Analysis of Algorithms

Introduction

Andres Mendez-Vazquez

September 2, 2018

Outline

1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?

4) Some Notes in Notation

- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Outline

（1）Motivation
－What is an Algorithm？
－Instance of a Problem
－Kolmogorov＇s Definition
（2）Problems Solved By Algorithms
－The Realm of Algorithms
（3）Syllabus
－What Will You Learn in This Class？
－What do we want？
4 Some Notes in Notation
－Notation for Pseudo－Code
（5）What abstraction of a Computer to use？
－The Random－Access Machine

6 Analyzing Algorithms
－Input Size and Running Time
－The First Method：Counting Number of Operations
－Counting Equation For Insertion Sort
－The Analysis of the Worst and Average Case Inputs
－Why Do We Want Efficient Algorithms？

Introduction

Informal definition

Informally, an algorithm is any well defined computational procedure that

Introduction

Informal definition

Informally, an algorithm is any well defined computational procedure that

- It takes some value, or set of values, as input.

Introduction

Informal definition

Informally, an algorithm is any well defined computational procedure that

- It takes some value, or set of values, as input.
- Then, it produces some value, or set of values, as output.

Introduction

Informal definition

Informally, an algorithm is any well defined computational procedure that

- It takes some value, or set of values, as input.
- Then, it produces some value, or set of values, as output.

Examples

Example

Sorting Problem

- Input: A sequence of N numbers $a_{1}, a_{2}, \ldots, a_{N}$
- Output: A reordering of the input sequence $a_{(1)}, a_{(2)}, \ldots, a_{(N)}$

Example

Sorting Problem

- Input: A sequence of N numbers $a_{1}, a_{2}, \ldots, a_{N}$
- Output: A reordering of the input sequence $a_{(1)}, a_{(2)}, \ldots, a_{(N)}$

Actually

We are dealing with instances of a problem.

Stuff Like

A sequence of integer numbers

10	2	4	5	11	36	18	9	50

Stuff Like

A sequence of integer numbers

10	2	4	5	11	36	18	9	50

The Classic

- We want to order the numbers!!!

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Instance of a Problem

Instance of the problem

- For example, we have
- $9,8,5,6,7,4,3,2,1$
- Then, we finish with
- $1,2,3,4,5,6,7,8,9$

Although Instances are Important

Nevertheless

The way we use those instances is way more important

Although Instances are Important

Nevertheless

The way we use those instances is way more important

```
For example
Look at Recursive Fibonacci!!!
```


Example: Fibonacci

Fibonacci rule

- $F_{n}= \begin{cases}F_{n-1}+F_{n-2} & \text { if } n>1 \\ 1 & \text { if } n=1 \\ 0 & \text { if } n=0\end{cases}$

Example: Fibonacci

Fibonacci rule

- $F_{n}= \begin{cases}F_{n-1}+F_{n-2} & \text { if } n>1 \\ 1 & \text { if } n=1 \\ 0 & \text { if } n=0\end{cases}$

Time Complexity

(1) Naive version using directly the recursion - exponential time.
(2) A more elegant version - linear time.

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Kolmogov's Definition

A bound for each sub-step

- An algorithmic process splits into steps whose complexity is bounded in advance

Kolmogov's Definition

A bound for each sub-step

- An algorithmic process splits into steps whose complexity is bounded in advance
- i.e., the bound is independent of the input and the current state of the computation.

Kolmogov's Definition

A bound for each sub-step

- An algorithmic process splits into steps whose complexity is bounded in advance
- i.e., the bound is independent of the input and the current state of the computation.

Transformations done at each step

- Each step consists of a direct and immediate transformation of the current state.

Kolmogov's Definition

A bound for each sub-step

- An algorithmic process splits into steps whose complexity is bounded in advance
- i.e., the bound is independent of the input and the current state of the computation.

Transformations done at each step

- Each step consists of a direct and immediate transformation of the current state.
- This transformation applies only to the active part of the state and does not alter the remainder of the state.

Kolmogov's Definition

A bound for each sub-step

- An algorithmic process splits into steps whose complexity is bounded in advance
- i.e., the bound is independent of the input and the current state of the computation.

