
Analysis of Algorithms
Divide and Conquer

Andres Mendez-Vazquez

September 10, 2020

1 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

2 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

3 / 113

Divide an Conquer

Divide et impera
A classic technique based on the multi-based recursion.

Thus, we have
That Divide and Conquer works by recursively breaking down the problem
into subproblems and solving those subproblems recursively.

Until you reach a base case!!!

Remark
Given the fact of the following equivalence:

Recursion ≡ Iteration (1)

4 / 113

Divide an Conquer

Divide et impera
A classic technique based on the multi-based recursion.

Thus, we have
That Divide and Conquer works by recursively breaking down the problem
into subproblems and solving those subproblems recursively.

Until you reach a base case!!!

Remark
Given the fact of the following equivalence:

Recursion ≡ Iteration (1)

4 / 113

Divide an Conquer

Divide et impera
A classic technique based on the multi-based recursion.

Thus, we have
That Divide and Conquer works by recursively breaking down the problem
into subproblems and solving those subproblems recursively.

Until you reach a base case!!!

Remark
Given the fact of the following equivalence:

Recursion ≡ Iteration (1)

4 / 113

Divide an Conquer

Divide et impera
A classic technique based on the multi-based recursion.

Thus, we have
That Divide and Conquer works by recursively breaking down the problem
into subproblems and solving those subproblems recursively.

Until you reach a base case!!!

Remark
Given the fact of the following equivalence:

Recursion ≡ Iteration (1)

4 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

5 / 113

Gauss and the Beginning

Carl Friedrich Gauss (1777–1855)
He devised a way to multiply two imaginary numbers as

(a+ bi) (c+ di) = ac+ (ad+ bc) i− bd (2)

By realizing that

bc+ ad = (a+ b) (c+ d)− ac− bd (3)

Thus minimizing the number of multiplications from four to three.

Actually
We can represent binary numbers like 1001 as 1000 + 01 = 22 × 10 + 01

6 / 113

Gauss and the Beginning

Carl Friedrich Gauss (1777–1855)
He devised a way to multiply two imaginary numbers as

(a+ bi) (c+ di) = ac+ (ad+ bc) i− bd (2)

By realizing that

bc+ ad = (a+ b) (c+ d)− ac− bd (3)

Thus minimizing the number of multiplications from four to three.

Actually
We can represent binary numbers like 1001 as 1000 + 01 = 22 × 10 + 01

6 / 113

Gauss and the Beginning

Carl Friedrich Gauss (1777–1855)
He devised a way to multiply two imaginary numbers as

(a+ bi) (c+ di) = ac+ (ad+ bc) i− bd (2)

By realizing that

bc+ ad = (a+ b) (c+ d)− ac− bd (3)

Thus minimizing the number of multiplications from four to three.

Actually
We can represent binary numbers like 1001 as 1000 + 01 = 22 × 10 + 01

6 / 113

Thus

We can represent numbers x, y as
x = xL ◦ xR = 2n/2xL + xR

y = yL ◦ yR = 2n/2yL + yR

Thus, the multiplication can be found by using

xy =
(
2n/2xL + xR

) (
2n/2yL + yR

)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR (4)

However
if we use the Gauss’s trick, we only need xLyL, xRyR, (xL + xR)(yL + yR)
to calculate the multiplication:

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

7 / 113

Thus

We can represent numbers x, y as
x = xL ◦ xR = 2n/2xL + xR

y = yL ◦ yR = 2n/2yL + yR

Thus, the multiplication can be found by using

xy =
(
2n/2xL + xR

) (
2n/2yL + yR

)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR (4)

However
if we use the Gauss’s trick, we only need xLyL, xRyR, (xL + xR)(yL + yR)
to calculate the multiplication:

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

7 / 113

Thus

We can represent numbers x, y as
x = xL ◦ xR = 2n/2xL + xR

y = yL ◦ yR = 2n/2yL + yR

Thus, the multiplication can be found by using

xy =
(
2n/2xL + xR

) (
2n/2yL + yR

)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR (4)

However
if we use the Gauss’s trick, we only need xLyL, xRyR, (xL + xR)(yL + yR)
to calculate the multiplication:

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

7 / 113

Thus

We can represent numbers x, y as
x = xL ◦ xR = 2n/2xL + xR

y = yL ◦ yR = 2n/2yL + yR

Thus, the multiplication can be found by using

xy =
(
2n/2xL + xR

) (
2n/2yL + yR

)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR (4)

However
if we use the Gauss’s trick, we only need xLyL, xRyR, (xL + xR)(yL + yR)
to calculate the multiplication:

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

7 / 113

Thus

We can represent numbers x, y as
x = xL ◦ xR = 2n/2xL + xR

y = yL ◦ yR = 2n/2yL + yR

Thus, the multiplication can be found by using

xy =
(
2n/2xL + xR

) (
2n/2yL + yR

)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR (4)

However
if we use the Gauss’s trick, we only need xLyL, xRyR, (xL + xR)(yL + yR)
to calculate the multiplication:

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

7 / 113

Now, You have this...

We have that
xy can be calculated by using the two parts, Left and Right.

Then
Thus, each xLxL, xLyR, xRyL and xRyR can be calculated in a similar
way

Recursion
This is know as a Recursive Procedure!!!

8 / 113

Now, You have this...

We have that
xy can be calculated by using the two parts, Left and Right.

Then
Thus, each xLxL, xLyR, xRyL and xRyR can be calculated in a similar
way

Recursion
This is know as a Recursive Procedure!!!

8 / 113

Now, You have this...

We have that
xy can be calculated by using the two parts, Left and Right.

Then
Thus, each xLxL, xLyR, xRyL and xRyR can be calculated in a similar
way

Recursion
This is know as a Recursive Procedure!!!

8 / 113

Complexities

Old Multiplication

T (n) = 4T
(
n

2

)
+ Some Work (5)

New Multiplication

T (n) = 3T (n) + Some Work (6)

We will prove that
For old style multiplications O

(
n2).

For new style multiplications O
(
nlog2 3

)

9 / 113

Complexities

Old Multiplication

T (n) = 4T
(
n

2

)
+ Some Work (5)

New Multiplication

T (n) = 3T (n) + Some Work (6)

We will prove that
For old style multiplications O

(
n2).

For new style multiplications O
(
nlog2 3

)

9 / 113

Complexities

Old Multiplication

T (n) = 4T
(
n

2

)
+ Some Work (5)

New Multiplication

T (n) = 3T (n) + Some Work (6)

We will prove that
For old style multiplications O

(
n2).

For new style multiplications O
(
nlog2 3

)

9 / 113

Complexities

Old Multiplication

T (n) = 4T
(
n

2

)
+ Some Work (5)

New Multiplication

T (n) = 3T (n) + Some Work (6)

We will prove that
For old style multiplications O

(
n2).

For new style multiplications O
(
nlog2 3

)

9 / 113

Epitaph

We can do divide and conquer
In a really unclever way!!!

Or we can go and design something better
Thus, improving speedup!!!

The difference between
A great design...
Or a crappy job...

10 / 113

Epitaph

We can do divide and conquer
In a really unclever way!!!

Or we can go and design something better
Thus, improving speedup!!!

The difference between
A great design...
Or a crappy job...

10 / 113

Epitaph

We can do divide and conquer
In a really unclever way!!!

Or we can go and design something better
Thus, improving speedup!!!

The difference between
A great design...
Or a crappy job...

10 / 113

Epitaph

We can do divide and conquer
In a really unclever way!!!

Or we can go and design something better
Thus, improving speedup!!!

The difference between
A great design...
Or a crappy job...

10 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

11 / 113

Recursion is the base of Divide and Conquer

This is the natural way we do many things
We always attack smaller versions first of the large one!!!

Stephen Cole Kleene
He defined the basics about the use of recursion.

12 / 113

Recursion is the base of Divide and Conquer

This is the natural way we do many things
We always attack smaller versions first of the large one!!!

Stephen Cole Kleene
He defined the basics about the use of recursion.

12 / 113

Kleene and Company

Some facts about him
Stephen Cole Kleene (January 5, 1909 – January 25, 1994) was an
American mathematician.
One of the students of Alonzo Church!!!

I Church is best known for the lambda calculus, Church–Turing thesis
and proving the undecidability of the use of an algorithm to say
Yes(Valid) or No(No Valid) to a first order logic statement on a FOL
System (Proposed by David Hilbert).

Recursion Theory
Kleene, along with Alan Turing, Emil Post, and others, is best known
as a founder of the branch of mathematical logic known as recursion
theory.
This theory subsequently helped to provide the foundations of
theoretical computer science.

13 / 113

Kleene and Company

Some facts about him
Stephen Cole Kleene (January 5, 1909 – January 25, 1994) was an
American mathematician.
One of the students of Alonzo Church!!!

I Church is best known for the lambda calculus, Church–Turing thesis
and proving the undecidability of the use of an algorithm to say
Yes(Valid) or No(No Valid) to a first order logic statement on a FOL
System (Proposed by David Hilbert).

Recursion Theory
Kleene, along with Alan Turing, Emil Post, and others, is best known
as a founder of the branch of mathematical logic known as recursion
theory.
This theory subsequently helped to provide the foundations of
theoretical computer science.

13 / 113

Kleene and Company

Some facts about him
Stephen Cole Kleene (January 5, 1909 – January 25, 1994) was an
American mathematician.
One of the students of Alonzo Church!!!

I Church is best known for the lambda calculus, Church–Turing thesis
and proving the undecidability of the use of an algorithm to say
Yes(Valid) or No(No Valid) to a first order logic statement on a FOL
System (Proposed by David Hilbert).

Recursion Theory
Kleene, along with Alan Turing, Emil Post, and others, is best known
as a founder of the branch of mathematical logic known as recursion
theory.
This theory subsequently helped to provide the foundations of
theoretical computer science.

13 / 113

Kleene and Company

Some facts about him
Stephen Cole Kleene (January 5, 1909 – January 25, 1994) was an
American mathematician.
One of the students of Alonzo Church!!!

I Church is best known for the lambda calculus, Church–Turing thesis
and proving the undecidability of the use of an algorithm to say
Yes(Valid) or No(No Valid) to a first order logic statement on a FOL
System (Proposed by David Hilbert).

Recursion Theory
Kleene, along with Alan Turing, Emil Post, and others, is best known
as a founder of the branch of mathematical logic known as recursion
theory.
This theory subsequently helped to provide the foundations of
theoretical computer science.

13 / 113

Kleene and Company

Some facts about him
Stephen Cole Kleene (January 5, 1909 – January 25, 1994) was an
American mathematician.
One of the students of Alonzo Church!!!

