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Classification Problem

Goal
Given xnew, provide f(xnew)

The Machinery in General looks...

Supervised
Learning

Training Info: Desired/Target Output

INPUT OUTPUT
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How do we handle Noise?

Imagine the following signal from sin (θ)

Noisy Samples
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What if we know the noise?

Given a series of observed samples {x̂1, x̂2, ..., x̂N} with noise
ε ∼ N (0, 1)
We could use our knowledge on the noise, for example additive:

x̂i = xi + ε

We can use our knowledge of probability to remove such noise

E [x̂i] = E [xi + ε] = E [xi] + E [ε]

Then, because E [ε] = 0

E [xi] = E [x̂i] ≈
1
N

N∑
i=1
x̂i
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In our example

We have a nice result

8 / 79



Therefore, we have

The Bayesian Models
They allow to deal with noise from the samples

Quite different from the deterministic models so far
Unless Samples are Preprocessed to Reduce the Noise

Something that people in area as Control tend to do
The importance of Filters as Kalman Filters
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Example

Given a Spoken Language
The task is to determine the language that someone is speaking

Generative Models
They try to learn each language.
Therefore, they try to determine the spoken language based in such
learning.

Discriminative Models
They try to determine the linguistic differences without learning any
language!!!
Quite easier!!!
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Therefore

Generative Methods
1 Model class-conditional pdfs and prior probabilities.
2 “Generative” since sampling can generate synthetic data points.

Examples
Gaussians, Naïve Bayes, Mixtures of Multinomials.
Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models
(HMM).
Sigmoidal Belief Networks, Bayesian Networks, Markov Random
Fields.
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Furthermore

Discriminative Methods
1 Directly estimate posterior probabilities.
2 No attempt to model underlying probability distributions.
3 Focus computational resources on given task for better performance.

Popular models
Logistic regression, SVMs.
Traditional neural networks, Nearest neighbor.
Conditional Random Fields (CRF).
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Naive Bayes Model

Task for two classes
Let ω1, ω2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class
P (ω1) for Class 1.
P (ω2) for Class 2.

The Rule for classification is the following one

P (ωi|x) = P (x|ωi)P (ωi)
P (x) (1)

Remark: Bayes to the next level.

15 / 79



Naive Bayes Model

Task for two classes
Let ω1, ω2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class
P (ω1) for Class 1.
P (ω2) for Class 2.

The Rule for classification is the following one

P (ωi|x) = P (x|ωi)P (ωi)
P (x) (1)

Remark: Bayes to the next level.

15 / 79



Naive Bayes Model

Task for two classes
Let ω1, ω2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class
P (ω1) for Class 1.
P (ω2) for Class 2.

The Rule for classification is the following one

P (ωi|x) = P (x|ωi)P (ωi)
P (x) (1)

Remark: Bayes to the next level.

15 / 79



Naive Bayes Model

Task for two classes
Let ω1, ω2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class
P (ω1) for Class 1.
P (ω2) for Class 2.

The Rule for classification is the following one

P (ωi|x) = P (x|ωi)P (ωi)
P (x) (1)

Remark: Bayes to the next level.

15 / 79



In Informal English

We have that

posterior = likelihood× prior-information
evidence

(2)

Basically
One: If we can observe x.
Two: we can convert the prior-information into the posterior information.
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We have the following terms...

Likelihood
We call p (x|ωi) the likelihood of ωi given x:

This indicates that given a category ωi: If p (x|ωi) is “large”, then ωi

is the “likely” class of x.

Prior Probability
It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to
use the uniform distribution.

However: We can use other tricks for it.

