Analysis of Algorithms
 Divide and Conquer

Andres Mendez-Vazquez

September 10, 2020

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones
(2) Divide and Conquer
- The Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities
(3) Using Induction to prove Algorithm Correctness
- Relation Between Recursion and Induction
- Now, Structural Induction!!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones

2 Divide and Conquer

- The Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities

3. Using Induction to prove Algorithm Correctness

- Relation Between Recursion and Induction
- Now, Structural Induction!!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- Thie Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics

O Substitution Method

- The Recursion-Tree Method
- The Master Method

Divide an Conquer

Divide et impera
A classic technique based on the multi-based recursion.

Divide an Conquer

Divide et impera

A classic technique based on the multi-based recursion.

> Thus, we have
> That Divide and Conquer works by recursively breaking down the problem into subproblems and solving those subproblems recursively.

Divide an Conquer

Divide et impera

A classic technique based on the multi-based recursion.

Thus, we have

That Divide and Conquer works by recursively breaking down the problem into subproblems and solving those subproblems recursively.

- Until you reach a base case!!!

Divide an Conquer

Divide et impera

A classic technique based on the multi-based recursion.

Thus, we have

That Divide and Conquer works by recursively breaking down the problem into subproblems and solving those subproblems recursively.

- Until you reach a base case!!!

Remark

Given the fact of the following equivalence:

$$
\begin{equation*}
\text { Recursion } \equiv \text { Iteration } \tag{1}
\end{equation*}
$$

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones
(2) Divide and Conquer
- The Recursion
- Not only that, we can define functions recursively
- Classic Appilication: Divide and Conquer
- Using Recursion to Calculate Complexities
(3) Using Induction to prove Algorithm Correctness
- Relation Between Recursion and Induction
- Now, Structural Induction!!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof
(4) Asymptotic Notation
- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

Gauss and the Beginning

Carl Friedrich Gauss (1777-1855)

He devised a way to multiply two imaginary numbers as

$$
\begin{equation*}
(a+b i)(c+d i)=a c+(a d+b c) i-b d \tag{2}
\end{equation*}
$$

Gauss and the Beginning

Carl Friedrich Gauss (1777-1855)

He devised a way to multiply two imaginary numbers as

$$
\begin{equation*}
(a+b i)(c+d i)=a c+(a d+b c) i-b d \tag{2}
\end{equation*}
$$

By realizing that

$$
\begin{equation*}
b c+a d=(a+b)(c+d)-a c-b d \tag{3}
\end{equation*}
$$

Thus minimizing the number of multiplications from four to three.

Gauss and the Beginning

Carl Friedrich Gauss (1777-1855)

He devised a way to multiply two imaginary numbers as

$$
\begin{equation*}
(a+b i)(c+d i)=a c+(a d+b c) i-b d \tag{2}
\end{equation*}
$$

By realizing that

$$
\begin{equation*}
b c+a d=(a+b)(c+d)-a c-b d \tag{3}
\end{equation*}
$$

Thus minimizing the number of multiplications from four to three.

Actually

We can represent binary numbers like 1001 as $1000+01=2^{2} \times 10+01$

Thus

We can represent numbers x, y as

- $x=x_{L} \circ x_{R}=2^{n / 2} x_{L}+x_{R}$

Thus

We can represent numbers x, y as

- $x=x_{L} \circ x_{R}=2^{n / 2} x_{L}+x_{R}$
- $y=y_{L} \circ y_{R}=2^{n / 2} y_{L}+y_{R}$

Thus

We can represent numbers x, y as

$$
\begin{aligned}
& x=x_{L} \circ x_{R}=2^{n / 2} x_{L}+x_{R} \\
& \text { - } y=y_{L} \circ y_{R}=2^{n / 2} y_{L}+y_{R}
\end{aligned}
$$

Thus, the multiplication can be found by using

$$
\begin{equation*}
x y=\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right)=2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R} \tag{4}
\end{equation*}
$$

Thus

We can represent numbers x, y as

$$
\begin{aligned}
& \text { - } x=x_{L} \circ x_{R}=2^{n / 2} x_{L}+x_{R} \\
& \text { - } y=y_{L} \circ y_{R}=2^{n / 2} y_{L}+y_{R}
\end{aligned}
$$

Thus, the multiplication can be found by using

$$
\begin{equation*}
x y=\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right)=2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R} \tag{4}
\end{equation*}
$$

However

if we use the Gauss's trick, we only need $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$ to calculate the multiplication:

Thus

We can represent numbers x, y as

$$
\begin{aligned}
& \text { - } x=x_{L} \circ x_{R}=2^{n / 2} x_{L}+x_{R} \\
& \text { - } y=y_{L} \circ y_{R}=2^{n / 2} y_{L}+y_{R}
\end{aligned}
$$

Thus, the multiplication can be found by using

$$
\begin{equation*}
x y=\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right)=2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R} \tag{4}
\end{equation*}
$$

However

if we use the Gauss's trick, we only need $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$ to calculate the multiplication:

- $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$

Now, You have this...

We have that
$x y$ can be calculated by using the two parts, Left and Right.

Now, You have this...

We have that

$x y$ can be calculated by using the two parts, Left and Right.

Then

Thus, each $x_{L} x_{L}, x_{L} y_{R}, x_{R} y_{L}$ and $x_{R} y_{R}$ can be calculated in a similar way

Now, You have this...

We have that

$x y$ can be calculated by using the two parts, Left and Right.

Then

Thus, each $x_{L} x_{L}, x_{L} y_{R}, x_{R} y_{L}$ and $x_{R} y_{R}$ can be calculated in a similar way

Recursion

This is know as a Recursive Procedure!!!

Complexities

Old Multiplication

$$
\begin{equation*}
T(n)=4 T\left(\frac{n}{2}\right)+\text { Some Work } \tag{5}
\end{equation*}
$$

Complexities

Old Multiplication

$$
\begin{equation*}
T(n)=4 T\left(\frac{n}{2}\right)+\text { Some Work } \tag{5}
\end{equation*}
$$

New Multiplication

$$
\begin{equation*}
T(n)=3 T(n)+\text { Some Work } \tag{6}
\end{equation*}
$$

Complexities

Old Multiplication

$$
\begin{equation*}
T(n)=4 T\left(\frac{n}{2}\right)+\text { Some Work } \tag{5}
\end{equation*}
$$

New Multiplication

$$
\begin{equation*}
T(n)=3 T(n)+\text { Some Work } \tag{6}
\end{equation*}
$$

We will prove that

- For old style multiplications $O\left(n^{2}\right)$.

Complexities

Old Multiplication

$$
\begin{equation*}
T(n)=4 T\left(\frac{n}{2}\right)+\text { Some Work } \tag{5}
\end{equation*}
$$

New Multiplication

$$
\begin{equation*}
T(n)=3 T(n)+\text { Some Work } \tag{6}
\end{equation*}
$$

We will prove that

- For old style multiplications $O\left(n^{2}\right)$.
- For new style multiplications $O\left(n^{\log _{2} 3}\right)$

Epitaph

We can do divide and conquer

In a really unclever way!!!

Epitaph

We can do divide and conquer

In a really unclever way!!!

Or we can go and design something better
Thus, improving speedup!!!

Epitaph

We can do divide and conquer

In a really unclever way!!!

Or we can go and design something better
Thus, improving speedup!!!

The difference between

- A great design...

Epitaph

We can do divide and conquer

In a really unclever way!!!

Or we can go and design something better
Thus, improving speedup!!!

The difference between

- A great design...
- Or a crappy job...

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones

2 Divide and Conquer

- The Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities

3) Using Induction to prove Algorithm Correctness

- Relation Between Recursion and Induction
- Now, Structural Induction!!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

Recursion is the base of Divide and Conquer

This is the natural way we do many things
We always attack smaller versions first of the large one!!!

Recursion is the base of Divide and Conquer
This is the natural way we do many things
We always attack smaller versions first of the large one!!!

Stephen Cole Kleene

- He defined the basics about the use of recursion.

Kleene and Company

Some facts about him

- Stephen Cole Kleene (January 5, 1909 - January 25, 1994) was an American mathematician.

Kleene and Company

Some facts about him

- Stephen Cole Kleene (January 5, 1909 - January 25, 1994) was an American mathematician.
- One of the students of Alonzo Church!!!

Kleene and Company

Some facts about him

- Stephen Cole Kleene (January 5, 1909 - January 25, 1994) was an American mathematician.
- One of the students of Alonzo Church!!!
- Church is best known for the lambda calculus, Church-Turing thesis and proving the undecidability of the use of an algorithm to say Yes(Valid) or No(No Valid) to a first order logic statement on a FOL System (Proposed by David Hilbert).

Kleene and Company

Some facts about him

- Stephen Cole Kleene (January 5, 1909 - January 25, 1994) was an American mathematician.
- One of the students of Alonzo Church!!!
- Church is best known for the lambda calculus, Church-Turing thesis and proving the undecidability of the use of an algorithm to say Yes(Valid) or No(No Valid) to a first order logic statement on a FOL System (Proposed by David Hilbert).

Recursion Theory

- Kleene, along with Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory.