I Church is best known for the lambda calculus, Church–Turing thesis
and proving the undecidability of the use of an algorithm to say
Yes(Valid) or No(No Valid) to a first order logic statement on a FOL
System (Proposed by David Hilbert).

Recursion Theory
Kleene, along with Alan Turing, Emil Post, and others, is best known
as a founder of the branch of mathematical logic known as recursion
theory.
This theory subsequently helped to provide the foundations of
theoretical computer science.

13 / 113

Recursion

Something Notable
Sometimes it is difficult to define an object explicitly.
It may be easy to define this object in smaller version of itself.
This process is called recursion!!!

Thus
We can use recursion to define sequences, functions, and sets.

Example
an = 2n for n = 0, 1, 2, . . . =⇒ 1, 2, 4, 8, 16, 32, . . .
Thus, the sequence can be defined in a recursive way:

an+1 = 2× an (7)

14 / 113

Recursion

Something Notable
Sometimes it is difficult to define an object explicitly.
It may be easy to define this object in smaller version of itself.
This process is called recursion!!!

Thus
We can use recursion to define sequences, functions, and sets.

Example
an = 2n for n = 0, 1, 2, . . . =⇒ 1, 2, 4, 8, 16, 32, . . .
Thus, the sequence can be defined in a recursive way:

an+1 = 2× an (7)

14 / 113

Recursion

Something Notable
Sometimes it is difficult to define an object explicitly.
It may be easy to define this object in smaller version of itself.
This process is called recursion!!!

Thus
We can use recursion to define sequences, functions, and sets.

Example
an = 2n for n = 0, 1, 2, . . . =⇒ 1, 2, 4, 8, 16, 32, . . .
Thus, the sequence can be defined in a recursive way:

an+1 = 2× an (7)

14 / 113

Recursion

Something Notable
Sometimes it is difficult to define an object explicitly.
It may be easy to define this object in smaller version of itself.
This process is called recursion!!!

Thus
We can use recursion to define sequences, functions, and sets.

Example
an = 2n for n = 0, 1, 2, . . . =⇒ 1, 2, 4, 8, 16, 32, . . .
Thus, the sequence can be defined in a recursive way:

an+1 = 2× an (7)

14 / 113

Recursion

Something Notable
Sometimes it is difficult to define an object explicitly.
It may be easy to define this object in smaller version of itself.
This process is called recursion!!!

Thus
We can use recursion to define sequences, functions, and sets.

Example
an = 2n for n = 0, 1, 2, . . . =⇒ 1, 2, 4, 8, 16, 32, . . .
Thus, the sequence can be defined in a recursive way:

an+1 = 2× an (7)

14 / 113

Recursion

Something Notable
Sometimes it is difficult to define an object explicitly.
It may be easy to define this object in smaller version of itself.
This process is called recursion!!!

Thus
We can use recursion to define sequences, functions, and sets.

Example
an = 2n for n = 0, 1, 2, . . . =⇒ 1, 2, 4, 8, 16, 32, . . .
Thus, the sequence can be defined in a recursive way:

an+1 = 2× an (7)

14 / 113

Recursion

Something Notable
Sometimes it is difficult to define an object explicitly.
It may be easy to define this object in smaller version of itself.
This process is called recursion!!!

Thus
We can use recursion to define sequences, functions, and sets.

Example
an = 2n for n = 0, 1, 2, . . . =⇒ 1, 2, 4, 8, 16, 32, . . .
Thus, the sequence can be defined in a recursive way:

an+1 = 2× an (7)

14 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

15 / 113

Recursively Defined Functions

First
Assume T is a function with the set of nonnegative integers as its domain.

Second
We use two steps to define T :

Basis step:
Specify the value of T (0).

Recursive step:
Give a rule for T (x) using T (y) where 0 ≤ y < x.

Thus
Such a definition is called a recursive or inductive definition.

16 / 113

Recursively Defined Functions

First
Assume T is a function with the set of nonnegative integers as its domain.

Second
We use two steps to define T :

Basis step:
Specify the value of T (0).

Recursive step:
Give a rule for T (x) using T (y) where 0 ≤ y < x.

Thus
Such a definition is called a recursive or inductive definition.

16 / 113

Recursively Defined Functions

First
Assume T is a function with the set of nonnegative integers as its domain.

Second
We use two steps to define T :

Basis step:
Specify the value of T (0).

Recursive step:
Give a rule for T (x) using T (y) where 0 ≤ y < x.

Thus
Such a definition is called a recursive or inductive definition.

16 / 113

Recursively Defined Functions

First
Assume T is a function with the set of nonnegative integers as its domain.

Second
We use two steps to define T :

Basis step:
Specify the value of T (0).

Recursive step:
Give a rule for T (x) using T (y) where 0 ≤ y < x.

Thus
Such a definition is called a recursive or inductive definition.

16 / 113

Recursively Defined Functions

First
Assume T is a function with the set of nonnegative integers as its domain.

Second
We use two steps to define T :

Basis step:
Specify the value of T (0).

Recursive step:
Give a rule for T (x) using T (y) where 0 ≤ y < x.

Thus
Such a definition is called a recursive or inductive definition.

16 / 113

Recursively Defined Functions

First
Assume T is a function with the set of nonnegative integers as its domain.

Second
We use two steps to define T :

Basis step:
Specify the value of T (0).

Recursive step:
Give a rule for T (x) using T (y) where 0 ≤ y < x.

Thus
Such a definition is called a recursive or inductive definition.

16 / 113

Recursively Defined Functions

First
Assume T is a function with the set of nonnegative integers as its domain.

Second
We use two steps to define T :

Basis step:
Specify the value of T (0).

Recursive step:
Give a rule for T (x) using T (y) where 0 ≤ y < x.

Thus
Such a definition is called a recursive or inductive definition.

16 / 113

Example

Can you give me the following?
Give an inductive definition of the factorial function T (n) = n!.

Base case
Which is the base case?

Recursive case
What is the recursive case?

17 / 113

Example

Can you give me the following?
Give an inductive definition of the factorial function T (n) = n!.

Base case
Which is the base case?

Recursive case
What is the recursive case?

17 / 113

Example

Can you give me the following?
Give an inductive definition of the factorial function T (n) = n!.

Base case
Which is the base case?

Recursive case
What is the recursive case?

17 / 113

We can go further...

Recursively Defined Sets and Structures
Assume S is a set.
We can use two steps to define the elements of S.

Basis Step
Specify an initial collection of elements.

Recursive Step
Give a rule for forming new elements from those already known to be in S.

18 / 113

We can go further...

Recursively Defined Sets and Structures
Assume S is a set.
We can use two steps to define the elements of S.

Basis Step
Specify an initial collection of elements.

Recursive Step
Give a rule for forming new elements from those already known to be in S.

18 / 113

We can go further...

Recursively Defined Sets and Structures
Assume S is a set.
We can use two steps to define the elements of S.

Basis Step
Specify an initial collection of elements.

Recursive Step
Give a rule for forming new elements from those already known to be in S.

18 / 113

We can go further...

Recursively Defined Sets and Structures
Assume S is a set.
We can use two steps to define the elements of S.

Basis Step
Specify an initial collection of elements.

Recursive Step
Give a rule for forming new elements from those already known to be in S.

18 / 113

Example

Consider
Consider S ⊆ Z defined by...

Basis Step
3 ∈ S

Recursive Step
If x ∈ S and y ∈ S, then x+ y ∈ S.

19 / 113

Example

Consider
Consider S ⊆ Z defined by...

Basis Step
3 ∈ S

Recursive Step
If x ∈ S and y ∈ S, then x+ y ∈ S.

19 / 113

Example

Consider
Consider S ⊆ Z defined by...

Basis Step
3 ∈ S

Recursive Step
If x ∈ S and y ∈ S, then x+ y ∈ S.

19 / 113

Example

Elements
3 ∈ S
3 + 3 = 6 ∈ S
6 + 3 = 9 ∈ S
6 + 6 = 12 ∈ S
· · ·

20 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

21 / 113

Divide and Conquer

Divide
Split problem into a number of subproblems.

Conquer
Solve each subproblem recursively.

Combine
The solution of the problems into the solution of the original problem.

22 / 113

Divide and Conquer

Divide
Split problem into a number of subproblems.

Conquer
Solve each subproblem recursively.

Combine
The solution of the problems into the solution of the original problem.

22 / 113

Divide and Conquer

Divide
Split problem into a number of subproblems.

Conquer
Solve each subproblem recursively.

Combine
The solution of the problems into the solution of the original problem.

22 / 113

Time Complexities

Definition
Given an input as a string where the problem is being encoded using
an alphabet Σ,

I The time complexity quantifies the amount of time taken by an
algorithm to run as a function on the length of such string.

23 / 113

The Divide and Conquer of Merge Sort

Merge-Sort(A, p, r)
1 if p < r then
2 q ←

⌊
p+r

2

⌋
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q + 1, r)
5 MERGE(A, p, q, r)

Explanation
Divide part into the conquer!!!

24 / 113

The Divide and Conquer of Merge Sort

Merge-Sort(A, p, r)
1 if p < r then
2 q ←

⌊
p+r

2

⌋
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q + 1, r)
5 MERGE(A, p, q, r)

Explanation
The combine part!!!

25 / 113

Merge Sort
Merge(A, p, q, r)

1 n1 ← q − p+ 1, n2 ← r − p
2 let L[1, 2, ..., n1 + 1] and
R[1, 2, ..., n2 + 1] be new arrays.

3 for i← 1 to n1
4 L[i]← A[p+ i− 1]
5 forj ← 1 to n2
6 R[i]← A[q + j]
7 L[n1 + 1]←∞
8 R[n2 + 1]←∞
9 i← 1, j ← 1
10 for k ← p to r
11 if L[i] ≤ R[j] then
12 A[k]← L[i]
13 i← i+ 1
14 else
15 A[k]← R[j]
16 j ← j + 1

Explanation
Copy all to be merged
lists into two containers.

26 / 113

Merge Sort
Merge(A, p, q, r)

1 n1 ← q − p+ 1, n2 ← r − p
2 let L[1, 2, ..., n1 + 1] and
R[1, 2, ..., n2 + 1] be new arrays.

3 for i← 1 to n1
4 L[i]← A[p+ i− 1]
5 forj ← 1 to n2
6 R[i]← A[q + j]
7 L[n1 + 1]←∞
8 R[n2 + 1]←∞
9 i← 1, j ← 1
10 for k ← p to r
11 if L[i] ≤ R[j] then
12 A[k]← L[i]
13 i← i+ 1
14 else
15 A[k]← R[j]
16 j ← j + 1

Explanation
Merging part.

