Introduction to Artificial Intelligence Introduction to Bayesian Classification

Andres Mendez-Vazquez

April 1, 2019

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Classification Problem

Goal

Given \boldsymbol{x}_{new} , provide $f(\boldsymbol{x}_{new})$

The Machinery in General looks...

Outline

Supervised Learning

Handling Noise in Classification

- Models of Classification
- Naive Baves
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

How do we handle Noise?

Imagine the following signal from $\sin(\theta)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What if we know the noise?

Given a series of observed samples $\{\hat{x}_1, \hat{x}_2, ..., \hat{x}_N\}$ with noise $\epsilon \sim N(0, 1)$

We could use our knowledge on the noise, for example additive:

 $\widehat{x}_i = x_i + \epsilon$

such noise our knowledge of probability to remove such noise.

$E\left[\widehat{\boldsymbol{x}}_{i}\right] = E\left[\boldsymbol{x}_{i} + \epsilon\right] = E\left[\boldsymbol{x}_{i}\right] + E\left[\epsilon\right]$

Then, because $E |\epsilon| = 0$.

$$E[\boldsymbol{x}_i] = E[\hat{\boldsymbol{x}}_i] \approx \frac{1}{N} \sum_{i=1}^{N} \hat{\boldsymbol{x}}_i$$

What if we know the noise?

Given a series of observed samples $\{\hat{x}_1, \hat{x}_2, ..., \hat{x}_N\}$ with noise $\epsilon \sim N(0, 1)$

We could use our knowledge on the noise, for example additive:

 $\widehat{x}_i = x_i + \epsilon$

We can use our knowledge of probability to remove such noise

$$E\left[\widehat{\boldsymbol{x}}_{i}\right] = E\left[\boldsymbol{x}_{i}+\epsilon\right] = E\left[\boldsymbol{x}_{i}\right] + E\left[\epsilon\right]$$

Then, because $E[\epsilon]$

What if we know the noise?

Given a series of observed samples $\{\hat{x}_1, \hat{x}_2, ..., \hat{x}_N\}$ with noise $\epsilon \sim N(0, 1)$

We could use our knowledge on the noise, for example additive:

$$\widehat{x}_i = x_i + \epsilon$$

We can use our knowledge of probability to remove such noise

$$E\left[\widehat{\boldsymbol{x}}_{i}\right] = E\left[\boldsymbol{x}_{i}+\epsilon\right] = E\left[\boldsymbol{x}_{i}\right] + E\left[\epsilon\right]$$

Then, because $E[\epsilon] = 0$

$$E[\boldsymbol{x}_i] = E[\widehat{\boldsymbol{x}}_i] \approx \frac{1}{N} \sum_{i=1}^{N} \widehat{\boldsymbol{x}}_i$$

In our example

We have a nice result

Therefore, we have

The Bayesian Models

• They allow to deal with noise from the samples

Quite different from the deterministic models so far

• Unless Samples are Preprocessed to Reduce the Noise

Something that people in area as Control tend to do

• The importance of Filters as Kalman Filters

Therefore, we have

The Bayesian Models

• They allow to deal with noise from the samples

Quite different from the deterministic models so far

• Unless Samples are Preprocessed to Reduce the Noise

Something that people in area as Control tend to do

The importance of Filters as Kalman Filters

Therefore, we have

The Bayesian Models

• They allow to deal with noise from the samples

Quite different from the deterministic models so far

• Unless Samples are Preprocessed to Reduce the Noise

Something that people in area as Control tend to do

The importance of Filters as Kalman Filters

Outline

- Supervised Learning
- Handling Noise in Classification

Models of Classification

- Naive Baves
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Given a Spoken Language

The task is to determine the language that someone is speaking

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Quite easier[]]

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Discriminative Models

- They try to determine the linguistic differences without learning any language!!!
- Quite easier!!!

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Discriminative Models

• They try to determine the linguistic differences without learning any language!!!

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Discriminative Models

• They try to determine the linguistic differences without learning any language!!!

Quite easier!!!

Generative Methods

Model class-conditional pdfs and prior probabilities.

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- Generative" since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials
- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM).
- Sigmoidal Belief Networks, Bayesian Networks, Markov Random Fields.

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- Generative" since sampling can generate synthetic data points.

Examples

• Gaussians, Naïve Bayes, Mixtures of Multinomials.

- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM)
- Sigmoidal Belief Networks, Bayesian Networks, Markov Random Fields.

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- Generative" since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials.
- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM).
 - Sigmoidal Belief Networks, Bayesian Networks, Markov Random Fields.

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- Generative" since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials.
- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM).
- Sigmoidal Belief Networks, Bayesian Networks, Markov Random Fields.

Discriminative Methods

- Directly estimate posterior probabilities.
 - No attempt to model underlying probability distributions.
- Focus computational resources on given task for better performance.

Discriminative Methods

- Directly estimate posterior probabilities.
- O No attempt to model underlying probability distributions.

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.
- Conditional Random Fields (CRF).

Discriminative Methods

- Directly estimate posterior probabilities.
- ② No attempt to model underlying probability distributions.
- Socus computational resources on given task for better performance.

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.
- Conditional Random Fields (CRF).

Discriminative Methods

- Directly estimate posterior probabilities.
- ② No attempt to model underlying probability distributions.
- Socus computational resources on given task for better performance.

- Logistic regression, SVMs.
 - Traditional neural networks, Nearest neighbor.
 - Conditional Random Fields (CRF).

Discriminative Methods

- Directly estimate posterior probabilities.
- ② No attempt to model underlying probability distributions.
- Socus computational resources on given task for better performance.

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.

Discriminative Methods

- Directly estimate posterior probabilities.
- ② No attempt to model underlying probability distributions.
- Socus computational resources on given task for better performance.

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.
- Conditional Random Fields (CRF).

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification

Naive Bayes

- Examples
- The Naive Bayes Model
- The Multi-Class Case

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Task for two classes

Let ω_1, ω_2 be the two classes in which our samples belong.

Task for two classes

Let ω_1, ω_2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class

- $P(\omega_1)$ for Class 1.
- $P(\omega_2)$ for Class 2.

