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Outline

Introduction
@ Introduction
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Many Times

We have this kind of data sets (House Prices)

( Squared Feet ) - 2104 1800 1600 2300 .
Price 400 460 300 370

500

450

150 L
600 880 1000 1200 1400 1600 1800 2000 2200 2400
square feet

v
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Thus

We can adjust a line/hyperplane to be able to forecast prices
Squared Feet 2104 1800 1600 2300
( Price )"( 400 )( 460 >< 300 )( 370 >

500
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square feet
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Thus, Our Objective

To find such hyperplane
To do forecasting on the prices of a house given its surface!!!
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Thus, Our Objective

To find such hyperplane

To do forecasting on the prices of a house given its surface!!!

Here, where “Learning” Machine Learning style comes around

Basically, the process defined in Machine Learning!!!

&)
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Then, in Supervised Training

We have the following process

Training Set Validation Set
Price House Price House

Training Learning Algorithm

Testing Set Predicted Price
Price House x
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Outline
o Introduction

@ The Simplest Functions
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What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

g(x) = whe + wy

T

Note: w' « is also know as dot product

Cinvestav
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What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

g(x) = wlx 4+ wy (1)

T

Note: w' « is also know as dot product

| A\

In the case of R?
We have:

X
g(x) = (w1, w2) ( x; ) + wp = w11 + WaTs + W (2)

<

&
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Example

Hyperplane in R3

<

/

T2

v
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Outline
o Introduction

@ Splitting the Space
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Splitting The Space R?

Using a simple straight line (Hyperplane)

ey
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Splitting the Space?

For example, assume the following vector w and constant wy

w=(-1,2)" and wy =0

&)
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Splitting the Space?

For example, assume the following vector w and constant wy

w=(—1,2)" and wy =0

Hyperplane

(_17 2)T

[— _-_-_--_-_--.
—_—

w

=

~

A
Y

4
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Then, we have

The following results

9((;)>=(—172)<;>=—1x1+2x2=3
9((?))Z(—172)<?>=—1x3+2x1:—1

YES!!! We have a positive side and a negative side!!!
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Outline
o Introduction

@ Defining the Decision Surface
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The Decision Surface

The equation g (z) = 0 defines a decision surface

Separating the elements in classes, w; and ws.

V)

NG4
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The Decision Surface

The equation g (x) = 0 defines a decision surface

Separating the elements in classes, w; and ws.

When g (z) is linear the decision surface is an hyperplane

Now assume x; and x5 are both on the decision surface

wTazl +wy =0

wTa:Q +wog =0

V)

NG4
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The Decision Surface

The equation g (x) = 0 defines a decision surface

Separating the elements in classes, w; and ws.

When g (z) is linear the decision surface is an hyperplane

Now assume x; and x5 are both on the decision surface

wTazl +wy =0

wTazg +wog =0

wlzy + wo = wlxy + wy (3)

N4
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Defining a Decision Surface

w? (x —x2) =0
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Therefore

T, — 5 lives in the hyperplane i.e. it is perpendicular to w’

@ Remark: any vector in the hyperplane is a linear combination of
elements in a basis

o Therefore any vector in the plane is perpendicular to w”




Therefore

The space is split in two regions (Example in R?) by the hyperplane H

Ro

€2

v

~/

Cinvestav

19 /122



Outline
o Introduction

@ Properties of the Hyperplane wle + wo
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Some Properties of the Hyperplane

Given that g () > 0 if z € Ry

Z3

H

N

Ra

T2
Z

V.

v/
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It is more

We can say the following

@ Any x € R4 is on the positive side of H.
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It is more

We can say the following

@ Any x € R4 is on the positive side of H.

@ Any x € R is on the negative side of H.
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It is more

We can say the following
@ Any x € R4 is on the positive side of H.
@ Any x € R is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to

the hyperplane H

First, we express any x as follows

w
mza?p-i-’l“—

[[wll
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It is more

We can say the following
@ Any x € R4 is on the positive side of H.
@ Any x € R is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to

the hyperplane H

First, we express any x as follows

w
mza?p-i-’l“—

[[wll

Where

@ x, is the normal projection of = onto H.

| N
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It is more

We can say the following
@ Any x € R4 is on the positive side of H.
@ Any x € R is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from « to

the hyperplane H

First, we express any x as follows

w
T =Ty +Tr—7p

[[wll

Where

@ x, is the normal projection of = onto H.

| N

@ r is the desired distance
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It is more

We can say the following
@ Any x € R4 is on the positive side of H.
@ Any x € R is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from « to

the hyperplane H

First, we express any x as follows

w
T =Ty +Tr—7p

[[wll

Where

@ x, is the normal projection of = onto H.

| N

@ r is the desired distance

» Positive, if « is in the positive side
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It is more

We can say the following
@ Any x € R4 is on the positive side of H.
@ Any x € R is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from « to

the hyperplane H

First, we express any x as follows

w
T =Ty +Tr—7p

[[wll

Where

@ x, is the normal projection of = onto H.

| A\

@ r is the desired distance

» Positive, if « is in the positive side
> Negative, if  is in the negative side

22 /17




We have something like this

We have then

Z3

v

N\ G4
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Now

Since g () =0

We have that (@) ( w
gx)=gl(x —i—r—)
T wl
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Now

Since g () =0
We have that (@) ( w
gx)=gl(x —i—r—)
T wl

_ T b
=w a:p—i-'r“w” -+ wo
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Now

Since g () =0
We have that

glx)=g (.’Bp —i—rﬁ)

= w?l (azp—i-'r” ”> -+ wo

wT'w

[l

:wTwp—i-wo—i-r
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Now

Since g () =0
We have that

glx)=g (.’Bp —i—rﬁ)

= w?l (azp—i-'r” ”> -+ wo

wT'w

[l

:wTwp—i-wo—i-r

[w|”
=g (zp) +r
P [|w]
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Now

Since g () =0

We have that (@) ( w
gx)=gl(x —i—r—)
T wl

=w?l (azp—i-'r” ”> + wo

wT'w

= ’wT:I:p—i-wo +TW

2
[[wll
[[wll

g(xp) +1

=7 |[w]]

4
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Now

Since g () =0
We have that

glx)=g (.’Bp —i—rﬁ)

= w?l (azp—i-'r” ”> -+ wo

wT'w

=] ’wT:I:p—i-wo +TW

2
[[wll
[[wll

g(xp) +1

=7 |[w]]

Then, we have
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In particular

The distance from the origin to H

=Tl = Tl Tl (©)

&)
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In particular

The distance from the origin to H

_g(0)  wl(0)+wy  wp
=Tl = Tl Tl (©)

Remarks

o If wg > 0, the origin is on the positive side of H.