Transformations done at each step

- Each step consists of a direct and immediate transformation of the current state.
- This transformation applies only to the active part of the state and does not alter the remainder of the state.

Size of the steps

- The size of the active part is bounded in advance.

Kolmogov's Definition

A bound for each sub-step

- An algorithmic process splits into steps whose complexity is bounded in advance
- i.e., the bound is independent of the input and the current state of the computation.

Transformations done at each step

- Each step consists of a direct and immediate transformation of the current state.
- This transformation applies only to the active part of the state and does not alter the remainder of the state.

Size of the steps

- The size of the active part is bounded in advance.

Ending the Process

- The process runs until either the next step is impossible or a signal says the solution has been reached.

By The Way (BTW)

How do they look this machines, this algorithms?
After all we like to see them!!!

An Example of an Algorithm

```
Insertion Sort
Data: Unsorted Sequence }
Result: Sort Sequence A
Insertion Sort(A)
for }j\leftarrow2\mathrm{ to lenght(A) do
    key }\leftarrowA[j]
    // Insert A[j] Insert }A[j] into the sorted sequence A[1,\ldots,j-1
    i\leftarrowj-1;
    while i>0 and A[i]>key do
            A[i+1]}\leftarrowA[i]
            i\leftarrowi-1;
        end
        A[i+1]}\leftarrowke
end
```


Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?

4 Some Notes in Notation

- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Single-Source Shortest Path

Application \rightarrow Short Paths in Maps

These algorithms allows to solve the problem of finding the shortest path in a map between two addresses.

Single-Source Shortest Path

Application \rightarrow Short Paths in Maps

These algorithms allows to solve the problem of finding the shortest path in a map between two addresses.

Example

@Copyright 2010-2011 Daniel Kastl, Frédéric Junod. Mis à jour le Apr 02, 2012.

Solving Systems of Linear Equations

Application \rightarrow Inverting Matrices

Because of stability reasons, given the system $A x=y$, we use the the LUP decomposition or Cholensky decomposition to obtain the inverse A^{-1}.

Solving Systems of Linear Equations

Application \rightarrow Inverting Matrices

Because of stability reasons, given the system $A x=y$, we use the the LUP decomposition or Cholensky decomposition to obtain the inverse A^{-1}.

Example

L

D

U

R
@Copyright From Wikimedia Commons, the free media repository

Huffman Codes

Application \rightarrow Compression

This method is part of the greedy methods. They are used for compression, they can achieve 20% to 90% compression in text files.

Huffman Codes

Application \rightarrow Compression

This method is part of the greedy methods. They are used for compression, they can achieve 20% to 90% compression in text files.

Example

Matrix Multiplication

Application \rightarrow Fast Multiplication of Matrices

In many algorithms, we want to multiply different $n \times n$ matrices.

Matrix Multiplication

Application \rightarrow Fast Multiplication of Matrices

In many algorithms, we want to multiply different $n \times n$ matrices.

Example

STRASSEN'S ALGORITHM
@Copyright From Wikimedia Commons, the free media repository

Convex Hull

Application \rightarrow Computational Geometry

Given the points in a plane, we want to find the minimum convex hull that encloses them.

Convex Hull

Application \rightarrow Computational Geometry

Given the points in a plane, we want to find the minimum convex hull that encloses them.

Example

@Copyright From Wikimedia Commons, the free media repository

Synthetic Biology

Application \rightarrow Computational Molecular Engineering

- In this field the engineers and biologist try to use the basis of life to create complex molecular machines.
- All these machines will requiere complex algorithms.

Synthetic Biology

Application \rightarrow Computational Molecular Engineering

- In this field the engineers and biologist try to use the basis of life to create complex molecular machines.
- All these machines will requiere complex algorithms.

Example

@Copyright 2002-2013 SYNTHETIC COMPONENTS NETWORK University of Bristol

Pattern Recognition

Application \rightarrow Machine Learning

In Machine Learning, we try to find specific patterns in data.

Pattern Recognition

Application \rightarrow Machine Learning

In Machine Learning, we try to find specific patterns in data.

Example

Databases

Application \rightarrow Partition of the Database Space

For fast access Queries!!!

Databases

Application \rightarrow Partition of the Database Space

For fast access Queries!!!

