
Analysis of Algorithms
Introduction

Andres Mendez-Vazquez

September 2, 2018

1 / 63



Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

2 / 63



Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

3 / 63



Introduction

Informal definition
Informally, an algorithm is any well defined computational procedure that

It takes some value, or set of values, as input.
Then, it produces some value, or set of values, as output.

Examples
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Example

Sorting Problem
Input: A sequence of N numbers a1, a2, ..., aN

Output: A reordering of the input sequence a(1), a(2), ..., a(N)

Actually
We are dealing with instances of a problem.

5 / 63



Example

Sorting Problem
Input: A sequence of N numbers a1, a2, ..., aN

Output: A reordering of the input sequence a(1), a(2), ..., a(N)

Actually
We are dealing with instances of a problem.

5 / 63



Stuff Like

A sequence of integer numbers
10 2 4 5 11 36 18 9 50

The Classic
We want to order the numbers!!!
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Instance of a Problem

Instance of the problem
For example, we have

I 9, 8, 5, 6, 7, 4, 3, 2, 1

Then, we finish with
I 1, 2, 3, 4, 5, 6, 7, 8, 9
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Although Instances are Important

Nevertheless
The way we use those instances is way more important

For example
Look at Recursive Fibonacci!!!
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Example: Fibonacci

Fibonacci rule

Fn =


Fn−1 + Fn−2 if n > 1
1 if n = 1
0 if n = 0

Time Complexity
1 Naive version using directly the recursion - exponential time.
2 A more elegant version - linear time.

10 / 63



Example: Fibonacci

Fibonacci rule

Fn =


Fn−1 + Fn−2 if n > 1
1 if n = 1
0 if n = 0

Time Complexity
1 Naive version using directly the recursion - exponential time.
2 A more elegant version - linear time.

10 / 63



Outline
1 Motivation

What is an Algorithm?
Instance of a Problem
Kolmogorov’s Definition

2 Problems Solved By Algorithms
The Realm of Algorithms

3 Syllabus
What Will You Learn in This Class?
What do we want?

4 Some Notes in Notation
Notation for Pseudo-Code

5 What abstraction of a Computer to use?
The Random-Access Machine

6 Analyzing Algorithms
Input Size and Running Time
The First Method: Counting Number of Operations
Counting Equation For Insertion Sort
The Analysis of the Worst and Average Case Inputs
Why Do We Want Efficient Algorithms?

11 / 63



Kolmogov’s Definition
A bound for each sub-step

An algorithmic process splits into steps whose complexity is bounded in advance
I i.e., the bound is independent of the input and the current state of the

computation.

Transformations done at each step
Each step consists of a direct and immediate transformation of the current state.
This transformation applies only to the active part of the state and does not alter
the remainder of the state.

Size of the steps
The size of the active part is bounded in advance.

Ending the Process
The process runs until either the next step is impossible or a signal says the
solution has been reached.
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By The Way (BTW)

How do they look this machines, this algorithms?
After all we like to see them!!!

13 / 63



An Example of an Algorithm

Insertion Sort
Data: Unsorted Sequence A

Result: Sort Sequence A

Insertion Sort(A)
for j ← 2 to lenght(A) do

key ← A[j];
// Insert A[j] Insert A[j] into the sorted sequence A[1, ..., j − 1]
i← j − 1;
while i > 0 and A[i] > key do

A[i + 1]← A[i];
i← i− 1;

end
A[i + 1]← key

end
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Single-Source Shortest Path

Application → Short Paths in Maps
These algorithms allows to solve the problem of finding the shortest path
in a map between two addresses.

Example
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Single-Source Shortest Path
Application → Short Paths in Maps
These algorithms allows to solve the problem of finding the shortest path
in a map between two addresses.

Example

@Copyright 2010-2011 Daniel Kastl, Frédéric Junod. Mis à jour le Apr 02, 2012.
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Solving Systems of Linear Equations

Application → Inverting Matrices
Because of stability reasons, given the system Ax = y, we use the the LUP
decomposition or Cholensky decomposition to obtain the inverse A−1.

Example
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L D U R
@Copyright From Wikimedia Commons, the free media repository
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Huffman Codes

Application → Compression
This method is part of the greedy methods. They are used for
compression, they can achieve 20% to 90% compression in text files.

Example
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Matrix Multiplication

Application → Fast Multiplication of Matrices
In many algorithms, we want to multiply different n× n matrices.

Example
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Application → Fast Multiplication of Matrices
In many algorithms, we want to multiply different n× n matrices.

Example
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STRASSEN'S ALGORITHM
@Copyright From Wikimedia Commons, the free media repository
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Convex Hull

Application → Computational Geometry
Given the points in a plane, we want to find the minimum convex hull that
encloses them.

Example
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p0
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p2

p3

@Copyright From Wikimedia Commons, the free media repository
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Synthetic Biology

Application → Computational Molecular Engineering
In this field the engineers and biologist try to use the basis of life to
create complex molecular machines.
All these machines will requiere complex algorithms.

Example
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Example

@Copyright 2002-2013 SYNTHETIC COMPONENTS NETWORK University of Bristol
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Pattern Recognition

Application → Machine Learning
In Machine Learning, we try to find specific patterns in data.

