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Decision Trees
Powerful/popular
For classification and prediction.

Represent rules
Rules can be expressed in English.

I IF Age ≤ 43 & Sex == Male AND
Credit Card Insurance == No THEN

Life Insurance Promotion = No

Rules can be expressed using SQL for query.

Useful to explore data to gain insight into relationships
Of a large number of candidate input variables to a target (output)
variable.
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What are They?

Decision Tree
A structure that can be used to divide up a large collection of records into
successively smaller sets of records by applying a sequence of simple
decision rules.

A decision tree model
Consists of a set of rules for dividing a large heterogeneous population into
smaller, more homogeneous groups with respect to a particular target
variable.
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Decision Tree Types

Binary trees
Only two choices in each split. Can be non-uniform (uneven) in depth.

N-way trees or Ternary trees
Three or more choices in at least one of its splits (3-way, 4-way, etc.).
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An Example

We have
Outlook

Sunny Overcast Rain

Humidity Windy

High Normal True False

N P
N P

P

Are we going out?
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Another Example - Grades

Deciding the grades

Percent 90%

Yes Grade=A

Yes

Yes

No 89%  Percent  80%

Grade=B

No 79%   Percent   70%

Grade=C

No   Etc...
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Yet Another Example

Decision About Needing Glasses

Tear Production Rate

None Astigmatism

Spectacle PrecisionSoft

Hard None

Reduced Normal

No
Yes

Myope
Hypermetrope

10 / 65



Outline

1 First Principles, Marcus Aurelius (Circa 170 AD)
Introduction
Examples of Trees

2 Decision Trees
Deriving Why do they work?
Structure of Decision Trees
Types of Decision Trees

3 Regression Trees
Growing Regression Trees
Using the Sum of Squared Error
Pruning

4 Classification Trees
Definition
Training
The Sought Criterion
Probabilistic Impurity
Final Algorithm

5 Conclusions
First Some Remarks
Issues

11 / 65



First than anything

Assume
Consider a Regression Problem with:

1 Continuous Response y.
2 Inputs x1 and x2 taking values in [0, 1].
3 We have only recursive binary decisions/partitions.

Example of a partition
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Everything is fine, but!!!

Although
In each partition element we can model Y with a different constant.

There is a problem
Each partitioning line has a simple description like x1 = c!!!
The Resulting Regions are difficult to describe!!!
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Solving the Issue

We do the following
Chose a variable and split the space using xi = c

Keep doing that using one of the variables until a rules stops the
process
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The corresponding Regression Tree

We have

ŷ = f (x) =
5∑

m=1
cmI {(x1, x2) ∈ Rm}

This regression can be interpreted as
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ŷ = f (x) =
5∑

m=1
cmI {(x1, x2) ∈ Rm}

This regression can be interpreted as

15 / 65



Outline

1 First Principles, Marcus Aurelius (Circa 170 AD)
Introduction
Examples of Trees

2 Decision Trees
Deriving Why do they work?
Structure of Decision Trees
Types of Decision Trees

3 Regression Trees
Growing Regression Trees
Using the Sum of Squared Error
Pruning

4 Classification Trees
Definition
Training
The Sought Criterion
Probabilistic Impurity
Final Algorithm

5 Conclusions
First Some Remarks
Issues

16 / 65



Structure

Structure
Nodes

I Appear as rectangles or circles
I Represent test or decision

Lines or branches - represent outcome of a test
Circles - terminal (leaf) nodes.

Nodes
Top or starting node is root node
Internal nodes are used for decisions
Terminal Nodes or Leaves are the final results
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Types of Decision Trees

Regression Trees
The predicted outcome can be considered a number.

Classification Trees
The predicted outcome is the class to which the data belongs.
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Classification and Regression Trees (CART)

CART
The term CART is an umbrella term used to refer to both of the
above procedures.

Introduced by
It was introduced by Breiman et. al in the book

I “Classification and Regression Trees”

Similarities
Regression and Classification trees have some similarities –
nevertheless they differ in the way the splitting at each node is done.
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Setup

Data Consists on inputs of dimensionality d{
(xi, yi)Ni=1

}
Where xi = (xi1, xi2, ..., xid)T .

