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Outline

e Introduction

@ Supervised Learning



Classification Problem

Given Tyey, provide f(Zpew)

The Machinery in General looks...
Training Info: Desired/Target Output

'

INPUT —>

Supervised
Learning

—> OUTPUT
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e Introduction

@ Handling Noise in Classification



How do we handle Noise?

Imagine the following signal from sin (9)

Noisy Samples
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What if we know the noise?

Given a series of observed samples {Z;, Zs, ..., Ly} with noise

e~ N(0,1)

We could use our knowledge on the noise, for example additive:

T; =x; +¢€
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What if we know the noise?

Given a series of observed samples {Z;, Zs, ..., Ly} with noise

e~ N(0,1)

We could use our knowledge on the noise, for example additive:

T; =x; +¢€

We can use our knowledge of probability to remove such noise

E[ii]zE[wi+e]=E[a:i]+E[e]

Then, because E [¢] =0




In our example

We have a nice result
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Therefore, we have

The Bayesian Models
@ They allow to deal with noise from the samples

Quite different from the deterministic models so far
@ Unless Samples are Preprocessed to Reduce the Noise

Something that people in area as Control tend to do
@ The importance of Filters as Kalman Filters
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Example

Given a Spoken Language J

The task is to determine the language that someone is speaking
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Example

Given a Spoken Language
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@ They try to learn each language.

@ Therefore, they try to determine the spoken language based in such
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| \

Discriminative Models
@ They try to determine the linguistic differences without learning any
language!!!

A




Example

Given a Spoken Language
The task is to determine the language that someone is speaking

Generative Models
@ They try to learn each language.

@ Therefore, they try to determine the spoken language based in such
learning.

| A

Discriminative Models
@ They try to determine the linguistic differences without learning any
language!!!

@ Quite easierl!!!

N,
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Therefore

Generative Methods
© Model class-conditional pdfs and prior probabilities.

@ “Generative” since sampling can generate synthetic data points.

Examples

| \

@ Gaussians, Naive Bayes, Mixtures of Multinomials.

@ Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models
(HMM).

@ Sigmoidal Belief Networks, Bayesian Networks, Markov Random
Fields.

A
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© Directly estimate posterior probabilities.

13/79



Furthermore

Discriminative Methods

© Directly estimate posterior probabilities.

@ No attempt to model underlying probability distributions.

13 /79



Furthermore

Discriminative Methods

© Directly estimate posterior probabilities.

@ No attempt to model underlying probability distributions.

© Focus computational resources on given task for better performance.

13 /79



Furthermore

Discriminative Methods
© Directly estimate posterior probabilities.
@ No attempt to model underlying probability distributions.

© Focus computational resources on given task for better performance.

| A\

Popular models
o Logistic regression, SVMs.
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Furthermore

Discriminative Methods
© Directly estimate posterior probabilities.
@ No attempt to model underlying probability distributions.

© Focus computational resources on given task for better performance.

| \

Popular models
@ Logistic regression, SVMs.
@ Traditional neural networks, Nearest neighbor.
e Conditional Random Fields (CRF).

\
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Naive Bayes Model

Let wy,wy be the two classes in which our samples belong.

Task for two classes J
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Naive Bayes Model

Task for two classes
Let wy,wy be the two classes in which our samples belong.

There is a prior probability of belonging to that class
@ P (wy) for Class 1.
@ P (wy) for Class 2.

4

The Rule for classification is the following one

P (uale) = T 20 (1)

Remark: Bayes to the next level.

A\




In Informal English

likelihood X prior-in formation )

posterior = -
evidence
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In Informal English

likelihood X prior-in formation )
evidence

posterior =

v

Basically

One: If we can observe x.

N
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In Informal English

We have that

likelihood X prior-in formation

posterior = -
evidence

| A\

Basically
One: If we can observe x.

Two: we can convert the prior-information into the posterior information.

v
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We have the following terms...

Likelihood

We call p (z|w;) the likelihood of w; given x:
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We have the following terms...

Likelihood

We call p (z|w;) the likelihood of w; given x:

e This indicates that given a category w;: If p (x|w;) is “large”, then w;
is the “likely” class of .

v

Prior Probability

It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to
use the uniform distribution.

However: We can use other tricks for it.