Kleene and Company

Some facts about him

- Stephen Cole Kleene (January 5, 1909 - January 25, 1994) was an American mathematician.
- One of the students of Alonzo Church!!!
- Church is best known for the lambda calculus, Church-Turing thesis and proving the undecidability of the use of an algorithm to say Yes(Valid) or No(No Valid) to a first order logic statement on a FOL System (Proposed by David Hilbert).

Recursion Theory

- Kleene, along with Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory.
- This theory subsequently helped to provide the foundations of theoretical computer science.

Recursion

Something Notable

- Sometimes it is difficult to define an object explicitly.

Recursion

Something Notable

- Sometimes it is difficult to define an object explicitly.
- It may be easy to define this object in smaller version of itself.

Recursion

Something Notable

- Sometimes it is difficult to define an object explicitly.
- It may be easy to define this object in smaller version of itself.
- This process is called recursion!!!

Recursion

Something Notable

- Sometimes it is difficult to define an object explicitly.
- It may be easy to define this object in smaller version of itself.
- This process is called recursion!!!

Thus

We can use recursion to define sequences, functions, and sets.

Recursion

Something Notable

- Sometimes it is difficult to define an object explicitly.
- It may be easy to define this object in smaller version of itself.
- This process is called recursion!!!

Thus

We can use recursion to define sequences, functions, and sets.

Example

- $a_{n}=2^{n}$ for $n=0,1,2, \ldots \Longrightarrow 1,2,4,8,16,32, \ldots$

Recursion

Something Notable

- Sometimes it is difficult to define an object explicitly.
- It may be easy to define this object in smaller version of itself.
- This process is called recursion!!!

Thus

We can use recursion to define sequences, functions, and sets.

Example

- $a_{n}=2^{n}$ for $n=0,1,2, \ldots \Longrightarrow 1,2,4,8,16,32, \ldots$
- Thus, the sequence can be defined in a recursive way:

Recursion

Something Notable

- Sometimes it is difficult to define an object explicitly.
- It may be easy to define this object in smaller version of itself.
- This process is called recursion!!!

Thus

We can use recursion to define sequences, functions, and sets.

Example

- $a_{n}=2^{n}$ for $n=0,1,2, \ldots \Longrightarrow 1,2,4,8,16,32, \ldots$
- Thus, the sequence can be defined in a recursive way:

$$
\begin{equation*}
a_{n+1}=2 \times a_{n} \tag{7}
\end{equation*}
$$

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones

2 Divide and Conquer

- The Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities
(3) Using Induction to prove Algorithm Correctness
- Relation Between Recursion and Induction
- Now, Structural Induction!!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

Recursively Defined Functions

First

Assume T is a function with the set of nonnegative integers as its domain.

Recursively Defined Functions

First

Assume T is a function with the set of nonnegative integers as its domain.

Second

We use two steps to define T :

Recursively Defined Functions

First

Assume T is a function with the set of nonnegative integers as its domain.

Second

We use two steps to define T :
Basis step:

Recursively Defined Functions

First

Assume T is a function with the set of nonnegative integers as its domain.

Second

We use two steps to define T :
Basis step:
Specify the value of $T(0)$.

Recursively Defined Functions

First

Assume T is a function with the set of nonnegative integers as its domain.

Second

We use two steps to define T :
Basis step:
Specify the value of $T(0)$.
Recursive step:

Recursively Defined Functions

First

Assume T is a function with the set of nonnegative integers as its domain.

Second

We use two steps to define T :
Basis step:
Specify the value of $T(0)$.
Recursive step:
Give a rule for $T(x)$ using $T(y)$ where $0 \leq y<x$.

Recursively Defined Functions

First

Assume T is a function with the set of nonnegative integers as its domain.

Second

We use two steps to define T :

Basis step:

Specify the value of $T(0)$.
Recursive step:
Give a rule for $T(x)$ using $T(y)$ where $0 \leq y<x$.

Thus

Such a definition is called a recursive or inductive definition.

Example

Can you give me the following?
Give an inductive definition of the factorial function $T(n)=n!$.

Example

Can you give me the following?

Give an inductive definition of the factorial function $T(n)=n!$.

Base case

Which is the base case?

Example

Can you give me the following?

Give an inductive definition of the factorial function $T(n)=n!$.

Base case

Which is the base case?

Recursive case

What is the recursive case?

We can go further...

Recursively Defined Sets and Structures

- Assume S is a set.

We can go further...

Recursively Defined Sets and Structures

- Assume S is a set.
- We can use two steps to define the elements of S.

We can go further...

Recursively Defined Sets and Structures

- Assume S is a set.
- We can use two steps to define the elements of S.

Basis Step

Specify an initial collection of elements.

We can go further...

Recursively Defined Sets and Structures

- Assume S is a set.
- We can use two steps to define the elements of S.

Basis Step

Specify an initial collection of elements.

Recursive Step

Give a rule for forming new elements from those already known to be in S.

Example

Consider

Consider $S \subseteq \mathbb{Z}$ defined by...

Example

Consider

Consider $S \subseteq \mathbb{Z}$ defined by...

```
Basis Step
3\inS
```


Example

Consider

Consider $S \subseteq \mathbb{Z}$ defined by...

Basis Step
 $3 \in S$

Recursive Step
 If $x \in S$ and $y \in S$, then $x+y \in S$.

Example

Elements

- $3 \in S$
- $3+3=6 \in S$
- $6+3=9 \in S$
- $6+6=12 \in S$
-...

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones

2 Divide and Conquer

－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
3 Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
O Substitution Method
－The Recursion－Tree Method
－The Master Method

Divide and Conquer

Divide

Split problem into a number of subproblems.

Divide and Conquer

Divide

Split problem into a number of subproblems.

Conquer

Solve each subproblem recursively.

Divide and Conquer

Divide

Split problem into a number of subproblems.

Conquer

Solve each subproblem recursively.

Combine

The solution of the problems into the solution of the original problem.

Time Complexities

Definition

- Given an input as a string where the problem is being encoded using an alphabet Σ,
- The time complexity quantifies the amount of time taken by an algorithm to run as a function on the length of such string.

The Divide and Conquer of Merge Sort

Merge-Sort (A, p, r)

(1) if $p<r$ then
(2) $q \leftarrow\left\lfloor\frac{p+r}{2}\right\rfloor$
(3) Merge-Sort (A, p, q)
(9) Merge-Sort $(A, q+1, r)$
(3) $\operatorname{MERGE}(A, p, q, r)$

Explanation

Divide part into the conquer!!!

The Divide and Conquer of Merge Sort

Merge-Sort (A, p, r)

(1) if $p<r$ then
(2)

$$
q \leftarrow\left\lfloor\frac{p+r}{2}\right\rfloor
$$

(3) Merge-Sort (A, p, q)
(9) Merge-Sort $(A, q+1, r)$
(6) $\operatorname{MERGE}(A, p, q, r)$

Explanation

The combine part!!!

Merge Sort

- Merge(A, p, q, r)
(1) $n_{1} \leftarrow q-p+1, n_{2} \leftarrow r-p$
(2) let $L\left[1,2, \ldots, n_{1}+1\right]$ and $R\left[1,2, \ldots, n_{2}+1\right]$ be new arrays.
(3) for $i \leftarrow 1$ to n_{1}
(4) $L[i] \leftarrow A[p+i-1]$
(5) for $j \leftarrow 1$ to n_{2}
(6) $R[i] \leftarrow A[q+j]$
(7) $L\left[n_{1}+1\right] \leftarrow \infty$
(8) $R\left[n_{2}+1\right] \leftarrow \infty$
(9) $i \leftarrow 1, j \leftarrow 1$
(10) for $k \leftarrow p$ to r
(11) if $L[i] \leq R[j]$ then
(12) $A[k] \leftarrow L[i]$
(13
(14) else $i \leftarrow i+1$
(15)
(16) $A[k] \leftarrow R[j]$
(10)

Explanation

- Copy all to be merged lists into two containers.

Merge Sort

- Merge(A, p, q, r)
(1) $n_{1} \leftarrow q-p+1, n_{2} \leftarrow r-p$
(2) let $L\left[1,2, \ldots, n_{1}+1\right]$ and $R\left[1,2, \ldots, n_{2}+1\right]$ be new arrays.
(3) for $i \leftarrow 1$ to n_{1}
(4) $L[i] \leftarrow A[p+i-1]$
(5) for $j \leftarrow 1$ to n_{2}
(6) $R[i] \leftarrow A[q+j]$
(7) $L\left[n_{1}+1\right] \leftarrow \infty$
(8) $R\left[n_{2}+1\right] \leftarrow \infty$
(9) $i \leftarrow 1, j \leftarrow 1$
(10) for $k \leftarrow p$ to r
(1) if $L[i] \leq R[j]$ then
(12) $A[k] \leftarrow L[i]$
(13
(14) else $i \leftarrow i+1$
(15)
(10) $A[k] \leftarrow R[j]$
(10)

Explanation

- Merging part.

The Merge Sort Recursion Cost Function

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones

2 Divide and Conquer

－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
O The Recursion－Tree Method
－The Master Method

Recursive Functions

Using Church-Turing Thesis

Every computable function from natural numbers to natural numbers is recursive and computable.

Recursive Functions

Using Church-Turing Thesis

Every computable function from natural numbers to natural numbers is recursive and computable.

YES!!!

