
Analysis of Algorithms
Introduction

Andres Mendez-Vazquez

September 2, 2018

1 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

2 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

3 / 63

Introduction

Informal definition
Informally, an algorithm is any well defined computational procedure that

It takes some value, or set of values, as input.
Then, it produces some value, or set of values, as output.

Examples

4 / 63

Introduction

Informal definition
Informally, an algorithm is any well defined computational procedure that

It takes some value, or set of values, as input.
Then, it produces some value, or set of values, as output.

Examples

4 / 63

Introduction

Informal definition
Informally, an algorithm is any well defined computational procedure that

It takes some value, or set of values, as input.
Then, it produces some value, or set of values, as output.

Examples

4 / 63

Introduction

Informal definition
Informally, an algorithm is any well defined computational procedure that

It takes some value, or set of values, as input.
Then, it produces some value, or set of values, as output.

Examples
ALGORITHMINPUT

Cluster 1 (7)

OUTPUT

4 / 63

Example

Sorting Problem
Input: A sequence of N numbers a1, a2, ..., aN

Output: A reordering of the input sequence a(1), a(2), ..., a(N)

Actually
We are dealing with instances of a problem.

5 / 63

Example

Sorting Problem
Input: A sequence of N numbers a1, a2, ..., aN

Output: A reordering of the input sequence a(1), a(2), ..., a(N)

Actually
We are dealing with instances of a problem.

5 / 63

Stuff Like

A sequence of integer numbers
10 2 4 5 11 36 18 9 50

The Classic
We want to order the numbers!!!

6 / 63

Stuff Like

A sequence of integer numbers
10 2 4 5 11 36 18 9 50

The Classic
We want to order the numbers!!!

6 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

7 / 63

Instance of a Problem

Instance of the problem
For example, we have

I 9, 8, 5, 6, 7, 4, 3, 2, 1

Then, we finish with
I 1, 2, 3, 4, 5, 6, 7, 8, 9

8 / 63

Although Instances are Important

Nevertheless
The way we use those instances is way more important

For example
Look at Recursive Fibonacci!!!

9 / 63

Although Instances are Important

Nevertheless
The way we use those instances is way more important

For example
Look at Recursive Fibonacci!!!

9 / 63

Example: Fibonacci

Fibonacci rule

Fn =

Fn−1 + Fn−2 if n > 1
1 if n = 1
0 if n = 0

Time Complexity
1 Naive version using directly the recursion - exponential time.
2 A more elegant version - linear time.

10 / 63

Example: Fibonacci

Fibonacci rule

Fn =

Fn−1 + Fn−2 if n > 1
1 if n = 1
0 if n = 0

Time Complexity
1 Naive version using directly the recursion - exponential time.
2 A more elegant version - linear time.

10 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

11 / 63

Kolmogov’s Definition
A bound for each sub-step

An algorithmic process splits into steps whose complexity is bounded in advance
I i.e., the bound is independent of the input and the current state of the

computation.

Transformations done at each step
Each step consists of a direct and immediate transformation of the current state.
This transformation applies only to the active part of the state and does not alter
the remainder of the state.

Size of the steps
The size of the active part is bounded in advance.

Ending the Process
The process runs until either the next step is impossible or a signal says the
solution has been reached.

12 / 63

Kolmogov’s Definition
A bound for each sub-step

An algorithmic process splits into steps whose complexity is bounded in advance
I i.e., the bound is independent of the input and the current state of the

computation.

Transformations done at each step
Each step consists of a direct and immediate transformation of the current state.
This transformation applies only to the active part of the state and does not alter
the remainder of the state.

Size of the steps
The size of the active part is bounded in advance.

Ending the Process
The process runs until either the next step is impossible or a signal says the
solution has been reached.

12 / 63

Kolmogov’s Definition
A bound for each sub-step

An algorithmic process splits into steps whose complexity is bounded in advance
I i.e., the bound is independent of the input and the current state of the

computation.

Transformations done at each step
Each step consists of a direct and immediate transformation of the current state.
This transformation applies only to the active part of the state and does not alter
the remainder of the state.

Size of the steps
The size of the active part is bounded in advance.