27 / 113

The Merge Sort Recursion Cost Function

28 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

29 / 113

Recursive Functions

Using Church-Turing Thesis
Every computable function from natural numbers to natural
numbers is recursive and computable.

YES!!!
We can use recursive functions to represent the TOTAL number of steps
carried when computing an ALGORITHM

30 / 113

Recursive Functions

Using Church-Turing Thesis
Every computable function from natural numbers to natural
numbers is recursive and computable.

YES!!!
We can use recursive functions to represent the TOTAL number of steps
carried when computing an ALGORITHM

30 / 113

Thus, we have

Each Step for ONE Merging takes...
A certain constant time c!!!

Thus, if we merge n elements
Total time at level 1 of recursion:

cn (8)

In addition...
We have that the recursion split each work by

1
2i , for i = 1, ..., logn (9)

31 / 113

Thus, we have

Each Step for ONE Merging takes...
A certain constant time c!!!

Thus, if we merge n elements
Total time at level 1 of recursion:

cn (8)

In addition...
We have that the recursion split each work by

1
2i , for i = 1, ..., logn (9)

31 / 113

Thus, we have

Each Step for ONE Merging takes...
A certain constant time c!!!

Thus, if we merge n elements
Total time at level 1 of recursion:

cn (8)

In addition...
We have that the recursion split each work by

1
2i , for i = 1, ..., logn (9)

31 / 113

Thus, we have the following Recursion

Base Case n = 1

T (n) = c (10)

Where c stands for a constant in the number of time units or
assembly instructions per line!!!

Recursive Step n > 1

2T
(
n

2

)
+ cn (11)

Finally

T (n) =
{
c if n = 1
2T
(
n
2
)

+ cn if n > 1
(12)

32 / 113

Thus, we have the following Recursion

Base Case n = 1

T (n) = c (10)

Where c stands for a constant in the number of time units or
assembly instructions per line!!!

Recursive Step n > 1

2T
(
n

2

)
+ cn (11)

Finally

T (n) =
{
c if n = 1
2T
(
n
2
)

+ cn if n > 1
(12)

32 / 113

Thus, we have the following Recursion

Base Case n = 1

T (n) = c (10)

Where c stands for a constant in the number of time units or
assembly instructions per line!!!

Recursive Step n > 1

2T
(
n

2

)
+ cn (11)

Finally

T (n) =
{
c if n = 1
2T
(
n
2
)

+ cn if n > 1
(12)

32 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

33 / 113

Recursion and Induction

Something Notable
When a sequence is defined recursively, mathematical induction can be
used to prove results about the sequence.

34 / 113

For Example

We want
To show that the set S is the set A of all positive integers that are
multiples of 3.

First A ⊆ S

Show that if ∀k ≥ 1 P (k) is true, then P (k + 1) is true

We define, first, the inductive hypothesis
P (k) : 3k ∈ S is true

35 / 113

For Example

We want
To show that the set S is the set A of all positive integers that are
multiples of 3.

First A ⊆ S

Show that if ∀k ≥ 1 P (k) is true, then P (k + 1) is true

We define, first, the inductive hypothesis
P (k) : 3k ∈ S is true

35 / 113

For Example

We want
To show that the set S is the set A of all positive integers that are
multiples of 3.

First A ⊆ S

Show that if ∀k ≥ 1 P (k) is true, then P (k + 1) is true

We define, first, the inductive hypothesis
P (k) : 3k ∈ S is true

35 / 113

Thus

We know the following by definition
3 ∈ S

We need to prove that for any k

P (k + 1) : 3 (k + 1) = 3k + 3 ∈ S

We have using the recursive definition
We know that 3k ∈ S and 3 ∈ S is true, therefore by definition

3k + 3 = 3 (k + 1) ∈ S

36 / 113

Thus

We know the following by definition
3 ∈ S

We need to prove that for any k

P (k + 1) : 3 (k + 1) = 3k + 3 ∈ S

We have using the recursive definition
We know that 3k ∈ S and 3 ∈ S is true, therefore by definition

3k + 3 = 3 (k + 1) ∈ S

36 / 113

Thus

We know the following by definition
3 ∈ S

We need to prove that for any k

P (k + 1) : 3 (k + 1) = 3k + 3 ∈ S

We have using the recursive definition
We know that 3k ∈ S and 3 ∈ S is true, therefore by definition

3k + 3 = 3 (k + 1) ∈ S

36 / 113

Thus

We know the following by definition
3 ∈ S

We need to prove that for any k

P (k + 1) : 3 (k + 1) = 3k + 3 ∈ S

We have using the recursive definition
We know that 3k ∈ S and 3 ∈ S is true, therefore by definition

3k + 3 = 3 (k + 1) ∈ S

36 / 113

Now

Finally
We have that for x ∈ A with x = 3k for k ≥ 1, then by the previous
proof 3k ∈ S!!!
Then, A ⊆ S!!!

Now, show that S ⊆ A

Or ∀x, x ∈ S then x ∈ A

Given the definition
Basis Step: 3 ∈ S
Recursive Step: x ∈ S, y ∈ S ⇒ x+ y ∈ S

37 / 113

Now

Finally
We have that for x ∈ A with x = 3k for k ≥ 1, then by the previous
proof 3k ∈ S!!!
Then, A ⊆ S!!!

Now, show that S ⊆ A

Or ∀x, x ∈ S then x ∈ A

Given the definition
Basis Step: 3 ∈ S
Recursive Step: x ∈ S, y ∈ S ⇒ x+ y ∈ S

37 / 113

Now

Finally
We have that for x ∈ A with x = 3k for k ≥ 1, then by the previous
proof 3k ∈ S!!!
Then, A ⊆ S!!!

Now, show that S ⊆ A

Or ∀x, x ∈ S then x ∈ A

Given the definition
Basis Step: 3 ∈ S
Recursive Step: x ∈ S, y ∈ S ⇒ x+ y ∈ S

37 / 113

Now

Finally
We have that for x ∈ A with x = 3k for k ≥ 1, then by the previous
proof 3k ∈ S!!!
Then, A ⊆ S!!!

Now, show that S ⊆ A

Or ∀x, x ∈ S then x ∈ A

Given the definition
Basis Step: 3 ∈ S
Recursive Step: x ∈ S, y ∈ S ⇒ x+ y ∈ S

37 / 113

Now

Finally
We have that for x ∈ A with x = 3k for k ≥ 1, then by the previous
proof 3k ∈ S!!!
Then, A ⊆ S!!!

Now, show that S ⊆ A

Or ∀x, x ∈ S then x ∈ A

Given the definition
Basis Step: 3 ∈ S
Recursive Step: x ∈ S, y ∈ S ⇒ x+ y ∈ S

37 / 113

Then

First, 3 ∈ S

It is clear that 3 ∈ A

Now, given x ∈ S and y ∈ S

if x ∈ A and y ∈ A
Then, x and y are multiples of 3

Therefore
x+ y is a multiple of 3 with x+ y ∈ S by definition, and also
x+ y ∈ A
Therefore, S ⊆ A

38 / 113

Then

First, 3 ∈ S

It is clear that 3 ∈ A

Now, given x ∈ S and y ∈ S

if x ∈ A and y ∈ A
Then, x and y are multiples of 3

Therefore
x+ y is a multiple of 3 with x+ y ∈ S by definition, and also
x+ y ∈ A
Therefore, S ⊆ A

38 / 113

Then

First, 3 ∈ S

It is clear that 3 ∈ A

Now, given x ∈ S and y ∈ S

if x ∈ A and y ∈ A
Then, x and y are multiples of 3

Therefore
x+ y is a multiple of 3 with x+ y ∈ S by definition, and also
x+ y ∈ A
Therefore, S ⊆ A

38 / 113

Then

First, 3 ∈ S

It is clear that 3 ∈ A

Now, given x ∈ S and y ∈ S

if x ∈ A and y ∈ A
Then, x and y are multiples of 3

Therefore
x+ y is a multiple of 3 with x+ y ∈ S by definition, and also
x+ y ∈ A
Therefore, S ⊆ A

38 / 113

Then

First, 3 ∈ S

It is clear that 3 ∈ A

Now, given x ∈ S and y ∈ S

if x ∈ A and y ∈ A
Then, x and y are multiples of 3

Therefore
x+ y is a multiple of 3 with x+ y ∈ S by definition, and also
x+ y ∈ A
Therefore, S ⊆ A

38 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

39 / 113

Structural induction

Something Notable
Instead of mathematical induction to prove a result about a recursively
defined sets, we can used more convenient form of induction known as
structural induction.

First
Assume we have a recursive definition for a set S.
Given n ∈ S, we must show that P (n) is true using structural
induction.

40 / 113

Structural induction

Something Notable
Instead of mathematical induction to prove a result about a recursively
defined sets, we can used more convenient form of induction known as
structural induction.

First
Assume we have a recursive definition for a set S.
Given n ∈ S, we must show that P (n) is true using structural
induction.

40 / 113

Structural induction

Something Notable
Instead of mathematical induction to prove a result about a recursively
defined sets, we can used more convenient form of induction known as
structural induction.

First
Assume we have a recursive definition for a set S.
Given n ∈ S, we must show that P (n) is true using structural
induction.

40 / 113

Definition of Structural induction

Basis Step
Assume j is an element specified in the base step of the definition.
Show that ∀j, P (j) is true.

Recursive step
Let x be a new element constructed in the recursive step of the
definition.
Assume k1, k2, ..., km are elements used to construct an element x in
the recursive step of the definition.
Show that
∀ k1, k2, ..., km ((P (k1) ∧ P (k2) ∧ . . . ∧ P (km))→ P (x)).

41 / 113

Definition of Structural induction

Basis Step
Assume j is an element specified in the base step of the definition.
Show that ∀j, P (j) is true.

Recursive step
Let x be a new element constructed in the recursive step of the
definition.
Assume k1, k2, ..., km are elements used to construct an element x in
the recursive step of the definition.
Show that
∀ k1, k2, ..., km ((P (k1) ∧ P (k2) ∧ . . . ∧ P (km))→ P (x)).

41 / 113

Definition of Structural induction

Basis Step
Assume j is an element specified in the base step of the definition.
Show that ∀j, P (j) is true.

Recursive step
Let x be a new element constructed in the recursive step of the
definition.
Assume k1, k2, ..., km are elements used to construct an element x in
the recursive step of the definition.
Show that
∀ k1, k2, ..., km ((P (k1) ∧ P (k2) ∧ . . . ∧ P (km))→ P (x)).

41 / 113

Definition of Structural induction

Basis Step
Assume j is an element specified in the base step of the definition.
Show that ∀j, P (j) is true.