Example

Bucket Accessed
@Copyright Michael Unwalla: A mixed transaction cost model for coarse grained multi-column partitioning in a shared-nothing database machine

Databases

Application \rightarrow Face Recognition

Facial Recognition measure face landmarks to identify different features in the face.

Databases

Application \rightarrow Face Recognition

Facial Recognition measure face landmarks to identify different features in the face.

Example

@Copyright 2013 Wouter Alberda, Olaf Kampinga

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?

4 Some Notes in Notation

- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Subjects for the Class

Growth Functions

- Asymptotic Notation - Ω, O and Θ

Subjects for the Class

Growth Functions

- Asymptotic Notation - Ω, O and Θ
- Standard notation and common functions

Subjects for the Class

Growth Functions

- Asymptotic Notation - Ω, O and Θ
- Standard notation and common functions
- Solving Recursions

Subjects for the Class

Growth Functions

- Asymptotic Notation - Ω, O and Θ
- Standard notation and common functions
- Solving Recursions

Divide and Conquer

- The substitution method

Subjects for the Class

Growth Functions

- Asymptotic Notation - Ω, O and Θ
- Standard notation and common functions
- Solving Recursions

Divide and Conquer

- The substitution method
- The recursive three method

Subjects for the Class

Growth Functions

- Asymptotic Notation - Ω, O and Θ
- Standard notation and common functions
- Solving Recursions

Divide and Conquer

- The substitution method
- The recursive three method
- The master method

Subjects for the Class

Probabilistic Analysis

- Indicator Random Variables

Subjects for the Class

Probabilistic Analysis

- Indicator Random Variables
- Randomization Algorithms

Subjects for the Class

Probabilistic Analysis

- Indicator Random Variables
- Randomization Algorithms

Sorting Algorithms

- Heapsort

Subjects for the Class

Probabilistic Analysis

- Indicator Random Variables
- Randomization Algorithms

Sorting Algorithms

- Heapsort
- Quicksort

Subjects for the Class

Probabilistic Analysis

- Indicator Random Variables
- Randomization Algorithms

Sorting Algorithms

- Heapsort
- Quicksort
- Sorting in linear time

Subject for the Class

Median Order Statistics

- Minimum and Maximum.

Subject for the Class

Median Order Statistics

- Minimum and Maximum.
- Selection.

Subject for the Class

Median Order Statistics

- Minimum and Maximum.
- Selection.
- Worst Case Selection.

Subject for the Class

Median Order Statistics

- Minimum and Maximum.
- Selection.
- Worst Case Selection.

Review of Basic Data Structures

- Elementary Data Structures

Subject for the Class

Median Order Statistics

- Minimum and Maximum.
- Selection.
- Worst Case Selection.

Review of Basic Data Structures

- Elementary Data Structures
- Hash Tables

Subject for the Class

Median Order Statistics

- Minimum and Maximum.
- Selection.
- Worst Case Selection.

Review of Basic Data Structures

- Elementary Data Structures
- Hash Tables
- Binary Search Trees

Subjects for the Class

Advanced Data Structures

- B-Trees

Subjects for the Class

Advanced Data Structures

- B-Trees
- Fibonacci Heaps

Subjects for the Class

Advanced Data Structures

- B-Trees
- Fibonacci Heaps
- Data Structures for Disjoint Sets

Subjects for the Class

Advanced Data Structures

- B-Trees
- Fibonacci Heaps
- Data Structures for Disjoint Sets

Advanced Techniques

- Dynamic Programming.

Subjects for the Class

Advanced Data Structures

- B-Trees
- Fibonacci Heaps
- Data Structures for Disjoint Sets

Advanced Techniques

- Dynamic Programming.
- Greedy Algorithms.

Subjects for the Class

Advanced Data Structures

- B-Trees
- Fibonacci Heaps
- Data Structures for Disjoint Sets

Advanced Techniques

- Dynamic Programming.
- Greedy Algorithms.
- Amortized Analysis.

