Introduction to Artificial Intelligence Introduction to Linear Classifiers

Andres Mendez-Vazquez

March 8, 2019

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

< ロ > < 同 > < 回 > < 回 >

Outline

Introduction

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- ${\small \bigcirc}$ Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

Many Times

4/122

Thus

We can adjust a line/hyperplane to be able to forecast prices

Cinvestav

<□ ト < 団 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C) 5 / 122

Thus, Our Objective

To find such hyperplane

To do forecasting on the prices of a house given its surface!!!

Here, where "Learning" Machine Learning style comes around

Basically, the process defined in Machine Learning!!!

イロト イロト イヨト イヨト

Thus, Our Objective

To find such hyperplane

To do forecasting on the prices of a house given its surface!!!

Here, where "Learning" Machine Learning style comes around

Basically, the process defined in Machine Learning!!!

Then, in Supervised Training

We have the following process

Outline

Introduction

Introduction

The Simplest Functions

- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0$$

Note: $\boldsymbol{w}^T \boldsymbol{x}$ is also know as dot product

In the case of ${\mathbb R}$

We have:

$$g\left(oldsymbol{x}
ight)=\left(w_{1},w_{2}
ight)\left(egin{array}{c}x_{1}\x_{2}\end{array}
ight)+w_{0}=w_{1}x_{1}+w_{2}x_{2}+w_{0}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

(1)

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0$$

Note: $\boldsymbol{w}^T \boldsymbol{x}$ is also know as dot product

In the case of \mathbb{R}^2

We have:

$$g(\mathbf{x}) = (w_1, w_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + w_0 = w_1 x_1 + w_2 x_2 + w_0$$
(2)

イロト イヨト イヨト

(1)

Example

Outline

1 Introduction

The Simplest Functions

Splitting the Space

- Defining the Decision Surface
- Properties of the Hyperplane $w^T x + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 The Contraction of a Two Contactory
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \bigcirc Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

Exercises Some Stuff for the Lab

< ロ > < 回 > < 回 > < 回 > < 回 >

Splitting The Space \mathbb{R}^2

Using a simple straight line (Hyperplane)

Splitting the Space?

For example, assume the following vector $oldsymbol{w}$ and constant w_0

$$w = (-1,2)^T$$
 and $w_0 = 0$

Hyperplane

Splitting the Space?

For example, assume the following vector \boldsymbol{w} and constant w_0

$$oldsymbol{w}=(-1,2)^T$$
 and $w_0=0$

Hyperplane

Then, we have

The following results

$$g\left(\left(\begin{array}{c}1\\2\end{array}\right)\right) = (-1,2)\left(\begin{array}{c}1\\2\end{array}\right) = -1 \times 1 + 2 \times 2 = 3$$
$$g\left(\left(\begin{array}{c}3\\1\end{array}\right)\right) = (-1,2)\left(\begin{array}{c}3\\1\end{array}\right) = -1 \times 3 + 2 \times 1 = -1$$

YES!!! We have a positive side and a negative side!!!

Outline

Introduction Introduction

- The Simplest Functions
- Splitting the Space

Defining the Decision Surface

• Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$ Augmenting the Vector

- Least Squared Error Procedure The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Now assume $oldsymbol{x}_1$ and $oldsymbol{x}_2$ are both on the decision surface

 $w^T x_1 + w_0 = 0$ $w^T x_2 + w_0 = 0$

Thus

$$oldsymbol{w}^Toldsymbol{x}_1+w_0=oldsymbol{w}^Toldsymbol{x}_2+w_0$$

Cinvestav ≧ ∽ ९ ↔ 16 / 122

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Now assume x_1 and x_2 are both on the decision surface

 $\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$ $\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$

Thus

$$oldsymbol{w}^Toldsymbol{x}_1+w_0=oldsymbol{w}^Toldsymbol{x}_2+w_0$$

Cinvestav ≧ ∽ ९ ↔ 16 / 122

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Now assume \boldsymbol{x}_1 and \boldsymbol{x}_2 are both on the decision surface

 $\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$ $\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$

Thus

$$w^T x_1 + w_0 = w^T x_2 + w_0$$

(3)

Defining a Decision Surface

Then

$$\boldsymbol{w}^T \left(\boldsymbol{x}_1 - \boldsymbol{x}_2 \right) = 0$$

A B > 4
 B > 4
 B

(4)

10

Therefore

$oldsymbol{x}_1 - oldsymbol{x}_2$ lives in the hyperplane i.e. it is perpendicular to $oldsymbol{w}^T$

- Remark: any vector in the hyperplane is a linear combination of elements in a basis
- Therefore any vector in the plane is perpendicular to \boldsymbol{w}^T

Therefore

19/122

Outline

Introduction

Introduction

- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface

• Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$

Augmenting the Vector

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \bigcirc Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

Some Properties of the Hyperplane

We can say the following

• Any $\boldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.

Any $oldsymbol{x} \in \mathcal{R}_2$ is on the negative side of I

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_2$ is on the negative side of H.

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_2$ is on the negative side of H.

In addition, g(x) can give us a way to obtain the distance from x to the hyperplane H

First, we express any $m{x}$ as follows

$$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

 $ullet \, oldsymbol{x}_p$ is the normal projection of $oldsymbol{x}$ onto H

- r is the desired distance
 - Positive, if x is in the positive side
 - Negative, if x is in the negative side

We can say the following

- Any $\boldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.
- Any $\boldsymbol{x} \in \mathcal{R}_2$ is on the negative side of H.

In addition, g(x) can give us a way to obtain the distance from x to the hyperplane H

First, we express any x as follows

$$oldsymbol{x} = oldsymbol{x}_p + r rac{oldsymbol{w}}{\|oldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
 - Positive, if x is in the positive side
 - \blacktriangleright Negative, if x is in the negative side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, g(x) can give us a way to obtain the distance from x to the hyperplane H

First, we express any $m{x}$ as follows

$$oldsymbol{x} = oldsymbol{x}_p + r rac{oldsymbol{w}}{\|oldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance

residue, if x is in the positive side degrative, if x is in the negative side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, g(x) can give us a way to obtain the distance from x to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$oldsymbol{x} = oldsymbol{x}_p + r rac{oldsymbol{w}}{\|oldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance
 - \blacktriangleright Positive, if x is in the positive side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, g(x) can give us a way to obtain the distance from x to the hyperplane H

First, we express any $m{x}$ as follows

$$oldsymbol{x} = oldsymbol{x}_p + r rac{oldsymbol{w}}{\|oldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance
 - Positive, if x is in the positive side
 - Negative, if x is in the negative side

We have something like this

Now

Since $g\left(\boldsymbol{x_{p}}\right)=0$

We have that

$$g\left(\boldsymbol{x}\right) = g\left(\boldsymbol{x}_{p} + r\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)$$
$$= ar\left(\left(\boldsymbol{x}_{p} + r\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) + ar\right)$$
$$= ar\left(\left(\boldsymbol{x}_{p} + r\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)$$
$$= a\left(\left(\boldsymbol{x}_{p}\right) + r\frac{\|\boldsymbol{w}\|^{2}}{\|\boldsymbol{w}\|}\right)$$

24 / 122

Now

Since $g\left(\boldsymbol{x_{p}}\right)=0$

We have that

$$egin{aligned} g\left(oldsymbol{x}
ight) &= g\left(oldsymbol{x}_{p} + r rac{oldsymbol{w}}{\|oldsymbol{w}\|}
ight) \ &= oldsymbol{w}^{T}\left(oldsymbol{x}_{p} + r rac{oldsymbol{w}}{\|oldsymbol{w}\|}
ight) + w_{0} \ &= g\left(oldsymbol{x}_{p}
ight) + m_{0} \ &= g\left(oldsymbol{x}_{p}
ight) + m_{0$$

Since $g\left(\boldsymbol{x_{p}}\right)=0$

We have that

$$g(\boldsymbol{x}) = g\left(\boldsymbol{x}_{p} + r\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right)$$
$$= \boldsymbol{w}^{T}\left(\boldsymbol{x}_{p} + r\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) + w_{0}$$
$$= \boldsymbol{w}^{T}\boldsymbol{x}_{p} + w_{0} + r\frac{\boldsymbol{w}^{T}\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