Recursive step
Let x be a new element constructed in the recursive step of the
definition.
Assume k1, k2, ..., km are elements used to construct an element x in
the recursive step of the definition.
Show that
∀ k1, k2, ..., km ((P (k1) ∧ P (k2) ∧ . . . ∧ P (km))→ P (x)).

41 / 113

Definition of Structural induction

Basis Step
Assume j is an element specified in the base step of the definition.
Show that ∀j, P (j) is true.

Recursive step
Let x be a new element constructed in the recursive step of the
definition.
Assume k1, k2, ..., km are elements used to construct an element x in
the recursive step of the definition.
Show that
∀ k1, k2, ..., km ((P (k1) ∧ P (k2) ∧ . . . ∧ P (km))→ P (x)).

41 / 113

Therefore

We can use structural induction
To prove the correctness of a loop in an algorithm!!!

Yes!!! In a loop we have an iteration
That goes from 1 to n.
And it has a property P that needs to be maintained!!!

Thus, the new element to be constructed
It can be our array to be sorted!!!

42 / 113

Therefore

We can use structural induction
To prove the correctness of a loop in an algorithm!!!

Yes!!! In a loop we have an iteration
That goes from 1 to n.
And it has a property P that needs to be maintained!!!

Thus, the new element to be constructed
It can be our array to be sorted!!!

42 / 113

Therefore

We can use structural induction
To prove the correctness of a loop in an algorithm!!!

Yes!!! In a loop we have an iteration
That goes from 1 to n.
And it has a property P that needs to be maintained!!!

Thus, the new element to be constructed
It can be our array to be sorted!!!

42 / 113

Therefore

We can use structural induction
To prove the correctness of a loop in an algorithm!!!

Yes!!! In a loop we have an iteration
That goes from 1 to n.
And it has a property P that needs to be maintained!!!

Thus, the new element to be constructed
It can be our array to be sorted!!!

42 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

43 / 113

Again Insertion Sort - Proving the Sorting Property
Data: Unsorted Sequence A
Result: Sort Sequence A
Insertion Sort(A)
for j ← 2 to lenght(A) do

key ← A[j];
// Insert A[j] Insert A[j] into the sorted sequence

A[1, ..., j − 1]
i← j − 1;
while i > 0 and A[i] > key do

A[i+ 1]← A[i];
i← i− 1;

end
A[i+ 1]← key

end

44 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

45 / 113

The Structure of the Inductive Proof for a Loop

You have an initial input n

Input of n elements.
Always be sure about your input!!!

Then, we have the following steeps
1 Initialization - Before the loop.
2 Maintenance - In the loop.
3 Termination - At the end of the loop.

46 / 113

The Structure of the Inductive Proof for a Loop

You have an initial input n

Input of n elements.
Always be sure about your input!!!

Then, we have the following steeps
1 Initialization - Before the loop.
2 Maintenance - In the loop.
3 Termination - At the end of the loop.

46 / 113

The Structure of the Inductive Proof for a Loop

You have an initial input n

Input of n elements.
Always be sure about your input!!!

Then, we have the following steeps
1 Initialization - Before the loop.
2 Maintenance - In the loop.
3 Termination - At the end of the loop.

46 / 113

The Structure of the Inductive Proof for a Loop

You have an initial input n

Input of n elements.
Always be sure about your input!!!

Then, we have the following steeps
1 Initialization - Before the loop.
2 Maintenance - In the loop.
3 Termination - At the end of the loop.

46 / 113

The Structure of the Inductive Proof for a Loop

You have an initial input n

Input of n elements.
Always be sure about your input!!!

Then, we have the following steeps
1 Initialization - Before the loop.
2 Maintenance - In the loop.
3 Termination - At the end of the loop.

46 / 113

Initialization

We have the following before the loop
That the condition is true for one element!!!

I For example, in insertion sort A[1] is an already sorted array.

47 / 113

Initialization

We have the following before the loop
That the condition is true for one element!!!

I For example, in insertion sort A[1] is an already sorted array.

47 / 113

Maintenance

First, we must be able to prove that
The property holds before entering into the loop.

I That the array A [1...j − 1] is sorted!!!

Then, we need to prove that
The insertion sort maintains the sorted property during the loop.

48 / 113

Maintenance

First, we must be able to prove that
The property holds before entering into the loop.

I That the array A [1...j − 1] is sorted!!!

Then, we need to prove that
The insertion sort maintains the sorted property during the loop.

48 / 113

Maintenance

First, we must be able to prove that
The property holds before entering into the loop.

I That the array A [1...j − 1] is sorted!!!

Then, we need to prove that
The insertion sort maintains the sorted property during the loop.

48 / 113

Termination

We need
To prove that the property is TRUE for n elements.

I At the end of the algorithm A[1, ..., n] is a sorted

49 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

50 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

For example, Insertion Sort (Thanks to Luis Rodriguez
Oracle Master 2012)
First, we define the following sets with sorted elements

Less = 〈x1, ..., xk|xi < key, i = 1, .., k〉
Greater = 〈x1, ..., xm|xj > key, j = 1, ..,m〉
I = elements still not compared to the key

Initialization
We have A[1...1] with only one element ⇒ it is sorted

Maintanence
Before we enter to the inner while loop, we have

1 A[1..j − 1] an already sorted array
2 Less = ∅
3 Greater = ∅
4 I = A[1...j − 1].

51 / 113

Then

Case I
You never enter in the inner loop, thus A[j − 1] < key ⇒
Less = A[1..j − 1], thus A[1..j] is a sorted array.

Case II
1 You entered the inner while loop.
2 Thus at each iteration we have the following structure
A[1...j] = I A[i] Greater

I where Greater = 〈A[i], A[i+ 1], · · · , A[j − 1]〉.

Note: I and Greater are sorted such that A[1...j] is sorted by
itself at this moment in the inner loop

52 / 113

Then

Case I
You never enter in the inner loop, thus A[j − 1] < key ⇒
Less = A[1..j − 1], thus A[1..j] is a sorted array.

Case II
1 You entered the inner while loop.
2 Thus at each iteration we have the following structure
A[1...j] = I A[i] Greater

I where Greater = 〈A[i], A[i+ 1], · · · , A[j − 1]〉.

Note: I and Greater are sorted such that A[1...j] is sorted by
itself at this moment in the inner loop

52 / 113

Then

Case I
You never enter in the inner loop, thus A[j − 1] < key ⇒
Less = A[1..j − 1], thus A[1..j] is a sorted array.

Case II
1 You entered the inner while loop.
2 Thus at each iteration we have the following structure
A[1...j] = I A[i] Greater

I where Greater = 〈A[i], A[i+ 1], · · · , A[j − 1]〉.

Note: I and Greater are sorted such that A[1...j] is sorted by
itself at this moment in the inner loop

52 / 113

Then

Case I
You never enter in the inner loop, thus A[j − 1] < key ⇒
Less = A[1..j − 1], thus A[1..j] is a sorted array.

Case II
1 You entered the inner while loop.
2 Thus at each iteration we have the following structure
A[1...j] = I A[i] Greater

I where Greater = 〈A[i], A[i+ 1], · · · , A[j − 1]〉.

Note: I and Greater are sorted such that A[1...j] is sorted by
itself at this moment in the inner loop

52 / 113

Then

Case I
You never enter in the inner loop, thus A[j − 1] < key ⇒
Less = A[1..j − 1], thus A[1..j] is a sorted array.

Case II
1 You entered the inner while loop.
2 Thus at each iteration we have the following structure
A[1...j] = I A[i] Greater

I where Greater = 〈A[i], A[i+ 1], · · · , A[j − 1]〉.

Note: I and Greater are sorted such that A[1...j] is sorted by
itself at this moment in the inner loop

52 / 113

Now

Thus, we get out of the inner loop once I = ∅.
1 We have that A[1...j] = Less A[i+ 1] Greater , where
A[i+ 2] == A[i+ 1].

2 Thus, A[1...j] is sorted before inserting the key into the position
A[i+ 1].

3 Then, because elements of A[1...j] are sorted,
1 We have that after inserting the key at position i+ 1 in A[1...j] the

array is still sorted after iteration j.

53 / 113

Now

Thus, we get out of the inner loop once I = ∅.
1 We have that A[1...j] = Less A[i+ 1] Greater , where
A[i+ 2] == A[i+ 1].

2 Thus, A[1...j] is sorted before inserting the key into the position
A[i+ 1].

3 Then, because elements of A[1...j] are sorted,
1 We have that after inserting the key at position i+ 1 in A[1...j] the

array is still sorted after iteration j.

53 / 113

Now

Thus, we get out of the inner loop once I = ∅.
1 We have that A[1...j] = Less A[i+ 1] Greater , where
A[i+ 2] == A[i+ 1].

2 Thus, A[1...j] is sorted before inserting the key into the position
A[i+ 1].

3 Then, because elements of A[1...j] are sorted,
1 We have that after inserting the key at position i+ 1 in A[1...j] the

array is still sorted after iteration j.

53 / 113

Now

Thus, we get out of the inner loop once I = ∅.
1 We have that A[1...j] = Less A[i+ 1] Greater , where
A[i+ 2] == A[i+ 1].

2 Thus, A[1...j] is sorted before inserting the key into the position
A[i+ 1].

3 Then, because elements of A[1...j] are sorted,
1 We have that after inserting the key at position i+ 1 in A[1...j] the

array is still sorted after iteration j.

53 / 113

Finally, Termination

Termination
Once j > length(A), we get out of the outer loop and j = n+ 1.
Then, using the maintenance procedure we have that the sub-array
A [1...n] is sorted as we wanted.

54 / 113

Finally, Termination

Termination
Once j > length(A), we get out of the outer loop and j = n+ 1.
Then, using the maintenance procedure we have that the sub-array
A [1...n] is sorted as we wanted.

54 / 113

Actually

This is known as
Loop Invariance!!!

Why is this important? Recursion ≡ Iteration
How?

I A computational system that can compute every Turing Computable
function is called Turing complete (or Turing powerful).

Properties
A Turing-complete system is called Turing equivalent if every function it
can compute is also Turing Computable.

It computes precisely the same class of functions as do Turing
machines.

55 / 113

Actually

This is known as
Loop Invariance!!!

Why is this important? Recursion ≡ Iteration
How?

I A computational system that can compute every Turing Computable
function is called Turing complete (or Turing powerful).

Properties
A Turing-complete system is called Turing equivalent if every function it
can compute is also Turing Computable.

It computes precisely the same class of functions as do Turing
machines.

55 / 113

Actually

This is known as
Loop Invariance!!!

Why is this important? Recursion ≡ Iteration
How?

I A computational system that can compute every Turing Computable
function is called Turing complete (or Turing powerful).

Properties
A Turing-complete system is called Turing equivalent if every function it
can compute is also Turing Computable.