Subjects for the Class

Graph Algorithms

- Elementary Graph Algorithms

Subjects for the Class

Graph Algorithms

- Elementary Graph Algorithms
- Minimum Spanning Trees

Subjects for the Class

Graph Algorithms

- Elementary Graph Algorithms
- Minimum Spanning Trees
- Single-Source Shortest Paths

Subjects for the Class

Graph Algorithms

- Elementary Graph Algorithms
- Minimum Spanning Trees
- Single-Source Shortest Paths
- All-Pairs Shortest Paths

Subjects for the Class

Graph Algorithms

- Elementary Graph Algorithms
- Minimum Spanning Trees
- Single-Source Shortest Paths
- All-Pairs Shortest Paths

Selected Topics

- Multi-threaded Algorithms

Subjects for the Class

Graph Algorithms

- Elementary Graph Algorithms
- Minimum Spanning Trees
- Single-Source Shortest Paths
- All-Pairs Shortest Paths

Selected Topics

- Multi-threaded Algorithms
- String Matching

Subjects for the Class

Graph Algorithms

- Elementary Graph Algorithms
- Minimum Spanning Trees
- Single-Source Shortest Paths
- All-Pairs Shortest Paths

Selected Topics

- Multi-threaded Algorithms
- String Matching
- Computational Geometry

Subjects for the Class

NP Problems

- Encodings

Subjects for the Class

NP Problems

- Encodings
- Polynomial Time Verification

Subjects for the Class

NP Problems

- Encodings
- Polynomial Time Verification
- Polynomial Reduction

Subjects for the Class

NP Problems

- Encodings
- Polynomial Time Verification
- Polynomial Reduction
- NP-Hard

Subjects for the Class

NP Problems

- Encodings
- Polynomial Time Verification
- Polynomial Reduction
- NP-Hard
- NP-Complete proofs

Subjects for the Class

NP Problems

- Encodings
- Polynomial Time Verification
- Polynomial Reduction
- NP-Hard
- NP-Complete proofs
- A family of NP-Problems

Subjects for the Class

NP Problems

- Encodings
- Polynomial Time Verification
- Polynomial Reduction
- NP-Hard
- NP-Complete proofs
- A family of NP-Problems

Dealing with NP Problems

- Backtracking

Subjects for the Class

NP Problems

- Encodings
- Polynomial Time Verification
- Polynomial Reduction
- NP-Hard
- NP-Complete proofs
- A family of NP-Problems

Dealing with NP Problems

- Backtracking
- Branch-and-Bound

Outline

1 Motivation
－What is an Algorithm？
－Instance of a Problem
－Kolmogorov＇s Definition
（2）Problems Solved By Algorithms
－The Realm of Algorithms
（3）Syllabus
－What Will You Learn in This Class？
－What do we want？
4 Some Notes in Notation
－Notation for Pseudo－Code
（5）What abstraction of a Computer to use？
－The Random－Access Machine

6 Analyzing Algorithms
－Input Size and Running Time
－The First Method：Counting Number of Operations
－Counting Equation For Insertion Sort
－The Analysis of the Worst and Average Case Inputs
－Why Do We Want Efficient Algorithms？

Now, what we are going to look at!!!

First

Some stuff about notation!!!

Now, what we are going to look at!!!

First

Some stuff about notation!!!

Second

What abstraction of a Computer to use?

Now, what we are going to look at!!!

First

Some stuff about notation!!!

Second

What abstraction of a Computer to use?
Third
A first approach to analyzing algorithms!!!

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?

4 Some Notes in Notation

- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Please Follow These Simple Rules

(1) for $j \leftarrow 2$ to length (A)
(2) do$k e y \leftarrow A[j]$
\rightarrow Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]\}$
$i \leftarrow j-1$
while $i>0$ and $A[i]>k e y$
do

$$
\begin{gathered}
A[i+1] \leftarrow A[i] \\
i \leftarrow i-1 \\
A[i+1] \leftarrow k e y
\end{gathered}
$$

Rule

- Always put the name of the algorithm at the top together with the input.

