Analysis of Algorithms

The Mathematics of Analysis of Algorithms

Andres Mendez-Vazquez

September 10, 2015

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Outline

(1) Induction

- Basic Induction
- Structural Induction

2 Series

- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Basic Induction

Principle of Mathematical Induction

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer.

Basic Induction

Principle of Mathematical Induction

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer.

Suppose the following two statements are true

(1) $P(a)$ is true.

Basic Induction

Principle of Mathematical Induction

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer.

Suppose the following two statements are true

(1) $P(a)$ is true.
(2) For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Basic Induction

Principle of Mathematical Induction

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer.

Suppose the following two statements are true
(1) $P(a)$ is true.
(2) For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Then the statement

For all integers $n \geq a, P(n)$ is true.

We have the following method for Mathematical Induction

Consider a statement of the form
For all integers $n \geq a, P(n)$ is true.

We have the following method for Mathematical Induction

Consider a statement of the form
For all integers $n \geq a, P(n)$ is true.
To prove such a statement
Perform the following two steps

We have the following method for Mathematical Induction

Consider a statement of the form

$$
\begin{equation*}
\text { For all integers } n \geq a, P(n) \text { is true. } \tag{2}
\end{equation*}
$$

To prove such a statement
Perform the following two steps

Step 1 (Basis step)

Show that $P(a)$ is true - we normally use $a=1$.

Then

Step 2 (Inductive step)

Show that for all integers $k \geq a$, if $P(k)$ is true, then $P(k+1)$ is true.

Then

Step 2 (Inductive step)

Show that for all integers $k \geq a$, if $P(k)$ is true, then $P(k+1)$ is true.

Inductive hypothesis

Suppose that $P(k)$ is true, where k is any particular but arbitrarily chosen integer with $k \geq a$.

Then

Step 2 (Inductive step)

Show that for all integers $k \geq a$, if $P(k)$ is true, then $P(k+1)$ is true.

Inductive hypothesis

Suppose that $P(k)$ is true, where k is any particular but arbitrarily chosen integer with $k \geq a$.

Then, you can prove that

$P(k+1)$ is true.

Example

Proposition

For all integers $n \geq 8, n \grave{c}$ can be obtained using $3 \dot{c}$ and $5 \grave{c}$ coins.

Example

Proposition

For all integers $n \geq 8, n \grave{c}$ can be obtained using $3 \dot{c}$ and $5 \grave{c}$ coins.

Show that $P(8)$ is true

$P(8)$ is true because 8 ç can be obtained using one coin $3 \dot{c}$ and another coin of 5 .

Example

Proposition

For all integers $n \geq 8, n \grave{c}$ can be obtained using $3 \dot{c}$ and $5 \grave{c}$ coins.

Show that $P(8)$ is true

$P(8)$ is true because $8 \dot{c}$ can be obtained using one coin $3 \dot{c}$ and another coin of 5 .

Show that for all integers $k \geq 8$, if $P(k)$ is true then $P(k+1)$ is also true
We can do the following.

Example

Inductive hypothesis

Suppose that k is any integer with $k \geq 8$ such that

Example

Inductive hypothesis

Suppose that k is any integer with $k \geq 8$ such that

- $k \dot{c}$ can be obtained using $3 \dot{\phi}$ and $5 \dot{c}$ coins.

Example

Inductive hypothesis

Suppose that k is any integer with $k \geq 8$ such that

- $k \dot{c}$ can be obtained using $3 \dot{\phi}$ and $5 \dot{c}$ coins.

Case 1 - There is a 5 c among those making the change for $k \mathrm{c}$

In this case, replace $5 \dot{c}$ by two $3 \dot{c}$. Thus, we get the change for $(k+1) \dot{¢}$

Example

Inductive hypothesis

Suppose that k is any integer with $k \geq 8$ such that

- $k \dot{c}$ can be obtained using $3 \dot{c}$ and $5 \dot{c}$ coins.

Case 1 - There is a 5 c among those making the change for $k \mathrm{c}$
In this case, replace 5 ¢ by two $3 \dot{\text { c }}$. Thus, we get the change for $(k+1)$ ¢

Case 2 - There is not a 5 c among those making the change for $k c$

- Because $k \geq 8$, at leat three coins must have been used.

Example

Inductive hypothesis

Suppose that k is any integer with $k \geq 8$ such that
－$k \dot{c}$ can be obtained using $3 \dot{\phi}$ and $5 \dot{c}$ coins．

Case 1 －There is a 5 c among those making the change for $k \mathrm{c}$
In this case，replace 5 ¢ by two $3 \dot{\text { c }}$ ．Thus，we get the change for $(k+1) ¢$

Case 2 －There is not a $5 ¢$ among those making the change for $k c$
－Because $k \geq 8$ ，at leat three coins must have been used．
－At least three 3 ç coins must have been used．

Example

Inductive hypothesis

Suppose that k is any integer with $k \geq 8$ such that

- $k \dot{c}$ can be obtained using $3 \dot{\phi}$ and $5 \dot{c}$ coins.

Case 1 - There is a 5 c among those making the change for $k \mathrm{c}$
In this case, replace 5 ¢ by two $3 \dot{\text { c }}$. Thus, we get the change for $(k+1) ¢$

Case 2 - There is not a $5 ¢$ among those making the change for $k \dot{c}$

- Because $k \geq 8$, at leat three coins must have been used.
- At least three $3 \dot{c}$ coins must have been used.
- Remove those coins and replaced them using two 5 ć

Example

Inductive hypothesis

Suppose that k is any integer with $k \geq 8$ such that

- $k \dot{\text { c }}$ can be obtained using $3 \dot{c}$ and 5 coins.

Case 1 - There is a 5 c among those making the change for $k \mathrm{c}$
In this case, replace 5 ¢ by two $3 \dot{\text { c }}$. Thus, we get the change for $(k+1) ¢$

Case 2 - There is not a $5 \dot{c}$ among those making the change for $k \dot{c}$

- Because $k \geq 8$, at leat three coins must have been used.
- At least three $3 \dot{c}$ coins must have been used.
- Remove those coins and replaced them using two 5 .
- The result will be $(k+1)$ ¢.

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

We can go further...

Recursively defined sets and structures

Assume S is a set. We use two steps to define the elements of S.

We can go further...

Recursively defined sets and structures

Assume S is a set. We use two steps to define the elements of S.

Basis Step

Specify an initial collection of elements.

We can go further...

Recursively defined sets and structures

Assume S is a set. We use two steps to define the elements of S.

Basis Step

Specify an initial collection of elements.

Recursive Step

Give a rule for forming new elements from those already known to be in S.

Thus

Let S be a set that has been defined recursively

To prove that every object in S satisfies a certain property:

Thus

Let S be a set that has been defined recursively

To prove that every object in S satisfies a certain property:
(1) Show that each object in the BASE for S satisfies the property.

Thus

Let S be a set that has been defined recursively

To prove that every object in S satisfies a certain property:
(1) Show that each object in the BASE for S satisfies the property.
(2) Show that for each rule in the RECURSION, if the rule is applied to objects in S that satisfy the property, then the objects defined by the rule also satisfy the property.

Example: Binary trees recursive definition

Recall that the set B of binary trees over an alphabet A is defined as follows
(1) Basis: $\rangle \in B$
(2) Recursive definition: If $L, R \in B$ and $x \in A$ then $<L, x, R>\in B$.

Example: Binary trees recursive definition

Recall that the set B of binary trees over an alphabet A is defined as follows
(1) Basis: $\rangle \in B$
(2) Recursive definition: If $L, R \in B$ and $x \in A$ then $<L, x, R>\in B$.

Now define the function $f: B \rightarrow \mathbb{N}$ defined as

$$
\begin{aligned}
f(\rangle) & =0 \\
f(\langle L, x, R\rangle) & = \begin{cases}1 & \text { if } L=R=\langle \rangle \\
f(L)+f(R) & \text { otherwise }\end{cases}
\end{aligned}
$$

Example: Binary trees recursive definition

Recall that the set B of binary trees over an alphabet A is defined as follows
(1) Basis: $\rangle \in B$
(2) Recursive definition: If $L, R \in B$ and $x \in A$ then $<L, x, R>\in B$.

