
Divide and Conquer
Andres Mendez-Vazquez

January 10, 2018

1

Contents
1 Improving Algorithms 3

1.1 Using Multiplication of Imaginary Numbers 3

2 Using Recursion to Find Complexities 5

3 Asymptotic Notation 7
3.1 Relations between Θ and O and Ω 8
3.2 Some examples about little o and ω 9
3.3 Exercises . 9

4 Solving Recurrences 10
4.1 Substitution Method . 10

4.1.1 Subtleties of the Substitution Method 10
4.2 The Reduced Version of the Master Theorem 11
4.3 Exercises . 13

List of Algorithms
1 Recursive Multiplication . 5
2 Merge Sort Algorithm . 7
3 Binary Search algorithm . 10
4 Shell Sort algorithm . 10

List of Figures
1 The Recursion Tree Of Merge Sort when n is even 7
2 The branching and depth of a recursion T (n) = aT

(
n
b

)
+ n . . . 12

2

1 Improving Algorithms
Although, we saw already a simple way of reducing the complexity of an al-
gorithm by avoiding as much as possible the recursion by memorizing previous
smaller values (Iterative Fibonacci). It is clear that neater tricks must exist
in the realm of possible solutions while solving problems for algorithms. Thus,
looking a those tricks is quite important to be able to learn how to improve on
many different algorithms.

A clever strategy for improving algorithms is the well known Divide and
Conquer which consists of the following steps:

1. Divide. Here the algorithm must split the large problem into smaller
versions, thus they can be solved recursively by using new algorithm in-
stantiation and the smaller inputs.

2. Conquer. At this moment, we use the idea of induction by going first
backwards to the basis case where the easiest solution can be find, then
the procedure is ready to go forward.

3. Combine. Here, we use the previously calculated answers to build the
an answer for each subproblem. For example in the case of Fibonacci:

Fn = Fn−1 + Fn−2 (1)

Then, it is essential to build clever algorithms that can build efficient answers
for given problems. Thus, the importance of looking at several possible tricks
to be able to obtain a basic intuitions for them!!! In order to avoid exponential
number of steps while calculating the answer.

The next example of a clever trick that we will be studying is coming from the
Prince of Mathematics, Frederich Carl Gauss (1777-1855) [3]. This improvement
was developed by Anatoly Alexeevitch Karatsuba (1937 - 2008) at the Faculty
of Mechanics and Mathematics of Moscow State University [5].

1.1 Using Multiplication of Imaginary Numbers
Even when we could have a efficient strategy to do the divide and conquer,
the most difficult part is always the combine one because the need of not only
doing simple combinations of subproblems, but clever ones. For example, given
that the numbers could be represented as x = xL ◦ xR = 2n/2xL + xR by
assuming that n (Size of each of string of bits) is even. As an example of this,
x = 10110110 can be seen as the left bits concatenated to right bits: xL = 1011
and xR = 0110. Then, x = 1011× 24 + 0110.

Thus, the multiplication between two numbers, x and y, can be found using
the following equation:

3

xy =
(

2n/2xL + xR

)(
2n/2yL + yR

)
=2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Making possible to use the recursion to obtain the final multiplication be-
tween both numbers (Algorithm 1). This algorithm has the following total time:

T (n) = 4T
(n

2

)
+ Somework. (2)

Where Somework correspond to the addition of the results obtained by
calling the function in the left and right sections of both numbers. Although
at the beginning, the recursive function looks quite complex, it is actually one
the easiest to solve by means of the recursive three to guess the complexity.
Thus, once you are understand the three main methods of basic complexity
calculation:

• The Recursion-Tree Method.

• The Substitution Method.

• The Master Theorem Method.

It is possible to see that this recursive function is bounded by cn2 time for some
constant c.

An immediate question for anybody trying to improve this naive algorithm
is the following one: Can be possible to have an algorithm able to perform the
multiplication in shorter time? The answer is actually more convoluted than one
can imagine. First, for many problems, it is possible to obtain absolute lower
bounds that have not been reached by any actual algorithms used to solve them.
An example of this situation is the algorithms used for matrix multiplication [6].
Therefore, from the philosophical point of view of algorithms, we first develop
an initial solution and later on, we try to develop a faster solution.