Task for two classes

Let ω_1, ω_2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class

- $P(\omega_1)$ for Class 1.
- $P(\omega_2)$ for Class 2.

The Rule for classification is the following one

$$P\left(\omega_{i}|\boldsymbol{x}\right) = \frac{P\left(\boldsymbol{x}|\omega_{i}\right)P\left(\omega_{i}\right)}{P\left(\boldsymbol{x}\right)}$$

Remark: Bayes to the next level.

Task for two classes

Let ω_1, ω_2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class

• $P(\omega_2)$ for Class 2.

The Rule for classification is the following one

$$P(\omega_{i}|\boldsymbol{x}) = \frac{P(\boldsymbol{x}|\omega_{i}) P(\omega_{i})}{P(\boldsymbol{x})}$$

Remark: Bayes to the next level.

(1)

In Informal English

In Informal English

Basically

One: If we can observe x.

Two: we can convert the prior-information into the posterior information.

<ロト < 回 > < 言 > < 言 > ミ の < C 16 / 79

In Informal English

Basically

One: If we can observe x.

Two: we can convert the prior-information into the posterior information.

We call $p(\boldsymbol{x}|\omega_i)$ the likelihood of ω_i given \boldsymbol{x} :

This indicates that given a category ω_i: If p (x|ω_i) is "large", then ω_i is the "likely" class of x.

Likelihood

We call $p(\boldsymbol{x}|\omega_i)$ the likelihood of ω_i given \boldsymbol{x} :

• This indicates that given a category ω_i : If $p(\boldsymbol{x}|\omega_i)$ is "large", then ω_i is the "likely" class of \boldsymbol{x} .

It is the known probability of a given class

- Remark: Because, we lack information about this class, we tend to use the uniform distribution.
- However: We can use other tricks for it

Likelihood

We call $p(\boldsymbol{x}|\omega_i)$ the likelihood of ω_i given \boldsymbol{x} :

• This indicates that given a category ω_i : If $p(\boldsymbol{x}|\omega_i)$ is "large", then ω_i is the "likely" class of \boldsymbol{x} .

Prior Probability

It is the known probability of a given class.

use the union distribution.

However: We can use other tricks for it

Evidence

Likelihood

We call $p(\boldsymbol{x}|\omega_i)$ the likelihood of ω_i given \boldsymbol{x} :

• This indicates that given a category ω_i : If $p(\boldsymbol{x}|\omega_i)$ is "large", then ω_i is the "likely" class of \boldsymbol{x} .

Prior Probability

It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to use the uniform distribution.

However: We can use other tricks for it

Evidence

Likelihood

We call $p(\boldsymbol{x}|\omega_i)$ the likelihood of ω_i given \boldsymbol{x} :

• This indicates that given a category ω_i : If $p(\boldsymbol{x}|\omega_i)$ is "large", then ω_i is the "likely" class of \boldsymbol{x} .

Prior Probability

It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to use the uniform distribution.

However: We can use other tricks for it.

Evidence

Likelihood

We call $p(\boldsymbol{x}|\omega_i)$ the likelihood of ω_i given \boldsymbol{x} :

• This indicates that given a category ω_i : If $p(\boldsymbol{x}|\omega_i)$ is "large", then ω_i is the "likely" class of \boldsymbol{x} .

Prior Probability

It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to use the uniform distribution.

However: We can use other tricks for it.

Evidence

The most important term in all this

The factor

$likelihood \times prior\text{-}information$

(3)

<ロ><回><一><日><日><日><日><日><日><日><日><日><日><日</td>18/79

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification

Naive Bayes

Examples

The Naive Bayes Model

The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Example

We have the likelihood of two classes

Example

Example of key distribution

Example, mean = 488.5 and dispersion = 5

Example with 10 keys

Example with 50 keys

Example with 100 keys

Example with 200 keys

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification

Naive Bayes

Examples

The Naive Bayes Model

The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution

Influence of the Covariance Σ

- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Naive Bayes Model

In the case of two classes, we can use demarginalization

$$P(\boldsymbol{x}) = \sum_{i=1}^{2} p(\boldsymbol{x}, \omega_i) = \sum_{i=1}^{2} p(\boldsymbol{x}|\omega_i) P(\omega_i)$$
(4)

Error in this rule

We have that

$$P(error|\boldsymbol{x}) = \begin{cases} P(\omega_1|\boldsymbol{x}) & \text{if we decide } \omega_2 \\ P(\omega_2|\boldsymbol{x}) & \text{if we decide } \omega_1 \end{cases}$$

I hus, we have that

$$P(error) = \int_{-\infty}^{\infty} P(error, \boldsymbol{x}) \, d\boldsymbol{x} = \int_{-\infty}^{\infty} P(error|\boldsymbol{x}) \, p(\boldsymbol{x}) \, d\boldsymbol{x} \qquad (6)$$

(5)

Error in this rule

We have that

$$P\left(error|\boldsymbol{x}
ight) = egin{cases} P\left(\omega_1|\boldsymbol{x}
ight) & ext{if we decide } \omega_2 \ P\left(\omega_2|\boldsymbol{x}
ight) & ext{if we decide } \omega_1 \end{cases}$$

Thus, we have that

$$P(error) = \int_{-\infty}^{\infty} P(error, \boldsymbol{x}) \, d\boldsymbol{x} = \int_{-\infty}^{\infty} P(error|\boldsymbol{x}) \, p(\boldsymbol{x}) \, d\boldsymbol{x} \qquad (6)$$

(5)

Graphically

Classification Rule

Thus, we have the Bayes Classification Rule

1 If $P(\omega_1 | \boldsymbol{x}) > P(\omega_2 | \boldsymbol{x}) \boldsymbol{x}$ is classified to ω_1

Classification Rule

Thus, we have the Bayes Classification Rule

1 If $P(\omega_1 | \boldsymbol{x}) > P(\omega_2 | \boldsymbol{x}) \boldsymbol{x}$ is classified to ω_1

2 If $P(\omega_1 | \boldsymbol{x}) < P(\omega_2 | \boldsymbol{x}) \boldsymbol{x}$ is classified to ω_2

What if we remove the normalization factor?