Now define the function $f: B \rightarrow \mathbb{N}$ defined as

$$
\begin{aligned}
f(\rangle) & =0 \\
f(\langle L, x, R\rangle) & = \begin{cases}1 & \text { if } L=R=\langle \rangle \\
f(L)+f(R) & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem

Let T in B be a binary tree. Then $f(T)$ yields the number of leaves of T.

Proof

By structural induction on T

Basis: The empty tree has no leaves, so $f(\rangle)=0$ is correct.

Proof

By structural induction on T

Basis: The empty tree has no leaves, so $f(\rangle)=0$ is correct.

Induction

Let L, R be trees in $B, x \in A$.

Proof

By structural induction on T

Basis: The empty tree has no leaves, so $f(\rangle)=0$ is correct.

Induction

Let L, R be trees in $B, x \in A$.

Now

Suppose that $f(L)$ and $f(R)$ denotes the number of leaves of L and R, respectively.

Proof

Case 1

If $L=R=\langle \rangle$, then $\langle L, x, R\rangle=\langle\langle \rangle, x,\langle \rangle\rangle$ has one leaf, namely x , so $f(\langle\rangle, x,\langle \rangle\rangle)=1$ is correct.

Proof

Case 1

If $L=R=\langle \rangle$, then $\langle L, x, R\rangle=\langle\langle \rangle, x,\langle \rangle\rangle$ has one leaf, namely x , so $f(\langle\rangle, x,\langle \rangle\rangle)=1$ is correct.

Case 2

If L and R are both not empty, then the number of leaves of the tree $\langle L, x, R\rangle$ is equal to the number of leaves of L plus the number of leaves of R .

$$
\begin{equation*}
f(\langle L, x, R\rangle)=f(L)+f(R) \tag{3}
\end{equation*}
$$

Q.E.D.

Introduction

When an algorithm contains an iterative control construct such as a while or for loop
It is possible to express its running time as a series:

$$
\sum_{j=1}^{n} j
$$

Introduction

When an algorithm contains an iterative control construct such as a while or for loop
It is possible to express its running time as a series:

$$
\sum_{j=1}^{n} j
$$

Thus, what is the objective of using these series
To be able to find bounds for the complexities of algorithms

Definition of Series

Definition

Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of numbers, where n is a no-negative integer, we can say that

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k} \tag{5}
\end{equation*}
$$

Definition of Series

Definition

Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of numbers, where n is a no-negative integer, we can say that

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k} \tag{5}
\end{equation*}
$$

In the case of infinite series

$$
\begin{equation*}
a_{1}+a_{2}+\ldots=\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} \tag{6}
\end{equation*}
$$

Definition of Series

Definition

Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of numbers, where n is a no-negative integer, we can say that

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k} \tag{5}
\end{equation*}
$$

In the case of infinite series

$$
\begin{equation*}
a_{1}+a_{2}+\ldots=\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} \tag{6}
\end{equation*}
$$

Here, we have concepts of convergence and divergence that I will allow you to study.

Definition of Series

Definition

Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of numbers, where n is a no-negative integer, we can say that

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k} \tag{5}
\end{equation*}
$$

In the case of infinite series

$$
\begin{equation*}
a_{1}+a_{2}+\ldots=\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} \tag{6}
\end{equation*}
$$

Here, we have concepts of convergence and divergence that I will allow you to study.

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Linearity

For any real number c and any finite sequences $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$

$$
\begin{equation*}
\sum_{k=1}^{n}\left[c a_{k}+b_{k}\right]=c \sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k} \tag{7}
\end{equation*}
$$

Linearity

For any real number c and any finite sequences $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$

$$
\begin{equation*}
\sum_{k=1}^{n}\left[c a_{k}+b_{k}\right]=c \sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k} \tag{7}
\end{equation*}
$$

For More

Please take a look at page 1146 of Cormen's book.

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Telescopic Sum

Observation

- In certain sums each term is a difference of two quantities.

Telescopic Sum

Observation

- In certain sums each term is a difference of two quantities.
- You sometimes see that all the terms cancel except the first and the last.

Example

Telescopic Sum

Observation

- In certain sums each term is a difference of two quantities.
- You sometimes see that all the terms cancel except the first and the last.

Example

Imagine that each term in the sum has the following structure:

Telescopic Sum

Observation

- In certain sums each term is a difference of two quantities.
- You sometimes see that all the terms cancel except the first and the last.

Example

Imagine that each term in the sum has the following structure:

$$
\frac{1}{k}-\frac{1}{k+1}=
$$

Telescopic Sum

Observation

- In certain sums each term is a difference of two quantities.
- You sometimes see that all the terms cancel except the first and the last.

Example

Imagine that each term in the sum has the following structure:

$$
\frac{1}{k}-\frac{1}{k+1}=\frac{(k+1)-k}{k(k+1)}=
$$

Telescopic Sum

Observation

- In certain sums each term is a difference of two quantities.
- You sometimes see that all the terms cancel except the first and the last.

Example

Imagine that each term in the sum has the following structure:

$$
\begin{equation*}
\frac{1}{k}-\frac{1}{k+1}=\frac{(k+1)-k}{k(k+1)}=\frac{1}{k(k+1)} \tag{8}
\end{equation*}
$$

What is the result of the following sum?

Telescopic Sum

Observation

- In certain sums each term is a difference of two quantities.
- You sometimes see that all the terms cancel except the first and the last.

Example

Imagine that each term in the sum has the following structure:

$$
\begin{equation*}
\frac{1}{k}-\frac{1}{k+1}=\frac{(k+1)-k}{k(k+1)}=\frac{1}{k(k+1)} \tag{8}
\end{equation*}
$$

What is the result of the following sum?

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k(k+1)} \tag{9}
\end{equation*}
$$

Telescopic Sum

Definition

For any sequence $a_{0}, a_{1}, \ldots, a_{n}$,

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right)=a_{n}-a_{0} \tag{10}
\end{equation*}
$$

Telescopic Sum

Definition

For any sequence $a_{0}, a_{1}, \ldots, a_{n}$,

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right)=a_{n}-a_{0} \tag{10}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left(a_{k}-a_{k+1}\right)=a_{0}-a_{n} \tag{11}
\end{equation*}
$$

Arithmetic series

Summing over the set $\{1,2,3, \ldots, n\}$

We can prove that

$$
\begin{equation*}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{12}
\end{equation*}
$$

Arithmetic series

Summing over the set $\{1,2,3, \ldots, n\}$

We can prove that

$$
\begin{equation*}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{12}
\end{equation*}
$$

Proof
Basis: If $n=1$ then $\frac{1 \times 2}{2}=1$

Proof

Induction, assume that is true for n

$$
\sum_{i=1}^{n+1} i=\sum_{i=1}^{n} i+n+1
$$

Proof

Induction, assume that is true for n

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =\sum_{i=1}^{n} i+n+1 \\
& =\frac{n(n+1)}{2}+n+1
\end{aligned}
$$

Proof

Induction, assume that is true for n

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =\sum_{i=1}^{n} i+n+1 \\
& =\frac{n(n+1)}{2}+n+1 \\
& =\frac{n(n+1)+2(n+1)}{2}
\end{aligned}
$$

Proof

Induction, assume that is true for n

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =\sum_{i=1}^{n} i+n+1 \\
& =\frac{n(n+1)}{2}+n+1 \\
& =\frac{n(n+1)+2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Series of Squares and Sums

Series of Squares

$$
\begin{equation*}
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{13}
\end{equation*}
$$

Series of Squares and Sums

Series of Squares

$$
\begin{equation*}
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{13}
\end{equation*}
$$

Series of Cubes

$$
\begin{equation*}
\sum_{k=0}^{n} k^{2}=\frac{n^{2}(n+1)^{2}}{4} \tag{14}
\end{equation*}
$$

Geometric Series

Definition

For a real $x \neq 1$, we have that

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\ldots+x^{n} \tag{15}
\end{equation*}
$$