We can use recursive functions to represent the TOTAL number of steps carried when computing an ALGORITHM

Thus, we have

Each Step for ONE Merging takes...

A certain constant time $c!!!$

Thus, we have

Each Step for ONE Merging takes...

A certain constant time $c!!!$

Thus, if we merge n elements
Total time at level 1 of recursion:

Thus, we have

Each Step for ONE Merging takes...

A certain constant time $c!!!$

Thus, if we merge n elements
Total time at level 1 of recursion:

In addition...

We have that the recursion split each work by

$$
\begin{equation*}
\frac{1}{2^{i}}, \text { for } i=1, \ldots, \log n \tag{9}
\end{equation*}
$$

Thus, we have the following Recursion

Base Case $n=1$

$$
\begin{equation*}
T(n)=c \tag{10}
\end{equation*}
$$

Where c stands for a constant in the number of time units or assembly instructions per line!!!

Thus, we have the following Recursion
Base Case $n=1$

$$
\begin{equation*}
T(n)=c \tag{10}
\end{equation*}
$$

Where c stands for a constant in the number of time units or assembly instructions per line!!!

Recursive Step $n>1$

$$
\begin{equation*}
2 T\left(\frac{n}{2}\right)+c n \tag{11}
\end{equation*}
$$

Thus, we have the following Recursion

Base Case $n=1$

$$
\begin{equation*}
T(n)=c \tag{10}
\end{equation*}
$$

Where c stands for a constant in the number of time units or assembly instructions per line!!!

Recursive Step $n>1$

$$
\begin{equation*}
2 T\left(\frac{n}{2}\right)+c n \tag{11}
\end{equation*}
$$

Finally

$$
T(n)= \begin{cases}c & \text { if } n=1 \tag{12}\\ 2 T\left(\frac{n}{2}\right)+c n & \text { if } n>1\end{cases}
$$

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness －The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

Recursion and Induction

Something Notable

When a sequence is defined recursively, mathematical induction can be used to prove results about the sequence.

For Example

We want
To show that the set S is the set A of all positive integers that are multiples of 3 .

For Example

We want

To show that the set S is the set A of all positive integers that are multiples of 3 .

First $A \subseteq S$

Show that if $\forall k \geq 1 P(k)$ is true, then $P(k+1)$ is true

For Example

We want

To show that the set S is the set A of all positive integers that are multiples of 3 .

First $A \subseteq S$

Show that if $\forall k \geq 1 P(k)$ is true, then $P(k+1)$ is true

We define, first, the inductive hypothesis

$P(k): 3 k \in S$ is true

Thus

We know the following by definition

$$
3 \in S
$$

Thus

We know the following by definition

$$
3 \in S
$$

We need to prove that for any k

$$
P(k+1): 3(k+1)=3 k+3 \in S
$$

Thus

We know the following by definition

$$
3 \in S
$$

We need to prove that for any k

$$
P(k+1): 3(k+1)=3 k+3 \in S
$$

We have using the recursive definition

We know that $3 k \in S$ and $3 \in S$ is true, therefore by definition

Thus

We know the following by definition

$$
3 \in S
$$

We need to prove that for any k

$$
P(k+1): 3(k+1)=3 k+3 \in S
$$

We have using the recursive definition

We know that $3 k \in S$ and $3 \in S$ is true, therefore by definition

$$
3 k+3=3(k+1) \in S
$$

Now

Finally

- We have that for $x \in A$ with $x=3 k$ for $k \geq 1$, then by the previous proof $3 k \in S!!!$

Now

Finally

- We have that for $x \in A$ with $x=3 k$ for $k \geq 1$, then by the previous proof $3 k \in S!!!$
- Then, $A \subseteq S!!!$

Now

Finally

- We have that for $x \in A$ with $x=3 k$ for $k \geq 1$, then by the previous proof $3 k \in S!!!$
- Then, $A \subseteq S!!!$

Now, show that $S \subseteq A$

Or $\forall x, x \in S$ then $x \in A$

Now

Finally

- We have that for $x \in A$ with $x=3 k$ for $k \geq 1$, then by the previous proof $3 k \in S!!!$
- Then, $A \subseteq S!!!$

Now, show that $S \subseteq A$

Or $\forall x, x \in S$ then $x \in A$

Given the definition

- Basis Step: $3 \in S$

Now

Finally

- We have that for $x \in A$ with $x=3 k$ for $k \geq 1$, then by the previous proof $3 k \in S!!!$
- Then, $A \subseteq S!!!$

Now, show that $S \subseteq A$

Or $\forall x, x \in S$ then $x \in A$

Given the definition

- Basis Step: $3 \in S$
- Recursive Step: $x \in S, y \in S \Rightarrow x+y \in S$

Then

First， $3 \in S$

It is clear that $3 \in A$

Then

First, $3 \in S$

It is clear that $3 \in A$
Now, given $x \in S$ and $y \in S$

- if $x \in A$ and $y \in A$

Then

First, $3 \in S$

It is clear that $3 \in A$

Now, given $x \in S$ and $y \in S$

- if $x \in A$ and $y \in A$
- Then, x and y are multiples of 3

Then

First, $3 \in S$

It is clear that $3 \in A$

Now, given $x \in S$ and $y \in S$

- if $x \in A$ and $y \in A$
- Then, x and y are multiples of 3

Therefore

- $x+y$ is a multiple of 3 with $x+y \in S$ by definition, and also $x+y \in A$

Then

First, $3 \in S$

It is clear that $3 \in A$

Now, given $x \in S$ and $y \in S$

- if $x \in A$ and $y \in A$
- Then, x and y are multiples of 3

Therefore

- $x+y$ is a multiple of 3 with $x+y \in S$ by definition, and also $x+y \in A$
- Therefore, $S \subseteq A$

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
2 Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

Structural induction

Something Notable

Instead of mathematical induction to prove a result about a recursively defined sets, we can used more convenient form of induction known as structural induction.

Structural induction

Something Notable

Instead of mathematical induction to prove a result about a recursively defined sets, we can used more convenient form of induction known as structural induction.

First

- Assume we have a recursive definition for a set S.

Structural induction

Something Notable

Instead of mathematical induction to prove a result about a recursively defined sets, we can used more convenient form of induction known as structural induction.

First

- Assume we have a recursive definition for a set S.
- Given $n \in S$, we must show that $P(n)$ is true using structural induction.

Definition of Structural induction

Basis Step

- Assume j is an element specified in the base step of the definition.

Definition of Structural induction

Basis Step

- Assume j is an element specified in the base step of the definition.
- Show that $\forall j, P(j)$ is true.

Definition of Structural induction

Basis Step

- Assume j is an element specified in the base step of the definition.
- Show that $\forall j, P(j)$ is true.

Recursive step

- Let x be a new element constructed in the recursive step of the definition.

Definition of Structural induction

Basis Step

- Assume j is an element specified in the base step of the definition.
- Show that $\forall j, P(j)$ is true.

Recursive step

- Let x be a new element constructed in the recursive step of the definition.
- Assume $k_{1}, k_{2}, \ldots, k_{m}$ are elements used to construct an element x in the recursive step of the definition.

Definition of Structural induction

Basis Step

- Assume j is an element specified in the base step of the definition.
- Show that $\forall j, P(j)$ is true.

Recursive step

- Let x be a new element constructed in the recursive step of the definition.
- Assume $k_{1}, k_{2}, \ldots, k_{m}$ are elements used to construct an element x in the recursive step of the definition.
- Show that $\forall k_{1}, k_{2}, \ldots, k_{m}\left(\left(P\left(k_{1}\right) \wedge P\left(k_{2}\right) \wedge \ldots \wedge P\left(k_{m}\right)\right) \rightarrow P(x)\right)$.

Therefore

We can use structural induction

To prove the correctness of a loop in an algorithm!!!

Therefore

We can use structural induction

To prove the correctness of a loop in an algorithm!!!
Yes!!! In a loop we have an iteration

- That goes from 1 to n.

Therefore

We can use structural induction

To prove the correctness of a loop in an algorithm!!!
Yes!!! In a loop we have an iteration

- That goes from 1 to n.
- And it has a property P that needs to be maintained!!!

Therefore

We can use structural induction

To prove the correctness of a loop in an algorithm!!!

Yes!!! In a loop we have an iteration

- That goes from 1 to n.
- And it has a property P that needs to be maintained!!!

Thus, the new element to be constructed

It can be our array to be sorted!!!!

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones
(2) Divide and ConquerThe Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities
(3) Using Induction to prove Algorithm Correctness
- Relation Between Recursion and Induction
- Now, Structural Induction!!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

Again Insertion Sort - Proving the Sorting Property

Data: Unsorted Sequence A
Result: Sort Sequence A
Insertion Sort(A)
for $j \leftarrow 2$ to lenght (A) do
$k e y \leftarrow A[j]$;
// Insert $A[j]$ Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]$
$i \leftarrow j-1$;
while $i>0$ and $A[i]>$ key do

$$
\begin{aligned}
& A[i+1] \leftarrow A[i] ; \\
& i \leftarrow i-1
\end{aligned}
$$

end
$A[i+1] \leftarrow k e y$
end

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and ConquerThe Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

The Structure of the Inductive Proof for a Loop

You have an initial input n

- Input of n elements.