4
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In particular

The distance from the origin to H

_g(0)  wl(0)+wy  wp
=Tl = Tl Tl (©)

Remarks

o If wg > 0, the origin is on the positive side of H.

o If wy < 0, the origin is on the negative side of H.

4
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In particular

The distance from the origin to H

_g(0)  wl(0)+wy  wp
[|w]| Jw]] [|w]|

| A

Remarks
o If wg > 0, the origin is on the positive side of H.

o If wy < 0, the origin is on the negative side of H.

T

o If wy = 0, the hyperplane has the homogeneous form w* x and

hyperplane passes through the origin.

y
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Outline
o Introduction

@ Augmenting the Vector
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We want to solve the independence of wy

We would like wq as part of the dot product by making zo =1

d

g(x) =wo X 1—|—Zwi:ci:
i=1
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We want to solve the independence of wy

We would like wq as part of the dot product by making zo =1

d d

g(x) =wo X 1—|—Zwi:ci:wo xa:o—i—Zwi:ci:
i=1 i=1
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We want to solve the independence of wy

We would like wq as part of the dot product by making zo =1

d d

d
9($):w0><1+Zwi$i=wo><xo+zwi:ci:Zwixi (7)
i=1 =i i=0

v

By making
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We want to solve the independence of wy

We would like wq as part of the dot product by making zo =1

d d d
9($):w0><1+Zwifci=wo><xo+zwi:ci=waixi (7)
i=1 i=1 i=0
By making
1 1
z1
:Baug == = -
Zq




We want to solve the independence of wy

We would like wq as part of the dot product by making zo =1

d d d
9($):w0><1+Zwifci=wo><xo+zwi:ci=waixi (7)
i=1 i=1 i=0
By making

1 1
z1

:Baug == = -
Zq

4

Taug is called an augmented feature vector. \

X
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In a similar way

We have the augmented weight vector

w1
w == =
aug w
wWq

&
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In a similar way

We have the augmented weight vector

Waug = . —

RENEIS

| g
U

@ The addition of a constant component to « preserves all the distance
relationship between samples.

&2
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In a similar way

We have the augmented weight vector

w1
w == =
aug : w
Wq

@ The addition of a constant component to « preserves all the distance
relationship between samples.

@ The resulting 4 vectors, all lie in a d-dimensional subspace which

is the x-space itself.

Cinvestav
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More Remarks

In addition

The hyperplane decision surface H defined by

T _
WoygLaug = 0

passes through the origin in x,,4-space.

&)

Cinvestav

29 /122



More Remarks

In addition

The hyperplane decision surface H defined by

T —
WoygLaug = 0

passes through the origin in x,,4-space.

Even Though

The corresponding hyperplane H can be in any position of the x-space.

Cinvestav
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More Remarks

In addition

The distance from y to His:

T
[T, | _ 19 (aug)|
||'waug|| ||'waUg||

&)
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Now

@ Ideas?

d d
Zw? < Zw%—i—w%
=T

.
Il
e

&)
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Now

Is HwH < Hwa'ugH

@ Ideas?

This mapping is quite useful

Because we only need to find a weight vector w4 instead of finding the
weight vector w and the threshold wy.

Cinvestav
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Outline

Developing a Solution
@ Least Squared Error Procedure
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Outline

e Developing a Solution
@ Least Squared Error Procedure
@ The Geometry of a Two-Category Linearly-Separable Case
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Initial Supposition

n samples x1, €2, ..., T, some labeled w; and some labeled ws.

Suppose, we have J

&)

Cinvestav

34 /122



Initial Supposition

Suppose, we have

n samples x1, €2, ..., T, some labeled w; and some labeled ws.

We want a vector weight w such that

] wT:ci >0, if ; € w.
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Initial Supposition

Suppose, we have

n samples x1, €2, ..., T, some labeled w; and some labeled ws.

We want a vector weight w such that
] wT:ci >0, if ; € w.

) 'wTa:i <0, if &; € ws.
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Initial Supposition

Suppose, we have

n samples x1, €2, ..., T, some labeled w; and some labeled ws.

We want a vector weight w such that

] wT:ci >0, if ; € w.

) 'wTa:i <0, if &; € ws.

The name of this weight vector

It is called a separating vector or solution vector.

&)
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Now, assume the following

Imagine that your problem has two classes w; and w; in R?

©Q They are linearly separable!!!
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Now, assume the following

Imagine that your problem has two classes w; and w; in R?

© They are linearly separable!!!
@ You require to label them.
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Now, assume the following

Imagine that your problem has two classes w; and w; in R?

© They are linearly separable!!!
@ You require to label them.

We have a problem!!!
Which is the problem?
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Now, assume the following

Imagine that your problem has two classes w; and ws in R?
©Q They are linearly separable!!!
@ You require to label them.

We have a problem!!!
Which is the problem?

We do not know the hyperplane!!!
Thus, what distance each point has to the hyperplane?

Cinvestav

35/122



A Simple Solution For Our Quandary

Label the Classes
0w — +1

0 wy —> —1

&)
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A Simple Solution For Our Quandary

Label the Classes

0w — +1
0 wy —> —1

We produce the following labels

Q ifxc w1 then Yideal = YGideal (.’B) = +1.
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A Simple Solution For Our Quandary

Label the Classes

0w — +1
0 wy —> —1

We produce the following labels
Q ifxc w1 then Yideal = YGideal (.’B) = +1.
Q if & € wy then Yigear = Gideal () = —1.
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A Simple Solution For Our Quandary

Label the Classes
0w — +1

0 wy —> —1

We produce the following labels

Q ifxc w1 then Yideal = YGideal (.’B) = +1.
Q if T € wy then Yigeal = Gideas () = —1.