Then, we have $r = \frac{g(x)}{\|w\|}$ (5)

Since $g\left(\boldsymbol{x_{p}}\right)=0$

g

We have that

$$\begin{aligned} \mathbf{x} &= g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) \\ &= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0 \\ &= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|} \\ &= g\left(\mathbf{x}_p\right) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|} \end{aligned}$$

Then, we have $r = \frac{g(x)}{\|w\|}$ (5)

Since $g(\boldsymbol{x_p}) = 0$

g

We have that

$$\begin{aligned} \mathbf{w}(\mathbf{x}) &= g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) \\ &= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0 \\ &= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|} \\ &= g\left(\mathbf{x}_p\right) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|} \\ &= r \|\mathbf{w}\| \end{aligned}$$

Then, we have

24 / 122

Since $g(\boldsymbol{x_p}) = 0$

g

We have that

$$\begin{aligned} \mathbf{r}(\mathbf{x}) &= g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) \\ &= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0 \\ &= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|} \\ &= g\left(\mathbf{x}_p\right) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|} \\ &= r \|\mathbf{w}\| \end{aligned}$$

Then, we have

$$r = rac{g\left(oldsymbol{x}
ight)}{\|oldsymbol{w}\|}$$

24/122

(5)

The distance from the origin to ${\cal H}$

$$r = \frac{g\left(\mathbf{0}\right)}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\boldsymbol{w}\|} = \frac{w_{0}}{\|\boldsymbol{w}\|}$$
(6)

2

ヘロト ヘロト ヘヨト ヘヨト

The distance from the origin to ${\cal H}$

$$r = \frac{g\left(\mathbf{0}\right)}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\boldsymbol{w}\|} = \frac{w_{0}}{\|\boldsymbol{w}\|}$$
(6)

Remarks

• If $w_0 > 0$, the origin is on the positive side of H.

• If $w_0 = 0$, the hyperplane has the homogeneous form $w^T x$ and hyperplane passes through the origin.

The distance from the origin to ${\cal H}$

$$r = \frac{g(\mathbf{0})}{\|\mathbf{w}\|} = \frac{\mathbf{w}^T(\mathbf{0}) + w_0}{\|\mathbf{w}\|} = \frac{w_0}{\|\mathbf{w}\|}$$
(6)

Remarks

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.

The distance from the origin to ${\cal H}$

$$r = \frac{g\left(\mathbf{0}\right)}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\boldsymbol{w}\|} = \frac{w_{0}}{\|\boldsymbol{w}\|}$$
(6)

Remarks

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.
- If $w_0 = 0$, the hyperplane has the homogeneous form $w^T x$ and hyperplane passes through the origin.

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

< ロ > < 回 > < 回 > < 回 > < 回 >

We would like w_0 as part of the dot product by making $x_0 = 1$

$$g\left(\boldsymbol{x}\right) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = \min\left(\sum_{i=1}^{d} w_i x_i\right) = \min\left(\sum_{i=1}^{d} w_i x_i\right)$$

イロン イロン イヨン イヨン

We would like w_0 as part of the dot product by making $x_0 = 1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^d w_i x_i = w_0 \times x_0 + \sum_{i=1}^d w_i x_i = 0$$

We would like w_0 as part of the dot product by making $x_0 = 1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^d w_i x_i = w_0 \times x_0 + \sum_{i=1}^d w_i x_i = \sum_{i=0}^d w_i x_i$$
(7)

By making

Where

 $oldsymbol{x_{aug}}$ is called an augmented feature vector.

We would like w_0 as part of the dot product by making $x_0 = 1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^d w_i x_i = w_0 \times x_0 + \sum_{i=1}^d w_i x_i = \sum_{i=0}^d w_i x_i$$
 (7)

By making

$$oldsymbol{x}_{aug} = egin{pmatrix} 1 \ x_1 \ dots \ x_d \end{pmatrix} = egin{pmatrix} 1 \ x \ x \end{pmatrix}$$

Where

 x_{aua} is called an augmented feature vector

We would like w_0 as part of the dot product by making $x_0 = 1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^d w_i x_i = w_0 \times x_0 + \sum_{i=1}^d w_i x_i = \sum_{i=0}^d w_i x_i$$
 (7)

By making

$$oldsymbol{x}_{aug} = egin{pmatrix} 1 \ x_1 \ dots \ x_d \end{pmatrix} = egin{pmatrix} 1 \ x \ x \end{pmatrix}$$

イロト イヨト イヨト

Where

 x_{aug} is called an augmented feature vector.

In a similar way

We have the augmented weight vector

イロト イロト イヨト

In a similar way

We have the augmented weight vector

Remarks

• The addition of a constant component to \boldsymbol{x} preserves all the distance relationship between samples.

イロト イヨト イヨト

In a similar way

We have the augmented weight vector

$$\boldsymbol{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ w \ w \end{array}
ight)$$

Remarks

- The addition of a constant component to \boldsymbol{x} preserves all the distance relationship between samples.
- The resulting x_{aug} vectors, all lie in a *d*-dimensional subspace which is the *x*-space itself.

イロト イヨト イヨト

28/122

More Remarks

In addition

The hyperplane decision surface \widehat{H} defined by

$$\boldsymbol{w}_{aug}^T \boldsymbol{x}_{aug} = 0$$

passes through the origin in x_{aug} -space.

Even Though

The corresponding hyperplane H can be in any position of the $m{x}$ -space.

More Remarks

In addition

The hyperplane decision surface \widehat{H} defined by

$$\boldsymbol{w}_{aug}^T \boldsymbol{x}_{aug} = 0$$

passes through the origin in x_{aug} -space.

Even Though

The corresponding hyperplane H can be in any position of the x-space.

イロト イヨト イヨト

More Remarks

In addition

The distance from ${\pmb y}$ to \widehat{H} is:

$$\frac{\boldsymbol{w}_{aug}^{T}\boldsymbol{x}_{aug}\Big|}{\left\|\boldsymbol{w}_{aug}\right\|} = \frac{\left|g\left(\boldsymbol{x}_{aug}\right)\right|}{\left\|\boldsymbol{w}_{aug}\right\|}$$

・ロト ・日 ・ ・ ヨト ・ ヨ

Is $\|w\| \le \|w_{aug}\|$ • Ideas? $\sqrt{\sum_{i=1}^d w_i^2} \le \sqrt{\sum_{i=1}^d w_i^2 + w_0^2}$

This mapping is quite useful

Because we only need to find a weight vector $oldsymbol{w}_{aug}$ instead of finding the weight vector $oldsymbol{w}$ and the threshold $w_0.$

Is $\|w\| \le \|w_{aug}\|$ • Ideas? $\sqrt{\sum_{i=1}^d w_i^2} \le \sqrt{\sum_{i=1}^d w_i^2 + w_0^2}$

This mapping is quite useful

Because we only need to find a weight vector w_{aug} instead of finding the weight vector w and the threshold w_0 .

イロン イロン イヨン イヨン

Outline

1 Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

2 Developing a Solution

Least Squared Error Procedure

- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \blacksquare Remember in matrices of $3\,\times\,3$
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

Outline

1 Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

Least Squared Error Procedure The Geometry of a Two-Category Linearly-Separable Case

- The Error Idea
- The Final Error Equation
- \blacksquare Remember in matrices of $3\,\times\,3$
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

< ロ > < 回 > < 回 > < 回 > < 回 >

Suppose, we have

n samples $x_1, x_2, ..., x_n$ some labeled ω_1 and some labeled ω_2 .

Suppose, we have

n samples $\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight ${oldsymbol w}$ such that

•
$$oldsymbol{w}^Toldsymbol{x}_i > 0$$
, if $oldsymbol{x}_i \in \omega_1$.

I he name of this weight vector

It is called a separating vector or solution vector.