The Structure of the Inductive Proof for a Loop

You have an initial input n

- Input of n elements.
- Always be sure about your input!!!

The Structure of the Inductive Proof for a Loop

You have an initial input n

- Input of n elements.
- Always be sure about your input!!!

Then, we have the following steeps
(1) Initialization - Before the loop.

The Structure of the Inductive Proof for a Loop

You have an initial input n

- Input of n elements.
- Always be sure about your input!!!

Then, we have the following steeps
(1) Initialization - Before the loop.
(2) Maintenance - In the loop.

The Structure of the Inductive Proof for a Loop

You have an initial input n

- Input of n elements.
- Always be sure about your input!!!

Then, we have the following steeps
(1) Initialization - Before the loop.
(2) Maintenance - In the loop.
(3) Termination - At the end of the loop.

Initialization

We have the following before the loop

- That the condition is true for one element!!!

Initialization

We have the following before the loop

- That the condition is true for one element!!!
- For example, in insertion sort $A[1]$ is an already sorted array.

Maintenance

First, we must be able to prove that

- The property holds before entering into the loop.

Maintenance

First, we must be able to prove that

- The property holds before entering into the loop.
- That the array $A[1 \ldots j-1]$ is sorted!!!

Maintenance

First, we must be able to prove that

- The property holds before entering into the loop.
- That the array $A[1 \ldots j-1]$ is sorted!!!

Then, we need to prove that
The insertion sort maintains the sorted property during the loop.

Termination

We need

- To prove that the property is TRUE for n elements.
- At the end of the algorithm $A[1, \ldots, n]$ is a sorted

Outline

1．Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and ConquerThe Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
（4）Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

For example, Insertion Sort (Thanks to Luis Rodriguez Oracle Master 2012)
First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$

For example, Insertion Sort (Thanks to Luis Rodriguez Oracle Master 2012)
First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$

For example, Insertion Sort (Thanks to Luis Rodriguez Oracle Master 2012)
First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$
- $I=$ elements still not compared to the key

For example, Insertion Sort (Thanks to Luis Rodriguez Oracle Master 2012)
First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$
- $I=$ elements still not compared to the key

Initialization

We have $A[1 \ldots 1]$ with only one element \Rightarrow it is sorted

For example, Insertion Sort (Thanks to Luis Rodriguez Oracle Master 2012)
First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$
- $I=$ elements still not compared to the key

Initialization

We have $A[1 \ldots 1]$ with only one element \Rightarrow it is sorted

Maintanence

Before we enter to the inner while loop, we have

For example, Insertion Sort (Thanks to Luis Rodriguez

 Oracle Master 2012)First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$
- $I=$ elements still not compared to the key

Initialization

We have $A[1 \ldots 1]$ with only one element \Rightarrow it is sorted

Maintanence

Before we enter to the inner while loop, we have
(1) $A[1 . . j-1]$ an already sorted array

For example, Insertion Sort (Thanks to Luis Rodriguez

 Oracle Master 2012)First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$
- $I=$ elements still not compared to the key

Initialization

We have $A[1 \ldots 1]$ with only one element \Rightarrow it is sorted

Maintanence

Before we enter to the inner while loop, we have
(1) $A[1 . . j-1]$ an already sorted array
(2) Less $=\emptyset$

For example, Insertion Sort (Thanks to Luis Rodriguez

 Oracle Master 2012)First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$
- $I=$ elements still not compared to the key

Initialization

We have $A[1 \ldots 1]$ with only one element \Rightarrow it is sorted

Maintanence

Before we enter to the inner while loop, we have
(1) $A[1 . . j-1]$ an already sorted array
(2) Less $=\emptyset$
(3) Greater $=\emptyset$

For example, Insertion Sort (Thanks to Luis Rodriguez

 Oracle Master 2012)First, we define the following sets with sorted elements

- Less $=\left\langle x_{1}, \ldots, x_{k} \mid x_{i}<k e y, i=1, . ., k\right\rangle$
- Greater $=\left\langle x_{1}, \ldots, x_{m} \mid x_{j}>k e y, j=1, . ., m\right\rangle$
- $I=$ elements still not compared to the key

Initialization

We have $A[1 \ldots 1]$ with only one element \Rightarrow it is sorted

Maintanence

Before we enter to the inner while loop, we have
(1) $A[1 . . j-1]$ an already sorted array
(2) Less $=\emptyset$
(3) Greater $=\emptyset$
(9) $I=A[1 \ldots j-1]$.

Then

Case I

You never enter in the inner loop, thus $A[j-1]<k e y \Rightarrow$ Less $=A[1 . . j-1]$, thus $A[1 . . j]$ is a sorted array.

Then

Case I

You never enter in the inner loop, thus $A[j-1]<k e y \Rightarrow$ Less $=A[1 . . j-1]$, thus $A[1 . . j]$ is a sorted array.

Case II

(1) You entered the inner while loop.

Then

Case I

You never enter in the inner loop, thus $A[j-1]<k e y \Rightarrow$ Less $=A[1 . . j-1]$, thus $A[1 . . j]$ is a sorted array.

Case II

(1) You entered the inner while loop.
(2) Thus at each iteration we have the following structure

$$
A[1 \ldots j]=\begin{array}{|l|l|l|}
\hline I & A[i] & \text { Greater } \\
\hline
\end{array}
$$

Then

Case I

You never enter in the inner loop, thus $A[j-1]<k e y \Rightarrow$ Less $=A[1 . . j-1]$, thus $A[1 . . j]$ is a sorted array.

Case II

(1) You entered the inner while loop.
(2) Thus at each iteration we have the following structure

$$
A[1 \ldots j]=\begin{array}{|l|l|l|}
\hline I & A[i] & \text { Greater } \\
\hline
\end{array}
$$

- where Greater $=\langle A[i], A[i+1], \cdots, A[j-1]\rangle$.

Then

Case I

You never enter in the inner loop, thus $A[j-1]<k e y \Rightarrow$ Less $=A[1 . . j-1]$, thus $A[1 . . j]$ is a sorted array.

Case II

(1) You entered the inner while loop.
(2) Thus at each iteration we have the following structure

$$
A[1 \ldots j]=\begin{array}{|l|l|l|}
\hline I & A[i] & \text { Greater } \\
\hline
\end{array}
$$

- where Greater $=\langle A[i], A[i+1], \cdots, A[j-1]\rangle$.

Note: I and Greater are sorted such that $A[1 \ldots j]$ is sorted by itself at this moment in the inner loop

Now

Thus, we get out of the inner loop once $I=\emptyset$.

(1) We have that $A[1 \ldots j]=$| Less | $A[i+1]$ | Greater, |
| :--- | :--- | :--- | $A[i+2]==A[i+1]$.

Now

Thus, we get out of the inner loop once $I=\emptyset$.

(1) We have that $A[1 \ldots j]=$| Less | $A[i+1]$ | Greater, , where |
| :--- | :--- | :--- |

$$
A[i+2]==A[i+1]
$$

(2) Thus, $A[1 \ldots j]$ is sorted before inserting the key into the position $A[i+1]$.

Now

Thus, we get out of the inner loop once $I=\emptyset$.

(1) We have that $A[1 \ldots j]=$| Less | $A[i+1]$ | Greater, |
| :--- | :--- | :--- |

$$
A[i+2]==A[i+1]
$$

(2) Thus, $A[1 \ldots j]$ is sorted before inserting the key into the position $A[i+1]$.
(3) Then, because elements of $A[1 \ldots j]$ are sorted,

Now

Thus, we get out of the inner loop once $I=\emptyset$.

(1) We have that $A[1 \ldots j]=$| Less | $A[i+1]$ | Greater, , where |
| :--- | :--- | :--- |

$$
A[i+2]==A[i+1]
$$

(2) Thus, $A[1 \ldots j]$ is sorted before inserting the key into the position $A[i+1]$.
(3) Then, because elements of $A[1 \ldots j]$ are sorted,
(1) We have that after inserting the key at position $i+1$ in $A[1 \ldots j]$ the array is still sorted after iteration j.

Finally, Termination

Termination

- Once $j>$ length (A), we get out of the outer loop and $j=n+1$.

Finally, Termination

Termination

- Once $j>$ length (A), we get out of the outer loop and $j=n+1$.
- Then, using the maintenance procedure we have that the sub-array $A[1 \ldots n]$ is sorted as we wanted.

Actually

This is known as
Loop Invariance!!!

Actually

This is known as
 Loop Invariance!!!

Why is this important? Recursion \equiv Iteration

- How?

Actually

This is known as

Loop Invariance!!!

Why is this important? Recursion \equiv Iteration

- How?
- A computational system that can compute every Turing Computable function is called Turing complete (or Turing powerful).

Actually

This is known as
Loop Invariance!!!

Why is this important? Recursion \equiv Iteration

- How?
- A computational system that can compute every Turing Computable function is called Turing complete (or Turing powerful).

Properties

A Turing-complete system is called Turing equivalent if every function it can compute is also Turing Computable.

Actually

This is known as
Loop Invariance!!!

Why is this important? Recursion \equiv Iteration

- How?
- A computational system that can compute every Turing Computable function is called Turing complete (or Turing powerful).

Properties

A Turing-complete system is called Turing equivalent if every function it can compute is also Turing Computable.