Evidence
The evidence factor can be seen as a scale factor that guarantees that the
posterior probability sum to one.
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The most important term in all this

The factor

likelihood× prior-information (3)
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Example
We have the likelihood of two classes

20 / 79



Example
We have the posterior of two classes when P (ω1) = 2

3 and
P (ω2) = 1

3
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Example of key distribution

Example, mean = 488.5 and dispersion = 5
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Example with 10 keys

Universal Hashing Vs Division Method
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Example with 50 keys

Universal Hashing Vs Division Method
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Example with 100 keys

Universal Hashing Vs Division Method
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Example with 200 keys

Universal Hashing Vs Division Method
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Naive Bayes Model

In the case of two classes, we can use demarginalization

P (x) =
2∑

i=1
p (x, ωi) =

2∑
i=1

p (x|ωi)P (ωi) (4)
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Error in this rule

We have that

P (error|x) =
{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1
(5)

Thus, we have that

P (error) =
ˆ ∞
−∞

P (error,x) dx =
ˆ ∞
−∞

P (error|x) p (x) dx (6)

29 / 79



Error in this rule

We have that

P (error|x) =
{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1
(5)

Thus, we have that

P (error) =
ˆ ∞
−∞

P (error,x) dx =
ˆ ∞
−∞

P (error|x) p (x) dx (6)

29 / 79



Graphically

We have
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Classification Rule

Thus, we have the Bayes Classification Rule
1 If P (ω1|x) > P (ω2|x) x is classified to ω1

2 If P (ω1|x) < P (ω2|x) x is classified to ω2
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What if we remove the normalization factor?

Remember

P (ω1|x) + P (ω2|x) = 1 (7)

We are able to obtain the new Bayes Classification Rule
1 If P (x|ω1) p (ω1) > P (x|ω2) P (ω2) x is classified to ω1

2 If P (x|ω1) p (ω1) < P (x|ω2) P (ω2) x is classified to ω2
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We have several cases

If for some x we have P (x|ω1) = P (x|ω2)

The final decision relies completely from the prior probability.

On the Other hand if P (ω1) = P (ω2), the “state” is equally probable
In this case the decision is based entirely on the likelihoods P (x|ωi).
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How the Rule looks like

If P (ω1) = P (ω2) the Rule depends on the term p (x|ωi)
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Error in Naive Bayes
Error in equiprobable classes p (ω1) = p (ω2) = 1

2

Pe =
∞̂

−∞

P (x, error) dx

=
x0ˆ

−∞

p (x, ω2) dx+
∞̂

x0

p (x, ω1) dx

=
x0ˆ

−∞

p (x|ω2)P (ω2) dx+
∞̂

x0

p (x|ω1)P (ω1) dx

=P (ω2)
x0ˆ

−∞

p (x|ω2) dx+ P (ω1)
∞̂

x0

p (x|ω1) dx

=1
2

x0ˆ

−∞

p (x|ω2) dx+ 1
2

∞̂

x0

p (x|ω1) dx
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Error in Naive Bayes

Something Notable
Bayesian classifier is optimal with respect to minimizing the
classification error probability.
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Proof

Step 1
R1 be the region of the feature space in which we decide in favor of ω1

R2 be the region of the feature space in which we decide in favor of ω2

Step 2

Pe = P (x ∈ R2, ω1) + P (x ∈ R1, ω2) (8)

Thus

Pe = P (x ∈ R2|ω1)P (ω1) + P (x ∈ R1|ω2)P (ω2)

= P (ω1)
ˆ

R2

p (x|ω1) dx+ P (ω2)
ˆ

R1

p (x|ω2) dx
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Proof

It is more

Pe = P (ω1)
ˆ

R2

p (ω1, x)
P (ω1) dx+ P (ω2)

ˆ

R1

p (ω2, x)
P (ω2) dx (9)

Finally

Pe =
ˆ

R2

p (ω1|x) p (x) dx+
ˆ

R1

p (ω2|x) p (x) dx (10)

Now, we choose the Bayes Classification Rule

R1 : P (ω1|x) > P (ω2|x)
R2 : P (ω2|x) > P (ω1|x)
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Proof
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Graphically P (ω1): Thanks Edith 2013 Class!!!

In Gray
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Thus we have´
R1
p (ω1|x) p (x) dx =

´
R1
p (ω1, x) dx = PR1(ω1)

Thus
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Finally Pe

A great idea Edith!!!
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Thus

Finally

Pe = P (ω1)−
ˆ

R1

[p (ω1|x)− p (ω2|x)] p (x) dx (14)

Thus
The probability of error is minimized at the region of space in which
R1 : P (ω1|x) > P (ω2|x).
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After all!!!