Ending the Process
The process runs until either the next step is impossible or a signal says the
solution has been reached.

12 / 63

Kolmogov’s Definition
A bound for each sub-step

An algorithmic process splits into steps whose complexity is bounded in advance
I i.e., the bound is independent of the input and the current state of the

computation.

Transformations done at each step
Each step consists of a direct and immediate transformation of the current state.
This transformation applies only to the active part of the state and does not alter
the remainder of the state.

Size of the steps
The size of the active part is bounded in advance.

Ending the Process
The process runs until either the next step is impossible or a signal says the
solution has been reached.

12 / 63

Kolmogov’s Definition
A bound for each sub-step

An algorithmic process splits into steps whose complexity is bounded in advance
I i.e., the bound is independent of the input and the current state of the

computation.

Transformations done at each step
Each step consists of a direct and immediate transformation of the current state.
This transformation applies only to the active part of the state and does not alter
the remainder of the state.

Size of the steps
The size of the active part is bounded in advance.

Ending the Process
The process runs until either the next step is impossible or a signal says the
solution has been reached.

12 / 63

Kolmogov’s Definition
A bound for each sub-step

An algorithmic process splits into steps whose complexity is bounded in advance
I i.e., the bound is independent of the input and the current state of the

computation.

Transformations done at each step
Each step consists of a direct and immediate transformation of the current state.
This transformation applies only to the active part of the state and does not alter
the remainder of the state.

Size of the steps
The size of the active part is bounded in advance.

Ending the Process
The process runs until either the next step is impossible or a signal says the
solution has been reached.

12 / 63

By The Way (BTW)

How do they look this machines, this algorithms?
After all we like to see them!!!

13 / 63

An Example of an Algorithm

Insertion Sort
Data: Unsorted Sequence A

Result: Sort Sequence A

Insertion Sort(A)
for j ← 2 to lenght(A) do

key ← A[j];
// Insert A[j] Insert A[j] into the sorted sequence A[1, ..., j − 1]
i← j − 1;
while i > 0 and A[i] > key do

A[i + 1]← A[i];
i← i− 1;

end
A[i + 1]← key

end

14 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

15 / 63

Single-Source Shortest Path

Application → Short Paths in Maps
These algorithms allows to solve the problem of finding the shortest path
in a map between two addresses.

Example

16 / 63

Single-Source Shortest Path
Application → Short Paths in Maps
These algorithms allows to solve the problem of finding the shortest path
in a map between two addresses.

Example

@Copyright 2010-2011 Daniel Kastl, Frédéric Junod. Mis à jour le Apr 02, 2012.

16 / 63

Solving Systems of Linear Equations

Application → Inverting Matrices
Because of stability reasons, given the system Ax = y, we use the the LUP
decomposition or Cholensky decomposition to obtain the inverse A−1.

Example

17 / 63

Solving Systems of Linear Equations

Application → Inverting Matrices
Because of stability reasons, given the system Ax = y, we use the the LUP
decomposition or Cholensky decomposition to obtain the inverse A−1.

Example

L D U R
@Copyright From Wikimedia Commons, the free media repository

17 / 63

Huffman Codes

Application → Compression
This method is part of the greedy methods. They are used for
compression, they can achieve 20% to 90% compression in text files.

Example

18 / 63

Huffman Codes

Application → Compression
This method is part of the greedy methods. They are used for
compression, they can achieve 20% to 90% compression in text files.

Example
41

17 24

9

5 4

8|' '

3|U 2|A 2|L 2|M

10

46|E

2|D 2|F

14

7

4

2

7

3|N

2|5

1|B 1|H

3|O 4

2 2

1|J 1|P 1|R 1|T

18 / 63

Matrix Multiplication

Application → Fast Multiplication of Matrices
In many algorithms, we want to multiply different n× n matrices.

Example

19 / 63

Matrix Multiplication
Application → Fast Multiplication of Matrices
In many algorithms, we want to multiply different n× n matrices.