- It computes precisely the same class of functions as do Turing machines.

Recursion \equiv Iteration

Then

Since you can build a Turing complete language using strictly iterative structures and a Turning complete language using only recursive structures, then the two are therefore equivalent.

Recursion \equiv Iteration

Then

Since you can build a Turing complete language using strictly iterative structures and a Turning complete language using only recursive structures, then the two are therefore equivalent.

Proof From Lambda Calculus

- Assume languages IT (with Iterative constructs only) and REC (with Recursive constructs only).

Recursion \equiv Iteration

Then

Since you can build a Turing complete language using strictly iterative structures and a Turning complete language using only recursive structures, then the two are therefore equivalent.

Proof From Lambda Calculus

- Assume languages IT (with Iterative constructs only) and REC (with Recursive constructs only).
- Simulate a universal Turing machine using IT, then simulate a universal Turing machine using REC.

Recursion \equiv Iteration

Then

Since you can build a Turing complete language using strictly iterative structures and a Turning complete language using only recursive structures, then the two are therefore equivalent.

Proof From Lambda Calculus

- Assume languages IT (with Iterative constructs only) and REC (with Recursive constructs only).
- Simulate a universal Turing machine using IT, then simulate a universal Turing machine using REC.
- The existence of the simulator programs guarantees that both IT and REC can calculate all the computable functions.

Nevertheless

Important

- We use RECURSIVE procedures, when we begin to solve new problems so we can understand them.

Nevertheless

Important

- We use RECURSIVE procedures, when we begin to solve new problems so we can understand them.
- Then, we move everything to ITERATIVE procedures for speed!!!

Outline

1．Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

Introduction

Let's go back to first principles

- We can look at our problem of complexities as bounding functions for approximation.

Introduction

Let's go back to first principles

- We can look at our problem of complexities as bounding functions for approximation.

Can we do better?

Asymptotic Approximation... We will see a little bit more as the course goes...

$\operatorname{Big} O$

Definition (Big O - Upper Bound)

For a given function $g(n)$:

$$
\begin{aligned}
O(g(n))= & \left\{f(n) \mid \text { There exists } c>0 \text { and } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq f(n) \leq c g(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Big O

Definition (Big O - Upper Bound)

For a given function $g(n)$:

$$
\begin{aligned}
O(g(n))= & \left\{f(n) \mid \text { There exists } c>0 \text { and } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq f(n) \leq c g(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Example

$\operatorname{Big} \Omega$

Definition (Big Ω - Lower Bound)

For a given function $g(n)$:

$$
\begin{aligned}
\Omega(g(n))= & \left\{f(n) \mid \text { There exists } c>0 \text { and } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq c g(n) \leq f(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

$\operatorname{Big} \Omega$

Definition (Big Ω - Lower Bound)

For a given function $g(n)$:

$$
\begin{aligned}
\Omega(g(n))= & \left\{f(n) \mid \text { There exists } c>0 \text { and } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq c g(n) \leq f(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Example

Big Θ

Definition (Big Θ - Tight Bound)

For a given function $g(n)$:

$$
\begin{aligned}
\Theta(g(n))= & \left\{f(n) \mid \text { There exists } c_{1}>0, c_{2}>0 \text { and } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Big Θ

Definition (Big Θ - Tight Bound)

For a given function $g(n)$:

$$
\begin{aligned}
\Theta(g(n))= & \left\{f(n) \mid \text { There exists } c_{1}>0, c_{2}>0 \text { and } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Example

Outline

1．Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
2 Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
3 Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

Can we relate this with practical examples?

You could say
This is too theoretical!

Can we relate this with practical examples?

You could say

This is too theoretical!
However, this is not the case!!
Look at this java code...

Example: Step count of Insertion Sort in Java

Counting when A.length $=n$

```
// Sort A assume is full
public int[] InsertionSort(int[] A){
    // Initial Variables
    int B[] = new int[A.length];
    int size = 1;
    int i, j, t;
    // Initialize the Array B
    B[0]=A[0];
    for(i = 1; i < A.length; i++){
        t = A[i];
        for(j=size - 1;
                j>=0&&t<B[j];j--) i+1
            {
                //shift to the right
                B[j+1]=B[j];}
            B[j+1]=t;
            size++;
        }
    return B;
}
```


The Result

Step count for body of for loop is

$$
\begin{equation*}
6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i) \tag{13}
\end{equation*}
$$

The Result

Step count for body of for loop is

$$
\begin{equation*}
6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i) \tag{13}
\end{equation*}
$$

The summation
They have the quadratic terms n^{2}.

The Result

Step count for body of for loop is

$$
\begin{equation*}
6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i) \tag{13}
\end{equation*}
$$

The summation

They have the quadratic terms n^{2}.

Complexity

Insertion sort complexity is $O\left(n^{2}\right)$

What does this means for insertion sort?

We have

$$
6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i)=\ldots
$$

What does this means for insertion sort?

We have

$$
\begin{aligned}
& 6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i)=\ldots \\
& 3+4 n+\frac{n(n-1)}{2}+n-1+\frac{n(n-1)}{2}=\ldots
\end{aligned}
$$

What does this means for insertion sort?

We have

$$
\begin{aligned}
6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i) & =\ldots \\
3+4 n+\frac{n(n-1)}{2}+n-1+\frac{n(n-1)}{2} & =\ldots \\
2+5 n+n(n-1) & =\ldots
\end{aligned}
$$

What does this means for insertion sort?

We have

$$
\begin{aligned}
6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i) & =\ldots \\
3+4 n+\frac{n(n-1)}{2}+n-1+\frac{n(n-1)}{2} & =\ldots \\
2+5 n+n(n-1) & =\ldots \\
n^{2}+4 n+2 & \leq n^{2}+4 n^{2}+2 n^{2}
\end{aligned}
$$

Thus

What does this means for insertion sort?

We have

$$
\begin{aligned}
6+3(n-1)+n+\sum_{i=1}^{n-1}(i+1)+\sum_{j=1}^{n-1}(i) & =\ldots \\
3+4 n+\frac{n(n-1)}{2}+n-1+\frac{n(n-1)}{2} & =\ldots \\
2+5 n+n(n-1) & =\ldots \\
n^{2}+4 n+2 & \leq n^{2}+4 n^{2}+2 n^{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
n^{2}+4 n+2 \leq 7 n^{2} \tag{14}
\end{equation*}
$$

With $T_{\text {insertion }}(n)=n^{2}+4 n+2$ describing the number of steps for insertion when we have n numbers.

Actually

For $n_{0}=2$

$$
\begin{equation*}
2^{2}+4 \times 2+2=14<7 \times 2^{2}=28 \tag{15}
\end{equation*}
$$

Actually

For $n_{0}=2$

$$
\begin{equation*}
2^{2}+4 \times 2+2=14<7 \times 2^{2}=28 \tag{15}
\end{equation*}
$$

Graphically

Meaning

First

Time or number of operations does not exceed $c n^{2}$ for a constant c on any input of size n (n suitably large).

Meaning

First

Time or number of operations does not exceed $c n^{2}$ for a constant c on any input of size n (n suitably large).

Questions

- Is $O\left(n^{2}\right)$ too much time?
- Is the algorithm practical?

Outline

1. Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones
(2) Divide and Conquer
- The Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities
(3) Using Induction to prove Algorithm Correctness
- Relation Between Recursion and Induction
- Now, Structural Induction!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

Then

We have the following

n	n	$n \log n$	n^{2}	n^{3}	n^{4}
1000	1 micros	10 micros	1 milis	1 second	17 minutes
10,000	10 micros	130 micros	100 milis	17 minutes	116 days
10^{6}	1 milis	20 milis	17 minutes	32 years	3×10^{7} years

Then

We have the following

n	n	$n \log n$	n^{2}	n^{3}	n^{4}
1000	1 micros	10 micros	1 milis	1 second	17 minutes
10,000	10 micros	130 micros	100 milis	17 minutes	116 days
10^{6}	1 milis	20 milis	17 minutes	32 years	3×10^{7} years

It is much worse

n	n^{10}	2^{n}
1000	3.2×10^{13} years	3.2×10^{283} years
10,000	$? ? ?$	$? ? ?$
10^{6}	$? ? ? ? ?$	$? ? ? ? ?$

The Reign of the Non Polynomial Algorithms

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
3 Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

Little o Bound

Definition

For a given function $g(n)$:

$$
\begin{aligned}
o(g(n))= & \left\{f(n) \mid \text { For any } c>0 \text { there exists } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq f(n)<c g(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Little o Bound

Definition

For a given function $g(n)$:

$$
\begin{aligned}
o(g(n))= & \left\{f(n) \mid \text { For any } c>0 \text { there exists } n_{0}>0\right. \\
& \text { s.t. } \left.0 \leq f(n)<c g(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Observations

It is not tight.

- For example, We have that $2 n=o\left(n^{2}\right)$, but $2 n^{2} \neq o\left(n^{2}\right)$.