Please Follow These Simple Rules

Insertion Sort(A)

(1) for $j \leftarrow 2$ to length (A)
(2) do
(3) $k e y \leftarrow A[j]$
(4) Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]\}$
(5)
©
(1
(8)
(9)
(10)

$$
\begin{aligned}
& i \leftarrow j-1 \\
& \text { while } i>0 \text { and } A[i]>k e y \\
& \qquad \begin{array}{l}
\text { do } \\
\qquad \\
\qquad \\
\\
i[i+1] \leftarrow A[i] \\
A[i+1] \leftarrow \text { key }
\end{array}
\end{aligned}
$$

Rule

- Always initialize all the variables.
- The $a \leftarrow b$ (You also can use " $=$.") means that the value b is passed to a.

Please Follow These Simple Rules

Insertion Sort(A)

(1) for $j \leftarrow 2$ to length (A)
(2) do
(3) $k e y \leftarrow A[j]$
(4)

Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]\}$
$i \leftarrow j-1$
while $i>0$ and $A[i]>k e y$
do

$$
\begin{aligned}
& A[i+1] \leftarrow A[i] \\
& i \leftarrow i-1
\end{aligned}
$$

(10)

$$
A[i+1] \leftarrow k e y
$$

Rule

- Use indentation to preserve the block structure avoiding clutter.

Please Follow These Simple Rules

Insertion Sort(A)

(1) for $j \leftarrow 2$ to length (A)
(2) do
(3) $k e y \leftarrow A[j]$
(4)
(5)

6
(1)

B
(9)
(10)

$$
A[i+1] \leftarrow k e y
$$

Rule

- it corresponds to comments and you can also use "//"

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

The Random-Access Machine

Definition

A Random Access Machine (RAM) is an abstract computational-machine model identical to a multiple-register counter machine with the addition of indirect addressing.

The Random-Access Machine

Definition

A Random Access Machine (RAM) is an abstract computational-machine model identical to a multiple-register counter machine with the addition of indirect addressing.

Instructions

Instructions are executed one after another.

The Random-Access Machine

Definition

A Random Access Machine (RAM) is an abstract computational-machine model identical to a multiple-register counter machine with the addition of indirect addressing.

Instructions

Instructions are executed one after another.

- It contains arithmetic instructions found in low level languages.

The Random-Access Machine

Definition

A Random Access Machine (RAM) is an abstract computational-machine model identical to a multiple-register counter machine with the addition of indirect addressing.

Instructions

Instructions are executed one after another.

- It contains arithmetic instructions found in low level languages.
- It has control instructions: Conditional and unconditional branches, return and call functions.

The Random-Access Machine

Definition

A Random Access Machine (RAM) is an abstract computational-machine model identical to a multiple-register counter machine with the addition of indirect addressing.

Instructions

Instructions are executed one after another.

- It contains arithmetic instructions found in low level languages.
- It has control instructions: Conditional and unconditional branches, return and call functions.
- It is able to do data movement: load, store, copy.

The Random-Access Machine

Definition

A Random Access Machine (RAM) is an abstract computational-machine model identical to a multiple-register counter machine with the addition of indirect addressing.

Instructions

Instructions are executed one after another.

- It contains arithmetic instructions found in low level languages.
- It has control instructions: Conditional and unconditional branches, return and call functions.
- It is able to do data movement: load, store, copy.
- It posses data types: integer and floating point.

The Random-Access Machine

Definition

A Random Access Machine (RAM) is an abstract computational-machine model identical to a multiple-register counter machine with the addition of indirect addressing.

Instructions

Instructions are executed one after another.

- It contains arithmetic instructions found in low level languages.
- It has control instructions: Conditional and unconditional branches, return and call functions.
- It is able to do data movement: load, store, copy.
- It posses data types: integer and floating point.

Memory Model

A single block of memory is assumed.

RAM Model

We have that

Although there are other equivalent models

Von Neumann architecture scheme

Outline

1. Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Input Size and Running Time

Definition

The Input Size depends on the type of problem. We will indicate which input size is used per problem.

Input Size and Running Time

Definition

The Input Size depends on the type of problem. We will indicate which input size is used per problem.

Definition

The Running Time of an algorithm is the number of of primitives operations or steps executed. For now, we will assume that each line in an algorithm takes c_{i} a constant time.

Even Babbage cared about how many turns of the crank were necessary!!!

Look at the crank!!!

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

We are going to do some quite simple

Counting the number of operations

- Therefore we have the following equivalences using algebraic sums...