Remark: We have a problem with this labels!!!

&)
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Outline

e Developing a Solution

@ The Error Idea
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Now, What?

Assume true function f is given by

Ynoise = Ynoise (.’B) = wTw +wp + e (8)

Cinvestav
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Now, What?

Assume true function f is given by

Ynoise = Ynoise (.’B) = me +wp + e (8)

It hasa e ~ N (i, 0?)
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Now, What?

Assume true function f is given by

Ynoise = Ynoise (.’B) = wTw +wp + e (8)

It hasa e ~ N (i, 0?)

Thus, we can do the following

Ynoise = Gnoise (93) = Yideal (il:) +e (9)

Cinvestav
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Thus, we have

What to do?

€ = Ynoise — Yideal (‘B) (10)

&)
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Thus, we have

What to do?

€ = Ynoise — Yideal (‘B) (10)

Graphically

Ynoise = WTo + Wy + €
/ * ideal (T0) = wTo + wo

39 /122



Then, we have

A TRICK... Quite a good one!!l Instead of using ¥,0ise

€ = Ynoise — Yideal (ZB) (11)

Cinvestav
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Then, we have

A TRICK... Quite a good one!!l Instead of using ¥,0ise

€ = Ynoise — Yideal (ZB) (11)

We use Yideal

€ = VYideal — Yideal (m) (12)

Cinvestav
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Then, we have

A TRICK... Quite a good one!!l Instead of using ¥,0ise

€ = Ynoise — Yideal (w) (11),
€ = Yideal — Yideal (m> (12)

v

How the geometry will solve the problem with using these labels. \
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Outline

e Developing a Solution

@ The Final Error Equation
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Here, we have multiple errors

What can we do?

4

N\ O

Cinvestav
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Sum Over All the Errors

We can do the following

N N
T @) =3¢ =3 (45 — gideas (1))° (13)

Remark: This is know as the Least Squared Error cost function

&)
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Sum Over All the Errors

We can do the following

N

N
T @) =3¢ =3 (45 — gideas (1))° (13)

=1

Remark: This is know as the Least Squared Error cost function

Generalizing

@ The dimensionality of each sample (data point) is d.

&)
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Sum Over All the Errors

We can do the following

N N
T @) =3¢ =3 (45 — gideas (1))° (13)

i=1
Remark: This is know as the Least Squared Error cost function

Generalizing

@ The dimensionality of each sample (data point) is d.

@ You can extend each vector sample to be =7 = (1, ).

&)
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We can use a trick

The following function

Wo
w2

gideal(fv)Z(l Tl Ty ... a:d) w3 | = 27w

Wq
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We can use a trick

The following function

Yideal (CI}) = ( 1 rK X2 ... X4 ) w3 a;T'w

Wo
w2

Wq

v

We can rewrite the error equation as

J (w)

N

> Wi — Gidear (@) = (yZ — :z:?w)z

=1 i=1

(14)

W

&)
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Furthermore

Then stacking all the possible estimations into the product Data
Matrix and weight vector

1 ($1)1 (:L'l)] (%1)d wy
Xw=|1 (x), () (), Ufg
i (;I;N)l ... (113N)j e (fBN)d W1

&)
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Note about other representations

We could have 7 = (z;, 7, ..., 4, 1) thus

x=| @) @), (@) (15)

Cinvestav
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Then, we have the following trick with X

With the Data Matrix

xTw

xlw
Xw=| zjw (16)

T
Tyw

&)
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Therefore

T T
yl :131 w yl - :131 w
T T
ys | | 2w [ 2| y3—2Tw
Y4 Thw ya — zhw
V.

A O 4
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Therefore

T T
Y1 T]Ww Y1 — T W

T T
ys | — :cg:w — | ys— :cg:w
" 2w ys — 2w

Then, we have the following equality

Y1 — ] w
y2—z¥w

N
Y3 —zzgw T 2
(y1—mfw y2—m§w y3—z§w y4—m]7\}w) 2 =E (yi_wiw)

T
Y4 — T W

Cinvestav
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Then, we have

The following equality

N
> (- alw) = (y — Xw)" (y - Xw) = [ly - Xw|3 (1)
=1

&)
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We can expand our quadratic formula!!!

(y—Xw) (y— Xw) =y y—y " Xw—-—w'XTy+w" X" Xw (18)

&)
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We can expand our quadratic formula!!!

(y—Xw) (y— Xw) =y y—y " Xw—-—w'XTy+w" X" Xw (18)

Now
@ Derive with respect to w

&)
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We can expand our quadratic formula!!!

(y—Xw) (y— Xw) =y y—y " Xw—-—w'XTy+w" X" Xw (18)

@ Derive with respect to w
o Assume that X7 X is invertible

&)
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Outline

e Developing a Solution

@ Remember in matrices of 3 x 3
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Some Basic Definitions

Transpose of a Matrix

T
ailp a2 aig ailp Q21 @z
a21 G222 az3 = | @12 a2 as2
azy az2 asg a1z a23 asg

&)
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Some Basic Definitions

Transpose of a Matrix

T
ailp a2 aig ailp Q21 @z
a21 G222 az3 = | @12 a2 as2
azy az2 asg a1z a23 asg
T

al

az = ( aip a2 612)

as

V.

&)
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Additionally

Given A and B matrices:

&)
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Additionally

Given A and B matrices:
o (A+ BT =AT + BT

&)
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Additionally

Given A and B matrices:
o (A+B)T =4T + BT
o (AB)Y = BTAT
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Additionally

Given A and B matrices:
o (A+ BT =AT + BT
o (AB)T = BT AT

Given vectors x, y and a matrix A such that you can multiply them:

&)
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Additionally

Given A and B matrices:
o (A+ BT =AT + BT
o (AB)Y = BTAT

Given vectors x, y and a matrix A such that you can multiply them:
T T 4.1%
o x' Ay = [a: Ay]

= yT ATz given that the transpose of a number is
the number itself.