Little o Bound

Not only that

Under the definition, we have for any $f(n) \in o(g(n))$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Little ω Bound

Definition

For a given function $g(n)$:

$$
\begin{aligned}
\omega(g(n))= & \left\{f(n) \mid \text { For any } c>0 \text { there exists } n_{0}>0\right. \text { s.t. } \\
& \left.0 \leq c g(n)<f(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Little ω Bound

Definition

For a given function $g(n)$:

$$
\begin{aligned}
\omega(g(n))= & \left\{f(n) \mid \text { For any } c>0 \text { there exists } n_{0}>0\right. \text { s.t. } \\
& \left.0 \leq c g(n)<f(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

Observations

It is not tight.

- For example, $\frac{n^{2}}{2}=\omega(n)$, but $\frac{n^{2}}{2} \neq \omega\left(n^{2}\right)$.

Little ω Bound

Not only that

Under the definition, we have for any $f(n) \in \omega(g(n))$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

Interpretation

```
How do you interpret \(f(n)=O\left(n^{2}\right)\) ?
```


Interpretation

```
How do you interpret \(f(n)=O\left(n^{2}\right)\) ?
```

It means that $f(n)$ belongs to $O\left(n^{2}\right)$

Interpretation

How do you interpret $f(n)=O\left(n^{2}\right)$?
It means that $f(n)$ belongs to $O\left(n^{2}\right)$

How do you interpret $2 n^{2}+3 n+1=2 n^{2}+\Theta(n)$?

Interpretation

How do you interpret $f(n)=O\left(n^{2}\right)$?
It means that $f(n)$ belongs to $O\left(n^{2}\right)$

How do you interpret $2 n^{2}+3 n+1=2 n^{2}+\Theta(n)$?

$\exists f(n) \in \Theta(n)$ such that:

$$
\begin{aligned}
2 n^{2}+3 n+1 & =2 n^{2}+f(n) \\
& =2 n^{2}+\Theta(n)
\end{aligned}
$$

Outline

（1）Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
5 Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

Properties

Equivalence

For any two functions $f(n)$ and $g(n)$, we have that $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Properties

Equivalence

For any two functions $f(n)$ and $g(n)$, we have that $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

```
Transitivity
f(n)=\Theta(g(n)) and g(n)=\Theta(h(n)) then f(n)=\Theta(h(n))
```


Properties

Equivalence

For any two functions $f(n)$ and $g(n)$, we have that $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Transitivity

$f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$ then $f(n)=\Theta(h(n))$
Reflexivity
$f(n)=\Theta(f(n))$

Properties

Equivalence

For any two functions $f(n)$ and $g(n)$, we have that $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Transitivity

$f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$ then $f(n)=\Theta(h(n))$
Reflexivity
$f(n)=\Theta(f(n))$

Symmetry

$$
f(n)=\Theta(g(n)) \Longleftrightarrow g(n)=\Theta(f(n))
$$

Properties

Equivalence

For any two functions $f(n)$ and $g(n)$, we have that $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Transitivity

$f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$ then $f(n)=\Theta(h(n))$
Reflexivity
$f(n)=\Theta(f(n))$

Symmetry

$$
f(n)=\Theta(g(n)) \Longleftrightarrow g(n)=\Theta(f(n))
$$

Transpose Symmetry

$$
f(n)=O(g(n)) \Longleftrightarrow g(n)=\Omega(f(n))
$$

Outline

1．Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
2 Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
（3）Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
O The Recursion－Tree Method
－The Master Method

Examples

For the little o, we have that $2 n=o\left(n^{2}\right)$, but $2 n^{2} \neq o\left(n^{2}\right)$

- In the case of the first part, it is easy to see that for any given c exist a n_{0} such that $\frac{1}{\frac{n_{o}}{2}}<c$.

Examples

For the little o, we have that $2 n=o\left(n^{2}\right)$, but $2 n^{2} \neq o\left(n^{2}\right)$

- In the case of the first part, it is easy to see that for any given c exist a n_{0} such that $\frac{1}{\frac{n_{0}}{2}}<c$.
- In addition, $n>n_{0}$ implies that $\frac{1}{n_{0}}>\frac{1}{n}$.

Examples

For the little o, we have that $2 n=o\left(n^{2}\right)$, but $2 n^{2} \neq o\left(n^{2}\right)$

- In the case of the first part, it is easy to see that for any given c exist a n_{0} such that $\frac{1}{\frac{n_{o}}{2}}<c$.
- In addition, $n>n_{0}$ implies that $\frac{1}{n_{0}}>\frac{1}{n}$.

Then

$$
2<c n \Longleftrightarrow 2 n<c n^{2}
$$

Examples

For the little o, we have that $2 n=o\left(n^{2}\right)$, but $2 n^{2} \neq o\left(n^{2}\right)$

- In the case of the first part, it is easy to see that for any given c exist a n_{0} such that $\frac{1}{\frac{n_{o}}{2}}<c$.
- In addition, $n>n_{0}$ implies that $\frac{1}{n_{0}}>\frac{1}{n}$.

Then

$$
2<c n \Longleftrightarrow 2 n<c n^{2}
$$

In the second part, if we assume $c=2$ and a certain value n_{0} that makes true the inequality

$$
2 n_{0}^{2}<2 n_{0}^{2} \text { Contradiction!!! }
$$

A similar situation can be seen in little ω

For example $\frac{n^{2}}{2}=\omega(n)$, but $\frac{n^{2}}{2} \neq \omega\left(n^{2}\right)$

A similar situation can be seen in little ω

For example $\frac{n^{2}}{2}=\omega(n)$, but $\frac{n^{2}}{2} \neq \omega\left(n^{2}\right)$

In the first case, a similar argument can be done such that

$$
c n<\frac{n^{2}}{2}
$$

A similar situation can be seen in little ω

$$
\text { For example } \frac{n^{2}}{2}=\omega(n) \text {, but } \frac{n^{2}}{2} \neq \omega\left(n^{2}\right)
$$

In the first case, a similar argument can be done such that

$$
c n<\frac{n^{2}}{2}
$$

In the second part

- if we assume that the inequality holds for the second case we can chose $c=2$, we again obtain a contradiction.

Outline

1．Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
（2）Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
3 Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
O The Recursion－Tree Method
－The Master Method

Ok, we have the basics...

Now...
What do we do?

Ok, we have the basics...

Now...

What do we do?

We will look at methods to solve recursions!!!

(1) Substitution Method

Ok, we have the basics...

Now...
What do we do?

We will look at methods to solve recursions!!!
(1) Substitution Method
(2) Recursion-Tree Method

Ok, we have the basics...

Now...
What do we do?
We will look at methods to solve recursions!!!
(1) Substitution Method
(2) Recursion-Tree Method
(3) Master Method

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones

2) Divide and Conquer

- The Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities
(3) Using Induction to prove Algorithm Correctness
- Relation Between Recursion and Induction
- Now, Structural Induction!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

The Substitution Method

The Steps in the Method

- Guess the form of the solution.

The Substitution Method

The Steps in the Method

- Guess the form of the solution.
- Use mathematical induction to find the constants and show that the solution works.

Example

Solve the following recurrence

$$
\begin{equation*}
T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \tag{16}
\end{equation*}
$$

Example

Solve the following recurrence

$$
\begin{equation*}
T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \tag{16}
\end{equation*}
$$

I decide to do the following GUESS

Guess that $T(n)=O(n \log n)!!!$

Example

Solve the following recurrence

$$
\begin{equation*}
T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \tag{16}
\end{equation*}
$$

I decide to do the following GUESS

Guess that $T(n)=O(n \log n)!!!$

For this

We assume that the bound holds for $\left\lfloor\frac{n}{2}\right\rfloor<n$ (Remember Inductive Hypothesis!!!).

Therefore

We have that the following inequality holds

$$
\begin{equation*}
T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \leq c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \tag{17}
\end{equation*}
$$

Therefore

We have that the following inequality holds

$$
\begin{equation*}
T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \leq c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \tag{17}
\end{equation*}
$$

Thus, we have that

$$
T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n
$$

Therefore

We have that the following inequality holds

$$
\begin{equation*}
T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \leq c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \tag{17}
\end{equation*}
$$

Thus, we have that

$$
\begin{aligned}
T(n) & =2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \\
& \leq 2 c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n
\end{aligned}
$$

Thus

We have that

$$
T(n) \leq 2 c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n
$$

Thus

We have that

$$
\begin{aligned}
T(n) & \leq 2 c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \\
& \leq 2 c \times \frac{n}{2} \times \log _{2}\left(\frac{n}{2}\right)+n
\end{aligned}
$$

Thus

We have that

$$
\begin{aligned}
T(n) & \leq 2 c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \\
& \leq 2 c \times \frac{n}{2} \times \log _{2}\left(\frac{n}{2}\right)+n \\
& =c n \log _{2}\left(\frac{n}{2}\right)+n
\end{aligned}
$$

Remember the following

Thus

We have that

$$
\begin{aligned}
T(n) & \leq 2 c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \\
& \leq 2 c \times \frac{n}{2} \times \log _{2}\left(\frac{n}{2}\right)+n \\
& =c n \log _{2}\left(\frac{n}{2}\right)+n
\end{aligned}
$$

Remember the following

$$
\log _{2}\left(\frac{n}{2}\right)=\log _{2} n-\log _{2} 2
$$

Thus

We have that

$$
\begin{aligned}
T(n) & \leq 2 c\left\lfloor\frac{n}{2}\right\rfloor \log _{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \\
& \leq 2 c \times \frac{n}{2} \times \log _{2}\left(\frac{n}{2}\right)+n \\
& =c n \log _{2}\left(\frac{n}{2}\right)+n
\end{aligned}
$$