Example
A11 A12 A21 A22

B11

B12

B21

B22

C11

1
1

C12 1
1

C21

1
1

C22 1
1

1

11

1

1 1

11

1 1

-1-1

1
-1

1
-1

1
-1

1
-1

1 1

-1-1

1

1

-1

-1

1

1

-1

-1

M1 M2 M3 M4 M5 M6 M7

STRASSEN'S ALGORITHM
@Copyright From Wikimedia Commons, the free media repository

19 / 63

Convex Hull

Application → Computational Geometry
Given the points in a plane, we want to find the minimum convex hull that
encloses them.

Example

20 / 63

Convex Hull

Application → Computational Geometry
Given the points in a plane, we want to find the minimum convex hull that
encloses them.

Example

p0

p1

p2

p3

@Copyright From Wikimedia Commons, the free media repository

20 / 63

Synthetic Biology

Application → Computational Molecular Engineering
In this field the engineers and biologist try to use the basis of life to
create complex molecular machines.
All these machines will requiere complex algorithms.

Example

21 / 63

Synthetic Biology
Application → Computational Molecular Engineering

In this field the engineers and biologist try to use the basis of life to
create complex molecular machines.
All these machines will requiere complex algorithms.

Example

@Copyright 2002-2013 SYNTHETIC COMPONENTS NETWORK University of Bristol
21 / 63

Pattern Recognition

Application → Machine Learning
In Machine Learning, we try to find specific patterns in data.

Example

22 / 63

Pattern Recognition

Application → Machine Learning
In Machine Learning, we try to find specific patterns in data.

Example

Su
pp
or
t V

ec
to
rs

22 / 63

Databases

Application → Partition of the Database Space
For fast access Queries!!!

Example

23 / 63

Databases
Application → Partition of the Database Space
For fast access Queries!!!

Example
Query A1 = 'x' and A2 = 6

a f k p z

A2

A1

Grid Array

Pointers to buckets

0 2 7 10 15
Intervals Define
Search Areas

A1

Bucket Accessed

@Copyright Michael Unwalla: A mixed transaction cost model for coarse grained
multi-column partitioning in a shared-nothing database machine

23 / 63

Databases

Application → Face Recognition
Facial Recognition measure face landmarks to identify different features in
the face.

Example

24 / 63

Databases

Application → Face Recognition
Facial Recognition measure face landmarks to identify different features in
the face.

Example

@Copyright 2013 Wouter Alberda, Olaf Kampinga

24 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

25 / 63

Subjects for the Class

Growth Functions
Asymptotic Notation - Ω, O and Θ
Standard notation and common functions
Solving Recursions

Divide and Conquer
The substitution method
The recursive three method
The master method

26 / 63

Subjects for the Class

Growth Functions
Asymptotic Notation - Ω, O and Θ
Standard notation and common functions
Solving Recursions

Divide and Conquer
The substitution method
The recursive three method
The master method

26 / 63

Subjects for the Class

Growth Functions
Asymptotic Notation - Ω, O and Θ
Standard notation and common functions
Solving Recursions

Divide and Conquer
The substitution method
The recursive three method
The master method

26 / 63

Subjects for the Class

Growth Functions
Asymptotic Notation - Ω, O and Θ
Standard notation and common functions
Solving Recursions

Divide and Conquer
The substitution method
The recursive three method
The master method

26 / 63

Subjects for the Class

Growth Functions
Asymptotic Notation - Ω, O and Θ
Standard notation and common functions
Solving Recursions

Divide and Conquer
The substitution method
The recursive three method
The master method

26 / 63

Subjects for the Class

Growth Functions
Asymptotic Notation - Ω, O and Θ
Standard notation and common functions
Solving Recursions

Divide and Conquer
The substitution method
The recursive three method
The master method

26 / 63

Subjects for the Class

Probabilistic Analysis
Indicator Random Variables
Randomization Algorithms

Sorting Algorithms
Heapsort
Quicksort
Sorting in linear time

27 / 63

Subjects for the Class

Probabilistic Analysis
Indicator Random Variables
Randomization Algorithms

Sorting Algorithms
Heapsort
Quicksort
Sorting in linear time

27 / 63

Subjects for the Class

Probabilistic Analysis
Indicator Random Variables
Randomization Algorithms

Sorting Algorithms
Heapsort
Quicksort
Sorting in linear time

27 / 63

Subjects for the Class

Probabilistic Analysis
Indicator Random Variables
Randomization Algorithms

Sorting Algorithms
Heapsort
Quicksort
Sorting in linear time

27 / 63

Subjects for the Class

Probabilistic Analysis
Indicator Random Variables
Randomization Algorithms

Sorting Algorithms
Heapsort
Quicksort
Sorting in linear time

27 / 63

Subject for the Class

Median Order Statistics
Minimum and Maximum.
Selection.
Worst Case Selection.