&)
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Some Basic Definitions for

Derivative on Matrices

ajl a2 a13 1

d| a2 a2 a3 T2

dAx a3l as2 ass T3
dx xr1
d T2
z3

&)
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Therefore

a11r1+ ai2r2+  ai13Ts
d| a1+ a2r2t+  a23T3

a31r1+ as32T2+ a33T3

1
d i)
€3
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Therefore

a11r1+ ai2r2+  ai13Ts
d| a1+ a2r2t+  a23T3
a31r1+ as32T2+ a33T3

1

d i)

x3

d(aii1zi+aigzetaizzs)  d(arizitaiszotaizzrs)

d(ai1zitaizzataizzs)

dxq dxo
d(azi1z1+agaxotazzws)  d(aziwitazsxzatazzxs)

dxs
d(ag1z1+agorotazszrs)

dxq dxo
d(azizitagaxrotazzws)  d(aziwitazazratazzxs)

dxs
d(agiz1+azorotagszrs)

dxy

dxo

dx3
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Therefore

a11r1+ ai2r2+  ai13Ts
d| a21x1+ aosx2+  as3xs
a31r1+ as2r2+  assrs

1

d X2

x3

d(ajizitajzzataizes)

d(aiizitaizzetaizes)

d(ai1zitaizzataizzs)

dxq
d(az1z1+azaza+az3zs)

dxo
d(az1z1+agzxa+az3zs)

dxs
d(az1z14agzz2+a23w3)

dxq
d(agizi+agzzotaszzs)

dxo
d(aziz1+azazataszzzs)

dxs
d(aziz1+azzzatazzzs)

dxy dxg dzg
aii ai2 ais
a1 a2 az3
a3l az2 ass
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Therefore

We have the following equivalences

dwT A
dw

dw? Aw

dw

= w’ (A+4T), = AT (19)

&)
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Therefore

We have the following equivalences
dw” Aw dw’ A .

dw dw

= w’ (A+4T), AT (19)
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Then, when we derive by w

d (yTy — 2wl XTy + 'wTXTX'w)

dw

= 9yTX +wT (XTX 1 (XTX)
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Then, when we derive by w

d (yTy — 2wl XTy + 'wTXTX'w)

dw

= 9yTX +wT (XTX 1 (XTX)

= —2yT X + 2w’ (XTX)

Making this equal to the zero row vector

N
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Then, when we derive by w

d (yTy — 2wl XTy + 'wTXTX'w)

dw

= 9yTX +wT (XTX 1 (XTX)
= —2yT X + 2w’ (XTX)

Making this equal to the zero row vector

—2yTX + 20T (XTX) —

v

We apply the transpose




Then, when we derive by w

d (yTy — 2wl XTy + 'wTXTX'w)

dw

= 9yTX +wT (XTX 1 (XTX)
= —2yT X + 2w’ (XTX)

Making this equal to the zero row vector

—2yTX + 20T (XTX) —

We apply the transpose

| A\

T

[—2yTX + 2wT (XTX)] =0T




Then, when we derive by w

d (yTy — 2wl XTy + 'wTXTX'w)

dw

= 9yTX +wT (XTX 1 (XTX)
= —2yT X + 2w’ (XTX)

Making this equal to the zero row vector

—2yTX + 20T (XTX) —

We apply the transpose

| A

[—2yTX + 2wT (XTX)]T =0T

—2XTy +2 (XTX) w = 0 (column vector)




Solving for w

We have then

w= (XTX)_l XTy (20)

Note: XT X is always positive semi-definite. If it is also invertible, it is
positive definite.

&)
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Solving for w

We have then

w= (XTX)_l XTy (20)

Note: XT X is always positive semi-definite. If it is also invertible, it is
positive definite.

Thus, How we get the discriminant function?
Any ldeas?
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The Final Discriminant Function

Very Simple!!!

g(x) = zTw =27 (XTX)_1 XxTy (21)

&)
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Pseudo-inverse of a Matrix

Suppose that X € R™*" and rank (X) = m. We call the matrix
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Pseudo-inverse of a Matrix

Suppose that X € R™*" and rank (X) = m. We call the matrix

Xt = (XTX)_1 x7
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Pseudo-inverse of a Matrix
Definition
Suppose that X € R™*" and rank (X) = m. We call the matrix

Xt = (XTX)_1 x7

the pseudo inverse of X.
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Pseudo-inverse of a Matrix

Suppose that X € R™*" and rank (X) = m. We call the matrix

Xt = (XTX)_1 x7

the pseudo inverse of X.

Reason J

X inverts X on its image
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Pseudo-inverse of a Matrix
Definition
Suppose that X € R™*" and rank (X) = m. We call the matrix

Xt = (XTX)_1 x7

the pseudo inverse of X.

A

Reason

X inverts X on its image

What?

@ First a definition




Pseudo-inverse of a Matrix

Definition
Suppose that X € R™*" and rank (X) = m. We call the matrix

Xt = (XTX)_1 x7

the pseudo inverse of X.

A

Reason
X inverts X on its image

What?

@ First a definition
» If w € image (X), then there is some v € R™ such that w = Xwv.
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Pseudo-inverse of a Matrix

Definition
Suppose that X € R™*" and rank (X) = m. We call the matrix

Xt = (XTX)_1 x7

the pseudo inverse of X.

A

Reason

X inverts X on its image

@ First a definition
» If w € image (X), then there is some v € R™ such that w = Xwv.

=il
@ Hence, XTw=X"Xv= (XTX> XTXv=w
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Outline

e Developing a Solution

@ What Lives Where?

&)
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We have that

The Data Matrix
X € RNX(CH-l)

N
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We have that

The Data Matrix

X € RNX(d-l—l)

Image (X) = span {Xioz, e Xﬂl}

Note: Remember that the image of a matrix X is all the vectors
Xv € RY with v € R%H!