Remember the following

$$
\begin{aligned}
\log _{2}\left(\frac{n}{2}\right) & =\log _{2} n-\log _{2} 2 \\
& =\log _{2} n-1
\end{aligned}
$$

Finally, we have

We have

$$
T(n) \leq c n \log _{2} n-c n+n
$$

Finally, we have

We have

$$
T(n) \leq c n \log _{2} n-c n+n
$$

Now, we need to have that

$$
-c n+n \leq 0
$$

Finally, we have

We have

$$
T(n) \leq c n \log _{2} n-c n+n
$$

Now, we need to have that

$$
\begin{aligned}
-c n+n & \leq 0 \\
n & \leq c n
\end{aligned}
$$

Finally, we have

We have

$$
T(n) \leq c n \log _{2} n-c n+n
$$

Now, we need to have that

$$
\begin{aligned}
-c n+n & \leq 0 \\
n & \leq c n \\
1 & \leq n
\end{aligned}
$$

Then, as long $c \geq 1$, we have that

Finally, we have

We have

$$
T(n) \leq c n \log _{2} n-c n+n
$$

Now, we need to have that

$$
\begin{aligned}
-c n+n & \leq 0 \\
n & \leq c n \\
1 & \leq n
\end{aligned}
$$

Then, as long $c \geq 1$, we have that

$$
T(n) \leq c n \log _{2} n-c n+n
$$

Finally, we have

We have

$$
T(n) \leq c n \log _{2} n-c n+n
$$

Now, we need to have that

$$
\begin{aligned}
-c n+n & \leq 0 \\
n & \leq c n \\
1 & \leq n
\end{aligned}
$$

Then, as long $c \geq 1$, we have that

$$
\begin{aligned}
T(n) & \leq c n \log _{2} n-c n+n \\
& \leq c n \log _{2} n
\end{aligned}
$$

Subtleties

What about ?

$$
T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lfloor\frac{n}{2}\right\rceil\right)+1
$$

Here

We can guess that $T(n)=O(n)$

$$
\begin{aligned}
T(n) & \leq c\left\lfloor\frac{n}{2}\right\rfloor+c\left\lceil\frac{n}{2}\right\rceil+1 \\
& =c n+1 \\
& =O(n)
\end{aligned}
$$

Here

We can guess that $T(n)=O(n)$

$$
\begin{aligned}
T(n) & \leq c\left\lfloor\frac{n}{2}\right\rfloor+c\left\lceil\frac{n}{2}\right\rceil+1 \\
& =c n+1 \\
& =O(n)
\end{aligned}
$$

Incorrect!!!

- After all $c n+1$ is not $c n$.

Here

We can guess that $T(n)=O(n)$

$$
\begin{aligned}
T(n) & \leq c\left\lfloor\frac{n}{2}\right\rfloor+c\left\lceil\frac{n}{2}\right\rceil+1 \\
& =c n+1 \\
& =O(n)
\end{aligned}
$$

Incorrect!!!

- After all $c n+1$ is not $c n$.

We can overcome this problem by assuming a $d \geq 0$ and then "guessing" $T(n) \leq c n-d$

$$
\begin{aligned}
T(n) & \leq\left(c\left\lfloor\frac{n}{2}\right\rfloor-d\right)+\left(c\left\lceil\frac{n}{2}\right\rceil-d\right)+1 \\
& =c n-2 d+1
\end{aligned}
$$

Therefore

Then

- if we select $d \geq 1 \Rightarrow 0 \geq 1-d$.

Therefore

Then

- if we select $d \geq 1 \Rightarrow 0 \geq 1-d$.

This means that $c n-2 d+1 \leq c n-d$

- Therefore, $T(n) \leq c n-d=O(n)$.

Outline

(1) Divide and Conquer: The Holy Grail!!

- Introduction
- Split problems into smaller ones

2) Divide and Conquer

- The Recursion
- Not only that, we can define functions recursively
- Classic Application: Divide and Conquer
- Using Recursion to Calculate Complexities
(3) Using Induction to prove Algorithm Correctness
- Relation Between Recursion and Induction
- Now, Structural Induction!!!
- Example of the Use of Structural Induction for Proving Loop Correctness
- The Structure of the Inductive Proof for a Loop
- Insertion Sort Proof

4 Asymptotic Notation

- Big Notation
- Relation with step count
- The Terrible Reality
- The Little Bounds
- Interpreting the Notation
- Properties
- Examples using little notation
(5) Method to Solve Recursions
- The Classics
- Substitution Method
- The Recursion-Tree Method
- The Master Method

The Recursion-Tree Method

Surprise

- Sometimes is hard to do a good guess.

The Recursion-Tree Method

Surprise

- Sometimes is hard to do a good guess.
- For example $T(n)=3 T\left(\frac{n}{4}\right)+c n^{2}$

The Recursion-Tree Method

Therefore, we draw the recursion tree

Using the previous expansion, we count!!!

Counting Again!!!

- A subproblem for a node at depth i is $n / 4^{i}$, then once

$$
\begin{equation*}
n / 4^{i}=1 \Rightarrow i=\log _{4} n \tag{18}
\end{equation*}
$$

Using the previous expansion, we count!!!

Counting Again!!!

- A subproblem for a node at depth i is $n / 4^{i}$, then once

$$
\begin{equation*}
n / 4^{i}=1 \Rightarrow i=\log _{4} n \tag{18}
\end{equation*}
$$

- At each level $i=0,1,2, \ldots, \log _{4} n-1$ the cost of each node is

$$
\begin{equation*}
c\left(\frac{n}{4^{i}}\right)^{2} \tag{19}
\end{equation*}
$$

Using the previous expansion, we count!!!

Counting Again!!!

- A subproblem for a node at depth i is $n / 4^{i}$, then once

$$
\begin{equation*}
n / 4^{i}=1 \Rightarrow i=\log _{4} n \tag{18}
\end{equation*}
$$

- At each level $i=0,1,2, \ldots, \log _{4} n-1$ the cost of each node is

$$
\begin{equation*}
c\left(\frac{n}{4^{i}}\right)^{2} \tag{19}
\end{equation*}
$$

- At each level $i=0,1,2, \ldots, \log _{4} n-1$ the total cost of the work is

$$
\begin{equation*}
3^{i} c\left(\frac{n}{4^{i}}\right)^{2}=\left(\frac{3}{16}\right)^{i} c n^{2} \tag{20}
\end{equation*}
$$

Using the previous expansion, we count!!!

Counting Again!!!

- A subproblem for a node at depth i is $n / 4^{i}$, then once

$$
\begin{equation*}
n / 4^{i}=1 \Rightarrow i=\log _{4} n \tag{18}
\end{equation*}
$$

- At each level $i=0,1,2, \ldots, \log _{4} n-1$ the cost of each node is

$$
\begin{equation*}
c\left(\frac{n}{4^{i}}\right)^{2} \tag{19}
\end{equation*}
$$

- At each level $i=0,1,2, \ldots, \log _{4} n-1$ the total cost of the work is

$$
\begin{equation*}
3^{i} c\left(\frac{n}{4^{i}}\right)^{2}=\left(\frac{3}{16}\right)^{i} c n^{2} \tag{20}
\end{equation*}
$$

- At depth $\log _{4} n$, we have this many nodes

$$
\begin{equation*}
3^{\log _{4} n}=n^{\log _{4} 3} \tag{21}
\end{equation*}
$$

Now, we add all this counts!!!

Then, we have that

$$
T(n)=\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} c n^{2}+n^{\log _{4} 3}
$$

Now, we add all this counts!!!

Then, we have that

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} c n^{2}+n^{\log _{4} 3} \\
& <\sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i} c n^{2}+n^{\log _{4} 3}
\end{aligned}
$$

Now, we add all this counts!!!

Then, we have that

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} c n^{2}+n^{\log _{4} 3} \\
& <\sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i} c n^{2}+n^{\log _{4} 3} \\
& =\frac{1}{1-(3 / 16)} c n^{2}+n^{\log _{4} 3}
\end{aligned}
$$

Now, we add all this counts!!!