It is called the geometric series

Geometric Series

Definition

For a real $x \neq 1$, we have that

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\ldots+x^{n} \tag{15}
\end{equation*}
$$

It is called the geometric series
It is possible to prove that

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1} \tag{16}
\end{equation*}
$$

Geometric Series

Definition

For a real $x \neq 1$, we have that

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\ldots+x^{n} \tag{15}
\end{equation*}
$$

It is called the geometric series
It is possible to prove that

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1} \tag{16}
\end{equation*}
$$

Proof

Now multiply both sides by of (Eq. 15) by x

$$
\begin{equation*}
x\left[\sum_{k=0}^{n} x^{k}\right]=x+x^{2}+x^{3}+\ldots+x^{n+1} \tag{17}
\end{equation*}
$$

Proof

Subtract (Eq. 17) from (Eq. 15)

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}-x\left[\sum_{k=0}^{n} x^{k}\right]=1-x^{n+1} \tag{18}
\end{equation*}
$$

Proof

Subtract (Eq. 17) from (Eq. 15)

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}-x\left[\sum_{k=0}^{n} x^{k}\right]=1-x^{n+1} \tag{18}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}=\frac{x^{n+1}-1}{x-1} \tag{19}
\end{equation*}
$$

Infinite Geometric Series

When the summation is infinite and $|x|<1$

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \tag{20}
\end{equation*}
$$

Infinite Geometric Series

When the summation is infinite and $|x|<1$

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \tag{20}
\end{equation*}
$$

Proof
Given that

$$
\sum_{k=0}^{\infty} x^{k}=
$$

Infinite Geometric Series

When the summation is infinite and $|x|<1$

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \tag{20}
\end{equation*}
$$

Proof
Given that

$$
\sum_{k=0}^{\infty} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} x^{k}=
$$

Infinite Geometric Series

When the summation is infinite and $|x|<1$

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \tag{20}
\end{equation*}
$$

Proof
Given that

$$
\sum_{k=0}^{\infty} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} x^{k}=\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{1-x}=
$$

Infinite Geometric Series

When the summation is infinite and $|x|<1$

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \tag{20}
\end{equation*}
$$

Proof
Given that

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} x^{k}=\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{1-x}=\frac{1}{1-x} \tag{21}
\end{equation*}
$$

For more on the series

Please take a look to
Cormen's book - Appendix A.

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

This is quite useful for Analysis of Algorithms

Important

The most basic way to evaluate a series is to use mathematical induction.

This is quite useful for Analysis of Algorithms

Important

The most basic way to evaluate a series is to use mathematical induction.

Example

Prove that

$$
\begin{equation*}
\sum_{k=0}^{n} 3^{k} \leq c 3^{n} \tag{22}
\end{equation*}
$$

Fast Bounding of Series

A quick upper bound on the arithmetic series

$$
\begin{equation*}
\sum_{k=1}^{n} k \leq \sum_{k=1}^{n} n=n^{2} \tag{23}
\end{equation*}
$$

Fast Bounding of Series

A quick upper bound on the arithmetic series

$$
\begin{equation*}
\sum_{k=1}^{n} k \leq \sum_{k=1}^{n} n=n^{2} \tag{23}
\end{equation*}
$$

In general, for a series $\sum_{k=1}^{n} a_{k}$

If $a_{\max }=\max _{1 \leq k \leq n} a_{k}$ then

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \leq n \cdot a_{\max } \tag{24}
\end{equation*}
$$

Fast Bounding of Series

A quick upper bound on the arithmetic series

$$
\begin{equation*}
\sum_{k=1}^{n} k \leq \sum_{k=1}^{n} n=n^{2} \tag{23}
\end{equation*}
$$

In general, for a series $\sum_{k=1}^{n} a_{k}$

If $a_{\text {max }}=\max _{1 \leq k \leq n} a_{k}$ then

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \leq n \cdot a_{\max } \tag{24}
\end{equation*}
$$

Another fast way of bounding finite series is

Suppose that $\frac{a_{k+1}}{a_{k}} \leq r$ for all $k \geq 0$ where $0<r<1$.

A More Elegant Method

Thus, we have

$$
\begin{equation*}
a_{k} \leq a_{0} r^{k} \tag{25}
\end{equation*}
$$

A More Elegant Method

Thus, we have

$$
\begin{equation*}
a_{k} \leq a_{0} r^{k} \tag{25}
\end{equation*}
$$

Thus, we can use a infinite decreasing geometric series

$$
\sum_{k=0}^{n} a_{k} \leq \sum_{k=0}^{\infty} a_{0} r^{k}
$$

A More Elegant Method

Thus, we have

$$
\begin{equation*}
a_{k} \leq a_{0} r^{k} \tag{25}
\end{equation*}
$$

Thus, we can use a infinite decreasing geometric series

$$
\begin{aligned}
\sum_{k=0}^{n} a_{k} & \leq \sum_{k=0}^{\infty} a_{0} r^{k} \\
& =a_{0} \sum_{k=0}^{\infty} r^{k}
\end{aligned}
$$

A More Elegant Method

Thus, we have

$$
\begin{equation*}
a_{k} \leq a_{0} r^{k} \tag{25}
\end{equation*}
$$

Thus, we can use a infinite decreasing geometric series

$$
\begin{aligned}
\sum_{k=0}^{n} a_{k} & \leq \sum_{k=0}^{\infty} a_{0} r^{k} \\
& =a_{0} \sum_{k=0}^{\infty} r^{k} \\
& =a_{0} \frac{1}{1-r}
\end{aligned}
$$

Approximation by integrals

When a summation has the from $\sum_{k=m}^{n} f(k)$, where $f(k)$ is a monotonically increasing function

$$
\begin{equation*}
\int_{m-1}^{n} f(x) d x \leq \sum_{k=m}^{n} f(k) \leq \int_{m}^{n+1} f(x) d x \tag{26}
\end{equation*}
$$

For example

Given

$$
\begin{equation*}
\ln (n+1)=\int_{1}^{n+1} \frac{1}{x} d x \leq \sum_{k=1}^{n} \frac{1}{k} \tag{27}
\end{equation*}
$$

For example

Given

$$
\begin{equation*}
\ln (n+1)=\int_{1}^{n+1} \frac{1}{x} d x \leq \sum_{k=1}^{n} \frac{1}{k} \tag{27}
\end{equation*}
$$

In addition

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k} \leq \int_{1}^{n} \frac{1}{x} d x=\ln n \tag{28}
\end{equation*}
$$

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Gerolamo Cardano: Gambling out of Darkness

Gambling

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

Gerolamo Cardano: Gambling out of Darkness

Gambling

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

Gerolamo Cardano (16th century)

While gambling he developed the following rule!!!

Gerolamo Cardano: Gambling out of Darkness

Gambling

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

Gerolamo Cardano (16th century)

While gambling he developed the following rule!!!

Equal conditions

"The most fundamental principle of all in gambling is simply equal conditions, e.g. of opponents, of bystanders, of money, of situation, of the dice box and of the dice itself. To the extent to which you depart from that equity, if it is in your opponent's favour, you are a fool, and if in your own, you are unjust."

Gerolamo Cardano's Definition

Probability

"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favourable throws, and since the circuit is 36 , the rest of the throws in which these points will not turn up will be 9 ; the odds will therefore be 3 to 1 ."

Gerolamo Cardano's Definition

Probability

"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favourable throws, and since the circuit is 36 , the rest of the throws in which these points will not turn up will be 9 ; the odds will therefore be 3 to 1 ."

Meaning

Probability as a ratio of favorable to all possible outcomes!!! As long all events are equiprobable...

Gerolamo Cardano's Definition

Probability

"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favourable throws, and since the circuit is 36 , the rest of the throws in which these points will not turn up will be 9 ; the odds will therefore be 3 to 1 ."

Meaning

Probability as a ratio of favorable to all possible outcomes!!! As long all events are equiprobable...

Thus, we get

$$
P(\text { All favourable throws })=\frac{\text { Number All favourable throws }}{\text { Number of All throws }}
$$

Intuitive Formulation

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
$$

Where $N(A)$ is the number that event a happens in n trials.