N
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We have that

The Data Matrix

X € RNX(d-l—l)

Image (X)

Image (X) = span {Xioz, e Xﬂl}

Note: Remember that the image of a matrix X is all the vectors
Xv € RY with v € R%H!

| \

The Inputs

wiERd

&g
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We have that

The Weight Vector w

w € Rd—Fl

&)
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We have that

The Weight Vector w

w € Rd—Fl

What about the column space of X and the ideal input vector y

Xz.c"l,y e RY
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We can now see where y is being projected

Basically vy, the list of real inputs is being proyected into

span {X?l, X, ngil} (22)

-1
by the projection operator X (XTX> XT.
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Outline

e Developing a Solution

@ Geometric Interpretation

Cinvestav
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Geometric Interpretation

The image of the mapping:

h:w— Xw

h R s RN

is a linear subspace of RY.

&)
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Geometric Interpretation

The image of the mapping:

h:w— Xw

h R s RN

is a linear subspace of RY.

How? Ideas
Think about this!!!
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What about w?

As w can moves through all points in R%*! when being generated

The function value h (w) = Xw can move through all points in the image
space:

image (X) = span {XﬁOZ,XCOl, ...,Xfl‘jfl}

&
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What about w?

As w can moves through all points in R%*! when being generated

The function value h (w) = Xw can move through all points in the image
space:

image (X) = span {XEOZ,XCOl, ...,Xfl‘jfl}

Additionally, each w defines one point in

span { X5, X5, .., Xl } CRY

d+1

d+1
h(w)=Xw=> wX{"
=1

&
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What about the optimality of w?

We have a composition of functions that are convex

fw)=wlz

g =(y—1)

h(e) = Z e?
i=1

@ Making the Least Squared Error a Convex function with a single
minimum!!!

N2
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What about the optimality of w?

We have a composition of functions that are convex

fw)=wlz

(y —1)
h(e) = Z e?
i=1

@ Making the Least Squared Error a Convex function with a single
minimum!!!

The derivative method produces a w

@ Such that w minimizes the distance d (y, image (X))

5

Cinvestav
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Geometrically

Given a y, you obtain a projected 4 through the process X Ty
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This Resolve QOur Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

&)
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This Resolve QOur Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

We assume a similar number of elements in both classes

v

&
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Outline

e Developing a Solution

@ Multi-Class Solution

&)
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Multi-Class Solution

What to do?
© We might reduce the problem to ¢ — 1 two-class problems.

&)
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Multi-Class Solution

© We might reduce the problem to ¢ — 1 two-class problems.
@ We might use ( elel)

linear discriminants, one for every pair of classes.
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Multi-Class Solution

What to do?

@ We might reduce the problem to ¢ — 1 two-class problems.

@ We might use C(Cz_l) linear discriminants, one for every pair of classes.
However

not w;

not wy
Wy
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What to Do?

Define ¢ linear discriminant functions

gi (@) =wlz +wpfori=1,...,c (23)

Cinvestav
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What to Do?

Define ¢ linear discriminant functions

gi (@) =wlz +wpfori=1,...,c (23)

This is known as a linear machine

Rule: if gi (x) > gj (x) forall j #k = = € wy,
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What to Do?

Define ¢ linear discriminant functions

gi (@) =wlz +wpfori=1,...,c (23)

This is known as a linear machine

Rule: if gy (&) > g (x) forall j # k = x € wy,

Nice Properties (It can be proved!!!)

@ Decision Regions are Singly Connected.

@ Decision Regions are Convex.

&)
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Proof of Properties




Proof of Properties

Actually quite simple

Given

with XA € (0,1).




Proof of Properties

g (y) = w' Oza+(1-Nzs)+wo
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= dw'za+Iwo+ (1 —Nw ez + (1 -\ wo




Proof of Properties

g (y) = w' Qwa+(1-Nzs)+wo
= dw'za+Iwo+ (1 —Nw ez + (1 -\ wo
Agk (®a) + (1 = A) g (®a)




Proof of Properties

We know that

g (y) = w' Oza+(1-Nzs)+wo

= dw @A+ wo+ (1-N)

wlzp + (1 - X wo

= Mgk (Ta) + (1= A) gk (za)
> Agj(za) + (L= A)gj(za)




Proof of Properties

We know that

g (y) = w' Qwa+(1—-Nzp)+w
= dw'za+Iwo+ (1 —Nw ez + (1 -\ wo
Agk (®a) + (1 = A) g (®a)
Agj (xa) + (1= A)gj (wa)
gi (Aa + (1 - X xp)

vV Vv o




Proof of Properties

We know that

For all j # k

g ()

vV Vv Vv I

w” (Axa+ (1 — N xg)+ wo
Mo @a 4+ Awo+ (1= AN w s+ (1 — X)) wo

Agrk (Ta) + (1= A) gk (za)

Agj (a) + (1= A)g; (za)
gi Aza + (1 =N zp)
9i (y)




Proof of Properties

We know that

For all j # k

g ()

vV Vv Vv I

w” (Axa+ (1 — N xg)+ wo
Mo @a 4+ Awo+ (1= AN w s+ (1 — X)) wo

Agrk (Ta) + (1= A) gk (za)

Agj (a) + (1= A)g; (za)
gi Aza + (1 =N zp)
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Proof of Properties

We know that

For all j # k

g ()

vV VvV V

w” (Axa+ (1 — N xg)+ wo

Mo @a 4+ Awo+ (1 - N w xp +
Agr () + (1= X) g (za)

Agj (®a) + (1= A)gj (xa)

9i Aa+(1-Nzp)

95 (y)

(]. — )\) wo

@ y belongs to an area k defined by the rule!!!




Proof of Properties

We know that

For all j # k

g ()

vV VvV V

w” (Axa+ (1 — N xg)+ wo

Mo @a 4+ Awo+ (1 - N w xp +
Agr () + (1= X) g (za)

Agj (®a) + (1= A)gj (xa)

9i Aa+(1-Nzp)

95 (y)

(]. — )\) wo

v

@ y belongs to an area k defined by the rule!!!

@ This area is Convex and Singly Connected because the definition of

Y.




However!!!

No so nice properties!!!
o It limits the power of classification for
multi-objective function.
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How do we train this Linear Machine?