Remember

$$P(\omega_1|\boldsymbol{x}) + P(\omega_2|\boldsymbol{x}) = 1$$

(7)

What if we remove the normalization factor?

What if we remove the normalization factor?

We have several cases

If for some \boldsymbol{x} we have $P(\boldsymbol{x}|\omega_1) = P(\boldsymbol{x}|\omega_2)$

The final decision relies completely from the prior probability.

On the Other hand if $P(\omega_1) = P(\omega_2)$, the "state" is equally probable

In this case the decision is based entirely on the likelihoods $P\left(m{x}|\omega_{i}
ight).$

We have several cases

If for some x we have $P(x|\omega_1) = P(x|\omega_2)$

The final decision relies completely from the prior probability.

On the Other hand if $P(\omega_1) = P(\omega_2)$, the "state" is equally probable

In this case the decision is based entirely on the likelihoods $P(\boldsymbol{x}|\omega_i)$.

How the Rule looks like

$$P_{e} = \int_{-\infty}^{\infty} P(\mathbf{x}, error) d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} p(\mathbf{x}, \omega_{2}) d\mathbf{x} + \int_{-\infty}^{\infty} p(\mathbf{x}, \omega_{2}) d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} p(\mathbf{x}, \omega_{2}) P(\omega_{2}) d\mathbf{x} + \int_{-\infty}^{\infty} p(\mathbf{x}, \omega_{2}) P(\omega_{2}) d\mathbf{x}$$

$$P_{e} = \int_{-\infty}^{\infty} P(\mathbf{x}, error) d\mathbf{x}$$

$$= \int_{-\infty}^{x_{0}} p(x, \omega_{2}) dx + \int_{x_{0}}^{\infty} p(x, \omega_{1}) dx$$

$$= \int_{-\infty}^{x_{0}} p(x|\omega_{2}) P(\omega_{2}) dx + \int_{x_{0}}^{\infty} p(x|\omega_{1}) P(\omega_{1}) dx$$

$$= P(\omega_{2}) \int_{-\infty}^{x_{0}} p(x|\omega_{2}) dx + \frac{1}{2} \int_{0}^{\infty} p(x|\omega_{1}) dx$$

$$P_{e} = \int_{-\infty}^{\infty} P(\mathbf{x}, error) d\mathbf{x}$$

= $\int_{-\infty}^{x_{0}} p(x, \omega_{2}) dx + \int_{x_{0}}^{\infty} p(x, \omega_{1}) dx$
= $\int_{-\infty}^{x_{0}} p(x|\omega_{2}) P(\omega_{2}) dx + \int_{x_{0}}^{\infty} p(x|\omega_{1}) P(\omega_{1}) dx$

$$P_{e} = \int_{-\infty}^{\infty} P(\mathbf{x}, error) d\mathbf{x}$$

= $\int_{-\infty}^{x_{0}} p(x, \omega_{2}) dx + \int_{x_{0}}^{\infty} p(x, \omega_{1}) dx$
= $\int_{-\infty}^{x_{0}} p(x|\omega_{2}) P(\omega_{2}) dx + \int_{x_{0}}^{\infty} p(x|\omega_{1}) P(\omega_{1}) dx$
= $P(\omega_{2}) \int_{-\infty}^{x_{0}} p(x|\omega_{2}) dx + P(\omega_{1}) \int_{x_{0}}^{\infty} p(x|\omega_{1}) dx$

$$P_{e} = \int_{-\infty}^{\infty} P(x, error) dx$$

= $\int_{-\infty}^{x_{0}} p(x, \omega_{2}) dx + \int_{x_{0}}^{\infty} p(x, \omega_{1}) dx$
= $\int_{-\infty}^{x_{0}} p(x|\omega_{2}) P(\omega_{2}) dx + \int_{x_{0}}^{\infty} p(x|\omega_{1}) P(\omega_{1}) dx$
= $P(\omega_{2}) \int_{-\infty}^{x_{0}} p(x|\omega_{2}) dx + P(\omega_{1}) \int_{x_{0}}^{\infty} p(x|\omega_{1}) dx$
= $\frac{1}{2} \int_{-\infty}^{x_{0}} p(x|\omega_{2}) dx + \frac{1}{2} \int_{x_{0}}^{\infty} p(x|\omega_{1}) dx$

Something Notable

Bayesian classifier is optimal with respect to minimizing the classification error probability.
Step 1

 $\bullet~R_1$ be the region of the feature space in which we decide in favor of ω_1

・ロ・・団・・川・・田・ 田・ ろんの

Step 1

- $\bullet~R_1$ be the region of the feature space in which we decide in favor of ω_1
- R_2 be the region of the feature space in which we decide in favor of ω_2

Step 1

• R_1 be the region of the feature space in which we decide in favor of ω_1

 $\bullet~R_2$ be the region of the feature space in which we decide in favor of ω_2

Step 2

$$P_e = P\left(x \in R_2, \omega_1\right) + P\left(x \in R_1, \omega_2\right)$$

 $P_{e} = P(x \in R_{2}|\omega_{1}) P(\omega_{1}) + P(x \in R_{1}|\omega_{2}) P(\omega_{2})$ $= P(\omega_{1}) \int_{R_{2}} p(x|\omega_{1}) dx + P(\omega_{2}) \int_{R_{1}} p(x|\omega_{2}) dx$

(8)

Step 1

• R_1 be the region of the feature space in which we decide in favor of ω_1

• R_2 be the region of the feature space in which we decide in favor of ω_2

Step 2

$$P_e = P\left(x \in R_2, \omega_1\right) + P\left(x \in R_1, \omega_2\right)$$

Thus

$$P_e = P(x \in R_2|\omega_1) P(\omega_1) + P(x \in R_1|\omega_2) P(\omega_2)$$

(8)

Step 1

• R_1 be the region of the feature space in which we decide in favor of ω_1

• R_2 be the region of the feature space in which we decide in favor of ω_2

Step 2

$$P_e = P\left(x \in R_2, \omega_1\right) + P\left(x \in R_1, \omega_2\right)$$

Thus

$$P_{e} = P(x \in R_{2}|\omega_{1}) P(\omega_{1}) + P(x \in R_{1}|\omega_{2}) P(\omega_{2})$$
$$= P(\omega_{1}) \int_{R_{2}} p(x|\omega_{1}) dx + P(\omega_{2}) \int_{R_{1}} p(x|\omega_{2}) dx$$