If you choose any other x′0
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For M classes ω1, ω2, ..., ωM

We have that vector x is in ωi

P (ωi|x) > P (ωj |x) ∀j 6= i (16)

Something Notable
It turns out that such a choice also minimizes the classification error
probability.
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Decision Surface

Because the R1 and R2 are contiguous
The separating surface between both of them is described by

P (ω1|x)− P (ω2|x) = 0 (17)

Thus, we define the decision function as

g12 (x) = P (ω1|x)− P (ω2|x) = 0 (18)
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Which decision function for the Naive Bayes

A single number in this case
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In general

First
Instead of working with probabilities, we work with an equivalent function
of them gi (x) = f (P (ωi|x)).

Classic Example the Monotonically increasing
f (P (ωi|x)) = lnP (ωi|x).

The decision test is now
classify x in ωi if gi (x) > gj (x) ∀j 6= i.

The decision surfaces, separating contiguous regions, are described by
gij (x) = gi (x)− gj (x) i, j = 1, 2, ...,M i 6= j
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Gaussian Distribution

We can use the Gaussian distribution

p (x|ωi) = 1
(2π)l/2 |Σi|

1/2
exp

{
−1

2 (x− µi)T Σ−1
i (x− µi)

}
(19)

Example
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Some Properties

About Σ
It is the covariance matrix between variables.

Thus
It is positive semi-definite.
Symmetric.
The inverse exists.
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Influence of the Covariance Σ

Look at the following Covariance

Σ =
[

1 0
0 1

]

It simple the unit Gaussian with mean µ
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The Covariance Σ as a Rotation

Look at the following Covariance

Σ =
[

16 0
0 1

]

Actually, it flatten the circle through the x− axis
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Influence of the Covariance Σ

Look at the following Covariance

Σa = RΣbR
T with R =

[
cos θ − sin θ
sin θ cos θ

]

It allows to rotate the axises
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Now For Two Classes

Then, we use the following trick for two Classes i = 1, 2
We know that the pdf of correct classification is
p (x, ω1) = p (x|ωi)P (ωi)!!!

Thus
It is possible to generate the following decision function:

gi (x) = ln [p (x|ωi)P (ωi)] = ln p (x|ωi) + lnP (ωi) (20)

Thus

gi (x) = −1
2 (x− µi)T Σ−1

i (x− µi) + lnP (ωi) + ci (21)
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We can work one of the possible decision surfaces

Assume first that Σi = σ2I

The features are statistically independent
Each feature has the same variance

Therefore
The samples fall in equal size spherical clusters!!!
Each Cluster centered at mean vector µi.
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For Example

We have
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Now

We have that

|Σi| = σ2d and Σ−1
i =

( 1
σ2

)
I

Something Notable
Gaussian Multivariate function after the log

gi (x) = −1
2 (x− µi)T Σ−1

i (x− µi) + lnP (ωi)−
d

2 ln 2π − 1
2 ln |Σi|

The term −d
2 ln 2π − 1

2 ln |Σi|
It is unimportant therefore it can be ignored!!!
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Then

We have the following discriminant functions

gi (x) = −

‖x− µi‖2︸ ︷︷ ︸
(x− µi)T (x− µi)

2σ2 + lnP (ωi) (22)

Then, we have that

gi (x) = − 1
2σ2

[
xTx− 2µiTx+ µiTµi

]
+ lnP (ωi)
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We can then...

Do you notice that xTx is actually the same for all gi?
Then, we can ignore that term thus, we get

gi (x) = 1
σ2µi

T︷︸︸︷
wT

i

x− 1
2σ2µi

Tµi + lnP (ωi)︷︸︸︷
wi0

Or if you want

gi (x) = wT
i x+ wi0

65 / 79



We can then...