イロン イロン イヨン イヨン

Suppose, we have

n samples $\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight ${oldsymbol w}$ such that

•
$$oldsymbol{w}^Toldsymbol{x}_i > 0$$
, if $oldsymbol{x}_i \in \omega_1$

•
$$\boldsymbol{w}^T \boldsymbol{x}_i < 0$$
, if $\boldsymbol{x}_i \in \omega_2$.

The name of this weight vector

It is called a separating vector or solution vector.

イロン イロン イヨン イヨン

Suppose, we have

n samples $\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight ${oldsymbol w}$ such that

•
$$oldsymbol{w}^Toldsymbol{x}_i > 0$$
, if $oldsymbol{x}_i \in \omega_1$

•
$$oldsymbol{w}^Toldsymbol{x}_i < 0$$
, if $oldsymbol{x}_i \in \omega_2$.

The name of this weight vector

It is called a separating vector or solution vector.

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- You require to label them.

< ロ > < 回 > < 回 > < 回 > < 回 >

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- ② You require to label them.

We have a problem!!!

Which is the problem?

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

We have a problem!!!

Which is the problem?

Thus, what distance each point has to the hyperplane

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

We have a problem!!!

Which is the problem?

We do not know the hyperplane!!!

Thus, what distance each point has to the hyperplane?

イロト イヨト イヨト イヨト

Label the Classes • $\omega_1 \Longrightarrow +1$ • $\omega_2 \Longrightarrow -1$

Label the Classes

- $\omega_1 \Longrightarrow +1$
- $\omega_2 \Longrightarrow -1$

We produce the following labels

1 if
$$x \in \omega_1$$
 then $y_{ideal} = g_{ideal} (x) = +1$.

Cinvestav ∢□▶ < 圕▶ < 볼▶ < 볼▶ 볼 ∽ Q ↔ 36/122

Label the Classes

- $\omega_1 \Longrightarrow +1$
- $\omega_2 \Longrightarrow -1$

We produce the following labels

• if
$$x \in \omega_1$$
 then $y_{ideal} = g_{ideal}(x) = +1$.

2) if
$$x \in \omega_2$$
 then $y_{ideal} = g_{ideal} (x) = -1$.

(日)

Label the Classes

- $\omega_1 \Longrightarrow +1$
- $\omega_2 \Longrightarrow -1$

We produce the following labels

() if
$$oldsymbol{x} \in \omega_1$$
 then $y_{ideal} = g_{ideal}\left(oldsymbol{x}
ight) = +1.$

2) if
$$x \in \omega_2$$
 then $y_{ideal} = g_{ideal} (x) = -1$.

Remark: We have a problem with this labels!!!

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

Least Squared Error Procedure
 The Geometry of a Two-Category Linearly-Separable Case

The Error Idea

- The Final Error Equation
- \bigcirc Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

Exercises Some Stuff for the Lab

イロト イヨト イヨト

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise} \left(\boldsymbol{x} \right) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e$$

Where the ϵ

It has a $e \sim N\left(\mu, \sigma^2
ight)$

Thus, we can do the following

$$y_{noise} = g_{noise}\left(x
ight) = g_{ideal}\left(x
ight) + e$$

イロン イロン イヨン イヨン

(8)

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e$$

Where the e

It has a $e \sim N\left(\mu, \sigma^2\right)$

Thus, we can do the following

$$y_{noise} = g_{noise}\left(x
ight) = g_{ideal}\left(x
ight) + e$$

イロン イロン イヨン イヨン

(8)

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise} \left(\boldsymbol{x} \right) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e$$

Where the e

It has a $e \sim N\left(\mu, \sigma^2\right)$

Thus, we can do the following

$$y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = g_{ideal}\left(\boldsymbol{x}\right) + e$$
 (9)

(8)

Thus, we have

What to do?

$$e = y_{noise} - g_{ideal}\left(\boldsymbol{x}\right)$$

Graphically

Thus, we have

What to do?

$$e = y_{noise} - g_{ideal}\left(\boldsymbol{x}\right) \tag{10}$$

Graphically

39/122

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}\left(\boldsymbol{x}\right) \tag{11}$$

We use y_{ideal}

$$e = y_{ideal} - g_{ideal}\left(oldsymbol{x}
ight)$$

We will see

How the geometry will solve the problem with using these labels.

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}\left(\boldsymbol{x}\right) \tag{11}$$

We use y_{ideal}

$$e = y_{ideal} - g_{ideal} \left(\boldsymbol{x} \right) \tag{12}$$

We will see

How the geometry will solve the problem with using these labels.

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}\left(\boldsymbol{x}\right) \tag{11}$$

We use y_{ideal}

$$e = y_{ideal} - g_{ideal} \left(\boldsymbol{x} \right) \tag{12}$$

We will see

How the geometry will solve the problem with using these labels.

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea

The Final Error Equation

- $\ensuremath{\textcircled{}}$ Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

Here, we have multiple errors

Sum Over All the Errors

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

イロト イヨト イヨト イヨト

Sum Over All the Errors

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

Generalizing

• The dimensionality of each sample (data point) is *d*.

Sum Over All the Errors

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

Generalizing

- The dimensionality of each sample (data point) is d.
- You can extend each vector sample to be ${m x}^T=({f 1},{m x}').$

イロン イロン イヨン イヨン

We can use a trick

The following function

We can rewrite the error equation as

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2 = \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2$$
(14)

イロト イロト イヨト イヨト

We can use a trick

The following function

We can rewrite the error equation as

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2 = \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2$$
(14)

э

イロン イロン イヨン イヨン

Furthermore

Then stacking all the possible estimations into the product Data Matrix and weight vector

	$\begin{pmatrix} 1 \end{pmatrix}$	$(oldsymbol{x}_1)_1$		$(oldsymbol{x}_1)_j$	•••	$(\boldsymbol{x}_1)_d$	(w_1)
	1 :			÷		÷	w_2
Xw =	1	$(oldsymbol{x}_i)_1$		$(oldsymbol{x}_i)_j$		$(\boldsymbol{x}_i)_d$	w_3
	1			÷		:	
	$\setminus 1$	$(oldsymbol{x}_N)_1$	•••	$\left(oldsymbol{x}_N ight)_j$		$\left(oldsymbol{x}_{N} ight) _{d}$	$\left(w_{d+1} \right)$

Note about other representations

We could have $oldsymbol{x}^T = (x_1, x_2,, x_d, 1)$ thus												
X =	$\left(egin{array}{c} (oldsymbol{x}_1)_1 \ (oldsymbol{x}_i)_1 \ (oldsymbol{x}_N)_1 \end{array} ight)$		$egin{array}{c} (m{x}_1)_j \ dots \ (m{x}_i)_j \ dots \ (m{x}_i)_j \ dots \ (m{x}_N)_j \ dots \ (m{x}_N)_j \end{array}$		$egin{array}{c} (oldsymbol{x}_1)_d \ dots \ (oldsymbol{x}_i)_d \ dots \ (oldsymbol{x}_i)_d \ dots \ (oldsymbol{x}_N)_d \end{array}$	$\begin{array}{c}1\\\vdots\\1\\\vdots\\1\end{array}\right)$	(15)					

Then, we have the following trick with $oldsymbol{X}$

With the Data Matrix

$$\boldsymbol{X}w = \begin{pmatrix} \boldsymbol{x}_{1}^{T}\boldsymbol{w} \\ \boldsymbol{x}_{2}^{T}\boldsymbol{w} \\ \boldsymbol{x}_{3}^{T}\boldsymbol{w} \\ \vdots \\ \boldsymbol{x}_{N}^{T}\boldsymbol{w} \end{pmatrix}$$
(16)

Therefore

We have that

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_4 \end{pmatrix} - \begin{pmatrix} \boldsymbol{x}_1^T \boldsymbol{w} \\ \boldsymbol{x}_2^T \boldsymbol{w} \\ \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ \boldsymbol{x}_N^T \boldsymbol{w} \end{pmatrix} = \begin{pmatrix} y_1 - \boldsymbol{x}_1^T \boldsymbol{w} \\ y_2 - \boldsymbol{x}_2^T \boldsymbol{w} \\ y_3 - \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ y_4 - \boldsymbol{x}_N^T \boldsymbol{w} \end{pmatrix}$$

