
Probabilistic Analysis

August 5, 2014

1 Introduction
Once you realized the advantages of using probability for complexity analysis,
it is clear that you require to have an average input to obtain the complexities
given by the probabilistic analysis. Therefore, it is quite clear that the we need
to be sure that the input is most of the time an average input. To exemplify
this, we can look at the hiring problem.

2 The Hiring Problem
While looking at the hiring problem and the algorithm, we recognize the follow-
ing: The job position is never empty. Then,

• We need to interview all the candidates.

• We hire m of them.

Then, we get the following cost for the hiring problem in asymptotic notation:
O(nci +mch). Therefore, when looking a the worst case scenario, hiring all the
candidates, we have the following complexity O(nci + nch) = O(nch).

3 The Indicator Function
Here, we have an important lemma about the indicator function that will be
used again and again on many of the probabilistic analysis.

Lemma Given a sample space S and an event A in the sample space S, let
XA = I {A}. Then, E (XA) = Pr {A}.
Proof
Simply look at this E (XA) = E (I {A}) = 1 × Pr {A} + 0 × Pr

{
A
}

=
Pr {A}.

1

For example, given a coin being flipped n time Xi = I{The ith flip result}.
Then, then we can count all the possible flips by using the following random
variable:

X =
n∑

i=1
Xi (1)

Therefore, taking the expected value in both sides, we have that

E [X] = E

[
n∑

i=1
Xi

]
=

n∑
i=1

E [Xi] =
n∑

i=1

1
2 = n

2 (2)

4 Analyzing Random Hiring
Although the differences between normal hiring and randomized hiring could
look extreme. Actually the proof of the complexity O(ch logn) is the same once
we notice that the permutation of the elements give us the same situation as in
the hiring when the input order is drawn from a uniform distribution. Then,
enforcing uniformity is the key piece of the entire idea of getting the expected
complexity.

5 Enforcing Uniformity
We can see in the slides two different algorithms to enforce uniformity. Each of
them uses a lemma to prove the enforced uniformity.
Lemma 5.4
Procedure Permute-by-sorting produces a uniform random permutation of the
input, assuming that all probabilities are distinct.
Proof:

Case I
Assume A[i] receives the ith smallest priority. Let Eibe the event that
element A[i] receives the ith smallest probability. Therefore, we wish to
compute the event the probability of event E1 ∩ E2 ∩ ... ∩ En, and given
that we haven! possible permutations of the ranking, we want to be sure
that the P (E1 ∩ E2 ∩ ... ∩ En) = 1

n! . This event is the most naive one,
it means that A[1]is the 1st element, A[2] is the 2nd element and so on.
Then, it is simply a case of using the chain rule:

P (E1, E2, ..., En) = P (En|E1, ..., En−1)P (En−1|E1, ..., En−2)...
P (E2|E1)P (E1) (3)

First imagine that you have n possible positions at your array and you
need to fill them. Now look at this:

2

• At E1 you have n different elements to put at position one or P (E1) =
1
n .

• At E2 you have n − 1 different elements to put at position two or
P (E2|E1) = 1

n−1 .
• etc.
Therefore, P (E1, E, ..., En) = 1× 1

2 ×
1
3 × ...×

1
n = 1

n! .

Case II
In the general case, we have that we can use for any permutation σ =
〈σ(1), σ(2), ..., σ(n)〉 of the set {1, 2, ..., n}. Let us to assign rank ri to the
element A[i]. Then, if we define Ei as the event in which element A[i]
receives the σ(i)th smallest priority ri = σ(i), we have the same proof.

QED

Lemma 5.5

Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof:

We use the following loop invariant, before entering lines 2-3 the array A[1, ..., i−
1] contains a (i− 1)-permutation with probability (n−i+1)!

n! .

Initialization. We have an empty arrayA[1, ..., 0] and i = 1, then P (A[1, ..., 0]) =
(n−i+1)!

n! = n!
n! = 1. This is because of vacuity.

Maintenance. Then, by induction, we have that the array A[1, ..., i − 1] con-
tains (i − 1)-permutation with probability (n−i+1)!

n! . Now, consider the
i-permutation contain the elements 〈x1, x2, ..., xi〉 = 〈x1, x2, .., xi−1〉 ◦ xi.
Then, E1denotes the event for the (i − 1)-permutation with P (E1) =
(n−i+1)!

n! , and E2 denotes putting element xi at position A[i]. Therefore,
we have that P (E2 ∩E1) = P (E2|E1)P (E1) = 1

n−i+1 ×
(n−i+1)!

n! = (n−i)!
n! .

Termination. Now with i = n + 1 we have that the array A[1, ..., n] contains
a n−permutation with probability (n−n+1)!

n! = 1
n! .

3