Thus, What will allow us to improve the naive multiplication? While looking
through the history of mathematics (It is always a good starting point for any
developer of algorithms) Karatsuba [5] noticed that it is possible to have the
following representation of imaginary numbers in a computer:

100100100101 010101110110
Bits for imaginary Bits for real

He was able to see that imaginary numbers could be seen as binary numbers
with n

2 + n
2 bits. Thus, binary number can be seen as imaginary number where

x = 2 n
2 × xL︸︷︷︸

Imaginary

+ xR︸︷︷︸
Real

(3)

4

Algorithm 1 Recursive Multiplication

function Naive-Recursive-Multiplication

Input: x and y integers in binary representation, the number of bits n for both
integers

Output: The multiplication x× y

1. if n == 1

2. return x&y

3. t1 =Naive-Recursive-Multiplication
(
xL, yL,

n
2
)

4. t2 =Naive-Recursive-Multiplication
(
xL, yR,

n
2
)

5. t3 =Naive-Recursive-Multiplication
(
xR, yL,

n
2
)

6. t4 =Naive-Recursive-Multiplication
(
xR, yR,

n
2
)

7. return 2n × t1 + 2 n
2 [t2 + t3] + t4

Thus, it could be possible to use the Gauss trick to decrease the number of
multiplications from four to three by realizing the following. Given the equation
of multiplication of imaginary numbers:

(a+ ib) (c+ id) = ac+ (ad+ bc) i− bd (4)
Thus, Gauss noticed that ad+ bc =. Therefore,

(a+ ib) (c+ id) = ac+ [(a+ b) (c+ d)− ac− bd] i− bd (5)
Then, if we use the Gauss’s trick, we only need xLyL, xRyR, (xL+xR)(yL+

yR) to calculate the multiplication because xLyR + xRyL = (xL + xR)(yL +
yR)−xLyL−xRyR. This allows to generate a new algorithm that only requires
to calculate three recursive multiplications. Thus, the time complexity of the
new matrix multiplication is:

T (n) = 3T (n/2) + Somework (6)
This equation can be proved to have an upper bound of cn1.59. Therefore, it

is not only to use of divide, but also the clever use of that conquer and combine.

2 Using Recursion to Find Complexities
After this clear example on how to improve a basic algorithm, we turn our heads
to the merge sort algorithm (Algorithm 2). The merge sort algorithm exemplify

5

the classic way of using the recursion tree to obtain an initial guess for the time
complexity.

Definition 1. Given an input as a string where the problem is being encoded
using an alphabet Σ, the time complexity quantifies the amount of time taken
by an algorithm to run as a function on the length of such string.

For this, look at the recursion tree in Merge sort (Fig. 1). There, we can
see how the data is split in two parts in the following way

1. At the top we have n elements to be sorted

2. At the second level we split the data, using the recursion, into two sub-
problems of size n

2 and n
2 .

3. At the third level the data is split into subproblems of size n
4 .

4. And so on.

Thus, we can define the function to calculate the time complexity of steps using
a recursion defined in the following way (Eq.).

T (n) = T
(
n
2
)

+ T
(
n
2
)

+ Somework.

Here, Somework can be seen as the merging that the MERGE needs to do
i.e. cn time complexity. Formally, we can define the recursion for the time
complexity as:

T (n) =
{

1 if n = 1
2T
(
n
2
)

+ cn if n > 1
(7)

6

Algorithm 2 Merge Sort Algorithm

function Merge-Sort

Input: an array of integers A, the left end index p, the right end index r

Output: the array A with the integers in increasing order

1. if p < r then

2. q ←
⌊
p+r

2
⌋

3. Merge-Sort(A,p,q)

4. Merge-Sort(A,q+1,r)

5. MERGE(A,p,q,r)

Figure 1: The Recursion Tree Of Merge Sort when n is even

3 Asymptotic Notation
We are ready to define one of the main tools for the calculation of complexities,
the asymptotic notation [1, 4]. Asymptotic notation is a way to express the
main component of the cost of an algorithm by using idealized units of work.

7

The main families of asymptotic notation are the Big O, the Big Ω, the Θ, the
little o and the little ω.

First, let us to examine the famous big O.

Definition 2. For a given function g(n)

O(g(n)) = {f(n)| There exists c > 0 and n0 > 0
s.t. 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}

We have the following example for this notation.

Example. For example, we know that n ≤ n2 for n ≥ 1, thus if we select c = 1.
Then, we have that n ∈ O

(
n2) or n = O

(
n2).

Next, we have the lower bound for the complexity functions, the Ω set.

Definition 3. For a given function g(n)

Ω(g(n)) = {f(n)| There exists c > 0 and n0 > 0
s.t. 0 ≤ cg(n) ≤ f(n) ∀n ≥ n0}

Finally, we get a combination of the previous sets as the Θ set.