Cinvestav

・ロン ・回と ・ヨン ・ヨン

Then, we have the following equality

$$\left(\begin{array}{ccc} y_1 - x_1^T w & y_2 - x_2^T w & y_3 - x_3^T w & \cdots & y_4 - x_N^T w \end{array} \right) \left(\begin{array}{c} y_1 - x_1^T w \\ y_2 - x_1^T w \\ y_3 - x_1^T w \\ \vdots \\ y_4 - x_N^T w \end{array} \right) = \sum_{i=1}^N \left(y_i - x_i^T w \right)^2$$

Therefore

We have that

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_4 \end{pmatrix} - \begin{pmatrix} \boldsymbol{x}_1^T \boldsymbol{w} \\ \boldsymbol{x}_2^T \boldsymbol{w} \\ \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ \boldsymbol{x}_N^T \boldsymbol{w} \end{pmatrix} = \begin{pmatrix} y_1 - \boldsymbol{x}_1^T \boldsymbol{w} \\ y_2 - \boldsymbol{x}_2^T \boldsymbol{w} \\ y_3 - \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ y_4 - \boldsymbol{x}_N^T \boldsymbol{w} \end{pmatrix}$$

48 / 122

Then, we have the following equality

$$\left(\begin{array}{cccc} y_{1} - x_{1}^{T}w & y_{2} - x_{2}^{T}w & y_{3} - x_{3}^{T}w & \cdots & y_{4} - x_{N}^{T}w \end{array}\right) \left(\begin{array}{c} y_{1} - x_{1}^{T}w \\ y_{2} - x_{2}^{T}w \\ y_{3} - x_{3}^{T}w \\ \vdots \\ y_{4} - x_{N}^{T}w \end{array}\right) = \sum_{i=1}^{N} \left(y_{i} - x_{i}^{T}w\right)^{2}$$

The following equality

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}_i^T \boldsymbol{w} \right)^2 = \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \right)^T \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \right) = \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \|_2^2 \qquad (17)$$

イロト イロト イヨト イヨ

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} - \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w}$$
 (18)

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} - \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w}$$
 (18)

Now

ullet Derive with respect to w

イロト イヨト イヨト イヨト

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} - \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w}$$
 (18)

Now

- ullet Derive with respect to w
- Assume that $\boldsymbol{X}^T \boldsymbol{X}$ is invertible

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation

${\small \bigcirc}$ Remember in matrices of 3×3

- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

Some Basic Definitions

Some Basic Definitions

We have

Given A and B matrices:

(A + B) = A^T + B^T
(AB)^T = B^TA^T
Given vectors x, y and a matrix A such that you can multiply them:
x^TAy = [x^TAy]^T = y^TA^Tx given that the transpose of a number is the number itself.

We have

Given A and B matrices:

•
$$(A+B)^T = A^T + B^T$$

Given vectors x, y and a matrix A such that you can multiply them: • $x^T A y = \left[x^T A y \right]^T = y^T A^T x$ given that the transpose of a number is the number itself.

We have

Given A and B matrices:

•
$$(A+B)^T = A^T + B^T$$

•
$$(AB)^T = B^T A^T$$

iven vectors x, y and a matrix A such that you can multiply them:

• $x^T A y = \left[x^T A y \right]^T = y^T A^T x$ given that the transpose of a number is the number itself.

We have

Given A and B matrices:

- $(A+B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$

Given vectors x, y and a matrix A such that you can multiply them:

 $x^{T}Ay = \begin{bmatrix} x^{T}Ay \end{bmatrix}^{T} = y^{T}A^{T}x$ given that the transpose of a number is the number itself.

イロト イヨト イヨト イヨト

We have

Given A and B matrices:

• $(A+B)^T = A^T + B^T$ • $(AB)^T = B^T A^T$

Given vectors x, y and a matrix A such that you can multiply them:

• $x^T A y = \begin{bmatrix} x^T A y \end{bmatrix}^T = y^T A^T x$ given that the transpose of a number is the number itself.

Some Basic Definitions for

Derivative on Matrices

Therefore

We have

55 / 122

Therefore

We have

55 / 122
Therefore

We have

$$\frac{d\begin{pmatrix}a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3}\\a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3}\\a_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3}\end{pmatrix}}{da_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3}} = \dots$$

$$\frac{d\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}{d\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}} = \dots$$

$$\frac{d(a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3})}{dx_{1}} \quad \frac{d(a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3})}{dx_{2}} \quad \frac{d(a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3})}{dx_{3}} \quad \frac{d(a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3})}{dx_{3}}}{d(a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3})} \quad \frac{d(a_{21}x_{1}+a_{22}x_{2}+a_{13}x_{3})}{dx_{3}} \quad \frac{d(a_{21}x_{1}+a_{22}x_{2}+a_{13}x_{3})}{dx_{3}} \quad \frac{d(a_{21}x_{1}+a_{22}x_{2}+a_{13}x_{3})}{dx_{3}} \quad \frac{d(a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3})}{dx_{3}} \quad \frac{d(a_{21}x_{1}+a_{22}x_{2}+a_{33}x_{3})}{dx_{3}} \quad \frac{d(a_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3})}{dx_{3}} \quad \frac{d(a_{31}x_{1}+a_{32}x_{3}+a_{33}x_{3})}{dx_{3}} \quad \frac{d(a_{31}x_{1}+a_{32}x_{3}+a_{33}x_{3})}{dx_{3}} \quad \frac{d(a_{31}x_{1}+a_{32}x_{3}+a_{33}x_{3})}{dx_{3}} \quad \frac{d(a_{31}x_{1}+a_{32}x_{$$

< □ ▶ < □ ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ < ∃ > ○ Q <> 55 / 122

Therefore

We have the following equivalences

$$\frac{d\boldsymbol{w}^{T}A\boldsymbol{w}}{d\boldsymbol{w}} = \boldsymbol{w}^{T}\left(A + A^{T}\right), \ \frac{d\boldsymbol{w}^{T}A}{d\boldsymbol{w}} = A^{T}$$
(19)

Now given that the transpose of a number is the number itself

$$oldsymbol{y}^Toldsymbol{X}oldsymbol{w} = egin{bmatrix} oldsymbol{y}^Toldsymbol{X}oldsymbol{w}\end{bmatrix}^T = oldsymbol{w}^Toldsymbol{X}^Toldsymbol{y}$$

ヘロト ヘロト ヘヨト ヘヨト

Therefore

We have the following equivalences

$$\frac{d\boldsymbol{w}^{T}A\boldsymbol{w}}{d\boldsymbol{w}} = \boldsymbol{w}^{T}\left(A + A^{T}\right), \ \frac{d\boldsymbol{w}^{T}A}{d\boldsymbol{w}} = A^{T}$$
(19)

Now given that the transpose of a number is the number itself

$$\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} = \left[\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} \right]^T = \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y}$$

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y}-2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y}+\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}}=-2\boldsymbol{y}^{T}\boldsymbol{X}+\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}+\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y} - 2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}} = -2\boldsymbol{y}^{T}\boldsymbol{X} + \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X} + \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$= -2\boldsymbol{y}^{T}\boldsymbol{X} + 2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y} - 2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}} = -2\boldsymbol{y}^{T}\boldsymbol{X} + \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X} + \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$= -2\boldsymbol{y}^{T}\boldsymbol{X} + 2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

$$-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)=0$$

We apply the transpose

$$\begin{bmatrix} -2\boldsymbol{y}^T\boldsymbol{X} + 2\boldsymbol{w}^T \left(\boldsymbol{X}^T\boldsymbol{X}\right) \end{bmatrix}^T = \begin{bmatrix} 0 \end{bmatrix}^T$$
$$-2\boldsymbol{X}^T\boldsymbol{y} + 2\left(\boldsymbol{X}^T\boldsymbol{X}\right)\boldsymbol{w} = 0 \text{ (column vector)}$$