We are going to do some quite simple

Counting the number of operations

- Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums

while $i>0$ and $A[i]>k e y \longleftrightarrow \sum_{j=2}^{N} 1=N-1$

We are going to do some quite simple

Counting the number of operations

- Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums

$$
\text { while } i>0 \text { and } A[i]>k e y \longleftrightarrow \sum_{j=2}^{N} 1=N-1
$$

Therefore

- We have that each operation i cost a certain time c_{i}

We are going to do some quite simple

Counting the number of operations

- Therefore we have the following equivalences using algebraic sums...

Loops equivalent to Sums

$$
\text { while } i>0 \text { and } A[i]>k e y \longleftrightarrow \sum_{j=2}^{N} 1=N-1
$$

Therefore

- We have that each operation i cost a certain time c_{i}
- Therefore the total cost of a loop would be $c_{i}(N-1)$

Counting the Operations

Insertion Sort(A)

(1) for $j \leftarrow 2$ to length (A)
(2) do
(3) $k e y \leftarrow A[j]$
(4)
(5)

6
(7)

B
0
\rightarrow Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]\}$
$i \leftarrow j-1$
while $i>0$ and $A[i]>k e y$
do

$$
\begin{gathered}
A[i+1] \leftarrow A[i] \\
i \leftarrow i-1 \\
A[i+1] \leftarrow k e y
\end{gathered}
$$

(10)

Count Value

$\rightarrow c_{1} N$

Counting the Operations

Insertion Sort(A)

(1) for $j \leftarrow 2$ to length (A)
(2) do

3

$$
k e y \leftarrow A[j]
$$

©
(6)
©
©
©
0
\rightarrow Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]\}$

$$
i \leftarrow j-1
$$

while $i>0$ and $A[i]>k e y$
do

$$
\begin{aligned}
& A[i+1] \leftarrow A[i] \\
& i \leftarrow i-1
\end{aligned}
$$

(10)

$$
A[i+1] \leftarrow k e y
$$

Count Value

$\rightarrow c_{2}(N-1)$

Counting the Operations

Insertion Sort(A)

(1) for $j \leftarrow 2$ to length (A)
(2) do
(3) $k e y \leftarrow A[j]$
©
\rightarrow Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]\}$
$i \leftarrow j-1$
while $i>0$ and $A[i]>k e y$
do

$$
\begin{aligned}
& A[i+1] \leftarrow A[i] \\
& i \leftarrow i-1
\end{aligned}
$$

(10)
$A[i+1] \leftarrow$ key

Count Value

$\rightarrow c_{3}(N-1)$

Counting the Operations

Insertion Sort (A)

(1) for $j \leftarrow 2$ to length (A)
(2)
(3)
(4)
(5)
©
©
B
(9)
(10)
do

$$
\begin{aligned}
& k e y \leftarrow A[j] \\
& \text { Insert } A[j] \text { into the sorted sequence } A[1, \ldots, j-1]\} \\
& i \leftarrow j-1 \\
& \text { while } i>0 \text { and } A[i]>k e y \\
& \qquad \begin{array}{l}
\text { do } \\
\qquad A[i+1] \leftarrow A[i] \\
\quad i \leftarrow i-1 \\
A[i+1] \leftarrow \text { key }
\end{array}
\end{aligned}
$$

Count Value

$\rightarrow c_{4} \sum_{j=2}^{N} j$

Counting the Operations

Insertion Sort (A)

(1) for $j \leftarrow 2$ to length (A)
(2)
(3)
(4)
(5)
(6)
©
8
(9)
(10)
do

$$
\begin{aligned}
& k e y \leftarrow A[j] \\
& \text { Insert } A[j] \text { into the sorted sequence } A[1, \ldots, j-1]\} \\
& i \leftarrow j-1 \\
& \text { while } i>0 \text { and } A[i]>\text { key } \\
& \quad \text { do }
\end{aligned}
$$

$$
A[i+1] \leftarrow A[i]
$$

$$
i \leftarrow i-1
$$

$$
A[i+1] \leftarrow k e y
$$

Count Value

$\rightarrow c_{5} \sum_{j=2}^{N}(j-1)$

Counting the Operations

Insertion Sort (A)