A\

The evidence factor can be seen as a scale factor that guarantees that the
posterior probability sum to one.
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The most important term in all this

likelihood x prior-in formation
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Example

We have the likelihood of two classes

p (z|wi)

| | | | |
9 10 11 12 13 14 15 16 17 18




Example

We have the posterior of two classes when P (w;) = % and

P(wy) =1

3
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Example of key distribution

Example, mean = 488.5 and dispersion = 5

12

10




Example with 10 keys

niversal H
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Example with 50 keys

Vs Divisio

niversal Hashin

Distribution in Hash Table - Universal Hashing Distribution in Hash Table - Division Method
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Example with 100 keys

Universal Hashing Vs Division Method

Distribution in Hash Table - Universal Hashing Distribution in Hash Table - Division Method
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Example with 200 keys

Number of element being hashed to

niversal Hashin

Vs Divisio

Distribution in Hash Table - Universal Hashing
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0 Introduction

@ Naive Bayes

@ The Naive Bayes Model
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Naive Bayes Model

In the case of two classes, we can use demarginalization
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Error in this rule

We have that

P (wi|x) if we decide ws

P (error|x) = {

P (wa]x)  if we decide wy
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Error in this rule

Ple ) P (wi]x) if we decide wo (5)
rror|x) =
P (wa]x)  if we decide wy

o

Thus, we have that

P (error) = /—oo P (error,x)dx = /—oo P (error|x)p(x)dz  (6)

V.

29 /79



Graphically

A P(wife)  P(wlz)

P (error) = [*_P(error,x)dx
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Classification Rule

Thus, we have the Bayes Classification Rule

Q If P(wi|z) > P (wz|z) x is classified to w;
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Classification Rule

Thus, we have the Bayes Classification Rule

Q If P(wi|z) > P (wa|z) x is classified to w1
Q If P(wi|z) < P (wz|z) x is classified to wa
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What if we remove the normalization factor?

Remember

P (w]z) + P (walz) =1 (7)
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P (w]z) + P (walz) =1 (7)

4

We are able to obtain the new Bayes Classification Rule

Q If P(z|w1)p(wi) > P (x|wz) P (w2) z is classified to wy
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P (w]z) + P (walz) =1 (7)

4

We are able to obtain the new Bayes Classification Rule

Q If P(z|w1)p(wi) > P (x|wz) P (w2) z is classified to wy
Q If P(z|w1)p(wi) < P(x|ws) P (w2) z is classified to wa
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We have several cases

If for some & we have P (z|wi) = P (x|ws)

The final decision relies completely from the prior probability.
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We have several cases

If for some & we have P (z|wi) = P (x|ws)

The final decision relies completely from the prior probability.

On the Other hand if P (w:) = P (w2), the “state” is equally probable

In this case the decision is based entlrely on the likelihoods P (z|w;).

33/79



How the Rule looks like

If P(w;) = P (ws) the Rule depends on the term p (x|w;)

p(z|jw)A p(rlwr)  p(z|w)

=Y

Rl Zo R2

34 /79



Error in Naive Bayes

Error in equiprobable classes p (w;) = p (ws) = -

Pe:/P(m,error)dw

—00

o
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Error in Naive Bayes

Error in equiprobable classes p (w;) = p (ws) = -

Pe:/P(m,error)dw

—00
Zo

:/p(m,wg)dx—i-/p(x,wl)dx
Zo

—00

o
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Error in Naive Bayes

Error in equiprobable classes p (w;) = p (ws) = -

o0

Pe:/P(m,error)dw
o oo
:/p(m,wg)d:c—i-/p(x,wl)dx
— 00 xo
— [ plalon) P @) do+ [ p(alen) P ) do

o
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Error in Naive Bayes

Error in equiprobable classes p (w;) = p (ws) = -

o0

Pe:/P(m,error)dw
o oo
:/p(m,wg)d:c—i-/p(x,wl)dx
— 00 xo
— [ plalon) P @) do+ [ p(alen) P ) do

Zo

=P (w2) /P<x|w2)d$+P(w1)/oop($|wl)d$

—00 zo

o
35779



Error in Naive Bayes

Error in equiprobable classes p (w1) = p (wy) = +

o0

Pe:/P(m,error)dw
o oo
:/p(m,wg)d:c—i-/p(x,wl)dx
— 00 xo
— [ plalon) P @) do+ [ p(alen) P ) do

Zo

=P (w2) /P<x|w2)d$+P(w1)/oop($|wl)d$

—00

Zo

1 17
=5 /p(:z:|w2)dx+§/p(m|w1)dx

— 00

o
3579



Error in Naive Bayes

Something Notable

Bayesian classifier is optimal with respect to minimizing the
classification error probability.