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y} - 2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}} = -2\boldsymbol{y}^{T}\boldsymbol{X} + \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X} + \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$= -2\boldsymbol{y}^{T}\boldsymbol{X} + 2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

$$-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)=0$$

We apply the transpose

$$\left[-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right]^{T}=\left[0\right]^{T}$$

 $(\mathbf{X}^T \mathbf{y} + 2 (\mathbf{X}^T \mathbf{X}) \mathbf{w} = 0 \text{ (column vector)})$

We have then

$$\frac{d\left(\boldsymbol{y}^{T}\boldsymbol{y} - 2\boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}\right)}{d\boldsymbol{w}} = -2\boldsymbol{y}^{T}\boldsymbol{X} + \boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X} + \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\right)$$
$$= -2\boldsymbol{y}^{T}\boldsymbol{X} + 2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)$$

Making this equal to the zero row vector

$$-2\boldsymbol{y}^{T}\boldsymbol{X}+2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)=0$$

We apply the transpose

$$\begin{bmatrix} -2\boldsymbol{y}^{T}\boldsymbol{X} + 2\boldsymbol{w}^{T}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right) \end{bmatrix}^{T} = \begin{bmatrix} 0 \end{bmatrix}^{T}$$
$$-2\boldsymbol{X}^{T}\boldsymbol{y} + 2\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)\boldsymbol{w} = 0 \text{ (column vector)}$$

57 / 122

Solving for \boldsymbol{w}

We have then

$$\boldsymbol{w} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
(20)

Note: $X^T X$ is always positive semi-definite. If it is also invertible, it is positive definite.

Thus, How we get the discriminant function?

Any Ideas?

Solving for \boldsymbol{w}

We have then

$$\boldsymbol{w} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
(20)

Note: $X^T X$ is always positive semi-definite. If it is also invertible, it is positive definite.

Thus, How we get the discriminant function?

Any Ideas?

The Final Discriminant Function

Very Simple!!!

$$g(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w} = \boldsymbol{x}^T \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
(21)

・ロト ・日下・ ・ ヨト・

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and rank(X) = m. We call the matrix

the pseudo inverse of X.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and rank(X) = m. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^T$$

the pseudo inverse of X.

X^+ inverts X on its image

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and rank(X) = m. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^T$$

the pseudo inverse of X.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and rank(X) = m. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^T$$

the pseudo inverse of X.

Reason

X^+ inverts X on its image

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and rank(X) = m. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^T$$

the pseudo inverse of X.

Reason

X^+ inverts X on its image

What?

• First a definition

For $w \in image\left(X
ight)$, then there is some $v \in \mathbb{R}^n$ such that w = Xv

• Hence, $oldsymbol{X}^+oldsymbol{w} = oldsymbol{X}^+oldsymbol{X} v = oldsymbol{\left(X^TX
ight)}^{-1}oldsymbol{X}^Toldsymbol{X} v = oldsymbol{v}$.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and rank(X) = m. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^T$$

the pseudo inverse of X.

Reason

X^+ inverts X on its image

What?

First a definition

• If $w \in image(X)$, then there is some $v \in \mathbb{R}^n$ such that w = Xv.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and rank(X) = m. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^T$$

the pseudo inverse of X.

Reason

X^+ inverts X on its image

What?

- First a definition
 - If $w \in image(X)$, then there is some $v \in \mathbb{R}^n$ such that w = Xv.

• Hence, $oldsymbol{X}^+ oldsymbol{w} = oldsymbol{X}^+ oldsymbol{X} v = \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{X} v = oldsymbol{v}$

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 The Geometry of a Two-Category Linearly-Separable Case
- The Geometry of
 The Error Idea
- The Final Error Equation
- Remember in matrices of 3×3

What Lives Where?

- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

The Data Matrix

$$oldsymbol{X} \in \mathbb{R}^{N imes (d+1)}$$

$Image\left(oldsymbol{X} ight)=span\left\{oldsymbol{X}_{1}^{col},...,oldsymbol{X}_{d+1}^{col} ight\}$

Note: Remember that the image of a matrix X is all the vectors $Xv\in \mathbb{R}^N$ with $v\in \mathbb{R}^{d+1}$

Cinvestav

∃ ∽ Q ⊂ 62 / 122

The Inputs

The Data Matrix

$$\boldsymbol{X} \in \mathbb{R}^{N imes (d+1)}$$

 $Image\left(\boldsymbol{X} \right)$

$$Image\left(\boldsymbol{X}\right) = span\left\{\boldsymbol{X}_{1}^{col},...,\boldsymbol{X}_{d+1}^{col}\right\}$$

Note: Remember that the image of a matrix $m{X}$ is all the vectors $m{X}m{v}\in\mathbb{R}^N$ with $m{v}\in\mathbb{R}^{d+1}$

ヘロト ヘロト ヘヨト ヘヨト

∃ ∽ Q ⊂ 62 / 122

The Data Matrix

$$oldsymbol{X} \in \mathbb{R}^{N imes (d+1)}$$

 $Image\left(\boldsymbol{X} \right)$

$$Image\left(\boldsymbol{X}\right) = span\left\{\boldsymbol{X}_{1}^{col},...,\boldsymbol{X}_{d+1}^{col}\right\}$$

Note: Remember that the image of a matrix $m{X}$ is all the vectors $m{X}m{v}\in\mathbb{R}^N$ with $m{v}\in\mathbb{R}^{d+1}$

The Inputs

$$oldsymbol{x_i} \in \mathbb{R}^d$$

ヘロト ヘロト ヘビト ヘビト

∃ ∽ Q ⊂ 62 / 122

The Weight Vector $oldsymbol{w}$

$$oldsymbol{w} \in \mathbb{R}^{d+1}$$

What about the column space of X and the ideal input vector $m{y}$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

The Weight Vector $oldsymbol{w}$

$$oldsymbol{w} \in \mathbb{R}^{d+1}$$

What about the column space of $oldsymbol{X}$ and the ideal input vector $oldsymbol{y}$

$$oldsymbol{X_i^{col}},oldsymbol{y}\in\mathbb{R}^N$$

イロン イロン イヨン イヨン

We can now see where \boldsymbol{y} is being projected

Basically y, the list of real inputs is being proyected into

by the

$$span\left\{\boldsymbol{X}_{1}^{col}, \boldsymbol{X}_{2}^{col}, ..., \boldsymbol{X}_{d+1}^{col}\right\}$$
(22)
projection operator $\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$.

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \bigcirc Remember in matrices of 3×3
- What Lives Where?

Geometric Interpretation

- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

イロト イヨト イヨト

Geometric Interpretation

We have

The image of the mapping:

$$h: oldsymbol{w} \longmapsto oldsymbol{X} oldsymbol{w}$$

$$h: \mathbb{R}^{d+1} \longmapsto \mathbb{R}^N$$

is a linear subspace of \mathbb{R}^N .

How? Ideas Think about this!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Geometric Interpretation

We have

The image of the mapping:

$$h: oldsymbol{w} \longmapsto oldsymbol{X} oldsymbol{w}$$

$$h: \mathbb{R}^{d+1} \longmapsto \mathbb{R}^N$$

is a linear subspace of \mathbb{R}^N .

How? Ideas

Think about this!!!

э

イロト イヨト イヨト イヨト

What about w?

As $oldsymbol{w}$ can moves through all points in \mathbb{R}^{d+1} when being generated

The function value h(w) = Xw can move through all points in the image space:

$$image\left(\boldsymbol{X}\right) = span\left\{\boldsymbol{X}_{1}^{col}, \boldsymbol{X}_{2}^{col}, ..., \boldsymbol{X}_{d+1}^{col}\right\}$$

Additionally, each w defines one point in $span\left\{X_1^{out},X_2^{out},...,X_{d+1}^{out}
ight\}\subseteq \mathbb{R}^N$

$$h\left(oldsymbol{w}
ight)=oldsymbol{X}oldsymbol{w}=\sum_{i=1}^{d+1}w_{i}oldsymbol{X}_{i}^{col}.$$

イロト イヨト イヨト

What about w?