(1) for $j \leftarrow 2$ to length (A)
(2)
(3)
(4)
(5)
(6)
©
B
(9)
(10)

Count Value

$\rightarrow c_{6} \sum_{j=2}^{N}(j-1)$

Counting the Operations

Insertion Sort(A)

(ㄹ) for $j \leftarrow 2$ to length (A)
(2) do
(3) $k e y \leftarrow A[j]$
©
\rightarrow Insert $A[j]$ into the sorted sequence $A[1, \ldots, j-1]\}$
$i \leftarrow j-1$
while $i>0$ and $A[i]>$ key
do

$$
\begin{gathered}
A[i+1] \leftarrow A[i] \\
i \leftarrow i-1 \\
A[i+1] \leftarrow k e y
\end{gathered}
$$

(10)

Count Value

$\rightarrow c_{7}(N-1)$

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

The $T(N)$ function

The total number of operations

It is know as a function $T(N)$

$$
T: \mathbb{N} \longmapsto \mathbb{N}
$$

The $T(N)$ function

The total number of operations

It is know as a function $T(N)$

$$
T: \mathbb{N} \longmapsto \mathbb{N}
$$

Something Notable

This generic name will be also be used for the recursive functions!!!

Building a function for counting

Counting Equation

$$
\begin{aligned}
T(N)= & c_{1} N+c_{2}(N-1)+C_{3}(N-1)+c_{4}\left(\frac{N(N+1)}{2}-1\right)+\ldots \\
& c_{5}\left(\frac{N(N-1)}{2}-1\right)+c_{6}\left(\frac{N(N-1)}{2}-1\right)+c_{7}(N-1)
\end{aligned}
$$

Building a function for counting

Counting Equation

$$
\begin{aligned}
T(N)= & c_{1} N+c_{2}(N-1)+C_{3}(N-1)+c_{4}\left(\frac{N(N+1)}{2}-1\right)+\ldots \\
& c_{5}\left(\frac{N(N-1)}{2}-1\right)+c_{6}\left(\frac{N(N-1)}{2}-1\right)+c_{7}(N-1)
\end{aligned}
$$

This can be reduced to something like...

$$
T(N)=a N^{2}+b N+c
$$

Example of Complexities

Something Notable

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

The Worst and The Average Case Inputs

The Worst Case Input

- Upper bound on the running time of an algorithm.

The Worst and The Average Case Inputs

The Worst Case Input

- Upper bound on the running time of an algorithm.
- In case of insertion sort, it will be the permutation:

The Worst and The Average Case Inputs

The Worst Case Input

- Upper bound on the running time of an algorithm.
- In case of insertion sort, it will be the permutation:

$$
\begin{equation*}
N, N-1, N-2, \ldots, 3,2,1 \tag{1}
\end{equation*}
$$

The Worst and The Average Case Inputs

The Worst Case Input

- Upper bound on the running time of an algorithm.
- In case of insertion sort, it will be the permutation:

$$
\begin{equation*}
N, N-1, N-2, \ldots, 3,2,1 \tag{1}
\end{equation*}
$$

The Average Case Input

- In the case of insertion sort, if half of the elements of $A[1,2, \ldots, j-1]$ are less than $A[j]$ and half are greater.

The Worst and The Average Case Inputs

The Worst Case Input

- Upper bound on the running time of an algorithm.
- In case of insertion sort, it will be the permutation:

$$
\begin{equation*}
N, N-1, N-2, \ldots, 3,2,1 \tag{1}
\end{equation*}
$$

The Average Case Input

- In the case of insertion sort, if half of the elements of $A[1,2, \ldots, j-1]$ are less than $A[j]$ and half are greater.
- Then, insertion sort checks half of the elements i.e.:

The Worst and The Average Case Inputs

The Worst Case Input

- Upper bound on the running time of an algorithm.
- In case of insertion sort, it will be the permutation:

$$
\begin{equation*}
N, N-1, N-2, \ldots, 3,2,1 \tag{1}
\end{equation*}
$$

The Average Case Input

- In the case of insertion sort, if half of the elements of $A[1,2, \ldots, j-1]$ are less than $A[j]$ and half are greater.
- Then, insertion sort checks half of the elements i.e.:

$$
\begin{equation*}
\frac{j}{2} \tag{2}
\end{equation*}
$$

Outline

(1) Motivation

- What is an Algorithm?
- Instance of a Problem
- Kolmogorov's Definition
(2) Problems Solved By Algorithms
- The Realm of Algorithms
(3) Syllabus
- What Will You Learn in This Class?
- What do we want?
(4) Some Notes in Notation
- Notation for Pseudo-Code
(5) What abstraction of a Computer to use?
- The Random-Access Machine