We know that each wy, class is described by

gk () = wlz +wy where k =1,...,c

&)
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How do we train this Linear Machine?

We know that each wy, class is described by

gk () = wlz +wy where k =1,...,c

We then design a single machine

g(x)=wTg (24)
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Where

We have the following

w’ =

1
1
1

w11
w21
w31

Wel

w12
w22
w32

We2

Wiq
Wad
W3q

Wed

(25)

&)
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Where

We have the following

1w wie Wiqg
1 wor wo -+ wyy

wl=| 1 w31 w32 -+ w3 (25)
1 Wel We2 - Wed

What about the labels?
OK, we know how to do with 2 classes, What about many classes?

Cinvestav
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How do we train this Linear Machine?

Use a vector ¢; with dimensionality ¢ to identify each element at each

class

We have then the following dataset

{wi,ti} for i = 1,2, ...,N

&
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How do we train this Linear Machine?

Use a vector ¢; with dimensionality ¢ to identify each element at each

class
We have then the following dataset

{wi,ti} for i = 1,2, ...,N

We build the following Matrix of Vectors

| A\

ts

I (26)

W

&
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Examples for the t;

Vectors like

x; # 0,1 Class —

0
0

wivesudV
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Examples for the t;

Vectors like

0
0

z; # 0,14 Class — 1

v

Another possible vector

—1
—1

—1
x; # —1,1 Class — 1
—1

wiivesudV
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Thus, we create the following Matrix

A Matrix containing all the required information

XW—T (27)
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Thus, we create the following Matrix

A Matrix containing all the required information

XW—T (27)

v

Where we have the following vector

T T T T
[:I;i W1, T; W, T; W3, ..., T; wc} (28)
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Thus, we create the following Matrix

A Matrix containing all the required information

XW—T (27)

v

Where we have the following vector

T T T T
[mi W1, T; W, T; W3, ..., T; wc} (28)

Remark: It is the vector result of multiplication of row ¢ of X against
W on XW.
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Thus, we create the following Matrix

A Matrix containing all the required information

XW—T (27)

v

Where we have the following vector

T T T T
[mi W1, T; W, T; W3, ..., T; wc} (28)

Remark: It is the vector result of multiplication of row ¢ of X against
W on XW.

That is compared to the vector t/ on T by using the subtraction of

vectors

T T T T T
e; = [a:l w1, T; W, T; W3, ..., T; wc} —t; (29)
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What do we want?

We want the quadratic error

@
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What do we want?

We want the quadratic error

1 2
2"

This specific quadratic errors are at the diagonal of the matrix

(XW —T)" (XW —T)

@
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What do we want?

We want the quadratic error

1
2

This specific quadratic errors are at the diagonal of the matrix

(XW —T)" (XW —T)

We can use the trace function to generate the desired total error of

1 X,
J ()= 5261' (30)
=il

©
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Then

The trace allows to express the total error

J(W) = %Tmce {xw —1)" (xw - 1)} (31)

&)
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Then

The trace allows to express the total error

J(W) = %Trace {xw —1)" (xw - 1)} (31)
Thus, we have by the same derivative method
W = (XTX) XTT = X*T (32)

&)
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How do we obtain the discriminant?

Thus, we obtain the discriminant

g(x)=Wle =17 (X+>T x (33)

&)
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Outline

e Developing a Solution

@ Issues with Least Squares!!!

Cinvestav
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Outline

e Developing a Solution

@ Issues with Least Squares!!!
@ Singularity Notes

Cinvestav
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Let me show you the covariance matrix

We have in matrix notation

5= (x —13")" (x - 137)
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Let me show you the covariance matrix

We have in matrix notation
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Let me show you the covariance matrix

We have in matrix notation

V.

It looks a lot like a covariance matrix

o Actually, the dependency observed in matrix X7 X between its
columns!!!

N
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Let me show you the covariance matrix

We have in matrix notation

V.

It looks a lot like a covariance matrix

o Actually, the dependency observed in matrix X7 X between its
columns!!!

@ It is the same dependency as the dependency between the features in
the data observed after the featured have been centered by .

A\
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Thus

We can apply a similar analysis...

To obtain some of the possible cases that make X” X singular
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Thus

We can apply a similar analysis...

To obtain some of the possible cases that make X” X singular

A Classical One

@ If there is a interdependence between features

» Meaning some feature is an exact linear combination of the other
features.

» The XT X matrix of the features will be singular.

&)
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When does this happen?

Number of features is equal or greater than the number of samples. I

&)

Cinvestav

89 /122



When does this happen?

Number of features is equal or greater than the number of samples. \

Two or more features sum up to a constant

@ For example, z9 — 5x19 =0
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When does this happen?

Number of features is equal or greater than the number of samples. \

Two or more features sum up to a constant

@ For example, z9 — 5x19 =0

Two features are identical or differ merely in mean or variance. \
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Still

The least squares coefficients w are not uniquely defined.

e The fitted values y = Xw are still the projection of y onto the
column space of X.

&)
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Additionally

Duplicate observations in a data set
It will lead the matrix toward singularity.

&)
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Additionally

Duplicate observations in a data set

It will lead the matrix toward singularity.

Cautionary Tale

When doing some sort of imputation of missing features it is always
beneficial (from both statistical and mathematical view) to add some noise
to the imputed data.
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Additionally

Duplicate observations in a data set
It will lead the matrix toward singularity.

Cautionary Tale

When doing some sort of imputation of missing features it is always
beneficial (from both statistical and mathematical view) to add some noise

to the imputed data.

This can happen in the preprocessing phase

Be careful.
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Also

It can happen also that

o XTX could be almost not invertible, making Least Squares
numerically unstable.

&)
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Also

It can happen also that

o XTX could be almost not invertible, making Least Squares
numerically unstable.

Statistical consequence

@ High variance of predictions.
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When can this happen?

The non-full-rank case occurs

@ Most often when one or more qualitative inputs are coded in a
redundant fashion.

&)
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When can this happen?

The non-full-rank case occurs

@ Most often when one or more qualitative inputs are coded in a
redundant fashion.