(8)

It is more

$$P_{e} = P(\omega_{1}) \int_{R_{2}} \frac{p(\omega_{1}, x)}{P(\omega_{1})} dx + P(\omega_{2}) \int_{R_{1}} \frac{p(\omega_{2}, x)}{P(\omega_{2})} dx$$
(9)

Finally

$$P_{e} = \int_{R_{2}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$$

Now, we choose the Bayes Classification Rule

 $\begin{aligned} R_1 &: P\left(\omega_1 | x\right) > P\left(\omega_2 | x\right) \\ R_2 &: P\left(\omega_2 | x\right) > P\left(\omega_1 | x\right) \end{aligned}$

It is more

$$P_{e} = P(\omega_{1}) \int_{R_{2}} \frac{p(\omega_{1}, x)}{P(\omega_{1})} dx + P(\omega_{2}) \int_{R_{1}} \frac{p(\omega_{2}, x)}{P(\omega_{2})} dx$$
(9)

Finally

$$P_{e} = \int_{R_{2}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$$
 (10)

Now, we choose the Bayes Classification Rule

 $\begin{aligned} R_1 &: P\left(\omega_1 | x\right) > P\left(\omega_2 | x\right) \\ R_2 &: P\left(\omega_2 | x\right) > P\left(\omega_1 | x\right) \end{aligned}$

It is more

$$P_{e} = P(\omega_{1}) \int_{R_{2}} \frac{p(\omega_{1}, x)}{P(\omega_{1})} dx + P(\omega_{2}) \int_{R_{1}} \frac{p(\omega_{2}, x)}{P(\omega_{2})} dx$$
(9)

Finally

$$P_{e} = \int_{R_{2}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$$
 (10)

Now, we choose the Bayes Classification Rule

$$R_1 : P(\omega_1|x) > P(\omega_2|x)$$

$$R_2 : P(\omega_2|x) > P(\omega_1|x)$$

38 / 79

Thus

$$P(\omega_{1}) = \int_{R_{1}} p(\omega_{1}|x) p(x) dx + \int_{R_{2}} p(\omega_{1}|x) p(x) dx$$
(11)

Now, we have.

$$P(\omega_1) - \int_{R_1} p(\omega_1 | x) p(x) dx = \int_{R_2} p(\omega_1 | x) p(x) dx$$
(12)

l hen

$$P_{e} = P(\omega_{1}) - \int_{R_{1}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$$
(13)

Thus

$$P(\omega_{1}) = \int_{R_{1}} p(\omega_{1}|x) p(x) dx + \int_{R_{2}} p(\omega_{1}|x) p(x) dx$$
(11)

Now, we have...

$$P(\omega_{1}) - \int_{R_{1}} p(\omega_{1}|x) p(x) dx = \int_{R_{2}} p(\omega_{1}|x) p(x) dx$$
(12)

hen

 $P_{e} = P(\omega_{1}) - \int_{R_{1}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$ (13)

Thus

$$P(\omega_{1}) = \int_{R_{1}} p(\omega_{1}|x) p(x) dx + \int_{R_{2}} p(\omega_{1}|x) p(x) dx$$
(11)

Now, we have...

$$P(\omega_{1}) - \int_{R_{1}} p(\omega_{1}|x) p(x) dx = \int_{R_{2}} p(\omega_{1}|x) p(x) dx$$
 (12)

Then

$$P_{e} = P(\omega_{1}) - \int_{R_{1}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$$
 (13)

Graphically $P(\omega_1)$: Thanks Edith 2013 Class!!!

Thus we have $\int_{R_1} p(\omega_1|x) p(x) dx = \int_{R_1} p(\omega_1, x) dx = P_{R_1}(\omega_1)$

Thus

Thus

Finally

$$P_{e} = P(\omega_{1}) - \int_{R_{1}} \left[p(\omega_{1}|x) - p(\omega_{2}|x) \right] p(x) dx$$
(14)

Thus

The probability of error is minimized at the region of space in which $R_1: P(\omega_1|x) > P(\omega_2|x).$

Thus

Finally

$$P_{e} = P(\omega_{1}) - \int_{R_{1}} \left[p(\omega_{1}|x) - p(\omega_{2}|x) \right] p(x) dx$$
(14)

Thus

The probability of error is minimized at the region of space in which $R_1: P\left(\omega_1|x\right) > P\left(\omega_2|x\right).$

Finally

Similarly

$$P_{e} = P(\omega_{2}) - \int_{R_{2}} \left[p(\omega_{2}|x) - p(\omega_{1}|x) \right] p(x) dx$$
(15)

Thus

The probability of error is minimized at the region of space in which $R_2: P(\omega_2|x) > P(\omega_1|x).$

Thus

The Naive Bayes Rule minimizes the error.

Finally

Similarly

$$P_{e} = P(\omega_{2}) - \int_{R_{2}} \left[p(\omega_{2}|x) - p(\omega_{1}|x) \right] p(x) dx$$
 (15)

Thus

The probability of error is minimized at the region of space in which $R_2: P(\omega_2|x) > P(\omega_1|x).$

lhus

The Naive Bayes Rule minimizes the error.

Finally

Similarly

$$P_{e} = P(\omega_{2}) - \int_{R_{2}} \left[p(\omega_{2}|x) - p(\omega_{1}|x) \right] p(x) dx$$
 (15)

Thus

The probability of error is minimized at the region of space in which $R_2: P(\omega_2|x) > P(\omega_1|x).$

Thus

The Naive Bayes Rule minimizes the error.

After all!!!

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification

Naive Bayes

- Examples
- The Naive Bayes Model
- The Multi-Class Case

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

For M classes $\omega_1, \omega_2, ..., \omega_M$

We have that vector \boldsymbol{x} is in ω_i

$$P(\omega_i | \boldsymbol{x}) > P(\omega_j | \boldsymbol{x}) \quad \forall j \neq i$$

(16)

Something Notable

It turns out that such a choice also minimizes the classification error probability.