Example
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Pattern Recognition

Application → Machine Learning
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Databases

Application → Partition of the Database Space
For fast access Queries!!!

Example
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Databases
Application → Partition of the Database Space
For fast access Queries!!!

Example
Query A1 = 'x' and A2 = 6

a   f   k   p   z

A2

A1

Grid Array

Pointers to buckets

0   2   7  10  15
Intervals Define
Search Areas

A1

Bucket Accessed

@Copyright Michael Unwalla: A mixed transaction cost model for coarse grained
multi-column partitioning in a shared-nothing database machine
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Databases

Application → Face Recognition
Facial Recognition measure face landmarks to identify different features in
the face.

Example
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Databases

Application → Face Recognition
Facial Recognition measure face landmarks to identify different features in
the face.

Example

@Copyright 2013 Wouter Alberda, Olaf Kampinga
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Subjects for the Class

Growth Functions
Asymptotic Notation - Ω, O and Θ
Standard notation and common functions
Solving Recursions

Divide and Conquer
The substitution method
The recursive three method
The master method
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Subject for the Class

Median Order Statistics
Minimum and Maximum.
Selection.
Worst Case Selection.

Review of Basic Data Structures
Elementary Data Structures
Hash Tables
Binary Search Trees
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Advanced Techniques
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Now, what we are going to look at!!!

First
Some stuff about notation!!!

Second
What abstraction of a Computer to use?

Third
A first approach to analyzing algorithms!!!
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Please Follow These Simple Rules
Insertion Sort(A)

1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
Always put the name of the algorithm at the top together with the
input.
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1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
Always initialize all the variables.
The a← b( You also can use "=.") means that the value b is passed
to a.
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Please Follow These Simple Rules

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
Use indentation to preserve the block structure avoiding clutter.
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Please Follow These Simple Rules

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Rule
I it corresponds to comments and you can also use "//"
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The Random-Access Machine
Definition
A Random Access Machine (RAM) is an abstract computational-machine
model identical to a multiple-register counter machine with the addition of
indirect addressing.

Instructions
Instructions are executed one after another.

It contains arithmetic instructions found in low level languages.
It has control instructions: Conditional and unconditional branches,
return and call functions.
It is able to do data movement: load, store, copy.
It posses data types: integer and floating point.

Memory Model
A single block of memory is assumed.
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RAM Model
We have that

Control System 

Memory With Random Access

Infinite

Register 1

Register 2

Register N

Inst

Inst

Inst

Inst

Inst

Inst

Inst

Inst

41 / 63



Although there are other equivalent models

Von Neumann architecture scheme

Arithmetic
Logic
Unit

Control
Unit

Memory

Input Output

Accumulator
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Input Size and Running Time

Definition
The Input Size depends on the type of problem. We will indicate which
input size is used per problem.

Definition
The Running Time of an algorithm is the number of of primitives
operations or steps executed. For now, we will assume that each line in an
algorithm takes ci a constant time.
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Even Babbage cared about how many turns of the crank
were necessary!!!

Look at the crank!!!
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We are going to do some quite simple

Counting the number of operations
Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums
while i > 0 and A[i] > key←→ ∑N

j=2 1 = N − 1

Therefore
We have that each operation i cost a certain time ci

Therefore the total cost of a loop would be ci (N − 1)
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Counting the Operations

Insertion Sort(A)
1 for j ← 2 to length(A)
2 do
3 key ← A[j]
4 IInsert A[j] into the sorted sequence A[1, ..., j − 1]}
5 i← j − 1
6 while i > 0 and A[i] > key

7 do
8 A[i + 1]← A[i]
9 i← i− 1
10 A[i + 1]← key

Count Value
→ c1N
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The T (N) function

The total number of operations
It is know as a function T (N)

T : N 7−→ N

Something Notable

This generic name will be also be used for the recursive functions!!!
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Building a function for counting

Counting Equation
T (N) = c1N + c2(N − 1) + C3(N − 1) + c4

(
N(N+1)

2 − 1
)

+ ...

c5
(

N(N−1)
2 − 1

)
+ c6

(
N(N−1)

2 − 1
)

+ c7 (N − 1)

This can be reduced to something like...
T (N) = aN2 + bN + c
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Example of Complexities
Something Notable
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The Worst and The Average Case Inputs

The Worst Case Input
Upper bound on the running time of an algorithm.
In case of insertion sort, it will be the permutation:

N, N − 1, N − 2, ..., 3, 2, 1 (1)

The Average Case Input
In the case of insertion sort, if half of the elements of A[1, 2, ..., j − 1]
are less than A[j] and half are greater.
Then, insertion sort checks half of the elements i.e.:

j

2 (2)
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Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 106 numbers to sort!!!

Now, we have the following algorithms
Insertion Sort → T (N) = c1N2

Merge Sort → T (N) = c2N log2 N

Under the following constraints for a PC and Supercomputer
In a Supercomputer c1 = 2 instructions per line
In our humble PC c2 = 50 instructions per line
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Now

In addition
The supercomputer can do 1010 instructions per second.
The PC can do 107 instructions per second.

Final Result
Time of Insertion Sort in the Supercomputer:

2(106)2 ins
1010 ins/sec = 200 seconds (3)

Time of Merge Sort in a humble PC:

2(106) log(106) ins
107 ins/sec = 3.9 seconds (4)
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