It computes precisely the same class of functions as do Turing
machines.

55 / 113

Actually

This is known as
Loop Invariance!!!

Why is this important? Recursion ≡ Iteration
How?

I A computational system that can compute every Turing Computable
function is called Turing complete (or Turing powerful).

Properties
A Turing-complete system is called Turing equivalent if every function it
can compute is also Turing Computable.

It computes precisely the same class of functions as do Turing
machines.

55 / 113

Actually

This is known as
Loop Invariance!!!

Why is this important? Recursion ≡ Iteration
How?

I A computational system that can compute every Turing Computable
function is called Turing complete (or Turing powerful).

Properties
A Turing-complete system is called Turing equivalent if every function it
can compute is also Turing Computable.

It computes precisely the same class of functions as do Turing
machines.

55 / 113

Recursion ≡ Iteration

Then
Since you can build a Turing complete language using strictly iterative
structures and a Turning complete language using only recursive
structures, then the two are therefore equivalent.

Proof From Lambda Calculus
Assume languages IT (with Iterative constructs only) and REC (with
Recursive constructs only).
Simulate a universal Turing machine using IT, then simulate a
universal Turing machine using REC.
The existence of the simulator programs guarantees that both IT and
REC can calculate all the computable functions.

56 / 113

Recursion ≡ Iteration

Then
Since you can build a Turing complete language using strictly iterative
structures and a Turning complete language using only recursive
structures, then the two are therefore equivalent.

Proof From Lambda Calculus
Assume languages IT (with Iterative constructs only) and REC (with
Recursive constructs only).
Simulate a universal Turing machine using IT, then simulate a
universal Turing machine using REC.
The existence of the simulator programs guarantees that both IT and
REC can calculate all the computable functions.

56 / 113

Recursion ≡ Iteration

Then
Since you can build a Turing complete language using strictly iterative
structures and a Turning complete language using only recursive
structures, then the two are therefore equivalent.

Proof From Lambda Calculus
Assume languages IT (with Iterative constructs only) and REC (with
Recursive constructs only).
Simulate a universal Turing machine using IT, then simulate a
universal Turing machine using REC.
The existence of the simulator programs guarantees that both IT and
REC can calculate all the computable functions.

56 / 113

Recursion ≡ Iteration

Then
Since you can build a Turing complete language using strictly iterative
structures and a Turning complete language using only recursive
structures, then the two are therefore equivalent.

Proof From Lambda Calculus
Assume languages IT (with Iterative constructs only) and REC (with
Recursive constructs only).
Simulate a universal Turing machine using IT, then simulate a
universal Turing machine using REC.
The existence of the simulator programs guarantees that both IT and
REC can calculate all the computable functions.

56 / 113

Nevertheless

Important
We use RECURSIVE procedures, when we begin to solve new
problems so we can understand them.
Then, we move everything to ITERATIVE procedures for speed!!!

57 / 113

Nevertheless

Important
We use RECURSIVE procedures, when we begin to solve new
problems so we can understand them.
Then, we move everything to ITERATIVE procedures for speed!!!

57 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

58 / 113

Introduction

Let’s go back to first principles
We can look at our problem of complexities as bounding functions for
approximation.

Can we do better?
Asymptotic Approximation... We will see a little bit more as the course
goes...

59 / 113

Introduction

Let’s go back to first principles
We can look at our problem of complexities as bounding functions for
approximation.

Can we do better?
Asymptotic Approximation... We will see a little bit more as the course
goes...

59 / 113

Big O

Definition (Big O - Upper Bound)
For a given function g(n):

O(g(n)) ={f(n)| There exists c > 0 and n0 > 0
s.t. 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}

Example

60 / 113

Big O

Definition (Big O - Upper Bound)
For a given function g(n):

O(g(n)) ={f(n)| There exists c > 0 and n0 > 0
s.t. 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}

Example

60 / 113

Big Ω

Definition (Big Ω - Lower Bound)
For a given function g(n):

Ω(g(n)) ={f(n)| There exists c > 0 and n0 > 0
s.t. 0 ≤ cg(n) ≤ f(n) ∀n ≥ n0}

Example

61 / 113

Big Ω

Definition (Big Ω - Lower Bound)
For a given function g(n):

Ω(g(n)) ={f(n)| There exists c > 0 and n0 > 0
s.t. 0 ≤ cg(n) ≤ f(n) ∀n ≥ n0}

Example

61 / 113

Big Θ

Definition (Big Θ - Tight Bound)
For a given function g(n):

Θ(g(n)) ={f(n)| There exists c1 > 0, c2 > 0 and n0 > 0
s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

Example

62 / 113

Big Θ

Definition (Big Θ - Tight Bound)
For a given function g(n):

Θ(g(n)) ={f(n)| There exists c1 > 0, c2 > 0 and n0 > 0
s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

Example

62 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

63 / 113

Can we relate this with practical examples?

You could say
This is too theoretical!

However, this is not the case!!
Look at this java code...

64 / 113

Can we relate this with practical examples?

You could say
This is too theoretical!

However, this is not the case!!
Look at this java code...

64 / 113

Example: Step count of Insertion Sort in Java
Counting when A.length = n

// Sor t A assume i s f u l l
p u b l i c i n t [] I n s e r t i o n S o r t (i n t [] A){ Step
// I n i t i a l V a r i a b l e s 0
i n t B [] = new i n t [A . l e n g t h] ; 1
i n t s i z e = 1 ; 1
i n t i , j , t ; 1
// I n i t i a l i z e the Array B 0
B[0]=A [0] ; 1
f o r (i = 1 ; i < A. l e n g t h ; i ++){ n

t = A[i] ; n−1
f o r (j=s i z e −1;

j>=0&&t<B[j] ; j−−) i+1
{

// s h i f t to the r i g h t 0
B[j +1]=B[j] ; } i

B [j +1]=t ; n−1
s i z e++; n−1

}
r e t u r n B ; 1

}

65 / 113

The Result

Step count for body of for loop is

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) (13)

The summation
They have the quadratic terms n2.

Complexity
Insertion sort complexity is O

(
n2)

66 / 113

The Result

Step count for body of for loop is

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) (13)

The summation
They have the quadratic terms n2.

Complexity
Insertion sort complexity is O

(
n2)

66 / 113

The Result

Step count for body of for loop is

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) (13)

The summation
They have the quadratic terms n2.

Complexity
Insertion sort complexity is O

(
n2)

66 / 113

What does this means for insertion sort?

We have

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) = ...

3 + 4n+ n (n− 1)
2 + n− 1 + n (n− 1)

2 = ...

2 + 5n+ n(n− 1) = ...

n2 + 4n+ 2 ≤ n2 + 4n2 + 2n2

Thus
n2 + 4n+ 2 ≤ 7n2 (14)

With Tinsertion(n) = n2 + 4n+ 2 describing the number of steps for
insertion when we have n numbers.

67 / 113

What does this means for insertion sort?

We have

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) = ...

3 + 4n+ n (n− 1)
2 + n− 1 + n (n− 1)

2 = ...

2 + 5n+ n(n− 1) = ...

n2 + 4n+ 2 ≤ n2 + 4n2 + 2n2

Thus
n2 + 4n+ 2 ≤ 7n2 (14)

With Tinsertion(n) = n2 + 4n+ 2 describing the number of steps for
insertion when we have n numbers.

67 / 113

What does this means for insertion sort?

We have

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) = ...

3 + 4n+ n (n− 1)
2 + n− 1 + n (n− 1)

2 = ...

2 + 5n+ n(n− 1) = ...

n2 + 4n+ 2 ≤ n2 + 4n2 + 2n2

Thus
n2 + 4n+ 2 ≤ 7n2 (14)

With Tinsertion(n) = n2 + 4n+ 2 describing the number of steps for
insertion when we have n numbers.

67 / 113

What does this means for insertion sort?

We have

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) = ...

3 + 4n+ n (n− 1)
2 + n− 1 + n (n− 1)

2 = ...

2 + 5n+ n(n− 1) = ...

n2 + 4n+ 2 ≤ n2 + 4n2 + 2n2

Thus
n2 + 4n+ 2 ≤ 7n2 (14)

With Tinsertion(n) = n2 + 4n+ 2 describing the number of steps for
insertion when we have n numbers.

67 / 113

What does this means for insertion sort?

We have

6 + 3 (n− 1) + n+
n−1∑
i=1

(i+ 1) +
n−1∑
j=1

(i) = ...

3 + 4n+ n (n− 1)
2 + n− 1 + n (n− 1)

2 = ...

2 + 5n+ n(n− 1) = ...

n2 + 4n+ 2 ≤ n2 + 4n2 + 2n2

Thus
n2 + 4n+ 2 ≤ 7n2 (14)

With Tinsertion(n) = n2 + 4n+ 2 describing the number of steps for
insertion when we have n numbers.

67 / 113

Actually

For n0 = 2

22 + 4× 2 + 2 = 14 < 7× 22 = 28 (15)

Graphically

68 / 113

Actually
For n0 = 2

22 + 4× 2 + 2 = 14 < 7× 22 = 28 (15)

Graphically

68 / 113

Meaning

First
Time or number of operations does not exceed cn2 for a constant c on any
input of size n (n suitably large).

Questions
Is O(n2) too much time?
Is the algorithm practical?

69 / 113

Meaning

First
Time or number of operations does not exceed cn2 for a constant c on any
input of size n (n suitably large).

Questions
Is O(n2) too much time?
Is the algorithm practical?

69 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

70 / 113

Then

We have the following
n n n logn n2 n3 n4

1000 1 micros 10 micros 1 milis 1 second 17 minutes
10,000 10 micros 130 micros 100 milis 17 minutes 116 days

106 1 milis 20 milis 17 minutes 32 years 3× 107years

It is much worse

71 / 113

Then

We have the following
n n n logn n2 n3 n4

1000 1 micros 10 micros 1 milis 1 second 17 minutes
10,000 10 micros 130 micros 100 milis 17 minutes 116 days

106 1 milis 20 milis 17 minutes 32 years 3× 107years

It is much worse
n n10 2n

1000 3.2× 1013 years 3.2× 10283 years
10,000 ??? ???

106 ????? ?????
The Reign of the Non Polynomial Algorithms

71 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

72 / 113

Little o Bound

Definition
For a given function g(n):

o(g(n)) ={f(n)| For any c > 0 there exists n0 > 0
s.t. 0 ≤ f(n) < cg(n) ∀n ≥ n0}

Observations
It is not tight.

For example, We have that 2n = o
(
n2), but 2n2 6= o(n2).

73 / 113

Little o Bound

Definition
For a given function g(n):

o(g(n)) ={f(n)| For any c > 0 there exists n0 > 0
s.t. 0 ≤ f(n) < cg(n) ∀n ≥ n0}

Observations
It is not tight.