For M classes $\omega_1, \omega_2, ..., \omega_M$

We have that vector \boldsymbol{x} is in ω_i

$$P(\omega_i | \boldsymbol{x}) > P(\omega_j | \boldsymbol{x}) \quad \forall j \neq i$$

Something Notable

It turns out that such a choice also minimizes the classification error probability.

(16)

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

Discriminant Functions and Decision Surfaces

- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Decision Surface

Because the R_1 and R_2 are contiguous

The separating surface between both of them is described by

$$P(\omega_1|x) - P(\omega_2|x) = 0$$
(17)

Thus, we define the decision function as

 $g_{12}(x) = P(\omega_1|x) - P(\omega_2|x) = 0$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C 49 / 79

Decision Surface

Because the R_1 and R_2 are contiguous

The separating surface between both of them is described by

$$P(\omega_1|x) - P(\omega_2|x) = 0$$
(17)

Thus, we define the decision function as

$$g_{12}(x) = P(\omega_1|x) - P(\omega_2|x) = 0$$
(18)

Which decision function for the Naive Bayes

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(x) = f(P(\omega_i | x))$.

Classic Example the Monotonically increasing

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(x) = f(P(\omega_i | x))$.

• Classic Example the Monotonically increasing $f(P(\omega_i | \boldsymbol{x})) = \ln P(\omega_i | \boldsymbol{x}).$

classify x in ω_i if $g_i(x) > g_j(x) \; \forall j \neq i$.

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(x) = f(P(\omega_i | x))$.

• Classic Example the Monotonically increasing $f(P(\omega_i | \boldsymbol{x})) = \ln P(\omega_i | \boldsymbol{x}).$

The decision test is now

classify \boldsymbol{x} in ω_i if $g_i(\boldsymbol{x}) > g_j(\boldsymbol{x}) \ \forall j \neq i$.

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(x) = f(P(\omega_i | x))$.

• Classic Example the Monotonically increasing $f(P(\omega_i | \boldsymbol{x})) = \ln P(\omega_i | \boldsymbol{x}).$

The decision test is now

classify
$$\boldsymbol{x}$$
 in ω_i if $g_i(\boldsymbol{x}) > g_j(\boldsymbol{x}) \ \forall j \neq i$.

The decision surfaces, separating contiguous regions, are described by

$$g_{ij}(\mathbf{x}) = g_i(\mathbf{x}) - g_j(\mathbf{x}) \ i, j = 1, 2, ..., M \ i \neq j$$

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

Introduction

Gaussian Distribution

- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Gaussian Distribution

We can use the Gaussian distribution

$$p(\boldsymbol{x}|\boldsymbol{\omega}_{\boldsymbol{i}}) = \frac{1}{\left(2\pi\right)^{l/2} \left|\boldsymbol{\Sigma}_{\boldsymbol{i}}\right|^{1/2}} \exp\left\{-\frac{1}{2} \left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \boldsymbol{\Sigma}_{\boldsymbol{i}}^{-1} \left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\right\}$$
(19)

Example

Gaussian Distribution

We can use the Gaussian distribution

$$p(\boldsymbol{x}|\boldsymbol{\omega}_{\boldsymbol{i}}) = \frac{1}{\left(2\pi\right)^{l/2} \left|\boldsymbol{\Sigma}_{\boldsymbol{i}}\right|^{1/2}} \exp\left\{-\frac{1}{2} \left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)^{T} \boldsymbol{\Sigma}_{\boldsymbol{i}}^{-1} \left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{i}}\right)\right\}$$
(19)

Example

$$\Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

Some Properties

About $\boldsymbol{\Sigma}$

It is the covariance matrix between variables.

Thus

- It is positive semi-definite.
- Symmetric.
- The inverse exists.

Some Properties

About $\boldsymbol{\Sigma}$

It is the covariance matrix between variables.

Thus

- It is positive semi-definite.
- Symmetric.
- The inverse exists.
Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution

Influence of the Covariance Σ

- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Influence of the Covariance $\boldsymbol{\Sigma}$

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

It simple the unit Gaussian with mean μ

Influence of the Covariance $\boldsymbol{\Sigma}$

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

It simple the unit Gaussian with mean μ

The Covariance $\boldsymbol{\Sigma}$ as a Rotation

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 16 & 0 \\ 0 & 1 \end{array} \right]$$

Actually, it flatten the circle through the x-axis

The Covariance $\boldsymbol{\Sigma}$ as a Rotation

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 16 & 0\\ 0 & 1 \end{array} \right]$$

Actually, it flatten the circle through the x - axis

Influence of the Covariance $\boldsymbol{\Sigma}$

Look at the following Covariance

$$\Sigma_a = R \Sigma_b R^T \text{ with } R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

to rotate the axises

Influence of the Covariance $\boldsymbol{\Sigma}$

Look at the following Covariance

$$\Sigma_a = R \Sigma_b R^T \text{ with } R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

It allows to rotate the axises

Now For Two Classes

Then, we use the following trick for two Classes i = 1, 2

We know that the pdf of correct classification is $p\left(x,\omega_{1}
ight)=p\left(x|\omega_{i}
ight)P\left(\omega_{i}
ight)!!!$

It is possible to generate the following decision function:

 $g_i(\boldsymbol{x}) = \ln\left[p\left(\boldsymbol{x}|\boldsymbol{\omega}_i\right)P\left(\boldsymbol{\omega}_i\right)\right] = \ln p\left(\boldsymbol{x}|\boldsymbol{\omega}_i\right) + \ln P\left(\boldsymbol{\omega}_i\right)$ (20)

l hus

$$g_{i}\left(\boldsymbol{x}\right) = -\frac{1}{2}\left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right) + \ln P\left(\omega_{i}\right) + c_{i}$$
(21)

Now For Two Classes

Then, we use the following trick for two Classes i = 1, 2

We know that the pdf of correct classification is $p\left(x,\omega_{1}
ight)=p\left(x|\omega_{i}
ight)P\left(\omega_{i}
ight)!!!$