Review of Basic Data Structures
Elementary Data Structures
Hash Tables
Binary Search Trees

28 / 63

Subject for the Class

Median Order Statistics
Minimum and Maximum.
Selection.
Worst Case Selection.

Review of Basic Data Structures
Elementary Data Structures
Hash Tables
Binary Search Trees

28 / 63

Subject for the Class

Median Order Statistics
Minimum and Maximum.
Selection.
Worst Case Selection.

Review of Basic Data Structures
Elementary Data Structures
Hash Tables
Binary Search Trees

28 / 63

Subject for the Class

Median Order Statistics
Minimum and Maximum.
Selection.
Worst Case Selection.

Review of Basic Data Structures
Elementary Data Structures
Hash Tables
Binary Search Trees

28 / 63

Subject for the Class

Median Order Statistics
Minimum and Maximum.
Selection.
Worst Case Selection.

Review of Basic Data Structures
Elementary Data Structures
Hash Tables
Binary Search Trees

28 / 63

Subject for the Class

Median Order Statistics
Minimum and Maximum.
Selection.
Worst Case Selection.

Review of Basic Data Structures
Elementary Data Structures
Hash Tables
Binary Search Trees

28 / 63

Subjects for the Class

Advanced Data Structures
B-Trees
Fibonacci Heaps
Data Structures for Disjoint Sets

Advanced Techniques
Dynamic Programming.
Greedy Algorithms.
Amortized Analysis.

29 / 63

Subjects for the Class

Advanced Data Structures
B-Trees
Fibonacci Heaps
Data Structures for Disjoint Sets

Advanced Techniques
Dynamic Programming.
Greedy Algorithms.
Amortized Analysis.

29 / 63

Subjects for the Class

Advanced Data Structures
B-Trees
Fibonacci Heaps
Data Structures for Disjoint Sets

Advanced Techniques
Dynamic Programming.
Greedy Algorithms.
Amortized Analysis.

29 / 63

Subjects for the Class

Advanced Data Structures
B-Trees
Fibonacci Heaps
Data Structures for Disjoint Sets

Advanced Techniques
Dynamic Programming.
Greedy Algorithms.
Amortized Analysis.

29 / 63

Subjects for the Class

Advanced Data Structures
B-Trees
Fibonacci Heaps
Data Structures for Disjoint Sets

Advanced Techniques
Dynamic Programming.
Greedy Algorithms.
Amortized Analysis.

29 / 63

Subjects for the Class

Advanced Data Structures
B-Trees
Fibonacci Heaps
Data Structures for Disjoint Sets

Advanced Techniques
Dynamic Programming.
Greedy Algorithms.
Amortized Analysis.

29 / 63

Subjects for the Class

Graph Algorithms
Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

Selected Topics
Multi-threaded Algorithms
String Matching
Computational Geometry

30 / 63

Subjects for the Class

Graph Algorithms
Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

Selected Topics
Multi-threaded Algorithms
String Matching
Computational Geometry

30 / 63

Subjects for the Class

Graph Algorithms
Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

Selected Topics
Multi-threaded Algorithms
String Matching
Computational Geometry

30 / 63

Subjects for the Class

Graph Algorithms
Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

Selected Topics
Multi-threaded Algorithms
String Matching
Computational Geometry

30 / 63

Subjects for the Class

Graph Algorithms
Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

Selected Topics
Multi-threaded Algorithms
String Matching
Computational Geometry

30 / 63

Subjects for the Class

Graph Algorithms
Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

Selected Topics
Multi-threaded Algorithms
String Matching
Computational Geometry

30 / 63

Subjects for the Class

Graph Algorithms
Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

Selected Topics
Multi-threaded Algorithms
String Matching
Computational Geometry

30 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Subjects for the Class

NP Problems
Encodings
Polynomial Time Verification
Polynomial Reduction
NP-Hard
NP-Complete proofs
A family of NP-Problems

Dealing with NP Problems
Backtracking
Branch-and-Bound

31 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

32 / 63

Now, what we are going to look at!!!