For example, We have that 2n = o
(
n2), but 2n2 6= o(n2).

73 / 113

Little o Bound

Not only that
Under the definition, we have for any f(n) ∈ o(g(n))

lim
n→∞

f(n)
g(n) = 0

74 / 113

Little ω Bound

Definition
For a given function g(n):

ω(g(n)) ={f(n)| For any c > 0 there exists n0 > 0 s.t.
0 ≤ cg(n) < f(n) ∀n ≥ n0}

Observations
It is not tight.

For example, n2

2 = ω(n), but n2

2 6= ω(n2).

75 / 113

Little ω Bound

Definition
For a given function g(n):

ω(g(n)) ={f(n)| For any c > 0 there exists n0 > 0 s.t.
0 ≤ cg(n) < f(n) ∀n ≥ n0}

Observations
It is not tight.

For example, n2

2 = ω(n), but n2

2 6= ω(n2).

75 / 113

Little ω Bound

Not only that
Under the definition, we have for any f(n) ∈ ω(g(n))

lim
n→∞

f(n)
g(n) =∞

76 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

77 / 113

Interpretation

How do you interpret f (n) = O(n2)?
It means that f (n) belongs to O

(
n2)

How do you interpret 2n2 + 3n + 1 = 2n2 + Θ(n)?
∃f(n) ∈ Θ(n) such that:

2n2 + 3n+ 1 = 2n2 + f(n)
= 2n2 + Θ(n)

78 / 113

Interpretation

How do you interpret f (n) = O(n2)?
It means that f (n) belongs to O

(
n2)

How do you interpret 2n2 + 3n + 1 = 2n2 + Θ(n)?
∃f(n) ∈ Θ(n) such that:

2n2 + 3n+ 1 = 2n2 + f(n)
= 2n2 + Θ(n)

78 / 113

Interpretation

How do you interpret f (n) = O(n2)?
It means that f (n) belongs to O

(
n2)

How do you interpret 2n2 + 3n + 1 = 2n2 + Θ(n)?
∃f(n) ∈ Θ(n) such that:

2n2 + 3n+ 1 = 2n2 + f(n)
= 2n2 + Θ(n)

78 / 113

Interpretation

How do you interpret f (n) = O(n2)?
It means that f (n) belongs to O

(
n2)

How do you interpret 2n2 + 3n + 1 = 2n2 + Θ(n)?
∃f(n) ∈ Θ(n) such that:

2n2 + 3n+ 1 = 2n2 + f(n)
= 2n2 + Θ(n)

78 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

79 / 113

Properties
Equivalence
For any two functions f(n) and g(n), we have that f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Transitivity
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) then f(n) = Θ(h(n))

Reflexivity
f(n) = Θ(f(n))

Symmetry
f(n) = Θ(g(n))⇐⇒ g(n) = Θ(f(n))

Transpose Symmetry
f(n) = O(g(n))⇐⇒ g(n) = Ω(f(n))

80 / 113

Properties
Equivalence
For any two functions f(n) and g(n), we have that f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Transitivity
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) then f(n) = Θ(h(n))

Reflexivity
f(n) = Θ(f(n))

Symmetry
f(n) = Θ(g(n))⇐⇒ g(n) = Θ(f(n))

Transpose Symmetry
f(n) = O(g(n))⇐⇒ g(n) = Ω(f(n))

80 / 113

Properties
Equivalence
For any two functions f(n) and g(n), we have that f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Transitivity
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) then f(n) = Θ(h(n))

Reflexivity
f(n) = Θ(f(n))

Symmetry
f(n) = Θ(g(n))⇐⇒ g(n) = Θ(f(n))

Transpose Symmetry
f(n) = O(g(n))⇐⇒ g(n) = Ω(f(n))

80 / 113

Properties
Equivalence
For any two functions f(n) and g(n), we have that f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Transitivity
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) then f(n) = Θ(h(n))

Reflexivity
f(n) = Θ(f(n))

Symmetry
f(n) = Θ(g(n))⇐⇒ g(n) = Θ(f(n))

Transpose Symmetry
f(n) = O(g(n))⇐⇒ g(n) = Ω(f(n))

80 / 113

Properties
Equivalence
For any two functions f(n) and g(n), we have that f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Transitivity
f(n) = Θ(g(n)) and g(n) = Θ(h(n)) then f(n) = Θ(h(n))

Reflexivity
f(n) = Θ(f(n))

Symmetry
f(n) = Θ(g(n))⇐⇒ g(n) = Θ(f(n))

Transpose Symmetry
f(n) = O(g(n))⇐⇒ g(n) = Ω(f(n))

80 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

81 / 113

Examples

For the little o, we have that 2n = o(n2), but 2n2 6= o(n2)
In the case of the first part, it is easy to see that for any given c exist
a n0 such that 1

no
2
< c.

In addition, n > n0 implies that 1
n0
> 1

n .

Then

2 < cn⇐⇒ 2n < cn2

In the second part, if we assume c = 2 and a certain value n0 that
makes true the inequality

2n2
0 < 2n2

0 Contradiction!!!

82 / 113

Examples

For the little o, we have that 2n = o(n2), but 2n2 6= o(n2)
In the case of the first part, it is easy to see that for any given c exist
a n0 such that 1

no
2
< c.

In addition, n > n0 implies that 1
n0
> 1

n .

Then

2 < cn⇐⇒ 2n < cn2

In the second part, if we assume c = 2 and a certain value n0 that
makes true the inequality

2n2
0 < 2n2

0 Contradiction!!!

82 / 113

Examples

For the little o, we have that 2n = o(n2), but 2n2 6= o(n2)
In the case of the first part, it is easy to see that for any given c exist
a n0 such that 1

no
2
< c.

In addition, n > n0 implies that 1
n0
> 1

n .

Then

2 < cn⇐⇒ 2n < cn2

In the second part, if we assume c = 2 and a certain value n0 that
makes true the inequality

2n2
0 < 2n2

0 Contradiction!!!

82 / 113

Examples

For the little o, we have that 2n = o(n2), but 2n2 6= o(n2)
In the case of the first part, it is easy to see that for any given c exist
a n0 such that 1

no
2
< c.

In addition, n > n0 implies that 1
n0
> 1

n .

Then

2 < cn⇐⇒ 2n < cn2

In the second part, if we assume c = 2 and a certain value n0 that
makes true the inequality

2n2
0 < 2n2

0 Contradiction!!!

82 / 113

A similar situation can be seen in little ω

For example n2

2 = ω(n), but n2

2 6= ω(n2)

In the first case, a similar argument can be done such that

cn <
n2

2

In the second part
if we assume that the inequality holds for the second case we can
chose c = 2, we again obtain a contradiction.

83 / 113

A similar situation can be seen in little ω

For example n2

2 = ω(n), but n2

2 6= ω(n2)

In the first case, a similar argument can be done such that

cn <
n2

2

In the second part
if we assume that the inequality holds for the second case we can
chose c = 2, we again obtain a contradiction.

83 / 113

A similar situation can be seen in little ω

For example n2

2 = ω(n), but n2

2 6= ω(n2)

In the first case, a similar argument can be done such that

cn <
n2

2

In the second part
if we assume that the inequality holds for the second case we can
chose c = 2, we again obtain a contradiction.

83 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

84 / 113

Ok, we have the basics...

Now...
What do we do?

We will look at methods to solve recursions!!!
1 Substitution Method
2 Recursion-Tree Method
3 Master Method

85 / 113

Ok, we have the basics...

Now...
What do we do?

We will look at methods to solve recursions!!!
1 Substitution Method
2 Recursion-Tree Method
3 Master Method

85 / 113

Ok, we have the basics...

Now...
What do we do?

We will look at methods to solve recursions!!!
1 Substitution Method
2 Recursion-Tree Method
3 Master Method

85 / 113

Ok, we have the basics...

Now...
What do we do?

We will look at methods to solve recursions!!!
1 Substitution Method
2 Recursion-Tree Method
3 Master Method

85 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

86 / 113

The Substitution Method

The Steps in the Method
Guess the form of the solution.
Use mathematical induction to find the constants and show that the
solution works.

87 / 113

The Substitution Method

The Steps in the Method
Guess the form of the solution.
Use mathematical induction to find the constants and show that the
solution works.

87 / 113

Example

Solve the following recurrence

T (n) = 2T
(⌊

n

2

⌋)
+ n (16)

I decide to do the following GUESS
Guess that T (n) = O(n logn)!!!

For this
We assume that the bound holds for

⌊
n
2
⌋
< n (Remember Inductive

Hypothesis!!!).

88 / 113

Example

Solve the following recurrence

T (n) = 2T
(⌊

n

2

⌋)
+ n (16)

I decide to do the following GUESS
Guess that T (n) = O(n logn)!!!

For this
We assume that the bound holds for

⌊
n
2
⌋
< n (Remember Inductive

Hypothesis!!!).

88 / 113

Example

Solve the following recurrence

T (n) = 2T
(⌊

n

2

⌋)
+ n (16)

I decide to do the following GUESS
Guess that T (n) = O(n logn)!!!

For this
We assume that the bound holds for

⌊
n
2
⌋
< n (Remember Inductive

Hypothesis!!!).