Intuitive Formulation

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
$$

Where $N(A)$ is the number that event a happens in n trials.

Example

Imagine you have three dices, then

- The total number of outcomes is 6^{3}

Intuitive Formulation

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
$$

Where $N(A)$ is the number that event a happens in n trials.

Example

Imagine you have three dices, then

- The total number of outcomes is 6^{3}
- If we have event $A=$ all numbers are equal, $|A|=6$

Intuitive Formulation

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
$$

Where $N(A)$ is the number that event a happens in n trials.

Example

Imagine you have three dices, then

- The total number of outcomes is 6^{3}
- If we have event $A=$ all numbers are equal, $|A|=6$
- Then, we have that $P(A)=\frac{6}{6^{3}}=\frac{1}{36}$

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Axioms of Probability

Axioms

Given a sample space S of events, we have that

Axioms of Probability

Axioms

Given a sample space S of events, we have that
(1) $0 \leq P(A) \leq 1$

Axioms of Probability

Axioms

Given a sample space S of events, we have that
(1) $0 \leq P(A) \leq 1$
(2) $P(S)=1$

Axioms of Probability

Axioms

Given a sample space S of events, we have that
(1) $0 \leq P(A) \leq 1$
(2) $P(S)=1$
(3) If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive events (i.e. $P\left(A_{i} \cap A_{j}\right)=0$), then:

$$
P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

Set Operations

We are using
Set Notation

Set Operations

We are using
Set Notation
Thus
What Operations?

Example

Setup

Throw a biased coin twice

Example

Setup

Throw a biased coin twice

We have the following event
At least one head!!! Can you tell me which events are part of it?

Example

Setup

Throw a biased coin twice

We have the following event
At least one head!!! Can you tell me which events are part of it?

What about this one?
Tail on first toss.

We need to count!!!

We have four main methods of counting
(1) Ordered samples of size r with replacement

We need to count!!!

We have four main methods of counting

(1) Ordered samples of size r with replacement
(2) Ordered samples of size r without replacement

We need to count!!!

We have four main methods of counting

(1) Ordered samples of size r with replacement
(2) Ordered samples of size r without replacement
(3) Unordered samples of size r without replacement

We need to count!!!

We have four main methods of counting

(1) Ordered samples of size r with replacement
(2) Ordered samples of size r without replacement
(3) Unordered samples of size r without replacement
(9) Unordered samples of size r with replacement

Ordered samples of size r with replacement

Definition

The number of possible sequences $\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)$ for n different numbers is

$$
\begin{equation*}
n \times n \times \ldots \times n=n^{r} \tag{30}
\end{equation*}
$$

Ordered samples of size r with replacement

Definition

The number of possible sequences $\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)$ for n different numbers is

$$
\begin{equation*}
n \times n \times \ldots \times n=n^{r} \tag{30}
\end{equation*}
$$

Example

If you throw three dices you have $6 \times 6 \times 6=216$

Ordered samples of size r without replacement

Definition

The number of possible sequences $\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)$ for n different numbers is

$$
\begin{equation*}
n \times n-1 \times \ldots \times(n-(r-1))=\frac{n!}{(n-r)!} \tag{31}
\end{equation*}
$$

Ordered samples of size r without replacement

Definition

The number of possible sequences $\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)$ for n different numbers is

$$
\begin{equation*}
n \times n-1 \times \ldots \times(n-(r-1))=\frac{n!}{(n-r)!} \tag{31}
\end{equation*}
$$

Example

The number of different numbers that can be formed if no digit can be repeated. For example, if you have 4 digits and you want numbers of size 3.

Unordered samples of size r without replacement

Definition

Actually, we want the number of possible unordered sets.

Unordered samples of size r without replacement

Definition

Actually, we want the number of possible unordered sets.

However

We have $\frac{n!}{(n-r)!}$ collections where we care about the order. Thus

$$
\begin{equation*}
\frac{\frac{n!}{(n-r)!}}{r!}=\frac{n!}{r!(n-r)!}=\binom{n}{r} \tag{32}
\end{equation*}
$$

Unordered samples of size r with replacement

Definition

We want to find an unordered set $\left\{a_{i_{1}}, \ldots, a_{i_{r}}\right\}$ with replacement

Unordered samples of size r with replacement

Definition

We want to find an unordered set $\left\{a_{i_{1}}, \ldots, a_{i_{r}}\right\}$ with replacement

Use a digit trick for that
 Look at the Board

Unordered samples of size r with replacement

Definition

We want to find an unordered set $\left\{a_{i_{1}}, \ldots, a_{i_{r}}\right\}$ with replacement
Use a digit trick for that
Look at the Board
Thus

$$
\begin{equation*}
\binom{n+r-1}{r} \tag{33}
\end{equation*}
$$

How?

Change encoding by adding more signs
Imagine all the strings of three numbers with $\{1,2,3\}$

How?

Change encoding by adding more signs

Imagine all the strings of three numbers with $\{1,2,3\}$

We have

Old String	New String
111	$1+0,1+1,1+2=123$
112	$1+0,1+1,2+2=124$
113	$1+0,1+1,3+2=125$
122	$1+0,2+1,2+2=134$
123	$1+0,2+1,3+2=135$
133	$1+0,3+1,3+2=145$
222	$2+0,2+1,2+2=234$
223	$2+0,2+1,3+2=235$
233	$1+0,3+1,3+2=245$
333	$3+0,3+1,3+2=345$

Outline

1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Independence

Definition

Two events A and B are independent if and only if $P(A, B)=P(A \cap B)=P(A) P(B)$

Independence

Definition

Two events A and B are independent if and only if $P(A, B)=P(A \cap B)=P(A) P(B)$

Do you have any example?
Any idea?

Example

We have two dices

Thus, we have all pairs (i, j) such that $i, j=1,2,3, \ldots, 6$

Example

We have two dices

Thus, we have all pairs (i, j) such that $i, j=1,2,3, \ldots, 6$

We have the following events

- $A=\{$ First dice 1,2 or 3$\}$

Example

We have two dices

Thus, we have all pairs (i, j) such that $i, j=1,2,3, \ldots, 6$

We have the following events

- $A=\{$ First dice 1,2 or 3$\}$
- $B=\{$ First dice 3,4 or 5$\}$

Example

We have two dices

Thus, we have all pairs (i, j) such that $i, j=1,2,3, \ldots, 6$

We have the following events

- $A=\{$ First dice 1,2 or 3$\}$
- $B=\{$ First dice 3,4 or 5$\}$
- $C=\{$ The sum of two faces is 9$\}$

Example

We have two dices

Thus, we have all pairs (i, j) such that $i, j=1,2,3, \ldots, 6$

We have the following events

- $A=\{$ First dice 1,2 or 3$\}$
- $B=\{$ First dice 3,4 or 5$\}$
- $C=\{$ The sum of two faces is 9$\}$

So, we can do

Look at the board!!! Independence between A, B, C

We can use it to derive the Binomial Distribution

WHAT?????

First, we use a sequence of n Bernoulli Trials

We have this

- "Success" has a probability p.

First, we use a sequence of n Bernoulli Trials

We have this

- "Success" has a probability p.
- "Failure" has a probability $1-p$.

First, we use a sequence of n Bernoulli Trials

We have this

- "Success" has a probability p.
- "Failure" has a probability $1-p$.

Examples

- Toss a coin independently n times.

First, we use a sequence of n Bernoulli Trials

We have this

- "Success" has a probability p.
- "Failure" has a probability $1-p$.

Examples

- Toss a coin independently n times.
- Examine components produced on an assembly line.

First, we use a sequence of n Bernoulli Trials

We have this

- "Success" has a probability p.
- "Failure" has a probability $1-p$.

Examples

- Toss a coin independently n times.
- Examine components produced on an assembly line.

Now

We take $S=$ all 2^{n} ordered sequences of length n, with components 0 (failure) and 1(success).