36 /79



Proof

@ R, be the region of the feature space in which we decide in favor of w;
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Proof

Step 1
@ R, be the region of the feature space in which we decide in favor of w;

@ Ry be the region of the feature space in which we decide in favor of ws

| \

Step 2
P, = P(LL' € Rg,wl) +P(IE € Rl,UJQ)

.
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Proof

Step 1
@ R, be the region of the feature space in which we decide in favor of w;

@ Ry be the region of the feature space in which we decide in favor of ws

| A

Step 2

P, = P(IL’ € Rg,wl) +P(IL‘ € Rl,UJQ)

Thus

| A

P, = P(Z‘ € R2|w1)P(w1) +P(.Z‘ € R1|w2)P(w2)
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Proof

Step 1
@ R, be the region of the feature space in which we decide in favor of w;

@ Ry be the region of the feature space in which we decide in favor of ws

Step 2

| A

P, = P(IL’ € Rg,wl) +P(IL‘ € Rl,UJQ)

| A\

Thus

P, = P(Z‘ € R2|w1)P(w1) +P(.Z‘ € R1|w2)P(w2)
Pw) [ p(afer) da+ Pea) [ p(alun) do

R2 Rl

A\




Proof
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Proof

j / ol |l / p (wal) p (z) de (10)
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Proof
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Proof

P (wy) =/p(w1\m)p(x) dx+/p(w1]a:)p(m)dx (11)

v

P (wy) —/p(wﬂx)p(m) dx = /p(wllaz)p(x) dx (12)

R1 R2

39/79
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Graphically P (w;): Thanks Edith 2013 Class!!!

A
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Thus we have
fR (wilz)p dx:lep(wlax)dx:PRl(wl)

Jp,plrl2)p(a)dz =[5 p(wi,z)de= Pp,(w1)

41/79



Finally P.

A great idea Edith!!!

\

P (1) — [, 2 (@1]2) p () da)
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Thus
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Thus

Finally

P, = P(w) - / [p (wilz) — p (wal)] p () de (14)
Ry

The probability of error is minimized at the region of space in which
Ry : P (wi]z) > P (we|z).

43 /79
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Finally

P, = P(wn) / [p (wel) — p (wil2)] p () de (15)
Ry

The probability of error is minimized at the region of space in which
Ry : P (wa]z) > P (wi]z).
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Finally

P, = P(wn) / [p (wel) — p (wil2)] p () de (15)
Ry

The probability of error is minimized at the region of space in which
Ry : P (wa]z) > P (wi]z).

The Naive Bayes Rule minimizes the error. l

44 /79




After alllll

If you choose any other x;,

p(z|w)A p(zlw1)  p(zlwr)

sy
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Outline

0 Introduction

@ Naive Bayes

@ The Multi-Class Case
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For M classes wq, wo, ..., w

We have that vector x is in w;

P (wil@) > P (wjlw) V) # (16)
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For M classes wq, wo, ..., w

We have that vector x is in w;

P (wilx) > P (wj|z) Vj # i

(16)

v

Something Notable

It turns out that such a choice also minimizes the classification error
probability.

47 /79



Outline

Discriminant Functions and Decision Surfaces
@ Introduction
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Decision Surface

Because the R, and R, are contiguous

The separating surface between both of them is described by

P (w]z) — P (walz) =0 (17)
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Decision Surface

Because the R, and R, are contiguous
The separating surface between both of them is described by

P (wi|z) — P (we|z) =0 (17)

v

Thus, we define the decision function as

g12 (x) = P (wi|z) — P (w2lz) = 0 (18)

v

49/79



Which decision function for the Naive Bayes

A single number in this case

\

Y
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In general

First

Instead of working with probabilities, we work with an equivalent function
of them g; (x) = f (P (wil)).
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In general

Instead of working with probabilities, we work with an equivalent function
of them g; (x) = f (P (wil)).

@ Classic Example the Monotonically increasing
f(P(wilx)) =1n P (w;|x).

The decision test is now
classify @ in w; if g; (x) > g; () Vj # i.