Thus

It is possible to generate the following decision function:

$$g_i(\boldsymbol{x}) = \ln\left[p\left(\boldsymbol{x}|\boldsymbol{\omega}_i\right) P\left(\boldsymbol{\omega}_i\right)\right] = \ln p\left(\boldsymbol{x}|\boldsymbol{\omega}_i\right) + \ln P\left(\boldsymbol{\omega}_i\right)$$
(20)

Γhus

 $g_{i}(x) = -\frac{1}{2} (x - \mu_{i})^{T} \Sigma_{i}^{-1} (x - \mu_{i}) + \ln P(\omega_{i}) + c_{i}$ (2)

Now For Two Classes

Then, we use the following trick for two Classes i = 1, 2

We know that the pdf of correct classification is $p\left(x,\omega_{1}\right)=p\left(x|\omega_{i}\right)P\left(\omega_{i}\right)!!!$

Thus

It is possible to generate the following decision function:

$$g_i(\boldsymbol{x}) = \ln\left[p\left(\boldsymbol{x}|\boldsymbol{\omega}_i\right) P\left(\boldsymbol{\omega}_i\right)\right] = \ln p\left(\boldsymbol{x}|\boldsymbol{\omega}_i\right) + \ln P\left(\boldsymbol{\omega}_i\right)$$
(20)

Thus

$$g_i(\boldsymbol{x}) = -\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right)^T \Sigma_i^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right) + \ln P\left(\omega_i \right) + c_i$$
(21)

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ

Example

- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Assume first that $\Sigma_i = \sigma^2 I$

• The features are statistically independent

Each feature has the same variance

Assume first that $\Sigma_i = \sigma^2 I$

- The features are statistically independent
- Each feature has the same variance

Ineretore

- The samples fall in equal size spherical clusters!!!.
- Each Cluster centered at mean vector μ_i.

Assume first that $\Sigma_i = \sigma^2 I$

- The features are statistically independent
- Each feature has the same variance

Therefore

• The samples fall in equal size spherical clusters!!!

Assume first that $\Sigma_i = \sigma^2 I$

- The features are statistically independent
- Each feature has the same variance

Therefore

- The samples fall in equal size spherical clusters!!!
- Each Cluster centered at mean vector μ_i .

For Example

We have

We have that

$$|\Sigma_i| = \sigma^{2d}$$
 and $\Sigma_i^{-1} = \left(rac{1}{\sigma^2}
ight) I$

Something Notable

• Gaussian Multivariate function after the log

$$g_{i}(\boldsymbol{x}) = -\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)^{T} \Sigma_{i}^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right) + \ln P\left(\omega_{i}\right) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_{i}|$$

The term $-rac{a}{2}\ln 2\pi - rac{1}{2}\ln |\Sigma_i|$

It is unimportant therefore it can be ignored!!!

We have that

$$\Sigma_i| = \sigma^{2d} \text{ and } \Sigma_i^{-1} = \left(rac{1}{\sigma^2}
ight) I$$

Something Notable

ullet Gaussian Multivariate function after the \log

$$g_i(\boldsymbol{x}) = -\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right)^T \Sigma_i^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right) + \ln P\left(\omega_i \right) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i|$$

ヘロト ヘロト ヘヨト ヘヨト

э

63 / 79

It is unimportant therefore it can be ignored!!!

We have that

$$\Sigma_i| = \sigma^{2d} \text{ and } \Sigma_i^{-1} = \left(rac{1}{\sigma^2}
ight) I$$

Something Notable

ullet Gaussian Multivariate function after the \log

$$g_i(\boldsymbol{x}) = -\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right)^T \Sigma_i^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right) + \ln P\left(\omega_i \right) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i|$$

The term $-\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma_i|$

It is unimportant therefore it can be ignored!!!

Then

We have the following discriminant functions

$$g_{i}(\boldsymbol{x}) = -\frac{\left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)^{T} \left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)}{2\sigma^{2}} + \ln P\left(\omega_{i}\right)$$
(22)

hen, we have that

 $g_{i}(\boldsymbol{x}) = -\frac{1}{2\sigma^{2}} \left[\boldsymbol{x}^{T} \boldsymbol{x} - 2\boldsymbol{\mu}_{i}^{T} \boldsymbol{x} + \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i} \right] + \ln P\left(\omega_{i}\right)$

<ロト < 回 ト < 直 ト < 直 ト < 亘 ト 三 の Q (C) 64 / 79

Then

We have the following discriminant functions

$$g_{i}(\boldsymbol{x}) = -\frac{\left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)^{T} \left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)}{2\sigma^{2}} + \ln P\left(\omega_{i}\right)$$
(22)

Then, we have that

$$g_{i}(\boldsymbol{x}) = -\frac{1}{2\sigma^{2}} \left[\boldsymbol{x}^{T} \boldsymbol{x} - 2\boldsymbol{\mu}_{i}^{T} \boldsymbol{x} + \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i} \right] + \ln P(\omega_{i})$$

<ロ><回><一><一><一><一><一><一</th>64/79

We can then...

Do you notice that $x^T x$ is actually the same for all g_i ?

Then, we can ignore that term thus, we get

$$g_{i}(\boldsymbol{x}) = \frac{1}{\sigma^{2}}\boldsymbol{\mu}_{i}^{T}\boldsymbol{x} - \frac{1}{2\sigma^{2}}\boldsymbol{\mu}_{i}^{T}\boldsymbol{\mu}_{i} + \ln P(\omega_{i})$$
$$\overbrace{\boldsymbol{w}_{i}}^{T}$$
$$\overbrace{\boldsymbol{w}_{i0}}^{W_{i0}}$$

Or if you want

 $g_{i}\left(oldsymbol{x}
ight)=oldsymbol{w}_{i}^{T}oldsymbol{x}+w_{i0}$

We can then...

Do you notice that $x^T x$ is actually the same for all g_i ?