As $oldsymbol{w}$ can moves through all points in \mathbb{R}^{d+1} when being generated

The function value h(w) = Xw can move through all points in the image space:

$$image\left(oldsymbol{X}
ight) = span\left\{ oldsymbol{X}_{1}^{col},oldsymbol{X}_{2}^{col},...,oldsymbol{X}_{d+1}^{col}
ight\}$$

Additionally, each \boldsymbol{w} defines one point in $span\left\{\boldsymbol{X}_{1}^{col}, \boldsymbol{X}_{2}^{col}, ..., \boldsymbol{X}_{d+1}^{col}\right\} \subseteq \mathbb{R}^{N}$

$$h\left(\boldsymbol{w}\right) = \boldsymbol{X}\boldsymbol{w} = \sum_{i=1}^{d+1} w_i \boldsymbol{X}_i^{col}.$$

イロト イヨト イヨト

What about the optimality of w?

We have a composition of functions that are convex

$$f(\boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{x}$$
$$g(t) = (y - t)$$
$$h(e) = \sum_{i=1}^n e^2$$

• Making the Least Squared Error a Convex function with a single minimum!!!

The derivative method produces a \overline{w} -

• Such that $\widehat{m{w}}$ minimizes the distance $d\left(m{y},image\left(m{X}
ight)
ight).$

What about the optimality of w?

We have a composition of functions that are convex

$$f(\boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{x}$$
$$g(t) = (y - t)$$
$$h(e) = \sum_{i=1}^n e^2$$

 Making the Least Squared Error a Convex function with a single minimum!!!

The derivative method produces a \widehat{w}

• Such that \widehat{w} minimizes the distance d(y, image(X)).

Cinvestav ≧ ∽ ۹ (~ 68 / 122

イロト イヨト イヨト

Geometrically

イロト イヨト イヨト イヨト

This Resolve Our Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

We assume a similar number of elements in both classes

イロト イロト イヨト イヨト

This Resolve Our Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

We assume a similar number of elements in both classes

イロト イヨト イヨト

70/122

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- ${\small \bigcirc}$ Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation

Multi-Class Solution

- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

Exercises Some Stuff for the Lab

イロト イヨト イヨト
Multi-Class Solution

What to do?

$\bullet We might reduce the problem to c-1 two-class problems.$

Multi-Class Solution

What to do?

0 We might reduce the problem to <math>c-1 two-class problems.

2 We might use $\frac{c(c-1)}{2}$ linear discriminants, one for every pair of classes.

Multi-Class Solution

What to do?

- **(**) We might reduce the problem to c-1 two-class problems.
- 2 We might use $\frac{c(c-1)}{2}$ linear discriminants, one for every pair of classes.

However

What to Do?

Define \boldsymbol{c} linear discriminant functions

$$g_{i}\left(oldsymbol{x}
ight) =oldsymbol{w}^{T}oldsymbol{x}+w_{i0}$$
 for $i=1,...,c$

This is known as a linear machine

Rule: if $g_{k}\left(x
ight)>g_{j}\left(x
ight)$ for all $j
eq k\Longrightarrow x\in\omega_{k}$

Decision Regions are Convex.

(23)

What to Do?

Define c linear discriminant functions

$$g_i\left(oldsymbol{x}
ight) = oldsymbol{w}^Toldsymbol{x} + w_{i0} ext{ for } i=1,...,c$$

This is known as a linear machine

Rule: if $g_{k}\left(\boldsymbol{x}\right) > g_{j}\left(\boldsymbol{x}\right)$ for all $j \neq k \Longrightarrow \boldsymbol{x} \in \omega_{k}$

Nice Properties (It can be proved!!!)

Decision Regions are Singly Connected.

O Decision Regions are Convex.

(23

What to Do?

Define c linear discriminant functions

$$g_i\left(oldsymbol{x}
ight) = oldsymbol{w}^Toldsymbol{x} + w_{i0} ext{ for } i=1,...,c$$

This is known as a linear machine

Rule: if $g_{k}\left(\boldsymbol{x}\right) > g_{j}\left(\boldsymbol{x}\right)$ for all $j \neq k \Longrightarrow \boldsymbol{x} \in \omega_{k}$

Nice Properties (It can be proved!!!)

- Decision Regions are Singly Connected.
- Occision Regions are Convex.

イロン イロン イヨン イヨン

(23

Actually quite simple

Given

$\boldsymbol{y} = \lambda \boldsymbol{x}_A + (1 - \lambda) \, \boldsymbol{x}_B$

with $\lambda \in (0,1)$.

Actually quite simple

Given

$$\boldsymbol{y} = \lambda \boldsymbol{x}_A + (1 - \lambda) \, \boldsymbol{x}_B$$

CITIVESCOV

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

with $\lambda \in (0,1)$.

We know that

$$g_k \left(oldsymbol{y}
ight) = oldsymbol{w}^T \left(\lambda oldsymbol{x}_A + \left(1 - \lambda
ight) oldsymbol{x}_B
ight) + w_0$$

For all j
eq k

We know that

$$g_k (\boldsymbol{y}) = \boldsymbol{w}^T (\lambda \boldsymbol{x}_A + (1 - \lambda) \boldsymbol{x}_B) + w_0$$

= $\lambda \boldsymbol{w}^T \boldsymbol{x}_A + \lambda w_0 + (1 - \lambda) \boldsymbol{w}^T \boldsymbol{x}_B + (1 - \lambda) w_0$

For all $j \neq k$

We know that

$$g_{k}(\boldsymbol{y}) = \boldsymbol{w}^{T} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B}) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1 - \lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\boldsymbol{x}_{A}) + (1 - \lambda) g_{k}(\boldsymbol{x}_{A})$$

$$> g_{j}\left(oldsymbol{y}
ight)$$

For all $j \neq k$

We know that

$$g_{k}(\boldsymbol{y}) = \boldsymbol{w}^{T} \left(\lambda \boldsymbol{x}_{A} + (1-\lambda) \boldsymbol{x}_{B}\right) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1-\lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1-\lambda) w_{0}$$

$$= \lambda g_{k}(\boldsymbol{x}_{A}) + (1-\lambda) g_{k}(\boldsymbol{x}_{A})$$

$$> \lambda g_{j}(\boldsymbol{x}_{A}) + (1-\lambda) g_{j}(\boldsymbol{x}_{A})$$

• y belongs to an area k defined by the rule!!!

This area is Convex and Singly Connected because the definition or

CIIIVESCAV

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ 75 / 122

We know that

$$g_{k}(\boldsymbol{y}) = \boldsymbol{w}^{T} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B}) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1 - \lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k} (\boldsymbol{x}_{A}) + (1 - \lambda) g_{k} (\boldsymbol{x}_{A})$$

$$> \lambda g_{j} (\boldsymbol{x}_{A}) + (1 - \lambda) g_{j} (\boldsymbol{x}_{A})$$

$$> g_{j} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B})$$

For all $j \neq i$

We know that

$$g_{k}(\boldsymbol{y}) = \boldsymbol{w}^{T} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B}) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1 - \lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\boldsymbol{x}_{A}) + (1 - \lambda) g_{k}(\boldsymbol{x}_{A})$$

$$> \lambda g_{j}(\boldsymbol{x}_{A}) + (1 - \lambda) g_{j}(\boldsymbol{x}_{A})$$

$$> g_{j}(\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B})$$

$$> g_{j}(\boldsymbol{y})$$

For all $j \neq k$

We know that

$$g_{k}(\boldsymbol{y}) = \boldsymbol{w}^{T} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B}) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1 - \lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k}(\boldsymbol{x}_{A}) + (1 - \lambda) g_{k}(\boldsymbol{x}_{A})$$

$$> \lambda g_{j}(\boldsymbol{x}_{A}) + (1 - \lambda) g_{j}(\boldsymbol{x}_{A})$$