How do we solve this?
@ Re-encode or dropping redundant columns in X.
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When can this happen?

The non-full-rank case occurs

@ Most often when one or more qualitative inputs are coded in a
redundant fashion.

How do we solve this?
@ Re-encode or dropping redundant columns in X.

Most regression software packages

@ They detect these redundancies and automatically implement some

strategies for removing them.

&)
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Outline

e Developing a Solution

@ Issues with Least Squares!!!

@ Problem with Outliers

&)
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Issues with Least Squares

Problem with Outliers

No Outliers Outliers
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Outline

e Developing a Solution

@ Issues with Least Squares!!!

@ Problem with High Number of Dimensions
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Problems with a High Number of Dimensions

In Many Modern Problems
e Many dimensions/features/predictors (possibly thousands). J
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Problems with a High Number of Dimensions

In Many Modern Problems

@ Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

@ It needs some form of feature selection.
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In Many Modern Problems

e Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

@ It needs some form of feature selection.

@ Possible some type of regularization.
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Problems with a High Number of Dimensions

In Many Modern Problems
e Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

@ It needs some form of feature selection.

@ Possible some type of regularization.

| \

Why?

@ Least Square Error Regression treats all dimensions equally.

V.
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Problems with a High Number of Dimensions

In Many Modern Problems

e Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

@ It needs some form of feature selection.

@ Possible some type of regularization.

| \

Why?

@ Least Square Error Regression treats all dimensions equally.

@ Relevant dimensions might be averaged with irrelevant ones.

v

&)
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Outline

e Developing a Solution

@ What can be done?
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Outline

e Developing a Solution

@ What can be done?

@ Using Statistics to find Important Features

Cinvestav
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We will start using some statistics

We want to obtain sampling properties for w

For this remember:

W = (XTX>_1 XTy

&)
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We will start using some statistics

We want to obtain sampling properties for w

For this remember:

W = (XTX)_1 XTy

| \

For this assume,

@ The observations y; are uncorrelated and have constant variance o?.

@ The x; are fixed = not random.
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Then, we have the variance-covariance matrix

Var (@) = Var [(XTX) - XTy]

&)
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Then, we have the variance-covariance matrix

Var (@) = Var [(XTX) - XTy]

<

We have the following equivalence

Var (Ay) = AVar (y) AT

A

&)
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Therefore

Something Notable

(XTX) - XTy] - (XTX) " XTVar (y) X (XT X)*1

Var

-~ -
Cinvestav
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Therefore

Something Notable

(x7x) - XTy] = (x7x) T XTVar (y) X (XTX)*1

Var

= (XTX) I XxTo2rx (X”—”Xf1
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Therefore

Something Notable

(XTX) - XTy] - XTX)

Var ' XTVar (y) X (X7X)

(
(XTX) I XxTo2rx (XTX) -
g

Q(XTX)_l
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Therefore

Something Notable

1
Var

(XTX) - XTy] - XTX) " XTVar (y) X (XT X)*

(
= (XTX)A XTo21X (XTX)A
g

F(x7x)”

Given that

Var (y1) Cov (y1,y2) -+ Cov(yi,yn) o 0o ... 0
Cov (y2,y1) ---Var(y2) - Cov(y2,yn) 0 o2 .- 0

Var (y) =

Cov(yn,y1) Cov(yn,y2) -+  Var(yn) 0 0 02

-~ -
Cinvestav
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Thus

Typically, we can use the following unbiased estimator

1 N
7 _N—d—1iz:1(y’ %)

o Which is an unbiased estimator E [62] = 0.

&
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Thus

Typically, we can use the following unbiased estimator

1 N
7 _N—d—1iz:1(y’ %)

o Which is an unbiased estimator E [62] = 0.

If we have the following relation

Y = E(Y|X1,Xo,...Xq) +e

A\

&
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Thus

Typically, we can use the following unbiased estimator

1 N
7 _N—d—lzzzl(y’ %)

o Which is an unbiased estimator E [62] = 0.

If we have the following relation

Y = E(Y|X1,Xo,...Xq) +e

A\

o e~ N (0,07

&
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Then

B~N (/3, o2 (XTX)_I)

vvvvvvvv

111111



Then

We have

|

B~N (/3,02 (XTX)_ )

v

Thus, we can be a little bit smart

HO :ﬂj =0
Hy:B; #0

\

Cinvestav

104 /122



Then

We have

B~N (/3, o2 (XTX)_I)

v

Thus, we can be a little bit smart

HO :/Bj =0
Hy:B; #0

\

To test for Hypothesis 0, we get the following z—score

B: — B. 3. -1
zj = Bﬁ Bi _ Aﬁj with v; the j™ diagonal element at (XTX>

U\/U_j O'\/’U_j
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Therefore

Zj ~ tN_q—1 a t-student distribution

@ Therefore, a large(absolute) value of z; will lead to rejection of the
Null Hypothesis

&
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Therefore

Zj ~ tN_q—1 a t-student distribution

@ Therefore, a large(absolute) value of z; will lead to rejection of the
Null Hypothesis

You can use the simple rule:
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Therefore

Zj ~ tN_q—1 a t-student distribution

@ Therefore, a large(absolute) value of z; will lead to rejection of the
Null Hypothesis

Therefore

You can use the simple rule:
@ Accept Hy remove the feature

@ Reject Hy keep the feature

There are still more techniques for feature selection quite more advanced...J

&
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Outline

e Developing a Solution

@ What can be done?

@ What about Numerical Stability?

Cinvestav
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What to Do About Numerical Stability?

@ A matrix which is not invertible is also called a singular matrix.
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What to Do About Numerical Stability?
Definition
@ A matrix which is not invertible is also called a singular matrix.

@ A matrix which is invertible (not singular) is called regular.

4

What is the Meaning?

Imagine the following in R?

\
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What to Do About Numerical Stability?

@ A matrix which is not invertible is also called a singular matrix.

@ A matrix which is invertible (not singular) is called regular.

What is the Meaning?