Here, we want an algorithm
To do the splitting automatically

Thus, assume a initial M partition R1, R2, ..., RM

We model the response as a constant cm in each region

f (x) =
M∑
m=1

cmI (x ∈ Rm)
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We have then

We adopt as our criterion minimization

L (c1, c2, ..., cM ) =
N∑
i=1

M∑
i=1

(yi − f (xi))2

Then using a classic derivative with respect to cm

∂L (c1, c2, ..., cM )
∂cm

= −2
N∑
i=1

(
yi −

M∑
m=1

cmI (xi ∈ Rm)
)
I (xi ∈ Rm)

Then ∑
yi|xi∈Rm

yi −
N∑
i=1

I (xi ∈ Rm)
M∑
m=1

cmI (xi ∈ Rm) = 0
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The simplest function for cm

Something Notable ∑
xi∈Rm

cm =
∑

yi|xi∈Rm

yi

Then

cm = 1
Nm

∑
yi|xi∈Rm

yi

Problem
Finding the best binary partition in terms of minimum sum of squares
is generally O

(
2N
)
a NP Problem!!!
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What to do?

Consider a splitting variable j and split point s
Define the pair of half-planes

R1 (j, s) = {x|xj ≤ s} and R2 (j, s) = {x|xj > s}

Using an Optimization Problem

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2


The nice part of this

For any choice j and s, the inner minimization is solved by

ĉ1 = 1
N1

∑
yi|xi∈R1(j,s)

yi and ĉ2 = 1
N1

∑
yi|xi∈R2(j,s)

yi
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N1

∑
yi|xi∈R2(j,s)

yi

26 / 65



Therefore

For each splitting variable j
Finding s is done quickly!!!

We can repeat this process
Problem, we can finish with an over-fitting tree/a very large tree.

How do we solve?
Tree size is an hyper-parameter governing the model’s complexity.

27 / 65



Therefore

For each splitting variable j
Finding s is done quickly!!!

We can repeat this process
Problem, we can finish with an over-fitting tree/a very large tree.

How do we solve?
Tree size is an hyper-parameter governing the model’s complexity.

27 / 65



Therefore

For each splitting variable j
Finding s is done quickly!!!

We can repeat this process
Problem, we can finish with an over-fitting tree/a very large tree.

How do we solve?
Tree size is an hyper-parameter governing the model’s complexity.

27 / 65



Therefore

We have that
Tree size is a tuning parameter governing the model’s complexity

A preferred strategy
Grow the tree until some minimum size node is done.

Then
This large tree is pruned using cost-complexity pruning.
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We need to define something

Definition
We define a subtree T ⊆ T0 to be any tree that can be obtained by
pruning T0:

I By collapsing any number of its internal (non-terminal) nodes.

Given that each Rm is indexed by m
Let |T | denote the number of terminal nodes in T :

Nm = |Rm| , ĉm = 1
Nm

∑
yi|xi∈Rm

yi and Qm (T ) = 1
Nm

(ĉm − yi)2
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Thus

Define the cost complexity criterion with α ≥ 0

Cα (T ) =
|T |∑
m=1

NmQm (T ) + α |T |

Finally
The idea is to find, for each α, the subtree Tα ⊆ T0 to minimize
Cα (T )

Properties of α
Large values of α result in smaller Tα
Small values of α result in larger Tα
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Furthermore

For each α one can show the existence of unique smallest subtree Tα
How do we find Tα?

Using weakest link pruning
We successively collapse the internal node that produces the smallest
per-node increase in

|T |∑
m=1

NmQm (T )

Until you get a single-node (root) and a sequence

T ⊇ T1 ⊇ T2 ⊇ · · · ⊇ TN
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Then

We get that
Tα is one of the threes in the in the sequence.

Estimation of α is achieved by cross-validation
We choose the value α̂ to minimize the cross-validated sum of
squares.