$$> g_{j}(\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B})$$

$$> g_{j}(\boldsymbol{y})$$

For all $j \neq k$

We know that

$$g_{k}(\boldsymbol{y}) = \boldsymbol{w}^{T} \left(\lambda \boldsymbol{x}_{A} + (1-\lambda) \boldsymbol{x}_{B}\right) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1-\lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1-\lambda) w_{0}$$

$$= \lambda g_{k} \left(\boldsymbol{x}_{A}\right) + (1-\lambda) g_{k} \left(\boldsymbol{x}_{A}\right)$$

$$> \lambda g_{j} \left(\boldsymbol{x}_{A}\right) + (1-\lambda) g_{j} \left(\boldsymbol{x}_{A}\right)$$

$$> g_{j} \left(\lambda \boldsymbol{x}_{A} + (1-\lambda) \boldsymbol{x}_{B}\right)$$

$$> g_{j} \left(\boldsymbol{y}\right)$$

For all $j \neq k$

We know that

$$g_{k} (\boldsymbol{y}) = \boldsymbol{w}^{T} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B}) + w_{0}$$

$$= \lambda \boldsymbol{w}^{T} \boldsymbol{x}_{A} + \lambda w_{0} + (1 - \lambda) \boldsymbol{w}^{T} \boldsymbol{x}_{B} + (1 - \lambda) w_{0}$$

$$= \lambda g_{k} (\boldsymbol{x}_{A}) + (1 - \lambda) g_{k} (\boldsymbol{x}_{A})$$

$$> \lambda g_{j} (\boldsymbol{x}_{A}) + (1 - \lambda) g_{j} (\boldsymbol{x}_{A})$$

$$> g_{j} (\lambda \boldsymbol{x}_{A} + (1 - \lambda) \boldsymbol{x}_{B})$$

$$> g_{j} (\boldsymbol{y})$$

For all $j \neq k$

Or...

- y belongs to an area k defined by the rule!!!
- This area is Convex and Singly Connected because the definition of y.

However!!!

No so nice properties!!!

• It limits the power of classification for multi-objective function.

How do we train this Linear Machine?

We know that each ω_k class is described by

$$g_{k}\left(\boldsymbol{x}
ight) = \boldsymbol{w}_{\boldsymbol{k}}^{T}\boldsymbol{x} + w_{0}$$
 where $k=1,...,c$

We then design a single machine.

$$g\left(oldsymbol{x}
ight) =oldsymbol{W}^{T}oldsymbol{x}$$

How do we train this Linear Machine?

We know that each ω_k class is described by

$$g_{k}\left(oldsymbol{x}
ight)=oldsymbol{w}_{oldsymbol{k}}^{T}oldsymbol{x}+w_{0}$$
 where $k=1,...,c$

We then design a single machine

$$g\left(oldsymbol{x}
ight) =oldsymbol{W}^{T}oldsymbol{x}$$

イロト イヨト イヨト

(24

Where

We have the following

,	$W^T = $	1 1 1	$w_{11} \\ w_{21} \\ w_{31}$	$w_{12} \\ w_{22} \\ w_{32}$	 w_{1d} w_{2d} w_{3d}	(25)
		: 1	\vdots w_{c1}	\vdots w_{c2}	 \vdots w_{cd})	(

What about the labels?

OK, we know how to do with 2 classes, What about many classes?

イロト イロト イヨト イヨト

Where

We have the following

	$\begin{pmatrix} 1 \end{pmatrix}$	w_{11}	w_{12}	• • •	w_{1d}	
	1	w_{21}	w_{22}	• • •	w_{2d}	
$oldsymbol{W}^T =$	1	w_{31}	w_{32}	• • •	w_{3d}	(25)
	:	÷	÷		÷	· · ·
	$\left(1 \right)$	w_{c1}	w_{c2}	•••	w_{cd})	

What about the labels?

OK, we know how to do with 2 classes, What about many classes?

イロン イロン イヨン イヨン

How do we train this Linear Machine?

Use a vector $oldsymbol{t}_i$ with dimensionality c to identify each element at each class

We have then the following dataset

$$\{oldsymbol{x}_i,oldsymbol{t}_i\}$$
 for $i=1,2,...,N$

We build the following Matrix of Vectors

How do we train this Linear Machine?

Use a vector \boldsymbol{t}_i with dimensionality c to identify each element at each class

We have then the following dataset

$$\{oldsymbol{x}_i,oldsymbol{t}_i\}$$
 for $i=1,2,...,N$

We build the following Matrix of Vectors

$$oldsymbol{T} = egin{pmatrix} oldsymbol{t}_1^T & oldsymbol{t}_2^T \ oldsymbol{t}_2 & oldsymbol{:} \ oldsymbol{t}_{N-1}^T & oldsymbol{t}_N^T \ oldsymbol{t}_N^T \end{pmatrix}$$

(26)

79/122

イロト イヨト イヨト

Examples for the t_i

Another possible vector

Examples for the t_i

Another possible vector

A Matrix containing all the required information

$$XW - T$$
 (27)

A Matrix containing all the required information

$$XW - T \tag{27}$$

Where we have the following vector

$$\begin{bmatrix} \boldsymbol{x}_i^T \boldsymbol{w}_1, \boldsymbol{x}_i^T \boldsymbol{w}_2, \boldsymbol{x}_i^T \boldsymbol{w}_3, ..., \boldsymbol{x}_i^T \boldsymbol{w}_c \end{bmatrix}$$
 (28)

Remark: It is the vector result of multiplication of row i of X against W on XW.

A Matrix containing all the required information

$$XW - T \tag{27}$$

Where we have the following vector

$$\begin{bmatrix} \boldsymbol{x}_i^T \boldsymbol{w}_1, \boldsymbol{x}_i^T \boldsymbol{w}_2, \boldsymbol{x}_i^T \boldsymbol{w}_3, ..., \boldsymbol{x}_i^T \boldsymbol{w}_c \end{bmatrix}$$
(28)

Remark: It is the vector result of multiplication of row i of X against W on XW.

A Matrix containing all the required information

$$XW - T \tag{27}$$

Where we have the following vector

$$\left[\boldsymbol{x}_{i}^{T}\boldsymbol{w}_{1}, \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{2}, \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{3}, ..., \boldsymbol{x}_{i}^{T}\boldsymbol{w}_{c}\right]$$
(28)

Remark: It is the vector result of multiplication of row i of X against W on XW.

That is compared to the vector \boldsymbol{t}_i^T on \boldsymbol{T} by using the subtraction of vectors

$$e_i = \left[\boldsymbol{x}_i^T \boldsymbol{w}_1, \boldsymbol{x}_i^T \boldsymbol{w}_2, \boldsymbol{x}_i^T \boldsymbol{w}_3, ..., \boldsymbol{x}_i^T \boldsymbol{w}_c \right] - \boldsymbol{t}_i^T$$
(29)

What do we want?

We want the quadratic error

$$\frac{1}{2}e_i^2$$

This specific quadratic errors are at the diagonal of the matrix

$$(\boldsymbol{X}\boldsymbol{W}-\boldsymbol{T})^T (\boldsymbol{X}\boldsymbol{W}-\boldsymbol{T})$$

We can use the trace function to generate the desired total error of

< ロ > < 回 > < 回 > < 回 > < 回 >

What do we want?

We want the quadratic error

$$\frac{1}{2}e_i^2$$

This specific quadratic errors are at the diagonal of the matrix

$$\left(\boldsymbol{X}\boldsymbol{W}-\boldsymbol{T}\right)^{T}\left(\boldsymbol{X}\boldsymbol{W}-\boldsymbol{T}\right)$$

We can use the trace function to generate the desired total error of

イロト イロト イヨト イヨト

What do we want?

