Analysis of Algorithms
 Probabilistic Analysis

Andres Mendez-Vazquez

January 10, 2018

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(4) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(9) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

A "Random Process"

First

In order to exemplify the usage of the probabilistic analysis, we will use the "Hiring Problem."

A "Random Process"

First

In order to exemplify the usage of the probabilistic analysis, we will use the "Hiring Problem."

Why?
It is clear that hiring a person is a random process.

A "Random Process"

First

In order to exemplify the usage of the probabilistic analysis, we will use the "Hiring Problem."

Why?

It is clear that hiring a person is a random process.

An Example

Many possible process involving a "Expected" count in the number of steps of them.

The Hiring Problem

Suppose the following

- You are using an employment agency to hire a new office assistant.

The Hiring Problem

Suppose the following

- You are using an employment agency to hire a new office assistant.
- You interview the candidate and must immediately decide whether or not to hire that person.

The Hiring Problem

Suppose the following

- You are using an employment agency to hire a new office assistant.
- You interview the candidate and must immediately decide whether or not to hire that person.

Cost

- Cost to interview is c_{i} per candidate.

The Hiring Problem

Suppose the following

- You are using an employment agency to hire a new office assistant.
- You interview the candidate and must immediately decide whether or not to hire that person.

Cost

- Cost to interview is c_{i} per candidate.
- Cost to hire is c_{h} per candidate.

The Hiring Problem

Suppose the following

- You are using an employment agency to hire a new office assistant.
- You interview the candidate and must immediately decide whether or not to hire that person.

Cost

- Cost to interview is c_{i} per candidate.
- Cost to hire is c_{h} per candidate.
- Assume that $c_{h}>c_{i}$.

The Hiring Problem

Suppose the following

- You are using an employment agency to hire a new office assistant.
- You interview the candidate and must immediately decide whether or not to hire that person.

Cost

- Cost to interview is c_{i} per candidate.
- Cost to hire is c_{h} per candidate.
- Assume that $c_{h}>c_{i}$.

Observation!

- You must have somebody working all the time!

The Hiring Problem

Suppose the following

- You are using an employment agency to hire a new office assistant.
- You interview the candidate and must immediately decide whether or not to hire that person.

Cost

- Cost to interview is c_{i} per candidate.
- Cost to hire is c_{h} per candidate.
- Assume that $c_{h}>c_{i}$.

Observation!

- You must have somebody working all the time!
- You will always hire the best candidate that you interview!

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(4) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy
(2) for $i=1$ to n

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy
(2) for $i=1$ to n
(3) interview i

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy
(2) for $i=1$ to n
(3) interview i
(9) if candidate i is better than candidate best

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy
(2) for $i=1$ to n
(3) interview i
(9) if candidate i is better than candidate best
(3) best $=i$

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy
(2) for $i=1$ to n
(3) interview i
(9) if candidate i is better than candidate best
(5) best $=i$

0
hire candidate i

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy
(2) for $i=1$ to n
(3) interview i
(9) if candidate i is better than candidate best
(3) best $=i$
-
hire candidate i

Cost

Given n candidates and we hire m of them,

Hiring Algorithm

Hire-Assistant (n)

(1) best $=0 \triangleright$ candidate dummy
(2) for $i=1$ to n
(3) interview i
(9) if candidate i is better than candidate best
(3) best $=i$
-
hire candidate i

Cost

Given n candidates and we hire m of them,

$$
\begin{equation*}
O\left(n c_{i}+m c_{h}\right) \tag{1}
\end{equation*}
$$

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(7) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

Paradigm

We have that

- We need to find the maximum or minimum in a sequence by examining each element and maintaining a current "WINNER."

Paradigm

We have that

- We need to find the maximum or minimum in a sequence by examining each element and maintaining a current "WINNER."
- The variable m denotes how many times we change our notion of which element is currently winning.

Paradigm

We have that

- We need to find the maximum or minimum in a sequence by examining each element and maintaining a current "WINNER."
- The variable m denotes how many times we change our notion of which element is currently winning.