Then, we have that

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} c n^{2}+n^{\log _{4} 3} \\
& <\sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i} c n^{2}+n^{\log _{4} 3} \\
& =\frac{1}{1-(3 / 16)} c n^{2}+n^{\log _{4} 3} \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Outline

1．Divide and Conquer：The Holy Grail！！
－Introduction
－Split problems into smaller ones
2）Divide and Conquer
－The Recursion
－Not only that，we can define functions recursively
－Classic Application：Divide and Conquer
－Using Recursion to Calculate Complexities
3 Using Induction to prove Algorithm Correctness
－Relation Between Recursion and Induction
－Now，Structural Induction！！！
－Example of the Use of Structural Induction for Proving Loop Correctness
－The Structure of the Inductive Proof for a Loop
－Insertion Sort Proof
4 Asymptotic Notation
－Big Notation
－Relation with step count
－The Terrible Reality
－The Little Bounds
－Interpreting the Notation
－Properties
－Examples using little notation
（5）Method to Solve Recursions
－The Classics
－Substitution Method
－The Recursion－Tree Method
－The Master Method

The Master Theorem

Theorem - Cookbook for solving $T(n)=a T\left(\frac{n}{b}\right)+f(n)$

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the non-negative integers by the recurrence

$$
\begin{equation*}
T(n)=a T\left(\frac{n}{b}\right)+f(n) \tag{22}
\end{equation*}
$$

The Master Theorem

Theorem - Cookbook for solving $T(n)=a T\left(\frac{n}{b}\right)+f(n)$

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the non-negative integers by the recurrence

$$
\begin{equation*}
T(n)=a T\left(\frac{n}{b}\right)+f(n) \tag{22}
\end{equation*}
$$

where we interpret $\frac{n}{b}$ as $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ can be bounded asymptotically as follows:

The Master Theorem

Theorem - Cookbook for solving $T(n)=a T\left(\frac{n}{b}\right)+f(n)$

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the non-negative integers by the recurrence

$$
\begin{equation*}
T(n)=a T\left(\frac{n}{b}\right)+f(n) \tag{22}
\end{equation*}
$$

where we interpret $\frac{n}{b}$ as $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ can be bounded asymptotically as follows:
(1) If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$. Then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

The Master Theorem

Theorem - Cookbook for solving $T(n)=a T\left(\frac{n}{b}\right)+f(n)$

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the non-negative integers by the recurrence

$$
\begin{equation*}
T(n)=a T\left(\frac{n}{b}\right)+f(n) \tag{22}
\end{equation*}
$$

where we interpret $\frac{n}{b}$ as $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ can be bounded asymptotically as follows:
(1) If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$. Then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
(2) If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.

The Master Theorem

Theorem - Cookbook for solving $T(n)=a T\left(\frac{n}{b}\right)+f(n)$

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the non-negative integers by the recurrence

$$
\begin{equation*}
T(n)=a T\left(\frac{n}{b}\right)+f(n) \tag{22}
\end{equation*}
$$

where we interpret $\frac{n}{b}$ as $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ can be bounded asymptotically as follows:
(1) If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$. Then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
(2) If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
(3) If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$ and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

We will prove a simplified version

Simplified Master Method

If $T(n)=a T\left(\left\lceil\frac{n}{b}\right\rceil\right)+O\left(n^{d}\right)$ for some constants $a>0, b>1$, and $d \geq 0$ then

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

The Branching

Recursive Expansion

Proof

First, for convenience assume $n=b^{p}$

- Now we can notice that the size of the subproblems are decreasing by a factor of b at each recursive step.

Proof

First, for convenience assume $n=b^{p}$

- Now we can notice that the size of the subproblems are decreasing by a factor of b at each recursive step.

Something Notable

- This means that the size of each subproblems is $\frac{n}{b^{i}}$ at level i.

Proof

First, for convenience assume $n=b^{p}$

- Now we can notice that the size of the subproblems are decreasing by a factor of b at each recursive step.

Something Notable

- This means that the size of each subproblems is $\frac{n}{b^{i}}$ at level i.

Thus, in order to reach the bottom you need to have subptoblems of size 1.

$$
\frac{n}{b^{i}}=1 \Rightarrow i=\log _{b} n
$$

- where $i=$ height of the recursion three.

Therefore

Now, given that the branching factor is a

- We have at the $k^{t h}$ level a^{k} subproblems, each of size $\frac{n}{b^{k}}$.

Now, given that the branching factor is a

- We have at the $k^{t h}$ level a^{k} subproblems, each of size $\frac{n}{b^{k}}$.

Then, the work at level k is

$$
T(n)=O\left(n^{d}\right) \times\left(\frac{a}{b^{d}}\right)^{0}+O\left(n^{d}\right) \times\left(\frac{a}{b^{d}}\right)^{1}+\ldots+O\left(n^{d}\right) \times\left(\frac{a}{b^{d}}\right)^{\log _{b} n}
$$

Then, we have that

For a $g(m)=1+c+c^{2}+\ldots+c^{m}$
(1) if $c<1$ then $g(m)=\Theta(1)$
(3) if $c=1$ then $g(m)=\Theta(m)$
(0) if $c>1$ then $g(m)=\Theta\left(c^{m}\right)$

If $c<1$ then $g(m)=\Theta(1)$

If $\frac{a}{b^{d}}<1$,

- Then, we have that $a<b^{d}$ or $\log _{b} a<d$ (Case one of the theorem).

Thus, we have

The following sequence

$$
T(n)=O\left(n^{d}\right) \times \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k} \leq \sum_{k=0}^{\infty}\left(\frac{a}{b^{d}}\right)^{k} O\left(n^{d}\right)=\frac{1}{1-\frac{a}{b^{d}}} \times O\left(n^{d}\right) \leq O\left(n^{d}\right)
$$

Thus, we have

The following sequence

$$
T(n)=O\left(n^{d}\right) \times \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k} \leq \sum_{k=0}^{\infty}\left(\frac{a}{b^{d}}\right)^{k} O\left(n^{d}\right)=\frac{1}{1-\frac{a}{b^{d}}} \times O\left(n^{d}\right) \leq O\left(n^{d}\right)
$$

Then

- $T(n)=O\left(n^{d}\right)$

If $c=1$ then $g(m)=\Theta(m)$

If $\frac{a}{b^{d}}=1$

- Then we have that $a=b^{d}$ or $\log _{b} a=d$ (Case two of the theorem).

If $c=1$ then $g(m)=\Theta(m)$

If $\frac{a}{b^{d}}=1$

- Then we have that $a=b^{d}$ or $\log _{b} a=d$ (Case two of the theorem).

Then

- We have that $g(n)=\left(\frac{a}{b^{d}}\right)^{0}+\left(\frac{a}{b^{d}}\right)^{1}+\ldots+\left(\frac{a}{b^{d}}\right)^{\log _{b} n}$ is $\Theta\left(\log _{b} n\right)$.

Therefore

We have that

$$
T(n)=O\left(n^{d}\right) \times \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}=O\left(n^{d}\right) \times \Theta\left(\log _{b} n\right)
$$

Therefore

We have that

$$
T(n)=O\left(n^{d}\right) \times \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}=O\left(n^{d}\right) \times \Theta\left(\log _{b} n\right)
$$

Now

- $T(n)=O\left(n^{\log _{b} a} \log _{b} n\right)=O\left(n^{\log _{n} a} \log _{2} n\right)$ because b can only be greater or equal to two.

If $c>1$ then $g(m)=\Theta\left(c^{m}\right)$

If $\frac{a}{b^{d}}>1$

- Then we have that $a>b^{d}$ or $\log _{b} a>d$ (Case three of the theorem).

If $c>1$ then $g(m)=\Theta\left(c^{m}\right)$

If $\frac{a}{b^{d}}>1$

- Then we have that $a>b^{d}$ or $\log _{b} a>d$ (Case three of the theorem).

Then

- We have

$$
n^{d} \times\left(\frac{a}{b^{d}}\right)^{\log _{b} n}=n^{d} \times\left(\frac{a^{\log _{b} n}}{\left(b^{\log _{b} n}\right)^{d}}\right)=a^{\log _{b} n}=a^{\left(\log _{a} n\right)\left(\log _{b} a\right)}=n^{\log _{b} a}
$$

Therefore, we have that

We have that

$$
T(n)=O\left(n^{d}\right) \times \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}=O\left(n^{d}\right) \times O\left(\left(\frac{a}{b^{d}}\right)^{\log _{b} n}\right)
$$

Therefore, we have that

We have that

$$
T(n)=O\left(n^{d}\right) \times \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}=O\left(n^{d}\right) \times O\left(\left(\frac{a}{b^{d}}\right)^{\log _{b} n}\right)
$$

Thus

- $T(n)=O\left(n^{\log _{b} a}\right)$

Therefore, we have that

We have that

$$
T(n)=O\left(n^{d}\right) \times \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}=O\left(n^{d}\right) \times O\left(\left(\frac{a}{b^{d}}\right)^{\log _{b} n}\right)
$$

Thus

- $T(n)=O\left(n^{\log _{b} a}\right)$

Properties

Using the Master Theorem

Consider the following recursion

$$
T(n)=9 T\left(\frac{n}{3}\right)+n
$$

Using the Master Theorem

Consider the following recursion

$$
T(n)=9 T\left(\frac{n}{3}\right)+n
$$

We have that
$a=9, b=3$ and $f(n)=n$

Using the Master Theorem

Consider the following recursion

$$
T(n)=9 T\left(\frac{n}{3}\right)+n
$$

We have that

$a=9, b=3$ and $f(n)=n$

Thus
$n^{\log _{3} 9}=\Theta\left(n^{2}\right)$ and $f(n)=O\left(n^{\log _{3} 9-\epsilon}\right)$ with $\epsilon=1$

Using the Master Theorem

Consider the following recursion

$$
T(n)=9 T\left(\frac{n}{3}\right)+n
$$

We have that
$a=9, b=3$ and $f(n)=n$
Thus
$n^{\log _{3} 9}=\Theta\left(n^{2}\right)$ and $f(n)=O\left(n^{\log _{3} 9-\epsilon}\right)$ with $\epsilon=1$
Then, we use then the case 1 of the Master Theorem

$$
\begin{equation*}
T(n)=O\left(n^{2}\right) \tag{23}
\end{equation*}
$$