88 / 113

Therefore

We have that the following inequality holds

T

(⌊
n

2

⌋)
≤ c

⌊
n

2

⌋
log2

(⌊
n

2

⌋)
(17)

Thus, we have that

T (n) = 2T
(⌊

n

2

⌋)
+ n

≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

89 / 113

Therefore

We have that the following inequality holds

T

(⌊
n

2

⌋)
≤ c

⌊
n

2

⌋
log2

(⌊
n

2

⌋)
(17)

Thus, we have that

T (n) = 2T
(⌊

n

2

⌋)
+ n

≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

89 / 113

Therefore

We have that the following inequality holds

T

(⌊
n

2

⌋)
≤ c

⌊
n

2

⌋
log2

(⌊
n

2

⌋)
(17)

Thus, we have that

T (n) = 2T
(⌊

n

2

⌋)
+ n

≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

89 / 113

Thus

We have that

T (n) ≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

≤ 2c× n

2 × log2

(
n

2

)
+ n

= cn log2

(
n

2

)
+ n

Remember the following

log2

(
n

2

)
= log2 n− log2 2

= log2 n− 1

90 / 113

Thus

We have that

T (n) ≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

≤ 2c× n

2 × log2

(
n

2

)
+ n

= cn log2

(
n

2

)
+ n

Remember the following

log2

(
n

2

)
= log2 n− log2 2

= log2 n− 1

90 / 113

Thus

We have that

T (n) ≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

≤ 2c× n

2 × log2

(
n

2

)
+ n

= cn log2

(
n

2

)
+ n

Remember the following

log2

(
n

2

)
= log2 n− log2 2

= log2 n− 1

90 / 113

Thus

We have that

T (n) ≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

≤ 2c× n

2 × log2

(
n

2

)
+ n

= cn log2

(
n

2

)
+ n

Remember the following

log2

(
n

2

)
= log2 n− log2 2

= log2 n− 1

90 / 113

Thus

We have that

T (n) ≤ 2c
⌊
n

2

⌋
log2

(⌊
n

2

⌋)
+ n

≤ 2c× n

2 × log2

(
n

2

)
+ n

= cn log2

(
n

2

)
+ n

Remember the following

log2

(
n

2

)
= log2 n− log2 2

= log2 n− 1

90 / 113

Finally, we have
We have

T (n) ≤ cn log2 n− cn+ n

Now, we need to have that

− cn+ n ≤ 0
n ≤ cn
1 ≤ n

Then, as long c ≥ 1, we have that

T (n) ≤ cn log2 n− cn+ n

≤ cn log2 n

91 / 113

Finally, we have
We have

T (n) ≤ cn log2 n− cn+ n

Now, we need to have that

− cn+ n ≤ 0
n ≤ cn
1 ≤ n

Then, as long c ≥ 1, we have that

T (n) ≤ cn log2 n− cn+ n

≤ cn log2 n

91 / 113

Finally, we have
We have

T (n) ≤ cn log2 n− cn+ n

Now, we need to have that

− cn+ n ≤ 0
n ≤ cn
1 ≤ n

Then, as long c ≥ 1, we have that

T (n) ≤ cn log2 n− cn+ n

≤ cn log2 n

91 / 113

Finally, we have
We have

T (n) ≤ cn log2 n− cn+ n

Now, we need to have that

− cn+ n ≤ 0
n ≤ cn
1 ≤ n

Then, as long c ≥ 1, we have that

T (n) ≤ cn log2 n− cn+ n

≤ cn log2 n

91 / 113

Finally, we have
We have

T (n) ≤ cn log2 n− cn+ n

Now, we need to have that

− cn+ n ≤ 0
n ≤ cn
1 ≤ n

Then, as long c ≥ 1, we have that

T (n) ≤ cn log2 n− cn+ n

≤ cn log2 n

91 / 113

Finally, we have
We have

T (n) ≤ cn log2 n− cn+ n

Now, we need to have that

− cn+ n ≤ 0
n ≤ cn
1 ≤ n

Then, as long c ≥ 1, we have that

T (n) ≤ cn log2 n− cn+ n

≤ cn log2 n

91 / 113

Subtleties

What about ?

T (n) = T

(⌊
n

2

⌋)
+ T

(⌈
n

2

⌉)
+ 1

92 / 113

Here
We can guess that T (n) = O(n)

T (n) ≤c
⌊
n

2

⌋
+ c

⌈
n

2

⌉
+ 1

=cn+ 1
=O(n)

Incorrect!!!
After all cn+ 1 is not cn.

We can overcome this problem by assuming a d ≥ 0 and then
“guessing” T (n) ≤ cn− d

T (n) ≤
(
c

⌊
n

2

⌋
− d

)
+
(
c

⌈
n

2

⌉
− d

)
+ 1

=cn− 2d+ 1
93 / 113

Here
We can guess that T (n) = O(n)

T (n) ≤c
⌊
n

2

⌋
+ c

⌈
n

2

⌉
+ 1

=cn+ 1
=O(n)

Incorrect!!!
After all cn+ 1 is not cn.

We can overcome this problem by assuming a d ≥ 0 and then
“guessing” T (n) ≤ cn− d

T (n) ≤
(
c

⌊
n

2

⌋
− d

)
+
(
c

⌈
n

2

⌉
− d

)
+ 1

=cn− 2d+ 1
93 / 113

Here
We can guess that T (n) = O(n)

T (n) ≤c
⌊
n

2

⌋
+ c

⌈
n

2

⌉
+ 1

=cn+ 1
=O(n)

Incorrect!!!
After all cn+ 1 is not cn.

We can overcome this problem by assuming a d ≥ 0 and then
“guessing” T (n) ≤ cn− d

T (n) ≤
(
c

⌊
n

2

⌋
− d

)
+
(
c

⌈
n

2

⌉
− d

)
+ 1

=cn− 2d+ 1
93 / 113

Therefore

Then
if we select d ≥ 1⇒ 0 ≥ 1− d.

This means that cn− 2d + 1 ≤ cn− d

Therefore, T (n) ≤ cn− d = O(n).

94 / 113

Therefore

Then
if we select d ≥ 1⇒ 0 ≥ 1− d.

This means that cn− 2d + 1 ≤ cn− d

Therefore, T (n) ≤ cn− d = O(n).

94 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

95 / 113

The Recursion-Tree Method

Surprise
Sometimes is hard to do a good guess.
For example T (n) = 3T

(
n
4
)

+ cn2

96 / 113

The Recursion-Tree Method

Surprise
Sometimes is hard to do a good guess.
For example T (n) = 3T

(
n
4
)

+ cn2

96 / 113

The Recursion-Tree Method

Therefore, we draw the recursion tree

97 / 113

Using the previous expansion, we count!!!
Counting Again!!!

A subproblem for a node at depth i is n/4i, then once

n/4i = 1⇒ i = log4 n (18)

At each level i = 0, 1, 2, ..., log4 n− 1 the cost of each node is

c

(
n

4i
)2

(19)

At each level i = 0, 1, 2, ..., log4 n− 1 the total cost of the work is

3ic
(
n

4i
)2

=
(3

16

)i
cn2 (20)

At depth log4 n, we have this many nodes

3log4 n = nlog4 3 (21)

98 / 113

Using the previous expansion, we count!!!
Counting Again!!!

A subproblem for a node at depth i is n/4i, then once

n/4i = 1⇒ i = log4 n (18)

At each level i = 0, 1, 2, ..., log4 n− 1 the cost of each node is

c

(
n

4i
)2

(19)

At each level i = 0, 1, 2, ..., log4 n− 1 the total cost of the work is

3ic
(
n

4i
)2

=
(3

16

)i
cn2 (20)

At depth log4 n, we have this many nodes

3log4 n = nlog4 3 (21)

98 / 113

Using the previous expansion, we count!!!
Counting Again!!!

A subproblem for a node at depth i is n/4i, then once

n/4i = 1⇒ i = log4 n (18)

At each level i = 0, 1, 2, ..., log4 n− 1 the cost of each node is

c

(
n

4i
)2

(19)

At each level i = 0, 1, 2, ..., log4 n− 1 the total cost of the work is

3ic
(
n

4i
)2

=
(3

16

)i
cn2 (20)

At depth log4 n, we have this many nodes

3log4 n = nlog4 3 (21)

98 / 113

Using the previous expansion, we count!!!
Counting Again!!!

A subproblem for a node at depth i is n/4i, then once

n/4i = 1⇒ i = log4 n (18)

At each level i = 0, 1, 2, ..., log4 n− 1 the cost of each node is

c

(
n

4i
)2

(19)

At each level i = 0, 1, 2, ..., log4 n− 1 the total cost of the work is

3ic
(
n

4i
)2

=
(3

16

)i
cn2 (20)

At depth log4 n, we have this many nodes

3log4 n = nlog4 3 (21)

98 / 113

Now, we add all this counts!!!

Then, we have that

T (n) =
log4n−1∑
i=0

(3
16

)i
cn2 + nlog4 3

<
∞∑
i=0

(3
16

)i
cn2 + nlog4 3

= 1
1− (3/16)cn

2 + nlog4 3

=O(n2)

99 / 113

Now, we add all this counts!!!

Then, we have that

T (n) =
log4n−1∑
i=0

(3
16

)i
cn2 + nlog4 3

<
∞∑
i=0

(3
16

)i
cn2 + nlog4 3

= 1
1− (3/16)cn

2 + nlog4 3

=O(n2)

99 / 113

Now, we add all this counts!!!

Then, we have that

T (n) =
log4n−1∑
i=0

(3
16

)i
cn2 + nlog4 3

<
∞∑
i=0

(3
16

)i
cn2 + nlog4 3

= 1
1− (3/16)cn

2 + nlog4 3

=O(n2)

99 / 113

Now, we add all this counts!!!

Then, we have that

T (n) =
log4n−1∑
i=0

(3
16

)i
cn2 + nlog4 3

<
∞∑
i=0

(3
16

)i
cn2 + nlog4 3

= 1
1− (3/16)cn

2 + nlog4 3

=O(n2)

99 / 113

Outline
1 Divide and Conquer: The Holy Grail!!

Introduction
Split problems into smaller ones

2 Divide and Conquer
The Recursion
Not only that, we can define functions recursively
Classic Application: Divide and Conquer
Using Recursion to Calculate Complexities

3 Using Induction to prove Algorithm Correctness
Relation Between Recursion and Induction
Now, Structural Induction!!!
Example of the Use of Structural Induction for Proving Loop Correctness
The Structure of the Inductive Proof for a Loop
Insertion Sort Proof

4 Asymptotic Notation
Big Notation
Relation with step count
The Terrible Reality
The Little Bounds
Interpreting the Notation
Properties
Examples using little notation

5 Method to Solve Recursions
The Classics
Substitution Method
The Recursion-Tree Method
The Master Method

100 / 113

The Master Theorem

Theorem - Cookbook for solving T (n) = aT
(
n
b

)
+ f(n)

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T (n) be defined on
the non-negative integers by the recurrence

T (n) = aT
(
n

b

)
+ f(n) (22)

where we interpret n
b
as
⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) can be bounded asymptotically as

follows:
1 If f (n) = O

(
nlogb a−ε

)
for some constant ε > 0. Then T (n) = Θ

(
nlogb a

)
.

2 If f (n) = Θ
(
nlogb a

)
, then T (n) = Θ

(
nlogb a lgn

)
.

3 If f (n) = Ω
(
nlogb a+ε) for some constant ε > 0 and if af

(
n
b

)
≤ cf (n) for some

c < 1 and all sufficiently large n, then T (n) = Θ (f (n)) .

101 / 113

The Master Theorem

Theorem - Cookbook for solving T (n) = aT
(
n
b

)
+ f(n)

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T (n) be defined on
the non-negative integers by the recurrence

T (n) = aT
(
n

b

)
+ f(n) (22)

where we interpret n
b
as
⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) can be bounded asymptotically as

follows:
1 If f (n) = O

(
nlogb a−ε

)
for some constant ε > 0. Then T (n) = Θ

(
nlogb a

)
.

2 If f (n) = Θ
(
nlogb a

)
, then T (n) = Θ

(
nlogb a lgn

)
.