Worst Case Analysis

- You hire all of n

Paradigm

We have that

- We need to find the maximum or minimum in a sequence by examining each element and maintaining a current "WINNER."
- The variable m denotes how many times we change our notion of which element is currently winning.

Worst Case Analysis

- You hire all of n

$$
O\left(n c_{i}+n c_{h}\right)=O\left(n c_{h}\right)
$$

Paradigm

We have that

- We need to find the maximum or minimum in a sequence by examining each element and maintaining a current "WINNER."
- The variable m denotes how many times we change our notion of which element is currently winning.

Worst Case Analysis

- You hire all of n

$$
O\left(n c_{i}+n c_{h}\right)=O\left(n c_{h}\right)
$$

- Why? Because every time we hire somebody, we fire somebody.

We want to avoid the worst case

How?
 Because many times we do not get the worst case

We want to avoid the worst case

Abstract

How? Because many times we do not get the worst case

Abstract

Actually Many times we get the "Average" input

We want to avoid the worst case

How?

Because many times we do not get the worst case

Actually
 Many times we get the "Average" input

This makes

The probability analysis a useful tool to analyze average complexities for many algorithms

Probabilistic Analysis

Uniform Distribution Assumption

(1) Assign a rank to each candidate $i, r a n k: U \rightarrow\{1,2, \ldots, n\}$

Probabilistic Analysis

Uniform Distribution Assumption

(1) Assign a rank to each candidate $i, \operatorname{rank}: U \rightarrow\{1,2, \ldots, n\}$
(2) The possible number of permutations of individuals by the rank is n !

Probabilistic Analysis

Uniform Distribution Assumption

(1) Assign a rank to each candidate $i, r a n k: U \rightarrow\{1,2, \ldots, n\}$
(2) The possible number of permutations of individuals by the rank is n !
(3) Therefore, if we assume that all individuals have the same probability to have any ranking - Uniform Distribution Assumption.

Probabilistic Analysis

Uniform Distribution Assumption

(1) Assign a rank to each candidate $i, r a n k: U \rightarrow\{1,2, \ldots, n\}$
(2) The possible number of permutations of individuals by the rank is n !
(3) Therefore, if we assume that all individuals have the same probability to have any ranking - Uniform Distribution Assumption.
(9) The input in the hiring problem comes from a uniform distribution.

Probabilistic Analysis

Uniform Distribution Assumption

(1) Assign a rank to each candidate $i, r a n k: U \rightarrow\{1,2, \ldots, n\}$
(2) The possible number of permutations of individuals by the rank is n !
(3) Therefore, if we assume that all individuals have the same probability to have any ranking - Uniform Distribution Assumption.
(9) The input in the hiring problem comes from a uniform distribution.

Essentials of Probability Analysis

- You assume a distribution over permutation of elements.

Probabilistic Analysis

Uniform Distribution Assumption

(1) Assign a rank to each candidate $i, r a n k: U \rightarrow\{1,2, \ldots, n\}$
(2) The possible number of permutations of individuals by the rank is n !
(3) Therefore, if we assume that all individuals have the same probability to have any ranking - Uniform Distribution Assumption.
(9) The input in the hiring problem comes from a uniform distribution.

Essentials of Probability Analysis

- You assume a distribution over permutation of elements.
- The expectation is over this distribution.

Probabilistic Analysis

Uniform Distribution Assumption

(1) Assign a rank to each candidate $i, r a n k: U \rightarrow\{1,2, \ldots, n\}$
(2) The possible number of permutations of individuals by the rank is n !
(3) Therefore, if we assume that all individuals have the same probability to have any ranking - Uniform Distribution Assumption.
(9) The input in the hiring problem comes from a uniform distribution.

Essentials of Probability Analysis

- You assume a distribution over permutation of elements.
- The expectation is over this distribution.
- This technique requires that we can make a reasonable characterization of the input distribution.

