary

Theorem
Any comparison sort algorithm requires Ω(n log n) comparisons in the
worst case.

Corollary
Heapsort and Mergesort are asymptotically optimal comparison sorts.

128 / 130



Outline
1 Sorting problem

Definition
Classic Complexities

2 Heaps
Introduction
Heaps
Finding Parents and Children
Max-Heapify
Complexity of Max-Heapify
Build Max Heap: Using Max-Heapify
Heap Sort

3 Applications of Heap Data Structure
Main Applications of the Heap Data Structure
Heap Sort: Exercises

4 Quicksort
Introduction
The Divide and Conquer Quicksort
Complexity Analysis
Unbalanced Partition
It is Necessary to Model the Worst Case!!!
Randomized Quicksort
Expected Running Time

5 Lower Bounds of Sorting
Lower Bounds of Sorting
Exercises

129 / 130



Exercises

Cormen’s Chapter 7
7.1-4
7.2-3
7.2-5
7.4-1

130 / 130


	Sorting problem
	Definition
	Classic Complexities

	Heaps
	Introduction
	Heaps
	Finding Parents and Children
	Max-Heapify
	Complexity of Max-Heapify
	Build Max Heap: Using Max-Heapify
	Heap Sort

	Applications of Heap Data Structure
	Main Applications of the Heap Data Structure
	Heap Sort: Exercises

	Quicksort
	Introduction
	The Divide and Conquer Quicksort
	Complexity Analysis
	Unbalanced Partition
	It is Necessary to Model the Worst Case!!! 
	Randomized Quicksort
	Expected Running Time

	Lower Bounds of Sorting
	Lower Bounds of Sorting
	Exercises 