First
Some stuff about notation!!!

Second
What abstraction of a Computer to use?

Third
A first approach to analyzing algorithms!!!

33 / 63

Now, what we are going to look at!!!

First
Some stuff about notation!!!

Second
What abstraction of a Computer to use?

Third
A first approach to analyzing algorithms!!!

33 / 63

Now, what we are going to look at!!!

First
Some stuff about notation!!!

Second
What abstraction of a Computer to use?

Third
A first approach to analyzing algorithms!!!

33 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

34 / 63

Please Follow These Simple Rules
Insertion Sort(A)

1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
Always put the name of the algorithm at the top together with the
input.

35 / 63

Please Follow These Simple Rules
Insertion Sort(A)

1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
Always initialize all the variables.
The a← b(You also can use "=.") means that the value b is passed
to a.

36 / 63

Please Follow These Simple Rules

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
Use indentation to preserve the block structure avoiding clutter.

37 / 63

Please Follow These Simple Rules

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
I it corresponds to comments and you can also use "//"

38 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

39 / 63

The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.

40 / 63

The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.

40 / 63

The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.

40 / 63

The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.

40 / 63

The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.

40 / 63

The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.

40 / 63

The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.

40 / 63

RAM Model
We have that

Control System

Memory With Random Access

Infinite

Register 1

Register 2

Register N

Inst

Inst

Inst

Inst

Inst

Inst

Inst

Inst

41 / 63

Although there are other equivalent models

Von Neumann architecture scheme

Arithmetic
Logic
Unit

Control
Unit

Memory

Input Output

Accumulator

42 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

43 / 63

Input Size and Running Time

Definition
The Input Size depends on the type of problem. We will indicate which
input size is used per problem.

Definition
The Running Time of an algorithm is the number of of primitives
operations or steps executed. For now, we will assume that each line in an
algorithm takes ci a constant time.

44 / 63

Input Size and Running Time

Definition
The Input Size depends on the type of problem. We will indicate which
input size is used per problem.

Definition
The Running Time of an algorithm is the number of of primitives
operations or steps executed. For now, we will assume that each line in an
algorithm takes ci a constant time.

44 / 63

Even Babbage cared about how many turns of the crank
were necessary!!!

Look at the crank!!!

45 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

46 / 63

We are going to do some quite simple

Counting the number of operations
Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums
while i > 0 and A[i] > key←→ ∑N

j=2 1 = N − 1

Therefore
We have that each operation i cost a certain time ci

Therefore the total cost of a loop would be ci (N − 1)

47 / 63

We are going to do some quite simple

Counting the number of operations
Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums
while i > 0 and A[i] > key←→ ∑N

j=2 1 = N − 1

Therefore
We have that each operation i cost a certain time ci

Therefore the total cost of a loop would be ci (N − 1)

47 / 63

We are going to do some quite simple

Counting the number of operations
Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums
while i > 0 and A[i] > key←→ ∑N

j=2 1 = N − 1

Therefore
We have that each operation i cost a certain time ci

Therefore the total cost of a loop would be ci (N − 1)

47 / 63

We are going to do some quite simple

Counting the number of operations
Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums
while i > 0 and A[i] > key←→ ∑N

j=2 1 = N − 1

Therefore
We have that each operation i cost a certain time ci

Therefore the total cost of a loop would be ci (N − 1)

47 / 63

Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c1N

48 / 63

Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c2 (N − 1)

49 / 63

Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c3 (N − 1)

50 / 63

Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c4

∑N
j=2 j

51 / 63

Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c5

∑N
j=2 (j − 1)

52 / 63

Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c6

∑N
j=2 (j − 1)

53 / 63

Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c7 (N − 1)

54 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

55 / 63

The T (N) function

The total number of operations
It is know as a function T (N)

T : N 7−→ N

Something Notable

This generic name will be also be used for the recursive functions!!!