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(4) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

Indicator Random Variable

Indicator Random Variable

- We require to use the indicator random variable to facilitate the use of probabilistic analysis:

Indicator Random Variable

Indicator Random Variable

- We require to use the indicator random variable to facilitate the use of probabilistic analysis:

$$
I\{A\}= \begin{cases}0 & \text { if } \mathrm{A} \text { does not ocurr } \\ 1 & \text { if } \mathrm{A} \text { does ocurr }\end{cases}
$$

Indicator Random Variable

Indicator Random Variable

- We require to use the indicator random variable to facilitate the use of probabilistic analysis:

$$
I\{A\}= \begin{cases}0 & \text { if } \mathrm{A} \text { does not ocurr } \\ 1 & \text { if } \mathrm{A} \text { does ocurr }\end{cases}
$$

- Using this we have

Indicator Random Variable

Indicator Random Variable

- We require to use the indicator random variable to facilitate the use of probabilistic analysis:

$$
I\{A\}= \begin{cases}0 & \text { if } \mathrm{A} \text { does not ocurr } \\ 1 & \text { if } \mathrm{A} \text { does ocurr }\end{cases}
$$

- Using this we have

Lemma 5.1

Given a sample space S and an event A in the sample space S, let $X_{A}=I\{A\}$. Then $E\left[X_{A}\right]=\operatorname{Pr}\{A\}$.

Analyzing Hiring By Indicator Variable

Given X

Assume a X , the random variable of the number of times we hire a person.

Analyzing Hiring By Indicator Variable

Given X

Assume a X , the random variable of the number of times we hire a person.

$$
\begin{equation*}
E[X]=\sum_{x=1}^{n} x \operatorname{Pr}\{X=x\} \tag{2}
\end{equation*}
$$

Analyzing Hiring By Indicator Variable

Given X

Assume a X , the random variable of the number of times we hire a person.

$$
\begin{equation*}
E[X]=\sum_{x=1}^{n} x \operatorname{Pr}\{X=x\} \tag{2}
\end{equation*}
$$

Then

We could analyze the hiring problem by using the indicator function:

Analyzing Hiring By Indicator Variable

Given X

Assume a X , the random variable of the number of times we hire a person.

$$
\begin{equation*}
E[X]=\sum_{x=1}^{n} x \operatorname{Pr}\{X=x\} \tag{2}
\end{equation*}
$$

Then

We could analyze the hiring problem by using the indicator function:

$$
X_{i}=I\{\text { candidate } \mathrm{i} \text { is hired }\}= \begin{cases}1 & \text { if candidate } \mathrm{i} \text { is hired } \tag{3}\\ 0 & \text { if candidate } \mathrm{i} \text { is not hired }\end{cases}
$$

Representing Complex Indicator Variables

Decomposing Complex Indicator Variables

$$
X=X_{1}+X_{2}+\ldots+X_{n}
$$

Representing Complex Indicator Variables

Decomposing Complex Indicator Variables

$$
X=X_{1}+X_{2}+\ldots+X_{n} .
$$

Uniform Assumption

And because the candidates come randomly (Uniform Assumption):

Representing Complex Indicator Variables

Decomposing Complex Indicator Variables

$$
X=X_{1}+X_{2}+\ldots+X_{n} .
$$

Uniform Assumption

And because the candidates come randomly (Uniform Assumption):

$$
\begin{equation*}
E\left[X_{i}\right]=\operatorname{Pr}\{\text { cantidate } i \text { is hired }\}=\frac{1}{i} \tag{4}
\end{equation*}
$$

Representing Complex Indicator Variables

Decomposing Complex Indicator Variables

$$
X=X_{1}+X_{2}+\ldots+X_{n}
$$

Uniform Assumption

And because the candidates come randomly (Uniform Assumption):

$$
\begin{equation*}
E\left[X_{i}\right]=\operatorname{Pr}\{\text { cantidate } i \text { is hired }\}=\frac{1}{i} \tag{4}
\end{equation*}
$$

Why?

If we hire a new i, this candidate is better than the previous 1 to $i-1$.