Thus, taking a sample ω

```
\omega=11\cdots10\cdots0
k 1's followed by n-k 0's.
```

Thus, taking a sample ω
$\omega=11 \cdots 10 \cdots 0$
k 1's followed by $n-k$ 0's.
We have then

$$
\begin{aligned}
P(\omega) & =P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k} \cap A_{k+1}^{c} \cap \ldots \cap A_{n}^{c}\right) \\
& =P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{k}\right) P\left(A_{k+1}^{c}\right) \cdots P\left(A_{n}^{c}\right) \\
& =p^{k}(1-p)^{n-k}
\end{aligned}
$$

Thus, taking a sample ω
$\omega=11 \cdots 10 \cdots 0$
k 1's followed by $n-k 0$'s.
We have then

$$
\begin{aligned}
P(\omega) & =P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k} \cap A_{k+1}^{c} \cap \ldots \cap A_{n}^{c}\right) \\
& =P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{k}\right) P\left(A_{k+1}^{c}\right) \cdots P\left(A_{n}^{c}\right) \\
& =p^{k}(1-p)^{n-k}
\end{aligned}
$$

Important

The number of such sample is the number of sets with k elements.... or...

$$
\binom{n}{k}
$$

Did you notice?

We do not care where the 1's and 0's are
Thus all the probabilities are equal to $p^{k}(1-p)^{k}$

Did you notice?

We do not care where the 1's and 0's are

Thus all the probabilities are equal to $p^{k}(1-p)^{k}$
Thus, we are looking to sum all those probabilities of all those combinations of 1's and 0's

$$
\sum_{k 1^{\prime} \mathrm{s}} p\left(\omega^{k}\right)
$$

Did you notice?

We do not care where the 1's and 0's are

Thus all the probabilities are equal to $p^{k}(1-p)^{k}$

Thus, we are looking to sum all those probabilities of all those combinations of 1's and 0's

$$
\sum_{k 1^{\prime} \mathrm{s}} p\left(\omega^{k}\right)
$$

Then

$$
\sum_{k 1^{\prime} \mathrm{s}} p\left(\omega^{k}\right)=\binom{n}{k} p(1-p)^{n-k}
$$

Proving this is a probability

Sum of these probabilities is equal to 1

$$
\sum_{k=0}^{n}\binom{n}{k} p(1-p)^{n-k}=(p+(1-p))^{n}=1
$$

Proving this is a probability

Sum of these probabilities is equal to 1

$$
\sum_{k=0}^{n}\binom{n}{k} p(1-p)^{n-k}=(p+(1-p))^{n}=1
$$

The other is simple

$$
0 \leq\binom{ n}{k} p(1-p)^{n-k} \leq 1 \forall k
$$

Proving this is a probability

Sum of these probabilities is equal to 1

$$
\sum_{k=0}^{n}\binom{n}{k} p(1-p)^{n-k}=(p+(1-p))^{n}=1
$$

The other is simple

$$
0 \leq\binom{ n}{k} p(1-p)^{n-k} \leq 1 \forall k
$$

This is know as
The Binomial probability function!!!

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Different Probabilities

Unconditional

This is the probability of an event A prior to arrival of any evidence, it is denoted by $P(A)$. For example:

Different Probabilities

Unconditional

This is the probability of an event A prior to arrival of any evidence, it is denoted by $P(A)$. For example:

- $\mathrm{P}($ Cavity $)=0.1$ means that "in the absence of any other information, there is a 10% chance that the patient is having a cavity".

Different Probabilities

Unconditional

This is the probability of an event A prior to arrival of any evidence, it is denoted by $P(A)$. For example:

- $\mathrm{P}($ Cavity $)=0.1$ means that "in the absence of any other information, there is a 10% chance that the patient is having a cavity".

Conditional

This is the probability of an event A given some evidence B, it is denoted $P(A \mid B)$. For example:

Different Probabilities

Unconditional

This is the probability of an event A prior to arrival of any evidence, it is denoted by $P(A)$. For example:

- $\mathrm{P}($ Cavity $)=0.1$ means that "in the absence of any other information, there is a 10% chance that the patient is having a cavity".

Conditional

This is the probability of an event A given some evidence B, it is denoted $P(A \mid B)$. For example:

- $\mathrm{P}($ Cavity /Toothache $)=0.8$ means that "there is an 80% chance that the patient is having a cavity given that he is having a toothache"

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Posterior Probabilities

Relation between conditional and unconditional probabilities

- Conditional probabilities can be defined in terms of unconditional probabilities:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

which generalizes to the chain rule $P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.

Posterior Probabilities

Relation between conditional and unconditional probabilities

- Conditional probabilities can be defined in terms of unconditional probabilities:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

which generalizes to the chain rule $P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.

Law of Total Probabilities

- if $B_{1}, B_{2}, \ldots, B_{n}$ is a partition of mutually exclusive events and A is an event, then $P(A)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)$. An special case $P(A)=P(A, B)+P(A, \bar{B})$.

Posterior Probabilities

Relation between conditional and unconditional probabilities

- Conditional probabilities can be defined in terms of unconditional probabilities:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

which generalizes to the chain rule $P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.

Law of Total Probabilities

- if $B_{1}, B_{2}, \ldots, B_{n}$ is a partition of mutually exclusive events and A is an event, then $P(A)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)$. An special case $P(A)=P(A, B)+P(A, \bar{B})$.
- In addition, this can be rewritten into $P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$.

Example

Three cards are drawn from a deck
Find the probability of no obtaining a heart

Example

Three cards are drawn from a deck
Find the probability of no obtaining a heart

```
We have
- 52 cards
- 39 of them not a heart
```


Example

Three cards are drawn from a deck

Find the probability of no obtaining a heart

> We have
> - 52 cards
> - 39 of them not a heart

Define
 $A_{i}=\{$ Card i is not a heart $\}$ Then?

Independence and Conditional

From here, we have that...
$P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Independence and Conditional

From here, we have that...
$P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.

Conditional independence

A and B are conditionally independent given C if and only if

$$
P(A \mid B, C)=P(A \mid C)
$$

Example: $P($ WetGrass \mid Season, Rain $)=P($ WetGrass \mid Rain $)$.

Bayes Theorem

One Version

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayes Theorem

One Version

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Where

- $P(A)$ is the prior probability or marginal probability of A . It is "prior" in the sense that it does not take into account any information about B.

Bayes Theorem

One Version

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Where

- $P(A)$ is the prior probability or marginal probability of A . It is "prior" in the sense that it does not take into account any information about B .
- $P(A \mid B)$ is the conditional probability of A , given B . It is also called the posterior probability because it is derived from or depends upon the specified value of B.

Bayes Theorem

One Version

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Where

- $P(A)$ is the prior probability or marginal probability of A . It is "prior" in the sense that it does not take into account any information about B .
- $P(A \mid B)$ is the conditional probability of A , given B . It is also called the posterior probability because it is derived from or depends upon the specified value of B .
- $P(B \mid A)$ is the conditional probability of B given A . It is also called the likelihood.

Bayes Theorem

One Version

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Where

- $P(A)$ is the prior probability or marginal probability of A . It is "prior" in the sense that it does not take into account any information about B .
- $P(A \mid B)$ is the conditional probability of A , given B . It is also called the posterior probability because it is derived from or depends upon the specified value of B .
- $P(B \mid A)$ is the conditional probability of B given A . It is also called the likelihood.
- $P(B)$ is the prior or marginal probability of B , and acts as a normalizing constant.

General Form of the Bayes Rule

Definition

If $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of mutually exclusive events and B any event, then:

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P(B)}=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

General Form of the Bayes Rule

Definition

If $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of mutually exclusive events and B any event, then:

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P(B)}=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

where

$$
P(B)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

Example

Setup

Throw two unbiased dice independently.

Example

Setup

Throw two unbiased dice independently.
(1) $A=\{$ sum of the faces $=8\}$
(2) $B=\{$ faces are equal $\}$

Example

Setup

Throw two unbiased dice independently.