56 / 63

The T (N) function

The total number of operations
It is know as a function T (N)

T : N 7−→ N

Something Notable

This generic name will be also be used for the recursive functions!!!

56 / 63

Building a function for counting

Counting Equation
T (N) = c1N + c2(N − 1) + C3(N − 1) + c4

(
N(N+1)

2 − 1
)

+ ...

c5
(

N(N−1)
2 − 1

)
+ c6

(
N(N−1)

2 − 1
)

+ c7 (N − 1)

This can be reduced to something like...
T (N) = aN2 + bN + c

57 / 63

Building a function for counting

Counting Equation
T (N) = c1N + c2(N − 1) + C3(N − 1) + c4

(
N(N+1)

2 − 1
)

+ ...

c5
(

N(N−1)
2 − 1

)
+ c6

(
N(N−1)

2 − 1
)

+ c7 (N − 1)

This can be reduced to something like...
T (N) = aN2 + bN + c

57 / 63

Example of Complexities
Something Notable

58 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

59 / 63

The Worst and The Average Case Inputs

The Worst Case Input
Upper bound on the running time of an algorithm.
In case of insertion sort, it will be the permutation:

N, N − 1, N − 2, ..., 3, 2, 1 (1)

The Average Case Input
In the case of insertion sort, if half of the elements of A[1, 2, ..., j − 1]
are less than A[j] and half are greater.
Then, insertion sort checks half of the elements i.e.:

j

2 (2)

60 / 63

The Worst and The Average Case Inputs

The Worst Case Input
Upper bound on the running time of an algorithm.
In case of insertion sort, it will be the permutation:

N, N − 1, N − 2, ..., 3, 2, 1 (1)

The Average Case Input
In the case of insertion sort, if half of the elements of A[1, 2, ..., j − 1]
are less than A[j] and half are greater.
Then, insertion sort checks half of the elements i.e.:

j

2 (2)

60 / 63

The Worst and The Average Case Inputs

The Worst Case Input
Upper bound on the running time of an algorithm.
In case of insertion sort, it will be the permutation:

N, N − 1, N − 2, ..., 3, 2, 1 (1)

The Average Case Input
In the case of insertion sort, if half of the elements of A[1, 2, ..., j − 1]
are less than A[j] and half are greater.
Then, insertion sort checks half of the elements i.e.:

j

2 (2)

60 / 63

The Worst and The Average Case Inputs

The Worst Case Input
Upper bound on the running time of an algorithm.
In case of insertion sort, it will be the permutation:

N, N − 1, N − 2, ..., 3, 2, 1 (1)

The Average Case Input
In the case of insertion sort, if half of the elements of A[1, 2, ..., j − 1]
are less than A[j] and half are greater.
Then, insertion sort checks half of the elements i.e.:

j

2 (2)

60 / 63

The Worst and The Average Case Inputs

The Worst Case Input
Upper bound on the running time of an algorithm.
In case of insertion sort, it will be the permutation:

N, N − 1, N − 2, ..., 3, 2, 1 (1)

The Average Case Input
In the case of insertion sort, if half of the elements of A[1, 2, ..., j − 1]
are less than A[j] and half are greater.
Then, insertion sort checks half of the elements i.e.:

j

2 (2)

60 / 63

The Worst and The Average Case Inputs

The Worst Case Input
Upper bound on the running time of an algorithm.
In case of insertion sort, it will be the permutation:

N, N − 1, N − 2, ..., 3, 2, 1 (1)

The Average Case Input
In the case of insertion sort, if half of the elements of A[1, 2, ..., j − 1]
are less than A[j] and half are greater.
Then, insertion sort checks half of the elements i.e.:

j

2 (2)

60 / 63

Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

61 / 63

Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 106 numbers to sort!!!

Now, we have the following algorithms
Insertion Sort → T (N) = c1N2

Merge Sort → T (N) = c2N log2 N

Under the following constraints for a PC and Supercomputer
In a Supercomputer c1 = 2 instructions per line
In our humble PC c2 = 50 instructions per line

62 / 63

Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 106 numbers to sort!!!