3 If f (n) = Ω
(
nlogb a+ε) for some constant ε > 0 and if af

(
n
b

)
≤ cf (n) for some

c < 1 and all sufficiently large n, then T (n) = Θ (f (n)) .

101 / 113

The Master Theorem

Theorem - Cookbook for solving T (n) = aT
(
n
b

)
+ f(n)

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T (n) be defined on
the non-negative integers by the recurrence

T (n) = aT
(
n

b

)
+ f(n) (22)

where we interpret n
b
as
⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) can be bounded asymptotically as

follows:
1 If f (n) = O

(
nlogb a−ε

)
for some constant ε > 0. Then T (n) = Θ

(
nlogb a

)
.

2 If f (n) = Θ
(
nlogb a

)
, then T (n) = Θ

(
nlogb a lgn

)
.

3 If f (n) = Ω
(
nlogb a+ε) for some constant ε > 0 and if af

(
n
b

)
≤ cf (n) for some

c < 1 and all sufficiently large n, then T (n) = Θ (f (n)) .

101 / 113

The Master Theorem

Theorem - Cookbook for solving T (n) = aT
(
n
b

)
+ f(n)

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T (n) be defined on
the non-negative integers by the recurrence

T (n) = aT
(
n

b

)
+ f(n) (22)

where we interpret n
b
as
⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) can be bounded asymptotically as

follows:
1 If f (n) = O

(
nlogb a−ε

)
for some constant ε > 0. Then T (n) = Θ

(
nlogb a

)
.

2 If f (n) = Θ
(
nlogb a

)
, then T (n) = Θ

(
nlogb a lgn

)
.

3 If f (n) = Ω
(
nlogb a+ε) for some constant ε > 0 and if af

(
n
b

)
≤ cf (n) for some

c < 1 and all sufficiently large n, then T (n) = Θ (f (n)) .

101 / 113

The Master Theorem

Theorem - Cookbook for solving T (n) = aT
(
n
b

)
+ f(n)

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T (n) be defined on
the non-negative integers by the recurrence

T (n) = aT
(
n

b

)
+ f(n) (22)

where we interpret n
b
as
⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) can be bounded asymptotically as

follows:
1 If f (n) = O

(
nlogb a−ε

)
for some constant ε > 0. Then T (n) = Θ

(
nlogb a

)
.

2 If f (n) = Θ
(
nlogb a

)
, then T (n) = Θ

(
nlogb a lgn

)
.

3 If f (n) = Ω
(
nlogb a+ε) for some constant ε > 0 and if af

(
n
b

)
≤ cf (n) for some

c < 1 and all sufficiently large n, then T (n) = Θ (f (n)) .

101 / 113

We will prove a simplified version

Simplified Master Method
If T (n) = aT

(⌈
n
b

⌉)
+O(nd) for some constants a > 0, b > 1, and d ≥ 0

then

T (n) =

O(nd) if d > logb a
O(nd logn) if d = logb a
O(nlogb a) if d < logb a

102 / 113

The Branching

Recursive Expansion

DEPTH

Branching FactorSize

Size

Size

Size 1

103 / 113

Proof

First, for convenience assume n = bp

Now we can notice that the size of the subproblems are decreasing by
a factor of b at each recursive step.

Something Notable
This means that the size of each subproblems is n

bi
at level i.

Thus, in order to reach the bottom you need to have subptoblems of
size 1.

n

bi
= 1⇒ i = logb n

where i = height of the recursion three.

104 / 113

Proof

First, for convenience assume n = bp

Now we can notice that the size of the subproblems are decreasing by
a factor of b at each recursive step.

Something Notable
This means that the size of each subproblems is n

bi
at level i.

Thus, in order to reach the bottom you need to have subptoblems of
size 1.

n

bi
= 1⇒ i = logb n

where i = height of the recursion three.

104 / 113

Proof

First, for convenience assume n = bp

Now we can notice that the size of the subproblems are decreasing by
a factor of b at each recursive step.

Something Notable
This means that the size of each subproblems is n

bi
at level i.

Thus, in order to reach the bottom you need to have subptoblems of
size 1.

n

bi
= 1⇒ i = logb n

where i = height of the recursion three.

104 / 113

Therefore

Now, given that the branching factor is a

We have at the kthlevel aksubproblems, each of size n
bk
.

Then, the work at level k is

T (n) = O
(
nd
)
×
(
a

bd

)0
+O

(
nd
)
×
(
a

bd

)1
+ ...+O

(
nd
)
×
(
a

bd

)logbn

105 / 113

Therefore

Now, given that the branching factor is a

We have at the kthlevel aksubproblems, each of size n
bk
.

Then, the work at level k is

T (n) = O
(
nd
)
×
(
a

bd

)0
+O

(
nd
)
×
(
a

bd

)1
+ ...+O

(
nd
)
×
(
a

bd

)logbn

105 / 113

Then, we have that

For a g(m) = 1 + c + c2 + ... + cm

1 if c < 1 then g(m) = Θ(1)
2 if c = 1 then g(m) = Θ(m)
3 if c > 1 then g(m) = Θ(cm)

106 / 113

If c < 1 then g(m) = Θ(1)

If a
bd

< 1,
Then, we have that a < bd or logb a < d (Case one of the theorem).

107 / 113

Thus, we have

The following sequence

T (n) = O
(
nd
)

×
logbn∑
k=0

(
a

bd

)k
≤
∞∑
k=0

(
a

bd

)k
O
(
nd
)

= 1
1 − a

bd

×O
(
nd
)

≤ O
(
nd
)

Then
T (n) = O

(
nd
)

108 / 113

Thus, we have

The following sequence

T (n) = O
(
nd
)

×
logbn∑
k=0

(
a

bd

)k
≤
∞∑
k=0

(
a

bd

)k
O
(
nd
)

= 1
1 − a

bd

×O
(
nd
)

≤ O
(
nd
)

Then
T (n) = O

(
nd
)

108 / 113

If c = 1 then g(m) = Θ(m)

If a
bd

= 1
Then we have that a = bd or logb a = d (Case two of the theorem).

Then

We have that g(n) =
(
a
bd

)0
+
(
a
bd

)1
+ ...+

(
a
bd

)logbn is Θ (logb n).

109 / 113

If c = 1 then g(m) = Θ(m)

If a
bd

= 1
Then we have that a = bd or logb a = d (Case two of the theorem).

Then

We have that g(n) =
(
a
bd

)0
+
(
a
bd

)1
+ ...+

(
a
bd

)logbn is Θ (logb n).

109 / 113

Therefore

We have that

T (n) = O
(
nd
)
×

logbn∑
k=0

(a
bd

)k

= O
(
nd
)
×Θ (logb n)

Now
T (n) = O(nlogb a logb n) = O

(
nlogn a log2 n

)
because b can only be

greater or equal to two.

110 / 113

Therefore

We have that

T (n) = O
(
nd
)
×

logbn∑
k=0

(a
bd

)k

= O
(
nd
)
×Θ (logb n)

Now
T (n) = O(nlogb a logb n) = O

(
nlogn a log2 n

)
because b can only be

greater or equal to two.

110 / 113

If c > 1 then g(m) = Θ(cm)

If a
bd

> 1
Then we have that a > bd or logb a > d (Case three of the theorem).

Then
We have
nd ×

(
a
bd

)logbn = nd ×
(

alogb n

(blogb n)d
)

= alogb n = a(loga n)(logb a) = nlogb a

111 / 113

If c > 1 then g(m) = Θ(cm)

If a
bd

> 1
Then we have that a > bd or logb a > d (Case three of the theorem).

Then
We have
nd ×

(
a
bd

)logbn = nd ×
(

alogb n

(blogb n)d
)

= alogb n = a(loga n)(logb a) = nlogb a

111 / 113

Therefore, we have that

We have that

T (n) = O
(
nd
)
×
logbn∑
k=0

(
a

bd

)k
= O

(
nd
)
×O

((
a

bd

)logbn)

Thus
T (n) = O

(
nlogb a

)
Properties

112 / 113

Therefore, we have that

We have that

T (n) = O
(
nd
)
×
logbn∑
k=0

(
a

bd

)k
= O

(
nd
)
×O

((
a

bd

)logbn)

Thus
T (n) = O

(
nlogb a

)
Properties

112 / 113

Therefore, we have that

We have that

T (n) = O
(
nd
)
×
logbn∑
k=0

(
a

bd

)k
= O

(
nd
)
×O

((
a

bd

)logbn)

Thus
T (n) = O

(
nlogb a

)
Properties

112 / 113

Using the Master Theorem

Consider the following recursion

T (n) = 9T
(
n

3

)
+ n

We have that
a = 9, b = 3 and f(n) = n

Thus
nlog3 9 = Θ(n2) and f(n) = O(nlog3 9−ε) with ε = 1

Then, we use then the case 1 of the Master Theorem

T (n) = O
(
n2
)

(23)

113 / 113

Using the Master Theorem

Consider the following recursion

T (n) = 9T
(
n

3

)
+ n

We have that
a = 9, b = 3 and f(n) = n

Thus
nlog3 9 = Θ(n2) and f(n) = O(nlog3 9−ε) with ε = 1

Then, we use then the case 1 of the Master Theorem

T (n) = O
(
n2
)

(23)

113 / 113

Using the Master Theorem

Consider the following recursion

T (n) = 9T
(
n

3

)
+ n

We have that
a = 9, b = 3 and f(n) = n

Thus
nlog3 9 = Θ(n2) and f(n) = O(nlog3 9−ε) with ε = 1

Then, we use then the case 1 of the Master Theorem

T (n) = O
(
n2
)

(23)

113 / 113

Using the Master Theorem

Consider the following recursion

T (n) = 9T
(
n

3

)
+ n

We have that
a = 9, b = 3 and f(n) = n

Thus
nlog3 9 = Θ(n2) and f(n) = O(nlog3 9−ε) with ε = 1

Then, we use then the case 1 of the Master Theorem

T (n) = O
(
n2
)

(23)

113 / 113

	Divide and Conquer: The Holy Grail!!
	Introduction
	Split problems into smaller ones

	Divide and Conquer
	The Recursion
	Not only that, we can define functions recursively
	Classic Application: Divide and Conquer
	Using Recursion to Calculate Complexities

	Using Induction to prove Algorithm Correctness
	Relation Between Recursion and Induction
	Now, Structural Induction!!!
	Example of the Use of Structural Induction for Proving Loop Correctness

	Asymptotic Notation
	Big Notation
	Relation with step count
	The Terrible Reality
	The Little Bounds
	Interpreting the Notation
	Properties
	Examples using little notation

	Method to Solve Recursions
	The Classics