Then, we can ignore that term thus, we get

$$g_{i}(\boldsymbol{x}) = \frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{x} - \frac{1}{2\sigma^{2}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i} + \ln P(\omega_{i})$$
$$\overbrace{\boldsymbol{w}_{i}}^{T}$$
$$\overbrace{\boldsymbol{w}_{i0}}^{W_{i0}}$$

Or if you want

$$g_i\left(\boldsymbol{x}\right) = \boldsymbol{w}_i^T \boldsymbol{x} + w_{i0}$$

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example

Maximum Likelihood Principle

Maximum Likelihood on a Gaussian

We assume for each class ω_i

The samples are drawn independently according to the probability law $p\left(\pmb{x}|\omega_{j}\right)$

We call those samples as

i.i.d. — independent identically distributed random variables.

We assume in addition

 $p\left(m{x}|\omega_{i}
ight)$ has a known parametric form with vector $m{ heta}_{i}$ of parameters.

We assume for each class ω_i

The samples are drawn independently according to the probability law $p\left(\pmb{x}|\omega_{j}\right)$

We call those samples as

i.i.d. — independent identically distributed random variables.

We assume in addition

 $p\left(m{x}|\omega_{i}
ight)$ has a known parametric form with vector $m{ heta}_{i}$ of parameters.

We assume for each class ω_i

The samples are drawn independently according to the probability law $p\left(\pmb{x}|\omega_{j}\right)$

We call those samples as

i.i.d. — independent identically distributed random variables.

We assume in addition

 $p(\boldsymbol{x}|\omega_j)$ has a known parametric form with vector $\boldsymbol{\theta}_j$ of parameters.

For example

$$p\left(\boldsymbol{x}|\omega_{j}
ight) \sim N\left(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}
ight)$$

In our case

We will assume that there is no dependence between classes!!!

For example

$$p(\boldsymbol{x}|\omega_j) \sim N\left(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\right)$$
 (23)

In our case

We will assume that there is no dependence between classes!!!

Suppose that ω_j contains n samples $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_n$

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n | \boldsymbol{\theta}_j) = \prod_{j=1}^n p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$$
(24)

We can see then the function $p\left(m{x}_1,m{x}_2,...,m{x}_n|m{ heta}_i ight)$ as a function of

$$L\left(\boldsymbol{\theta}_{j}\right) = \prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} | \boldsymbol{\theta}_{j}\right)$$
(25)

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > の Q (* 69 / 79

Suppose that ω_j contains n samples $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_n$

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n | \boldsymbol{\theta}_j) = \prod_{j=1}^n p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$$
(24)

We can see then the function $p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n | \boldsymbol{\theta}_j)$ as a function of

$$L(\boldsymbol{\theta}_j) = \prod_{j=1}^{n} p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$$
(25)

Example

$L(\boldsymbol{\theta}_j) = \log \prod_{j=1}^n p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$\ln L(\omega_i) = -\frac{n}{2} \ln |\Sigma_i| - \frac{1}{2} \left[\sum_{j=1}^n (\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) \right] + c_2 \quad (26)$$

We know that

$$\frac{dx^{T}Ax}{dx} = Ax + A^{T}x, \ \frac{dAx}{dx} = A$$
(27)

Thus, we expand equation26

$-\frac{n}{2}\ln|\Sigma_{i}| - \frac{1}{2}\sum_{j=1}^{n} \left[x_{j}^{T}\Sigma_{i}^{-1}x_{j} - 2x_{j}^{T}\Sigma_{i}^{-1}\mu_{i} + \mu_{i}^{T}\Sigma_{i}^{-1}\mu_{i} \right] + c_{2} \quad (28)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$\ln L(\omega_i) = -\frac{n}{2} \ln |\Sigma_i| - \frac{1}{2} \left[\sum_{j=1}^n (\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) \right] + c_2 \quad (26)$$

We know that

$$\frac{d\boldsymbol{x}^{T}A\boldsymbol{x}}{d\boldsymbol{x}} = A\boldsymbol{x} + A^{T}\boldsymbol{x}, \ \frac{dA\boldsymbol{x}}{d\boldsymbol{x}} = A$$
(27)

hus, we expand equation26

$-\frac{n}{2}\ln|\Sigma_{i}| - \frac{1}{2}\sum_{j=1}^{n} \left[x_{j}^{T}\Sigma_{i}^{-1}x_{j} - 2x_{j}^{T}\Sigma_{i}^{-1}\mu_{i} + \mu_{i}^{T}\Sigma_{i}^{-1}\mu_{i} \right] + c_{2} \quad (28)$

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$\ln L(\omega_i) = -\frac{n}{2} \ln |\Sigma_i| - \frac{1}{2} \left[\sum_{j=1}^n (\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) \right] + c_2 \quad (26)$$

We know that

$$\frac{d\boldsymbol{x}^{T}A\boldsymbol{x}}{d\boldsymbol{x}} = A\boldsymbol{x} + A^{T}\boldsymbol{x}, \ \frac{dA\boldsymbol{x}}{d\boldsymbol{x}} = A$$
(27)

Thus, we expand equation26

$$-\frac{n}{2}\ln|\Sigma_i| - \frac{1}{2}\sum_{j=1}^n \left[\boldsymbol{x_j}^T \Sigma_i^{-1} \boldsymbol{x_j} - 2\boldsymbol{x_j}^T \Sigma_i^{-1} \boldsymbol{\mu_i} + \boldsymbol{\mu_i}^T \Sigma_i^{-1} \boldsymbol{\mu_i} \right] + c_2 \quad (28)$$
Then

$$\frac{\partial \ln L(\omega_i)}{\partial \mu_i} = \sum_{j=1}^n \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) = 0$$

<ロト < 回 > < 直 > < 直 > < 直 > < 三 > < 三 > 三 の Q (* 73 / 79

Then

$$\frac{\partial \ln L(\omega_i)}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^n \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) = 0$$
$$n\Sigma_i^{-1} \left[-\boldsymbol{\mu}_i + \frac{1}{n} \sum_{j=1}^n \boldsymbol{x}_j \right] = 0$$

<ロト</th>
・< 語ト< 語ト</th>
目
ののの

73/79

Then

$$\frac{\partial \ln L(\omega_i)}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^n \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) = 0$$
$$n\Sigma_i^{-1} \left[-\boldsymbol{\mu}_i + \frac{1}{n} \sum_{j=1}^n \boldsymbol{x}_j \right] = 0$$
$$\hat{\boldsymbol{\mu}}_i = \frac{1}{n} \sum_{j=1}^n \boldsymbol{x}_j$$