Imagine the following in R?

v

Given that the columns are vectors

They span a subspace for those column vectors in R3

aii ai2 ai3
span a21 , az2 s a23
asi as2 ass
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Relation with the Rank

If a matrix is singular

Its Rank is less than 3, i.e :

&)
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Relation with the Rank

If a matrix is singular

Its Rank is less than 3, i.e :

@ The subspace is squashed into a plane.
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Relation with the Rank

If a matrix is singular

Its Rank is less than 3, i.e :

@ The subspace is squashed into a plane.

@ The subspace is squashed into a line.
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Relation with the Rank

If a matrix is singular

Its Rank is less than 3, i.e:
@ The subspace is squashed into a plane.
@ The subspace is squashed into a line.
© The subspace in the WORST CASE into a point.

&)
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Remember

That, we have

an a2 a3
v=A| a1 | +X2| a2 | +A3| as
asy asz ass
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Remember

ail a12 a3
v=A| a1 | +X| axn | +A3]| as
asy as2 ass
Thus, if for example, the matrix projects into a plane
aii ai1 a13 a13
v=A1| a1 | FX o | an | o | ass + A3 | a2
asy asy as3 as3
a1l a3
=c1 | ag +co | aos with ¢; = A\ + a1 A9, o = asdg + A3
asy ass3
v
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For Example

We have a squashing into a plane
z

(52

Cinvestav
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Computational Intuition

A singular matrix maps an entire linear subspace into a single point. I

&)
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Computational Intuition

A singular matrix maps an entire linear subspace into a single point. \

Second Intuitions

If a matrix maps points far away from each other to points very close to
each other, it almost behaves like a singular matrix.

&)
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Thus

Mapping is related to the eigenvalues!!!
e Large positive eigenvalues = the mapping is large!!!

&)
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Thus

Mapping is related to the eigenvalues!!!

e Large positive eigenvalues = the mapping is large!!!
e Small positive eigenvalues = the mapping is small!!!

&)
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There is a statement to support this

All this comes from the following statement

A positive semi-definite matrix A is singular <= smallest eigenvalue is 0

&)
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There is a statement to support this

All this comes from the following statement

A positive semi-definite matrix A is singular <= smallest eigenvalue is 0

Consequence for Statistics

If a statistical prediction involves the inverse of an almost-singular matrix,
the predictions become unreliable (high variance).

&)
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Outline

e Developing a Solution

@ What can be done?

@ Ridge Regression
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What can be done?

What could be the problem?

w1

Q

Zilil (y

i — wlT'w)2

W2

&
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What can be done?

What could be the problem?

w1

=

We need to pull equilibrate the optimal in some way!!!

IDEAS?
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We want to avoid the problem of an eigenvalue to become
zerolll

Thus, we can do the following given that X7 X is positive definite

Assume that &1, &, ..., €41 are eigenvectors of X7 X with
eigenvalues A\, Ag, ..., Agi1
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We want to avoid the problem of an eigenvalue to become
zerolll

Thus, we can do the following given that X7 X is positive definite

Assume that &1, &, ..., €41 are eigenvectors of X7 X with
eigenvalues A\, Ag, ..., Agi1

(XTX) g =N& foralli=1,...d+1 (34)

Given that X7 X is singular, some ); is equal to 0.

A,
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We want to avoid the problem of an eigenvalue to become
zerolll

Thus, we can do the following given that X7 X is positive definite

Assume that &1, &, ..., €41 are eigenvectors of X7 X with
eigenvalues A\, Ag, ..., Agi1

| \

We have
(XTX) g =N& foralli=1,...d+1 (34)

Given that X7 X is singular, some ); is equal to 0.

4

Very Simple, add a convenient A

(XTX +201) &= N+ (35)

i.e. \; + A is an eigenvalue for (XTX + )J).

A\

116 /122



What does this mean?

Something Notable
You can control the singularity by detecting the smallest eigenvalue.

&)
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What does this mean?

Something Notable

You can control the singularity by detecting the smallest eigenvalue.

We add an appropriate tunning value \. I
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How do we integrate this solution to the Least Squared
Error Solution?

We modify it by adding en extra parameter

N d+1

Z —xlw) — A Z w; (36)

=1

&)
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How do we integrate this solution to the Least Squared
Error Solution?

We modify it by adding en extra parameter

N d+1

Z( —x]w —/\ZwZ (36)

i=1

| \

Geometrically Equivalent to

21]\;1 (wi = m;rw)'l + /\Ztll wy
w1
( <

(%)

y
118 /122



Ridge Regression

Ridge Regression J

It tries to make least squares more robust if XT X is almost singular.

&)
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Ridge Regression

Ridge Regression

It tries to make least squares more robust if XT X is almost singular.

Process
@ Find the eigenvalues of X7 X
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Ridge Regression

Ridge Regression

It tries to make least squares more robust if XT X is almost singular.

Process

@ Find the eigenvalues of X7 X
@ If all of them are bigger enough than zero we are fine!!!

.
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Ridge Regression

Ridge Regression

It tries to make least squares more robust if XT X is almost singular.

Process
@ Find the eigenvalues of X7 X
@ If all of them are bigger enough than zero we are fine!!!

© Find the smallest one, then tune if necessary.
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Ridge Regression

Ridge Regression
It tries to make least squares more robust if XT X is almost singular.

Process

@ Find the eigenvalues of X7 X
@ If all of them are bigger enough than zero we are fine!!!

© Find the smallest one, then tune if necessary.

, —1
O Build widse = (XTX + AI) XTy.

\

&)
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Outline

9 Exercises
@ Some Stuff for the Lab
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Exercises

Duda and Hart

Chapter 5
1,3 4,7, 13, 17

Hastie-Tibishirani

Chapter 3 - Problems

@ Ex 35
@ Ex 3.6

&
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Exercises

Duda and Hart
Chapter 5
1,3 4,7, 13, 17

Bishop
Chapter 4
e 41,44, 4.7,

| A

Hastie- Tibishirani
Chapter 3 - Problems
e Ex 3.5
e Ex 3.6

@‘
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Exercises

Theodoridis
Chapter 3 - Problems

&)
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