I This is the final T
α̂

For Details
“Pattern Recognition and Neural Networks” by Brian D. Ripley
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Important

Most of the work
It focuses on deciding which property test or query should be performed at
the node!!!

If the data test is numerical in nature
There is a way to visualize the decision boundaries produced by the
decision trees.
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Definition OBCT

Definition
They are binary decision trees where the basic question is xi ≤ ai?

Example
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Training of a OBCT

We need first
At each node, the set of candidate questions to be asked has to be
decided.
Each question corresponds to a specific binary split into two
descendant nodes.
Each node, t, is associated with a specific subset Xt of the training
set X.
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Splitting the Node Xt

Basically, we want to split the node into two groups with questions
tY == ”Y ES” and tN = ”NO”

With Properties
XtY ∩XtN = ∅.
XtY ∪XtN = Xt
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Important

Given the question for each feature k “Is xk ≤ α”
For each feature, every possible value of the threshold α defines a specific
split of the subset Xt.

Thus in theory
An infinite set of questions has to be asked if α is an interval Yα ⊆ R.

In practice
only a finite set of questions can be considered.
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For example

Since the number, N , of training points in X is finite
Any of the features xk with k = 1, ..., l can take at most Nt ≤ N different
values

Where
Nt = |Xt| with Xt ⊂ X

Then
For feature xk, one can use αkn with n = 1, 2, ..., Ntk and Ntk ≤ Nt where
αkn are taken halfway between consecutive distinct values of xk in the
training subset Xt.

41 / 65



For example

Since the number, N , of training points in X is finite
Any of the features xk with k = 1, ..., l can take at most Nt ≤ N different
values

Where
Nt = |Xt| with Xt ⊂ X

Then
For feature xk, one can use αkn with n = 1, 2, ..., Ntk and Ntk ≤ Nt where
αkn are taken halfway between consecutive distinct values of xk in the
training subset Xt.

41 / 65



For example

Since the number, N , of training points in X is finite
Any of the features xk with k = 1, ..., l can take at most Nt ≤ N different
values

Where
Nt = |Xt| with Xt ⊂ X

Then
For feature xk, one can use αkn with n = 1, 2, ..., Ntk and Ntk ≤ Nt where
αkn are taken halfway between consecutive distinct values of xk in the
training subset Xt.

41 / 65



Then
We repeat this with all features
In such a case, the total number of candidate questions is

l∑
k=1

Ntk (1)

However
Only one of them has to be chosen to provide the binary split at the
current node, t, of the tree.

Thus
This is selected to be the one that leads to the best split of the
associated subset Xt.
The best split is decided according to a splitting criterion.
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Criterion’s to be Found

Splitting criterion
A splitting criterion must be adopted according to which the best
split from the set of candidate ones is chosen.

Stop-splitting rule
A stop-splitting rule is required that controls the growth of the tree,and a
node is declared as a terminal one (leaf).

Rule
A rule is required that assigns each leaf to a specific class.
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Looking for Homogeneity!!!

In order for the tree growing methodology
From the root node down to the leaves every split must generate a subsets
that are more homogeneous compared to the ancestor’s subset Xt.

Meaning
The training feature vectors in each one of the new subsets show, whereas
data in Xt are more equally distributed among the classes.

For example
Consider the task of classifying four classes {ω1, ω2, ω3, ω4} and assume
that the vectors in subset Xt are distributed among the classes with equal
probability.
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Thus

If we split the node so
ω1 and ω2 form XtY

ω3 and ω4 form XtN

Then
XtY and XtN are more homogeneous compared to Xt.

In other words
“Purer” in the decision tree terminology.
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Our Goal

We need
To define a measure that quantifies node impurity.