<ロト</th>
・< 語ト< 語ト</th>
目
ののの

73/79

Then, we derive with respect to Σ_i

For this we use the following tricks:

$$\begin{array}{l} \mathbf{0} \quad \frac{\partial \log|\Sigma|}{\partial \Sigma^{-1}} = -\frac{1}{|\Sigma|} \cdot |\Sigma| \left(\Sigma\right)^T = -\Sigma \\ \mathbf{0} \quad \frac{\partial Tr[AB]}{\partial A} = \frac{\partial Tr[BA]}{\partial A} = B^T \\ \mathbf{0} \quad \text{Transformer} \quad \text{the number} \end{array}$$

$$Tr(A^TB) = Tr\left(BA^T\right)$$

Thus

$$f(\Sigma_i) = -\frac{n}{2} \ln |\Sigma_I| - \frac{1}{2} \sum_{j=1}^n \left[(\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) \right] + c_1$$
 (29)

Thus

$$f(\Sigma_i) = -\frac{n}{2}\ln|\Sigma_i| - \frac{1}{2}\sum_{j=1}^n \left[Trace\left\{ (\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) \right\} \right] + c_1$$
(30)

Tricks!!!

$$f\left(\Sigma_{i}\right) = -\frac{n}{2}\ln|\Sigma_{i}| - \frac{1}{2}\sum_{j=1}^{n}\left[Trace\left\{\Sigma_{i}^{-1}\left(x_{j}-\mu_{i}\right)\left(x_{j}-\mu_{i}\right)^{T}\right\}\right] + c_{1}$$
(31)

Thus

$$f(\Sigma_i) = -\frac{n}{2}\ln|\Sigma_i| - \frac{1}{2}\sum_{j=1}^n \left[Trace\left\{\left(\boldsymbol{x}_j - \boldsymbol{\mu}_i\right)^T \Sigma_i^{-1} \left(\boldsymbol{x}_j - \boldsymbol{\mu}_i\right)\right\}\right] + c_1$$
(30)

Tricks!!!

$$f(\Sigma_i) = -\frac{n}{2}\ln|\Sigma_i| - \frac{1}{2}\sum_{j=1}^n \left[Trace\left\{\Sigma_i^{-1}\left(\boldsymbol{x}_j - \boldsymbol{\mu}_i\right)\left(\boldsymbol{x}_j - \boldsymbol{\mu}_i\right)^T\right\}\right] + c_1$$
(31)

<ロト < 部ト < 言ト < 言ト 言 の Q () 75 / 79

Derivative with respect to $\boldsymbol{\Sigma}$

$$\frac{\partial f(\Sigma_i)}{\partial \Sigma_i} = \frac{n}{2} \Sigma_i - \frac{1}{2} \sum_{j=1}^n \left[(\boldsymbol{x}_j - \boldsymbol{\mu}_i) (\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \right]^T$$
(32)

I hus, when making it equal to zero

 $\hat{\boldsymbol{\Sigma}}_{i} = \frac{1}{n} \sum_{j=1}^{n} \left(\boldsymbol{x}_{j} - \boldsymbol{\mu}_{i} \right) \left(\boldsymbol{x}_{j} - \boldsymbol{\mu}_{i} \right)^{T}$ (33)

Derivative with respect to $\boldsymbol{\Sigma}$

$$\frac{\partial f(\Sigma_i)}{\partial \Sigma_i} = \frac{n}{2} \Sigma_i - \frac{1}{2} \sum_{j=1}^n \left[(\boldsymbol{x}_j - \boldsymbol{\mu}_i) (\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \right]^T$$
(32)

Thus, when making it equal to zero

$$\hat{\Sigma}_{i} = \frac{1}{n} \sum_{j=1}^{n} \left(\boldsymbol{x}_{j} - \boldsymbol{\mu}_{i} \right) \left(\boldsymbol{x}_{j} - \boldsymbol{\mu}_{i} \right)^{T}$$
(33)

<ロト < 部 > < 注 > < 注 > 注 の Q (C 76 / 79

Therefore

Step 1 - Assume a Gaussian Distribution over each class

• The So Called Model Selection

Adjust the Gaussian Distribution, for each class, using the previous Maximum Likelihood

Step 3

$\begin{aligned} R_1 &: \quad P\left(\omega_1|x\right) > P\left(\omega_2|x\right) \\ R_2 &: \quad P\left(\omega_2|x\right) > P\left(\omega_1|x\right) \end{aligned}$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ ()
77 / 79

Therefore

Step 1 - Assume a Gaussian Distribution over each class

• The So Called Model Selection

Step 2

• Adjust the Gaussian Distribution, for each class, using the previous Maximum Likelihood

Step 3

$R_1 : P(\omega_1|x) > P(\omega_2|x)$ $R_2 : P(\omega_2|x) > P(\omega_1|x)$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C) 77 / 79

Therefore

Step 1 - Assume a Gaussian Distribution over each class

• The So Called Model Selection

Step 2

• Adjust the Gaussian Distribution, for each class, using the previous Maximum Likelihood

Step 3

$$\begin{array}{rcl} R_1 & : & P\left(\omega_1 | x\right) > P\left(\omega_2 | x\right) \\ R_2 & : & P\left(\omega_2 | x\right) > P\left(\omega_1 | x\right) \end{array}$$

Outline

Introduction

Supervised Learning

- Handling Noise in Classification
- Models of Classification
- Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

2 Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian

<ロ><回><一><一><一><一><一><一><一</td>78/79

Exercises

Duda and Hart

Chapter 3

• 3.1, 3.2, 3.3, 3.13

Theodoridis

Chapter 2

• 2.5, 2.7, 2.10, 2.12, 2.14, 2.17

Exercises

Duda and Hart

Chapter 3

• 3.1, 3.2, 3.3, 3.13

Theodoridis

Chapter 2

• 2.5, 2.7, 2.10, 2.12, 2.14, 2.17