The decision surfaces, separating contiguous regions, are described by
gij (il?) :gl(il:) _gj (:I?) i,j = 1,2,...,M i 75]

51/79



Outline

e Discriminant Functions and Decision Surfaces

@ Gaussian Distribution
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Gaussian Distribution

We can use the Gaussian distribution
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Gaussian Distribution

We can use the Gaussian distribution

(3 0
E‘_o 3}
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Some Properties

It is the covariance matrix between variables. I
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Some Properties

It is the covariance matrix between variables. l

@ It is positive semi-definite.

@ Symmetric.

@ The inverse exists.
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Outline

e Discriminant Functions and Decision Surfaces

@ Influence of the Covariance 3
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Influence of the Covariance X

Look at the following Covariance
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Influence of the Covariance X

Look at the following Covariance

10

It simple the unit Gaussian with mean p

56 /79



The Covariance X as a Rotation

Look at the following Covariance
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The Covariance X as a Rotation

Look at the following Covariance

16 0

Actually, it flatten the circle through the x — axis

57 /79



Influence of the Covariance X

Look at the following Covariance

3, = RY,RT with R = l ST ]

sin@ cosf
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Influence of the Covariance X

Look at the following Covariance

cosf@ —sinf

— T i _
Yo = RY,RY with R = sinf  cosd

o’

It allows to rotate the axises

58 /79



Now For Two Classes

Then, we use the following trick for two Classes 7 = 1, 2

We know that the pdf of correct classification is
p(z,w1) = p(z|w;) P (w;)!MN
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Now For Two Classes

Then, we use the following trick for two Classes 7 = 1, 2
We know that the pdf of correct classification is
p(z,w1) = p (@|w;) P (w;)

Thus

It is possible to generate the following decision function:

| A

gi () =In[p (z|w;) P (w;)] = Inp (x|w;) + In P (w;) (20)

4
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Now For Two Classes

Then, we use the following trick for two Classes 7 = 1, 2

We know that the pdf of correct classification is
p(z,w1) = p(z|w;) P (w;)!MN

Thus

It is possible to generate the following decision function:

| A

gi () =In[p (z|w;) P (w;)] = Inp (x|w;) + In P (w;) (20)1
gi@) = —5 @ —p) 5 @ —p) + P ) e (1)

\



Outline

e Discriminant Functions and Decision Surfaces

@ Example
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We can work one of the possible decision surfaces

Assume first that 3; = o]

@ The features are statistically independent
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Assume first that 3; = o]
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We can work one of the possible decision surfaces

Assume first that 3; = o]

@ The features are statistically independent

@ Each feature has the same variance

@ The samples fall in equal size spherical clusters!!!

@ Each Cluster centered at mean vector p;.
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For Example

(O]
>
(g0
=
(V)
=
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Now

We have that
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Now

We have that

1
|%i| = 02 and B = (;) I

| A\

Something Notable
@ Gaussian Multivariate function after the log

1 d 1
gi (x) = =5 (@ — i)' 27 (2 — ) + In P (w;) — §ln27r - §1n |3
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Now

We have that

1
|%i| = 02 and B = (;) I

Something Notable

| A\

@ Gaussian Multivariate function after the log

2

1 d 1
gi (@) = == (x — )" 27 (@ — i) + In P (w;) — g n2m — - In[%]

The term —4In 27 — 1 1In |3;|

It is unimportant therefore it can be ignored!!!
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Then

We have the following discriminant functions

|z — puil|”
—_————

(z — p)" (@ — i)

952 +1In P (w;) (22)

gi(x) = —
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Then

We have the following discriminant functions

|z — puil|”
—_————

(x— pa)" (x — pi)
202

gi(x) = — +1n P (w;) (22)

Then, we have that

1
gi (x) = ~5.2 [me — ZMT:B + u,-Ty,i} +1n P (w;)
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We can then...

Do you notice that 7« is actually the same for all g;?

Then, we can ignore that term thus, we get

1 1
gi () = ﬁﬂiTﬁB—ﬁHiTﬂi +1In P (w;)
= =

T wi0
%
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We can then...

Do you notice that &’z is actually the same for all ¢;?