Analyzing Hiring By Indicator Variable

Finally, we can calculate

$$
E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]
$$

Analyzing Hiring By Indicator Variable

Finally, we can calculate

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E[X]
\end{aligned}
$$

Analyzing Hiring By Indicator Variable

Finally, we can calculate

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E[X] \\
& =\sum_{i=1}^{n} \frac{1}{i}
\end{aligned}
$$

Analyzing Hiring By Indicator Variable

Finally, we can calculate

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E[X] \\
& =\sum_{i=1}^{n} \frac{1}{i} \\
& =1+\sum_{i=2}^{n} \frac{1}{i}
\end{aligned}
$$

Analyzing Hiring By Indicator Variable

Finally, we can calculate

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E[X] \\
& =\sum_{i=1}^{n} \frac{1}{i} \\
& =1+\sum_{i=2}^{n} \frac{1}{i} \\
& \leq 1+\int_{1}^{n} \frac{1}{i} d i
\end{aligned}
$$

Analyzing Hiring By Indicator Variable

Finally, we can calculate

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E[X] \\
& =\sum_{i=1}^{n} \frac{1}{i} \\
& =1+\sum_{i=2}^{n} \frac{1}{i} \\
& \leq 1+\int_{1}^{n} \frac{1}{i} d i \\
& =1+\ln n
\end{aligned}
$$

Finally

We have then

$$
E[X]=\ln n+O(1)
$$

Finally

We have then

$$
\begin{equation*}
E[X]=\ln n+O(1) \tag{5}
\end{equation*}
$$

Thus
Final hiring cost is $O\left(c_{h} \ln n\right)$.

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(4) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

Assume

What if

- The employment agency sends us a list of all n candidates in advance.

Assume

What if

- The employment agency sends us a list of all n candidates in advance.
- On each day, we randomly choose a candidate from the list to interview.

Assume

What if

- The employment agency sends us a list of all n candidates in advance.
- On each day, we randomly choose a candidate from the list to interview.
- Instead of relaying on the candidate being presented to us in a random order, we take control of the process and enforce a random order.

Assume

What if

- The employment agency sends us a list of all n candidates in advance.
- On each day, we randomly choose a candidate from the list to interview.
- Instead of relaying on the candidate being presented to us in a random order, we take control of the process and enforce a random order.

What makes an algorithm randomized?

- An algorithm is randomized if its behavior is determined in part by values produced by a random-number generator.

Assume

What if

- The employment agency sends us a list of all n candidates in advance.
- On each day, we randomly choose a candidate from the list to interview.
- Instead of relaying on the candidate being presented to us in a random order, we take control of the process and enforce a random order.

What makes an algorithm randomized?

- An algorithm is randomized if its behavior is determined in part by values produced by a random-number generator.
- A random-number generator is implemented by a pseudorandom-number generator, which is a deterministic method returning numbers that "look" random and can pass certain statistical tests.

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(4) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

The Random Hiring Algorithm

Randomized-Hire-Assistant(n)

(1) Randomly Permute the list of candidates

The Random Hiring Algorithm

Randomized-Hire-Assistant(n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy

The Random Hiring Algorithm

Randomized-Hire-Assistant(n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy
(3) for $i=1$ to n

The Random Hiring Algorithm

Randomized-Hire-Assistant(n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy
(3) for $i=1$ to n
(4) interview i

The Random Hiring Algorithm

Randomized-Hire-Assistant(n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy
(3) for $i=1$ to n
(4) interview i
(5) if candidate i is better than candidate best

The Random Hiring Algorithm

Randomized-Hire-Assistant(n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy
(3) for $i=1$ to n
(4) interview i
(5) if candidate i is better than candidate best
(6) best $\leftarrow i$

The Random Hiring Algorithm

Randomized-Hire-Assistant(n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy
(3) for $i=1$ to n
(4) interview i
(5) if candidate i is better than candidate best
(6) best $\leftarrow i$
hire candidate i

The Random Hiring Algorithm

Randomized-Hire-Assistant (n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy
(3) for $i=1$ to n
(4) interview i
(5) if candidate i is better than candidate bestbest $\leftarrow i$
hire candidate i