Definition 4. For a given function g(n)

Θ(g(n)) = {f(n)| There exists c1 > 0, c2 > 0 and n0 > 0
s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

3.1 Relations between Θ and O and Ω
The first relation is the transitivity.

Proposition 5. (Transitivity) Given f (n) and g (n), if f (n) = Θ (g (n)) and
g (n) = Θ (h (n))

It is easy to prove the proposition, you simply look at the constants provided
by the equalities. The remaining only requires a correct interpretation.

1. f (n) = Θ (f (n)) (Reflexivity).

2. f (n) = Θ (g (n))⇔ g (n) = Θ (f (n)) (Symmetry).

3. f (n) = O (g (n))⇔ g (n) = Ω (f (n))(Transpose Symmetry).

8

3.2 Some examples about little o and ω

The following examples clarify more the ideas about this “little” notation.

Example. For the little o, we have that 2n = o(n2), but 2n2 6= o(n2). In the
case of the first part, it is easy to see that for any given c exist a n0 such that

1
no
2
< c. In addition, n > n0 implies that 1

n0
> 1

n . Then,

2 < cn⇐⇒ 2n < cn2 (8)

This gives us the proof for the first part. In the second part, if we assume
c = 2 and a certain value n0 that makes true the inequality, we have that

2n2
0 < 2n2

0

which is clearly a contradiction.

Example. A similar situation can be seen in little ω. For example n2

2 = ω(n),
but n2

2 6= ω(n2). In the first case, a similar argument can be done such that

cn <
n2

2 (9)

However, if we assume that the inequality holds for the second case we can
chose c = 2, we again obtain a contradiction.

3.3 Exercises
1. Please try to solve the following examples, i.e. find the c1, c2 and/or n0

(a) n2 − 5n = Θ(n2).
(b)
√
n = O(n)

(c) n2 = Ω (n)

2. Given the following codes can you devise their recursions by converting
the iterative versions into recursive and provide the recursions

(a) For Binary Search (Algorithm 3).
(b) For Shell Sorting (Algorithm 4)

9

Algorithm 3 Binary Search algorithm

function Binary Search
Input: An array A [1...n] of n elements sorted in nondecreasing order and an

element x.
Output: j if x = A [j], 1 ≤ j ≤ n and 0 otherwise
1. low ← 1; high← n; j ← 0
2. while (low ≤ high) and (j == 0)
3. mid←

⌊
(low+high)

2

⌋
4. if x == A [mid] then j ← mid

5. if x < A [mid] then high← mid− 1
6. else low ← mid+ 1
7. return j

Algorithm 4 Shell Sort algorithm

function Shell Sort
Input: An array A [1...n] of n elements and a decreasing integer gap sequence

G [1..m].
Output: The array A [1...n] sorted in increasing order.
1. for g ← G [1] to G [m]
2. for i← g to n
3. temp← A [i]
4. j ← i

5. while g ≤ j and A [j − g]
6. A [j]← A [j − g]
7. j ← j − g
8. A [j]← temp

4 Solving Recurrences
4.1 Substitution Method
The main method is explained in the slides, but if you want more information
please take a look at Cormen et al. [2].

4.1.1 Subtleties of the Substitution Method

Guess that T (n) = O(n), then you can have something like

10

T (n) ≤c
⌊n

2

⌋
+ c

⌈n
2

⌉
+ 1

=cn+ 1
=O(n)

Which is not the correct induction, after all cn+1 is not cn. We can overcome
this problem by assuming a d ≥ 0 and then “guessing” T (n) ≤ cn− d. Then

T (n) ≤
(
c
⌊n

2

⌋
− d
)

+
(
c
⌈n

2

⌉
− d
)

+ 1

=cn− 2d+ 1

Then, if we select d ≥ 1⇒ 0 ≥ 1− d. This means that cn− 2d+ 1 ≤ cn− d.
Therefore, T (n) ≤ cn− d = O(n).

4.2 The Reduced Version of the Master Theorem
Here, we discuss a somewhat reduced version of the Master Theorem from Das-
gupta et al. [3], and we show the equivalence with the one at Cormen et. al
[2].