6 Analyzing Algorithms

- Input Size and Running Time
- The First Method: Counting Number of Operations
- Counting Equation For Insertion Sort
- The Analysis of the Worst and Average Case Inputs
- Why Do We Want Efficient Algorithms?

Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 10^{6} numbers to sort!!!!

Why Do We Want Efficient Algorithms?

We have the following example
Assume, we have 10^{6} numbers to sort!!!
Now, we have the following algorithms

- Insertion Sort $\rightarrow T(N)=c_{1} N^{2}$

Why Do We Want Efficient Algorithms?

We have the following example

Assume, we have 10^{6} numbers to sort!!!

Now, we have the following algorithms

- Insertion Sort $\rightarrow T(N)=c_{1} N^{2}$
- Merge Sort $\rightarrow T(N)=c_{2} N \log _{2} N$

Why Do We Want Efficient Algorithms?

We have the following example

Assume, we have 10^{6} numbers to sort!!!
Now, we have the following algorithms

- Insertion Sort $\rightarrow T(N)=c_{1} N^{2}$
- Merge Sort $\rightarrow T(N)=c_{2} N \log _{2} N$

Under the following constraints for a PC and Supercomputer

- In a Supercomputer $c_{1}=2$ instructions per line

Why Do We Want Efficient Algorithms?

We have the following example

Assume, we have 10^{6} numbers to sort!!!

Now, we have the following algorithms

- Insertion Sort $\rightarrow T(N)=c_{1} N^{2}$
- Merge Sort $\rightarrow T(N)=c_{2} N \log _{2} N$

Under the following constraints for a PC and Supercomputer

- In a Supercomputer $c_{1}=2$ instructions per line
- In our humble PC $c_{2}=50$ instructions per line

Now

In addition

- The supercomputer can do 10^{10} instructions per second.

Now

In addition

- The supercomputer can do 10^{10} instructions per second.
- The PC can do 10^{7} instructions per second.

Now

In addition

- The supercomputer can do 10^{10} instructions per second.
- The PC can do 10^{7} instructions per second.

Final Result

- Time of Insertion Sort in the Supercomputer:

Now

In addition

- The supercomputer can do 10^{10} instructions per second.
- The PC can do 10^{7} instructions per second.

Final Result

- Time of Insertion Sort in the Supercomputer:

$$
\begin{equation*}
\frac{2\left(10^{6}\right)^{2} \text { ins }}{10^{10} \mathrm{ins} / \mathrm{sec}}=200 \text { seconds } \tag{3}
\end{equation*}
$$

Now

In addition

- The supercomputer can do 10^{10} instructions per second.
- The PC can do 10^{7} instructions per second.

Final Result

- Time of Insertion Sort in the Supercomputer:

$$
\begin{equation*}
\frac{2\left(10^{6}\right)^{2} \mathrm{ins}}{10^{10} \mathrm{ins} / \mathrm{sec}}=200 \text { seconds } \tag{3}
\end{equation*}
$$

- Time of Merge Sort in a humble PC:

Now

In addition

- The supercomputer can do 10^{10} instructions per second.
- The PC can do 10^{7} instructions per second.

Final Result

- Time of Insertion Sort in the Supercomputer:

$$
\begin{equation*}
\frac{2\left(10^{6}\right)^{2} \mathrm{ins}}{10^{10} \mathrm{ins} / \mathrm{sec}}=200 \text { seconds } \tag{3}
\end{equation*}
$$

- Time of Merge Sort in a humble PC:

$$
\begin{equation*}
\frac{2\left(10^{6}\right) \log \left(10^{6}\right) \text { ins }}{10^{7} \mathrm{ins} / \mathrm{sec}}=3.9 \text { seconds } \tag{4}
\end{equation*}
$$