Let
(1) $A=\{$ sum of the faces $=8\}$
(2) $B=\{$ faces are equal $\}$

Then calculate $P(B \mid A)$

Look at the board

Another Example

We have the following

Two coins are available, one unbiased and the other two headed

Another Example

We have the following

Two coins are available, one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

Another Example

We have the following

Two coins are available, one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

Events

- $A=\{$ head comes up $\}$
- $B_{1}=\{$ Unbiased coin chosen $\}$

Another Example

We have the following

Two coins are available, one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

Events

- $A=\{$ head comes up $\}$
- $B_{1}=\{$ Unbiased coin chosen $\}$
- $B_{2}=\{$ Biased coin chosen $\}$

Another Example

We have the following

Two coins are available，one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

Events

－$A=\{$ head comes up $\}$
－$B_{1}=\{$ Unbiased coin chosen $\}$
－$B_{2}=\{$ Biased coin chosen $\}$
－Find that if a head come up，find the probability that the two headed coin was chosen

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Random Variables

Definition

In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Random Variables

Definition

In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Example

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue.

Random Variables

Definition

In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Example

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue.

- Suppose we record a " 1 " for agree and " 0 " for disagree.

Random Variables

Definition

In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Example

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue.

- Suppose we record a " 1 " for agree and " 0 " for disagree.
- The sample space for this experiment has 2^{50} elements. Why?

Random Variables

Definition

In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Example

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue.

- Suppose we record a " 1 " for agree and " 0 " for disagree.
- The sample space for this experiment has 2^{50} elements. Why?
- Suppose we are only interested in the number of people who agree.

Random Variables

Definition

In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Example

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue.

- Suppose we record a " 1 " for agree and " 0 " for disagree.
- The sample space for this experiment has 2^{50} elements. Why?
- Suppose we are only interested in the number of people who agree.
- Define the variable $X=$ number of " 1 " 's recorded out of 50 .

Random Variables

Definition

In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Example

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue.

- Suppose we record a " 1 " for agree and " 0 " for disagree.
- The sample space for this experiment has 2^{50} elements. Why?
- Suppose we are only interested in the number of people who agree.
- Define the variable $X=$ number of " 1 " 's recorded out of 50 .
- Easier to deal with this sample space (has only 51 elements).

Thus...

It is necessary to define a function random variable as follow

$$
X: S \rightarrow \mathbb{R}
$$

Thus...

It is necessary to define a function random variable as follow

$$
X: S \rightarrow \mathbb{R}
$$

Graphically

Random Variables

How?
What is the probability function of the random variable is being defined from the probability function of the original sample space?

Random Variables

How?

What is the probability function of the random variable is being defined from the probability function of the original sample space?

- Suppose the sample space is $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$

Random Variables

How?

What is the probability function of the random variable is being defined from the probability function of the original sample space?

- Suppose the sample space is $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- Suppose the range of the random variable $X=<x_{1}, x_{2}, \ldots, x_{m}>$

Random Variables

How?

What is the probability function of the random variable is being defined from the probability function of the original sample space?

- Suppose the sample space is $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- Suppose the range of the random variable $X=<x_{1}, x_{2}, \ldots, x_{m}>$
- Then, we observe $X=x_{i}$ if and only if the outcome of the random experiment is an $s_{j} \in S$ s.t. $X\left(s_{j}\right)=x_{j}$ or

$$
P\left(X=x_{j}\right)=P\left(s_{j} \in S \mid X\left(s_{j}\right)=x_{j}\right)
$$

Example

Setup

Throw a coin 10 times, and let R be the number of heads.

Example

Setup

Throw a coin 10 times, and let R be the number of heads.

```
Then
\(S=\) all sequences of length 10 with components H and T
```


Example

Setup

Throw a coin 10 times, and let R be the number of heads.

Then

$S=$ all sequences of length 10 with components H and T

We have for

$\omega=\mathrm{HHHHTTHTTH} \Rightarrow R(\omega)=6$

Example

Setup

Let R be the number of heads in two independent tosses of a coin.

- Probability of head is . 6

Example

Setup

Let R be the number of heads in two independent tosses of a coin.

- Probability of head is . 6

What are the probabilities?
$\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

Example

Setup

Let R be the number of heads in two independent tosses of a coin.

- Probability of head is 6

What are the probabilities?

$\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
Thus, we can calculate
$P(R=0), P(R=1), P(R=2)$

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Types of Random Variables

Discrete
A discrete random variable can assume only a countable number of values.

Types of Random Variables

Discrete
A discrete random variable can assume only a countable number of values.

Continuous

A continuous random variable can assume a continuous range of values.

Properties

Probability Mass Function (PMF) and Probability Density Function (PDF)

The pmf /pdf of a random variable X assigns a probability for each possible value of X.

Properties

Probability Mass Function (PMF) and Probability Density Function (PDF)

The pmf /pdf of a random variable X assigns a probability for each possible value of X.

Properties of the pmf and pdf

- Some properties of the pmf:

Properties

Probability Mass Function (PMF) and Probability Density Function (PDF)

The pmf /pdf of a random variable X assigns a probability for each possible value of X.

Properties of the pmf and pdf

- Some properties of the pmf:

$$
\text { - } \sum_{x} p(x)=1 \text { and } P(a<X<b)=\sum_{k=a}^{b} p(k) .
$$

Properties

Probability Mass Function (PMF) and Probability Density Function (PDF)

The pmf /pdf of a random variable X assigns a probability for each possible value of X.

Properties of the pmf and pdf

- Some properties of the pmf:

$$
\text { - } \sum_{x} p(x)=1 \text { and } P(a<X<b)=\sum_{k=a}^{b} p(k) .
$$

- In a similar way for the pdf:

Properties

Probability Mass Function (PMF) and Probability Density Function (PDF)

The pmf /pdf of a random variable X assigns a probability for each possible value of X.

Properties of the pmf and pdf

- Some properties of the pmf:
- $\sum_{x} p(x)=1$ and $P(a<X<b)=\sum_{k=a}^{b} p(k)$.
- In a similar way for the pdf:

$$
\int_{-\infty}^{\infty} p(x) d x=1 \text { and } P(a<X<b)=\int_{a}^{b} p(t) d t
$$

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Cumulative Distributive Function I

Cumulative Distribution Function

- With every random variable, we associate a function called

Cumulative Distribution Function (CDF) which is defined as follows:

$$
F_{X}(x)=P(f(X) \leq x)
$$

Cumulative Distributive Function I

Cumulative Distribution Function

- With every random variable, we associate a function called Cumulative Distribution Function (CDF) which is defined as follows:

$$
F_{X}(x)=P(f(X) \leq x)
$$

- With properties:
- $F_{X}(x) \geq 0$

Cumulative Distributive Function I

Cumulative Distribution Function

- With every random variable, we associate a function called Cumulative Distribution Function (CDF) which is defined as follows:

$$
F_{X}(x)=P(f(X) \leq x)
$$

- With properties:
- $F_{X}(x) \geq 0$
- $F_{X}(x)$ in a non-decreasing function of X.

Cumulative Distributive Function I

Cumulative Distribution Function

- With every random variable, we associate a function called Cumulative Distribution Function (CDF) which is defined as follows:

$$
F_{X}(x)=P(f(X) \leq x)
$$

- With properties:
- $F_{X}(x) \geq 0$
- $F_{X}(x)$ in a non-decreasing function of X.

Example

- If X is discrete, its CDF can be computed as follows:

$$
F_{X}(x)=P(f(X) \leq x)=\sum_{k=1}^{N} P\left(X_{k}=p_{k}\right)
$$

Example: Discrete Function

Cumulative Distributive Function II

Continuous Function

If X is continuous, its CDF can be computed as follows:

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

Cumulative Distributive Function II

Continuous Function

If X is continuous, its CDF can be computed as follows:

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

Remark

Based in the fundamental theorem of calculus, we have the following equality.

$$
p(x)=\frac{d F}{d x}(x)
$$

Cumulative Distributive Function II

Continuous Function

If X is continuous, its CDF can be computed as follows:

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

Remark

Based in the fundamental theorem of calculus, we have the following equality.

$$
p(x)=\frac{d F}{d x}(x)
$$

Note

This particular $p(x)$ is known as the Probability Mass Function (PMF) or Probability Distribution Function (PDF).