Then, we can ignore that term thus, we get

1 1
gi (®) = " =" pi + In P (w;)
o 20
sz 10

65 /79



Outline

e Discriminant Functions and Decision Surfaces

@ Maximum Likelihood Principle
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Given a series of classes wy, wo, ..., ws

We assume for each class w;

The samples are drawn independently according to the probability law
p (|w;)
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Given a series of classes wy, wo, ..., ws

We assume for each class w;

The samples are drawn independently according to the probability law
p (|w;)

We call those samples as

i.i.d. — independent identically distributed random variables.
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Given a series of classes wy, wo, ..., ws

We assume for each class w;

The samples are drawn independently according to the probability law
p (|w;)

We call those samples as
i.i.d. — independent identically distributed random variables.

We assume in addition

p (x|w;) has a known parametric form with vector 8; of parameters.

67 /79



Given a series of classes wy, wo, ..., ws

For example

p(@lw;) ~ N (1, %;) (23)
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Given a series of classes wy, wo, ..., ws

For example

p(@lw;) ~ N (1, %;) (23)

We will assume that there is no dependence between classes!!! I
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Now

Suppose that w; contains n samples i, xs, ..., T,

I

<
Il
—
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Now

Suppose that w; contains n samples @, x,, ..., T,
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Example

L(0;) = logITj_, p (;]6;)

L(0;) =log H;L:1P(mj|ej)
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Outline

9 Discriminant Functions and Decision Surfaces

@ Maximum Likelihood on a Gaussian
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Maximum Likelihood on a Gaussian

Then, using the log!!!

n 1| _
L (ws) = =5 I [Si] = 5 | > (@5 — i) S (@5 — ) | +2 (26)
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Maximum Likelihood on a Gaussian

Then, using the log!!!

(@5 — pa) 577 (5 — pa) | + 2

n 1| &
In L (w;) = —§ln]2i\ ~3
=1

(26)

We know that

| A\

T
de Az _ 40t oaTy, 942 _ 4
dx dx

(27)

\
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Maximum Likelihood on a Gaussian

Then, using the log!!!

n 1 _
InL(wi)=—gnfZf -5 1> (- i) S (@5 — ) | +2 (26)
j=1

n

We know that

| A\

dxeT Ax
dx

_ Az + A"z, dj{ iy (27)

\

Thus, we expand equation26

n 1 _ _ _
—5 In |Ez| — 5 Z [SL’jTEi 1:13]' = QijEi I[J,i + [J,iTEZ- 1;1,1'} + co (28)
j=1
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Maximum Likelihood
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Maximum Likelihood

OlnL(w) = O
O

1
j=1

-1
n;
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Maximum Likelihood

Oln L (w;) 2
o Co= D N (g i) =0
i j=1
1 1
n
1 n
p = —) =,
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Maximum Likelihood

Then, we derive with respect to ;
For this we use the following tricks:
dlog|s T
@ G =gy [9(®)1 = -2
OTr[AB] __ 8Tr[BA] _ /T
@ =i =91 =B

© Trace(of a number)=the number
@ Tr(ATB)=Tr (BAT)

fE)=—5WS] =53 (@ —m) 57 @5 — )]+ (29)
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Maximum Likelihood
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Maximum Likelihood

(31)

v
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Maximum Likelihood

Derivative with respect to X

o gz’i - %Z [(wj — i) (25 — ui)T}T (32)
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Maximum Likelihood

Derivative with respect to X

Of (%) _ gzz- - %é (5 — i) (s - ’“)T}T

0%;

(32)

Thus, when making it equal to zero

s 1
Ni= > (@5 — i) (w5 - pi)"
j=1

(33)
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Therefore

Step 1 - Assume a Gaussian Distribution over each class
@ The So Called Model Selection
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Therefore

Step 1 - Assume a Gaussian Distribution over each class
@ The So Called Model Selection

@ Adjust the Gaussian Distribution, for each class, using the previous
Maximum Likelihood
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Therefore

Step 1 - Assume a Gaussian Distribution over each class
@ The So Called Model Selection

@ Adjust the Gaussian Distribution, for each class, using the previous
Maximum Likelihood

Ry : P(wi|x) > P (w2|x)
Ry : P (w2|x) > P (wil|x)
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Outline

e Exercises

@ Some Stuff you can try
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Exercises

Duda and Hart

Chapter 3
e 31,32, 33,3.13
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Exercises

Duda and Hart
Chapter 3
e 31,32, 33,3.13

Theodoridis

Chapter 2
@ 2.5, 27,210, 2.12, 2.14, 2.17
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