Lemma 5.3

The expected hiring cost of the procedure Randomized-Hiring-Assistant is

The Random Hiring Algorithm

Randomized-Hire-Assistant (n)

(1) Randomly Permute the list of candidates
(2) best $\leftarrow 0 \triangleright$ candidate dummy
(3) for $i=1$ to n
(4) interview i
(5) if candidate i is better than candidate bestbest $\leftarrow i$
hire candidate i

Lemma 5.3

The expected hiring cost of the procedure Randomized-Hiring-Assistant is

$$
\begin{equation*}
O\left(c_{h} \ln n\right) . \tag{6}
\end{equation*}
$$

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(4) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.
(2) Generate a random ranking P.

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.
(2) Generate a random ranking P.
(3) Then, sort A using the P ranking

$$
\begin{equation*}
B=\langle 2,4,1,3\rangle \tag{7}
\end{equation*}
$$

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.
(2) Generate a random ranking P.
(3) Then, sort A using the P ranking

$$
\begin{equation*}
B=\langle 2,4,1,3\rangle \tag{7}
\end{equation*}
$$

Permute-By-Sorting (A)

(1) $n=\operatorname{lenght}[A]$

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.
(2) Generate a random ranking P.
(3) Then, sort A using the P ranking

$$
\begin{equation*}
B=\langle 2,4,1,3\rangle \tag{7}
\end{equation*}
$$

Permute-By-Sorting (A)

(1) $n=\operatorname{lenght}[A]$
(2) for $i=1$ to n

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.
(2) Generate a random ranking P.
(3) Then, sort A using the P ranking

$$
\begin{equation*}
B=\langle 2,4,1,3\rangle \tag{7}
\end{equation*}
$$

Permute-By-Sorting (A)

(1) $n=$ lenght $[A]$
(2) for $i=1$ to n
(3) do $P[i]=R A N D O M\left(1, n^{3}\right)$

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.
(2) Generate a random ranking P.
(3) Then, sort A using the P ranking

$$
\begin{equation*}
B=\langle 2,4,1,3\rangle \tag{7}
\end{equation*}
$$

Permute-By-Sorting (A)

(1) $n=$ lenght $[A]$
(2) for $i=1$ to n
(3) do $P[i]=R A N D O M\left(1, n^{3}\right)$
(9) sort A, using P as sort keys

Permute By Sorting

Process

(1) Given an array $A=\langle 1,2,3,4\rangle$.
(2) Generate a random ranking P.
(3) Then, sort A using the P ranking

$$
\begin{equation*}
B=\langle 2,4,1,3\rangle \tag{7}
\end{equation*}
$$

Permute-By-Sorting (A)

(1) $n=\operatorname{lenght}[A]$
(2) for $i=1$ to n
(3) do $P[i]=R A N D O M\left(1, n^{3}\right)$
(9) sort A, using P as sort keys
(5) return A

Proving Correctness of Permute-By-Sorting

Lemma 5.4

Procedure Permute-By-Sorting produces a uniform random permutation of the input, assuming that all priorities are distinct.

Outline

(1) The Hiring Problem

- Introduction
(2) The Hiring Algorithm
- An Initial Algorithm
- What do we want?
(3) Indicator Random Variable
- The Indicator Function
(4) The Randomized Hiring
- Introduction
- The Basic Algorithm
(5) Methods to Enforce Randomization
- Permute By Sorting
- Permute in Place

Algorithm

Randomize-In-Place(A)

(1) $n=\operatorname{lenght}[A]$
(2) for $i=1$ to n
(3) do swap $A[i] \longleftrightarrow A[R A N D O M(i, n)]$

Algorithm

Randomize-In-Place(A)

(1) $n=$ lenght $[A]$
(2) for $i=1$ to n

- do swap $A[i] \longleftrightarrow A[\operatorname{RANDOM}(i, n)]$

Lemma 5.5

Procedure Randomize-In-Place computes a uniform random permutation.

Exercises

- 5.1-1
- 5.1-2
- 5.2-1
- 5.2-3
- 5.2-5
- 5.3-1
- 5.3-3
- 5.3-4