Thus
The Overall Impurity of the descendant nodes is optimally decreased with
respect to the ancestor node’s impurity.
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Probabilistic Impurity

Assume the following probability of a vector in Xt belongs to class ωi
P (ωi|t) for i = 1, · · · ,M (2)

49 / 65



Probabilistic Impurity

Assume the following probability of a vector in Xt belongs to class ωi
P (ωi|t) for i = 1, · · · ,M (2)

49 / 65



A Common Impurity

We define one of the most common impurities

I(t) = −
M∑
i=1

P (ωi|t) log2 P (ωi|t)

This is nothing more than the Shannon’s Entropy!!!
Facts:

I I(t)reaches its maximum when

P (ωi|t) = 1
M

I I(t) = 0 if all data belongs to a single class i.e.
P (ωi|t) = 1 for only one class, and P (ωj |t, j 6= i) = 0 for everybody

else.
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In reality...

We estimate

P (ωi|t) = N i
t

Nt

Where |ωi| = N i
t as the number of points in Xtthat belongs to class ωi.

Assume now
If we perform a split, NtY points are sent into the “YES” node XtY and
NtN into the “NO” node XtN
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Decrease in node impurity

Then
In a recursive way we define the term decrease in node impurity as:

∆I (t) = I (t)− NtY

Nt
I (tY )− NtN

Nt
I (tN ) (3)

where I (tY ) and I (tN ) are the impurities of the tY and tN nodes.
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The Final Goal

The Final Goal
To adopt from the set of candidate questions the one that performs the
split with the highest decrease of impurity.
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Stop-Splitting Rule

Now
The natural question that now arises is when one decides to stop splitting
a node and declares it as a leaf of the tree.

For example you can adopt
A threshold T and stop splitting if the maximum value of ∆I (t) over all
possible splits is less than T .

Other posibilities
If the subset Xt is small enough.
If the subset Xt is pure, in the sense that all points in it belong to a
single class.
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Once a node is declared to be a leaf

Class Assignment Rule
Once a node is declared a leaf, we assign the leaf to a class using the rule:

j = arg max
i
P (ωi|t) .
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Final Algorithm

Algorithm
1 Begin with the root node, that is, Xt = X.
2 For each new node t
3 For every feature xk, k = 1, 2, ..., l:
4 For every value αkn, n = 1, 2, ..., Ntk

5 Generate XtY and XtN according to the answer in the question:
6 “Is xk (i) ≤ αkn,” i = 1, 2, ..., Nt

7 Compute the impurity decrease
8 Choose αkn0 leading to the maximum decrease w.r. to xk.
9 Choose xk0 and associated αk0n0 for overall maximum decrease of impurity.
10 If the stop-splitting rule is met, declare node t as a leaf and label a class
11 If not, generate two descendant nodes tY and tN with subsets XtY and XtN

,
12 depending on the answer to the question: is xk0 ≤ α?
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Remarks

Popular Classification Methods
Decision trees have emerged as one of the most popular methods of
classification.

More Impurity Measures
A variety of node impurity measures can be defined.

The size of the three need to be controlled
The threshold T leads incorrect sizes.
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Remarks

Why Binary Splits?
We could consider a Multi-way split

However
That will fragment the data too fast.

We would rather do only split when necessary
After all a Multi-way split can be achieved with multiple binary split.
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Remark

Linear Combination Splits
Instead of doing simple splittings, we could use

d∑
j=1

aixi < s

This improve the predictive power of the tree
It can hurts interpretability

Better use
Hierarchical Mixture of Experts (HME).
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Issues

One of the biggest issues
One major problem with trees is their high variance.

A small change in the data can result in a very different series of splits
Making interpretability precarious!!!
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Issues

Lack of Smoothness
Another limitation of trees is the lack of smoothness of the prediction
surface

Thus strategies to alleviate this problem are necessary
Multivariate Adaptive Regression Splines (MARS) procedure

64 / 65



Issues

Lack of Smoothness
Another limitation of trees is the lack of smoothness of the prediction
surface

Thus strategies to alleviate this problem are necessary
Multivariate Adaptive Regression Splines (MARS) procedure

64 / 65



Issue

The CART trees are bad at modeling additive structures
For Example

y = c1I (x1 < t1) + c2I (x2 < t2) + ε with ε ∼ N
(
0, σ2

)
Problem, CART has no special encouragement to capture this model

Again MARS can help for this given its no dependency to the binary
tree structure
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