Example: Continuous Function

Setup

- A number X is chosen at random between a and b

Example: Continuous Function

Setup

- A number X is chosen at random between a and b
- Xhas a uniform distribution

Example: Continuous Function

Setup

- A number X is chosen at random between a and b
- Xhas a uniform distribution
- $f_{X}(x)=\frac{1}{b-a}$ for $a \leq x \leq b$

Example: Continuous Function

Setup

- A number X is chosen at random between a and b
- Xhas a uniform distribution
- $f_{X}(x)=\frac{1}{b-a}$ for $a \leq x \leq b$
- $f_{X}(x)=0$ for $x<a$ and $x>b$

Example: Continuous Function

Setup

- A number X is chosen at random between a and b
- Xhas a uniform distribution
- $f_{X}(x)=\frac{1}{b-a}$ for $a \leq x \leq b$
- $f_{X}(x)=0$ for $x<a$ and $x>b$

We have

$$
\begin{equation*}
F_{X}(x)=P\{X \leq x\}=\int_{-\infty}^{x} f_{X}(t) d t \tag{34}
\end{equation*}
$$

Example: Continuous Function

Setup

- A number X is chosen at random between a and b
- Xhas a uniform distribution
- $f_{X}(x)=\frac{1}{b-a}$ for $a \leq x \leq b$
- $f_{X}(x)=0$ for $x<a$ and $x>b$

We have

$$
\begin{gather*}
F_{X}(x)=P\{X \leq x\}=\int_{-\infty}^{x} f_{X}(t) d t \tag{34}\\
P\{a<X \leq b\}=\int_{a}^{b} f_{X}(t) d t \tag{35}
\end{gather*}
$$

Graphically

Example uniform distribution

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Properties of the PMF/PDF

Conditional PMF/PDF

We have the conditional pdf:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

From this, we have the general chain rule

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) p\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \ldots p\left(x_{n}\right)
$$

Properties of the PMF/PDF

Conditional PMF/PDF

We have the conditional pdf:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

From this, we have the general chain rule

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) p\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \ldots p\left(x_{n}\right) .
$$

Independence

If X and Y are independent, then:

$$
p(x, y)=p(x) p(y)
$$

Properties of the PMF/PDF

Law of Total Probability

$$
p(y)=\sum_{x} p(y \mid x) p(x)
$$

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Expectation

Something Notable

You have the random variables R_{1}, R_{2} representing how long is a call and how much you pay for an international call:

Expectation

Something Notable

You have the random variables R_{1}, R_{2} representing how long is a call and how much you pay for an international call:

$$
\text { if } 0 \leq R_{1} \leq 3 \text { (minute) } R_{2}=10 \text { (cents) }
$$

Expectation

Something Notable

You have the random variables R_{1}, R_{2} representing how long is a call and how much you pay for an international call:

$$
\begin{aligned}
& \text { if } 0 \leq R_{1} \leq 3 \text { (minute) } R_{2}=10 \text { (cents) } \\
& \text { if } 3<R_{1} \leq 6 \text { (minute) } R_{2}=20(\text { cents })
\end{aligned}
$$

Expectation

Something Notable

You have the random variables R_{1}, R_{2} representing how long is a call and how much you pay for an international call:

$$
\begin{aligned}
& \text { if } 0 \leq R_{1} \leq 3 \text { (minute) } R_{2}=10 \text { (cents) } \\
& \text { if } 3<R_{1} \leq 6 \text { (minute) } R_{2}=20 \text { (cents) } \\
& \text { if } 6<R_{1} \leq 9 \text { (minute) } R_{2}=30 \text { (cents) }
\end{aligned}
$$

We have then the probabilities

Expectation

Something Notable

You have the random variables R_{1}, R_{2} representing how long is a call and how much you pay for an international call:

$$
\begin{aligned}
& \text { if } 0 \leq R_{1} \leq 3 \text { (minute) } R_{2}=10 \text { (cents) } \\
& \text { if } 3<R_{1} \leq 6 \text { (minute) } R_{2}=20 \text { (cents) } \\
& \text { if } 6<R_{1} \leq 9 \text { (minute) } R_{2}=30 \text { (cents) }
\end{aligned}
$$

We have then the probabilities
$P\left\{R_{2}=10\right\}=0.6, P\left\{R_{2}=20\right\}=0.25, P\left\{R_{2}=10\right\}=0.15$.
If we observe N calls and N is very large

Expectation

Something Notable

You have the random variables R_{1}, R_{2} representing how long is a call and how much you pay for an international call:

$$
\begin{aligned}
& \text { if } 0 \leq R_{1} \leq 3 \text { (minute) } R_{2}=10 \text { (cents) } \\
& \text { if } 3<R_{1} \leq 6 \text { (minute) } R_{2}=20 \text { (cents) } \\
& \text { if } 6<R_{1} \leq 9 \text { (minute) } R_{2}=30 \text { (cents) }
\end{aligned}
$$

We have then the probabilities

$P\left\{R_{2}=10\right\}=0.6, P\left\{R_{2}=20\right\}=0.25, P\left\{R_{2}=10\right\}=0.15$.

If we observe N calls and N is very large

We can say that we have $N \times 0.6$ calls and $10 \times N \times 0.6$ the cost of those calls.

Expectation

Similarly

- $\left\{R_{2}=20\right\} \Longrightarrow 0.25 N$ and total cost $5 N$.

Expectation

Similarly

- $\left\{R_{2}=20\right\} \Longrightarrow 0.25 \mathrm{~N}$ and total cost 5 N .
- $\left\{R_{2}=20\right\} \Longrightarrow 0.15 \mathrm{~N}$ and total cost 4.5 N .

Expectation

Similarly

- $\left\{R_{2}=20\right\} \Longrightarrow 0.25 \mathrm{~N}$ and total cost 5 N .
- $\left\{R_{2}=20\right\} \Longrightarrow 0.15 \mathrm{~N}$ and total cost 4.5 N .

We have then the probabilities

The total cost is $6 N+5 N+4.5 N=15.5 N$ or in average 15.5 cents per call.

Expectation

Similarly

- $\left\{R_{2}=20\right\} \Longrightarrow 0.25 \mathrm{~N}$ and total cost 5 N .
- $\left\{R_{2}=20\right\} \Longrightarrow 0.15 \mathrm{~N}$ and total cost 4.5 N .

We have then the probabilities

The total cost is $6 N+5 N+4.5 N=15.5 N$ or in average 15.5 cents per call.

The average

$$
\begin{aligned}
\frac{10(0.6 N)+20(.25 N)+30(0.15 N)}{N} & =10(0.6)+20(.25)+30(0.15) \\
& =\sum_{y} y P\left\{R_{2}=y\right\}
\end{aligned}
$$

Expected Value

Definition

- Discrete random variable $X: E(X)=\sum_{x} x p(x)$.

Expected Value

Definition

- Discrete random variable $X: E(X)=\sum_{x} x p(x)$.
- Continuous random variable $Y: E(Y)=\int_{x} x p(x) d x$.

Expected Value

Definition

- Discrete random variable $X: E(X)=\sum_{x} x p(x)$.
- Continuous random variable $Y: E(Y)=\int_{x} x p(x) d x$.

Extension to a function $g(x)$

- $E(g(X))=\sum_{x} g(x) p(x)$ (Discrete case).

Expected Value

Definition

- Discrete random variable $X: E(X)=\sum_{x} x p(x)$.
- Continuous random variable $Y: E(Y)=\int_{x} x p(x) d x$.

Extension to a function $g(x)$

- $E(g(X))=\sum_{x} g(x) p(x)$ (Discrete case).
- $E(g(X))=\int_{-\infty}^{+\infty} g(x) p(x) d x$ (Continuous case).