Theorem 1. Master Theorem. If T (n) = aT
(⌈
n
b

⌉)
+ O

(
nd
)
for some

constants a > 0, b > 1, and d ≥ 0 then

T (n) =

O
(
nd
)

if d > logb a
O
(
nd logn

)
if d = logb a

O
(
nlogb a

)
if d < logb a

Proof. First, for convenience assume n = bp. Now we can notice that the size
of the subproblems are decreasing by a factor of b at each recursive step. This
means that the size of each subproblems is n

bi at level i. Thus, in order to reach
the bottom you need to have subptoblems of size 1. Therefore:

n

bi
= 1⇒ i = logb n (10)

where i = height of the recursion three. Now, given that the branching
factor is a, we have at the kthlevel aksubproblems, each of size n

bk . Then, the
work at level k is:

ak ×O
(n
bk

)d
= O(nd)×

(a
bd

)k
(11)

Then, the total work done by the recursion is

T (n) = O(nd)×
(a
bd

)0
+O(nd)×

(a
bd

)2
+ ...+O(nd)×

(a
bd

)logbn

(12)

11

DEPTH

Branching FactorSize

Size

Size

Size 1

Figure 2: The branching and depth of a recursion T (n) = aT
(
n
b

)
+ n

For the next step we are going to use the following facts of the Θ notation.
For a g(m) = 1 + c+ c2 + ...+ cm, we have the following cases:

1. if c < 1 then g(m) = Θ(1)

2. if c = 1 then g(m) = Θ(m)

3. if c > 1 then g(m) = Θ(cm)

Now, we can see the different cases:

1. If a
bd < 1, then we have that a < bd or logb a < d (Case one of the

theorem). Then, T (n) = O(nd).

2. If a
bd = 1, then we have that a = bd or logb a = d (Case two of the

theorem). Then, we have that g(n) =
(
a
bd

)0 +
(
a
bd

)2 + ... +
(
a
bd

)logbn is
Θ(logb n). Then, T (n) = O(nlogb a logb n) = O

(
nlogn a log2 n

)
because b

can only be greater or equal to two.

3. If a
bd > 1, then we have that a > bd or logb a > d (Case three of the

theorem). Then. we have nd ×
(
a
bd

)logbn = nd ×
(

alogb n

(blogb n)d

)
= alogb n =

a(loga n)(logb a) = nlogb a. Thus T (n) = O(nlogb a)

Now, if we look at the version at Cormen et al. [2].

12

Theorem. Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let
T (n) be defined on the non-negative integers by the recurrence

T (n) = aT
(n
b

)
+ f(n)

where we interpret n
b as

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) can be bounded asymptot-

ically as follows:

1. If f (n) = O
(
nlogb a−ε) for some constant ε > 0. Then T (n) = Θ

(
nlogb a

)
.

2. If f (n) = Θ
(
nlogb a

)
, then T (n) = Θ

(
nlogb a lgn

)
.

3. If f (n) = Ω
(
nlogb a+ε) for some constant ε > 0 and if af

(
n
b

)
≤ cf (n) for

some c < 1 and all sufficiently large n, then T (n) = Θ (f (n)) .

Thus, for the following cases:

1. If d > logb a, then it is possible to say d = logb a + ε, thus f (n) =
O
(
nlogb a+ε). Then, T (n) = O

(
nd
)

= O (f (n)).

2. If d = logb a, thus f (n) = O
(
nlogb a

)
. Then, T (n) = O

(
nd logn

)
=

O
(
nlogb a lgn

)
.

3. If d < logb a, then d + ε = logb a, thus f (n) = O
(
nlogb a−ε). Then,

T (n) = O
(
nlogb a

)
.

This almost prove the equivalence between the two Master Theorems, we leave
the other parts to you.

4.3 Exercises
1. Use the substitution method to find an upper bound for the recurrence

T (n) =
{
T
(⌊
n
2
⌋)

+ T
(2n

4
)

if n ≥ 4
4 if n < 4

2. Use the Tree method to solve the recurrence

T (n) =
{
T
(
n
2
)

+ T
(
n
5
)

+
√
n if n ≥ 4

4 if n < 4

3. Prove that the solution to the recurrence

T (n) =
{

2T
(
n
2
)

+ g (n) if n ≥ 2
1 if n = 1

is T (n) = O (n) whenever g (n) = o (n).

13

References
[1] Paul Bachmann. Die Analytische Zahlentheorie. 1894.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edi-
tion, 2009.

[3] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. May
2006.

[4] N.G. de Bruijn. Asymptotic Methods in Analysis. Bibliotheca mathematica.
Dover Publications, 1970.

[5] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by au-
tomatic computers. Proceedings of USSR Academy of Sciences, 145(7):293–
294, 1962.

[6] Virginia Vassilevska Williams. Multiplying matrices faster than
coppersmith-winograd. In Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing, STOC ’12, pages 887–898, New York,
NY, USA, 2012. ACM.

14

	Improving Algorithms
	Using Multiplication of Imaginary Numbers

	Using Recursion to Find Complexities
	Asymptotic Notation
	Relations between and O and
	Some examples about little o and
	Exercises

	Solving Recurrences
	Substitution Method
	Subtleties of the Substitution Method

	The Reduced Version of the Master Theorem
	Exercises