Do you notice that xTx is actually the same for all gi?
Then, we can ignore that term thus, we get

gi (x) = 1
σ2µi

T︷︸︸︷
wT

i

x− 1
2σ2µi

Tµi + lnP (ωi)︷︸︸︷
wi0

Or if you want

gi (x) = wT
i x+ wi0

65 / 79



Outline

1 Introduction
Supervised Learning
Handling Noise in Classification
Models of Classification
Naive Bayes
Examples
The Naive Bayes Model
The Multi-Class Case

2 Discriminant Functions and Decision Surfaces
Introduction
Gaussian Distribution
Influence of the Covariance Σ
Example
Maximum Likelihood Principle
Maximum Likelihood on a Gaussian

3 Exercises
Some Stuff you can try

66 / 79



Given a series of classes ω1, ω2, ..., ωM

We assume for each class ωj

The samples are drawn independently according to the probability law
p (x|ωj)

We call those samples as
i.i.d. — independent identically distributed random variables.

We assume in addition
p (x|ωj) has a known parametric form with vector θj of parameters.
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Given a series of classes ω1, ω2, ..., ωM

For example

p (x|ωj) ∼ N
(
µj ,Σj

)
(23)

In our case
We will assume that there is no dependence between classes!!!
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Now

Suppose that ωj contains n samples x1,x2, ...,xn

p (x1,x2, ...,xn|θj) =
n∏

j=1
p (xj |θj) (24)

We can see then the function p (x1,x2, ...,xn|θj) as a function of

L (θj) =
n∏

j=1
p (xj |θj) (25)
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Example

L (θj) = log∏n
j=1 p (xj|θj)
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Maximum Likelihood on a Gaussian

Then, using the log!!!

lnL (ωi) = −n2 ln |Σi| −
1
2

 n∑
j=1

(xj − µi)T Σ−1
i (xj − µi)

+ c2 (26)

We know that
dxTAx

dx
= Ax+ATx,

dAx

dx
= A (27)

Thus, we expand equation26

−n2 ln |Σi| −
1
2

n∑
j=1

[
xj

T Σ−1
i xj − 2xjT Σ−1

i µi + µiT Σ−1
i µi

]
+ c2 (28)
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Maximum Likelihood

Then

∂ lnL (ωi)
∂µi

=
n∑

j=1
Σ−1

i (xj − µi) = 0

nΣ−1
i

−µi + 1
n

n∑
j=1
xj

 = 0

µ̂i = 1
n

n∑
j=1
xj
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Maximum Likelihood

Then, we derive with respect to Σi

For this we use the following tricks:
1 ∂ log|Σ|

∂Σ−1 = − 1
|Σ| · |Σ| (Σ)T = −Σ

2 ∂T r[AB]
∂A = ∂T r[BA]

∂A = BT

3 Trace(of a number)=the number
4 Tr(ATB) = Tr

(
BAT

)
Thus

f (Σi) = −n2 ln |ΣI | −
1
2

n∑
j=1

[
(xj − µi)T Σ−1

i (xj − µi)
]

+ c1 (29)
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Maximum Likelihood

Thus

f (Σi) = −n2 ln |Σi| −
1
2

n∑
j=1

[
Trace

{
(xj − µi)T Σ−1

i (xj − µi)
}]

+ c1

(30)

Tricks!!!

f (Σi) = −n2 ln |Σi| −
1
2

n∑
j=1

[
Trace

{
Σ−1

i (xj − µi) (xj − µi)T
}]

+ c1

(31)
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Maximum Likelihood

Derivative with respect to Σ
∂f (Σi)
∂Σi

= n

2 Σi −
1
2

n∑
j=1

[
(xj − µi) (xj − µi)T

]T
(32)

Thus, when making it equal to zero

Σ̂i = 1
n

n∑
j=1

(xj − µi) (xj − µi)T (33)
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Therefore

Step 1 - Assume a Gaussian Distribution over each class
The So Called Model Selection

Step 2
Adjust the Gaussian Distribution, for each class, using the previous
Maximum Likelihood

Step 3

R1 : P (ω1|x) > P (ω2|x)
R2 : P (ω2|x) > P (ω1|x)
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Exercises

Duda and Hart
Chapter 3

3.1, 3.2, 3.3, 3.13

Theodoridis
Chapter 2

2.5, 2.7, 2.10, 2.12, 2.14, 2.17
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