Linear Property

Linear Property

Example for a discrete distribution

$$
E[a X+b]=\sum_{x}[a x+b] p(x \mid \theta)
$$

Linear Property

Linearity property of the Expected Value

$$
\begin{equation*}
E(a f(X)+b g(Y))=a E(f(X))+b E(g(Y)) \tag{36}
\end{equation*}
$$

Example for a discrete distribution

$$
\begin{aligned}
E[a X+b] & =\sum_{x}[a x+b] p(x \mid \theta) \\
& =a \sum_{x} x p(x \mid \theta)+b \sum_{x} p(x \mid \theta)
\end{aligned}
$$

Linear Property

Linearity property of the Expected Value

$$
\begin{equation*}
E(a f(X)+b g(Y))=a E(f(X))+b E(g(Y)) \tag{36}
\end{equation*}
$$

Example for a discrete distribution

$$
\begin{aligned}
E[a X+b] & =\sum_{x}[a x+b] p(x \mid \theta) \\
& =a \sum_{x} x p(x \mid \theta)+b \sum_{x} p(x \mid \theta) \\
& =a E[X]+b
\end{aligned}
$$

Example

Imagine the following
We have the following functions

Example

Imagine the following

We have the following functions
(1) $f(x)=e^{-x}, x \geq 0$

Example

Imagine the following
We have the following functions
(1) $f(x)=e^{-x}, x \geq 0$
(2) $g(x)=0, x<0$

Example

Imagine the following

We have the following functions
(1) $f(x)=e^{-x}, x \geq 0$
(2) $g(x)=0, x<0$

Find

The expected Value

Variance

Definition

- $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$ where $\mu=E(X)$

Variance

Definition

- $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$ where $\mu=E(X)$

Standard Deviation

- The standard deviation is simply $\sigma=\sqrt{\operatorname{Var}(X)}$.

Outline

(1) Induction

- Basic Induction
- Structural Induction
(2) Series
- Properties
- Important Series
- Bounding the Series
(3) Probability
- Intuitive Formulation
- Axioms
- Independence
- Unconditional and Conditional Probability
- Posterior (Conditional) Probability
- Random Variables
- Types of Random Variables
- Cumulative Distributive Function
- Properties of the PMF/PDF
- Expected Value and Variance
- Indicator Random Variable

Indicator Random Variable

Definition

The indicator of an event A is a random variable I_{A} defined as follows:

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \tag{37}\\ 0 & \text { if } \omega \notin A\end{cases}
$$

Indicator Random Variable

Definition

The indicator of an event A is a random variable I_{A} defined as follows:

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \tag{37}\\ 0 & \text { if } \omega \notin A\end{cases}
$$

Thus

- If $I_{A}=1$ if A occurs.

Indicator Random Variable

Definition

The indicator of an event A is a random variable I_{A} defined as follows:

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \tag{37}\\ 0 & \text { if } \omega \notin A\end{cases}
$$

Thus

- If $I_{A}=1$ if A occurs.
- If $I_{A}=0$ if A does not occur.

Indicator Random Variable

Definition

The indicator of an event A is a random variable I_{A} defined as follows:

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \tag{37}\\ 0 & \text { if } \omega \notin A\end{cases}
$$

Thus

- If $I_{A}=1$ if A occurs.
- If $I_{A}=0$ if A does not occur.

Why is this useful?

Because we can count events!!!

Useful Property

The Expected value of an indicator function
$E\left[I_{A}\right]=$

Useful Property

The Expected value of an indicator function

$$
E\left[I_{A}\right]=0 \times P\left(I_{A}=0\right)+1 \times P\left(I_{A}=1\right)=
$$

Useful Property

The Expected value of an indicator function

$$
E\left[I_{A}\right]=0 \times P\left(I_{A}=0\right)+1 \times P\left(I_{A}=1\right)=P\left(I_{A}=1\right)=
$$

Useful Property

The Expected value of an indicator function

$$
\begin{equation*}
E\left[I_{A}\right]=0 \times P\left(I_{A}=0\right)+1 \times P\left(I_{A}=1\right)=P\left(I_{A}=1\right)=P(A) \tag{38}
\end{equation*}
$$

Why is this useful?

Useful Property

The Expected value of an indicator function

$$
\begin{equation*}
E\left[I_{A}\right]=0 \times P\left(I_{A}=0\right)+1 \times P\left(I_{A}=1\right)=P\left(I_{A}=1\right)=P(A) \tag{38}
\end{equation*}
$$

Why is this useful?

Because we can use this to count things when a probability is involved!!!

Method of Indicators

It is possible to see random variables as a sum of indicators functions

$$
\begin{equation*}
R=I_{A_{1}}+\ldots+I_{A_{n}} \tag{39}
\end{equation*}
$$

Method of Indicators

It is possible to see random variables as a sum of indicators functions

$$
\begin{equation*}
R=I_{A_{1}}+\ldots+I_{A_{n}} \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
E[R]=\sum_{j=1}^{n} E\left[I_{A_{j}}\right]=\sum_{j=1}^{n} P\left(A_{j}\right) \tag{40}
\end{equation*}
$$

Method of Indicators

It is possible to see random variables as a sum of indicators functions

$$
\begin{equation*}
R=I_{A_{1}}+\ldots+I_{A_{n}} \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
E[R]=\sum_{j=1}^{n} E\left[I_{A_{j}}\right]=\sum_{j=1}^{n} P\left(A_{j}\right) \tag{40}
\end{equation*}
$$

Hopefully

It is easier to calculate $P\left(A_{j}\right)$ than to evaluate $E[R]$ directly.

Example

A single unbiased die is tossed independently n times

- Let R_{1} be the numbers of 1's.
- Let R_{2} be the numbers of 2's.

Example

A single unbiased die is tossed independently n times

- Let R_{1} be the numbers of 1 's.
- Let R_{2} be the numbers of 2's.

Find $E\left[R_{1} R_{2}\right]$

We can express each variable as

$$
\begin{aligned}
& R_{1}=I_{A_{1}}+\ldots+I_{A_{n}} \\
& R_{2}=I_{B_{1}}+\ldots+I_{B_{n}}
\end{aligned}
$$

Example

A single unbiased die is tossed independently n times

- Let R_{1} be the numbers of 1 's.
- Let R_{2} be the numbers of 2's.

Find $E\left[R_{1} R_{2}\right]$

We can express each variable as

$$
\begin{aligned}
& R_{1}=I_{A_{1}}+\ldots+I_{A_{n}} \\
& R_{2}=I_{B_{1}}+\ldots+I_{B_{n}}
\end{aligned}
$$

Thus

$$
\begin{equation*}
E\left[R_{1} R_{2}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[I_{A_{i}} I_{B_{j}}\right] \tag{41}
\end{equation*}
$$

Next

Case $1 i \neq j I_{A_{i}}$ and $I_{B_{j}}$ are independent

$$
\begin{equation*}
E\left[I_{A_{i}} I_{B_{j}}\right]=E\left[I_{A_{i}}\right] E\left[I_{B_{j}}\right]=P\left(A_{i}\right) P\left(B_{j}\right)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36} \tag{42}
\end{equation*}
$$

Next

Case $1 i \neq j I_{A_{i}}$ and $I_{B_{j}}$ are independent

$$
\begin{equation*}
E\left[I_{A_{i}} I_{B_{j}}\right]=E\left[I_{A_{i}}\right] E\left[I_{B_{j}}\right]=P\left(A_{i}\right) P\left(B_{j}\right)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36} \tag{42}
\end{equation*}
$$

Case $2 i=j A_{i}$ and B_{i} are disjoint
Thus, $I_{A_{i}} I_{B_{i}}=I_{A_{i} \cap B_{i}}=0$

Next

Case $1 i \neq j I_{A_{i}}$ and $I_{B_{j}}$ are independent

$$
\begin{equation*}
E\left[I_{A_{i}} I_{B_{j}}\right]=E\left[I_{A_{i}}\right] E\left[I_{B_{j}}\right]=P\left(A_{i}\right) P\left(B_{j}\right)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36} \tag{42}
\end{equation*}
$$

Case $2 i=j A_{i}$ and B_{i} are disjoint
Thus, $I_{A_{i}} I_{B_{i}}=I_{A_{i} \cap B_{i}}=0$

Thus

$$
\begin{equation*}
E\left[R_{1} R_{2}\right]=\frac{n(n-1)}{36} \tag{43}
\end{equation*}
$$