Now, we have the following algorithms
Insertion Sort → T (N) = c1N2

Merge Sort → T (N) = c2N log2 N

Under the following constraints for a PC and Supercomputer
In a Supercomputer c1 = 2 instructions per line
In our humble PC c2 = 50 instructions per line

62 / 63

Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 106 numbers to sort!!!

Now, we have the following algorithms
Insertion Sort → T (N) = c1N2

Merge Sort → T (N) = c2N log2 N

Under the following constraints for a PC and Supercomputer
In a Supercomputer c1 = 2 instructions per line
In our humble PC c2 = 50 instructions per line

62 / 63

Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 106 numbers to sort!!!

Now, we have the following algorithms
Insertion Sort → T (N) = c1N2

Merge Sort → T (N) = c2N log2 N

Under the following constraints for a PC and Supercomputer
In a Supercomputer c1 = 2 instructions per line
In our humble PC c2 = 50 instructions per line

62 / 63

Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 106 numbers to sort!!!

Now, we have the following algorithms
Insertion Sort → T (N) = c1N2

Merge Sort → T (N) = c2N log2 N

Under the following constraints for a PC and Supercomputer
In a Supercomputer c1 = 2 instructions per line
In our humble PC c2 = 50 instructions per line

62 / 63

Now

In addition
The supercomputer can do 1010 instructions per second.
The PC can do 107 instructions per second.

Final Result
Time of Insertion Sort in the Supercomputer:

2(106)2 ins
1010 ins/sec = 200 seconds (3)

Time of Merge Sort in a humble PC:

2(106) log(106) ins
107 ins/sec = 3.9 seconds (4)

63 / 63

Now

In addition
The supercomputer can do 1010 instructions per second.
The PC can do 107 instructions per second.

Final Result
Time of Insertion Sort in the Supercomputer:

2(106)2 ins
1010 ins/sec = 200 seconds (3)

Time of Merge Sort in a humble PC:

2(106) log(106) ins
107 ins/sec = 3.9 seconds (4)

63 / 63

Now

In addition
The supercomputer can do 1010 instructions per second.
The PC can do 107 instructions per second.

Final Result
Time of Insertion Sort in the Supercomputer:

2(106)2 ins
1010 ins/sec = 200 seconds (3)

Time of Merge Sort in a humble PC:

2(106) log(106) ins
107 ins/sec = 3.9 seconds (4)

63 / 63

Now

In addition
The supercomputer can do 1010 instructions per second.
The PC can do 107 instructions per second.

Final Result
Time of Insertion Sort in the Supercomputer:

2(106)2 ins
1010 ins/sec = 200 seconds (3)

Time of Merge Sort in a humble PC:

2(106) log(106) ins
107 ins/sec = 3.9 seconds (4)

63 / 63

Now

In addition
The supercomputer can do 1010 instructions per second.
The PC can do 107 instructions per second.

Final Result
Time of Insertion Sort in the Supercomputer:

2(106)2 ins
1010 ins/sec = 200 seconds (3)

Time of Merge Sort in a humble PC:

2(106) log(106) ins
107 ins/sec = 3.9 seconds (4)

63 / 63

Now

In addition
The supercomputer can do 1010 instructions per second.
The PC can do 107 instructions per second.

Final Result
Time of Insertion Sort in the Supercomputer:

2(106)2 ins
1010 ins/sec = 200 seconds (3)

Time of Merge Sort in a humble PC:

2(106) log(106) ins
107 ins/sec = 3.9 seconds (4)

63 / 63

	Motivation
	What is an Algorithm?
	Instance of a Problem
	Kolmogorov's Definition

	Problems Solved By Algorithms
	The Realm of Algorithms

	Syllabus
	What Will You Learn in This Class?
	What do we want?

	Some Notes in Notation
	Notation for Pseudo-Code

	What abstraction of a Computer to use?
	The Random-Access Machine

	Analyzing Algorithms
	Input Size and Running Time
	The First Method: Counting Number of Operations
	Counting Equation For Insertion Sort
	The Analysis of the Worst and Average Case Inputs
	Why Do We Want Efficient Algorithms?