We want the quadratic error

$$\frac{1}{2}e_i^2$$

This specific quadratic errors are at the diagonal of the matrix

$$(\boldsymbol{X}\boldsymbol{W}-\boldsymbol{T})^T (\boldsymbol{X}\boldsymbol{W}-\boldsymbol{T})$$

We can use the trace function to generate the desired total error of

$$J\left(\cdot\right) = \frac{1}{2}\sum_{i=1}^{N}e_{i}^{2}$$

< ロ > < 同 > < 回 > < 回 >

(30)

The trace allows to express the total error

$$J(\boldsymbol{W}) = \frac{1}{2}Trace\left\{ (\boldsymbol{X}\boldsymbol{W} - \boldsymbol{T})^T (\boldsymbol{X}\boldsymbol{W} - \boldsymbol{T}) \right\}$$
(31)

Thus, we have by the same derivative method

$$\boldsymbol{W} = \left(\boldsymbol{X}^T \boldsymbol{X} \right) \boldsymbol{X}^T \boldsymbol{T} = \boldsymbol{X}^+ \boldsymbol{T}$$
(32)

Then

The trace allows to express the total error

$$J(\boldsymbol{W}) = \frac{1}{2}Trace\left\{ (\boldsymbol{X}\boldsymbol{W} - \boldsymbol{T})^T (\boldsymbol{X}\boldsymbol{W} - \boldsymbol{T}) \right\}$$
(31)

Thus, we have by the same derivative method

$$\boldsymbol{W} = \left(\boldsymbol{X}^T \boldsymbol{X}\right) \boldsymbol{X}^T \boldsymbol{T} = \boldsymbol{X}^+ \boldsymbol{T}$$
(32)

How do we obtain the discriminant?

Thus, we obtain the discriminant

$$g(\boldsymbol{x}) = \boldsymbol{W}^{T}\boldsymbol{x} = \boldsymbol{T}^{T}\left(\boldsymbol{X}^{+}\right)^{T}\boldsymbol{x}$$
(33)
Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \bigcirc Remember in matrices of 3×3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution

Issues with Least Squares!!!

- Singularity Notes
- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

Exercises Some Stuff for the L

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \blacksquare Remember in matrices of $3\,\times\,3$
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution

Issues with Least Squares!!! Singularity Notes

- Problem with Outliers
- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

Exercises Some Stuff for the La

We have in matrix notation

$$S = \frac{1}{N-1} \left(X - \mathbf{1}\overline{x}^T \right)^T \left(X - \mathbf{1}\overline{x}^T \right)$$

We have in matrix notation

Thus

$$S = \frac{1}{N-1} \left(X - \mathbf{1}\overline{\boldsymbol{x}}^T \right)^T \left(X - \mathbf{1}\overline{\boldsymbol{x}}^T \right)$$

 X^TX

We have in matrix notation

Thus

$$S = \frac{1}{N-1} \left(X - \mathbf{1}\overline{\boldsymbol{x}}^T \right)^T \left(X - \mathbf{1}\overline{\boldsymbol{x}}^T \right)$$

$$X^T X$$

It looks a lot like a covariance matrix

- Actually, the dependency observed in matrix $X^T X$ between its columns!!!
 - It is the same dependency as the dependency between the features in the data observed after the featured have been centered by \overline{x} .

We have in matrix notation

Thus

$$S = \frac{1}{N-1} \left(X - \mathbf{1}\overline{\boldsymbol{x}}^T \right)^T \left(X - \mathbf{1}\overline{\boldsymbol{x}}^T \right)$$

$$X^T X$$

It looks a lot like a covariance matrix

- Actually, the dependency observed in matrix $X^T X$ between its columns!!!
- It is the same dependency as the dependency between the features in the data observed after the featured have been centered by \overline{x} .

We can apply a similar analysis...

To obtain some of the possible cases that make $X^T X$ singular

A Classical One

- If there is a interdependence between features
 - Meaning some feature is an exact linear combination of the other features.
 - ▶ The X^TX matrix of the features will be singular.

Thus

We can apply a similar analysis...

To obtain some of the possible cases that make $X^T X$ singular

A Classical One

- If there is a interdependence between features
 - Meaning some feature is an exact linear combination of the other features.
 - The $X^T X$ matrix of the features will be singular.

When does this happen?

First

Number of features is equal or greater than the number of samples.

Second

Two or more features sum up to a constant

• For example, $x_2 - 5x_{10} = 0$

Third

Two features are identical or differ merely in mean or variance.

When does this happen?

First

Number of features is equal or greater than the number of samples.

Second

Two or more features sum up to a constant

• For example, $x_2 - 5x_{10} = 0$

Third

Two features are identical or differ merely in mean or variance.

When does this happen?

First

Number of features is equal or greater than the number of samples.

Second

Two or more features sum up to a constant

• For example, $x_2 - 5x_{10} = 0$

Third

Two features are identical or differ merely in mean or variance.

The least squares coefficients \widehat{w} are not uniquely defined.

• The fitted values $\widehat{y} = X \widehat{w}$ are still the projection of y onto the column space of X.

Additionally

Duplicate observations in a data set

It will lead the matrix toward singularity.

Cautionary Tale

When doing some sort of imputation of missing features it is always beneficial (from both statistical and mathematical view) to add some noise to the imputed data.

This can happen in the preprocessing phase

Be careful.

イロト イロト イヨト イヨト

Additionally

Duplicate observations in a data set

It will lead the matrix toward singularity.

Cautionary Tale

When doing some sort of imputation of missing features it is always beneficial (from both statistical and mathematical view) to add some noise to the imputed data.

This can happen in the preprocessing phase

Be careful.

イロト イヨト イヨト イヨト

Additionally

Duplicate observations in a data set

It will lead the matrix toward singularity.

Cautionary Tale

When doing some sort of imputation of missing features it is always beneficial (from both statistical and mathematical view) to add some noise to the imputed data.

This can happen in the preprocessing phase

Be careful.

イロト イボト イヨト イヨト

Also

It can happen also that

• $X^T X$ could be almost not invertible, making Least Squares numerically unstable.

Statistical consequence

High variance of predictions.

Also

It can happen also that

• $X^T X$ could be almost not invertible, making Least Squares numerically unstable.

Statistical consequence

• High variance of predictions.

< ロ > < 回 > < 回 > < 回 > < 回 >

When can this happen?

The non-full-rank case occurs

• Most often when one or more qualitative inputs are coded in a redundant fashion.

How do we solve this?

• Re-encode or dropping redundant columns in X.

Most regression software packagession

 They detect these redundancies and automatically implement some strategies for removing them.

< ロ > < 回 > < 回 > < 回 > < 回 >

When can this happen?

The non-full-rank case occurs

• Most often when one or more qualitative inputs are coded in a redundant fashion.

How do we solve this?

• Re-encode or dropping redundant columns in X.

Most regression software packages

 They detect these redundancies and automatically implement some strategies for removing them.

< ロ > < 同 > < 回 > < 回 >

When can this happen?

The non-full-rank case occurs

 Most often when one or more qualitative inputs are coded in a redundant fashion.

How do we solve this?

• Re-encode or dropping redundant columns in X.

Most regression software packages

 They detect these redundancies and automatically implement some strategies for removing them.

イロト イボト イヨト イヨト

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
- The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \blacksquare Remember in matrices of $3\,\times\,3$
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution

Issues with Least Squares!!!

Singularity Notes

Problem with Outliers

- Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

Exercises

Some Stuff for the La

イロト イボト イヨト イヨト

Issues with Least Squares

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \blacksquare Remember in matrices of $3\,\times\,3$
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution

Issues with Least Squares!!!

- Singularity Notes
- Problem with Outliers

Problem with High Number of Dimensions

- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

Exercises

Some Stuff for the Lab

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

• It needs some form of feature selection.

イロト イボト イヨト イヨト

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

Least Square Error Regression treats all dimensions equally.
 Relevant dimensions might be averaged with irrelevant ones

< ロ > < 同 > < 回 > < 回)

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

Why?

Least Square Error Regression treats all dimensions equally.

Relevant dimensions might be averaged with irrelevant one

< ロ > < 同 > < 回 > < 回 >

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

Why?

- Least Square Error Regression treats all dimensions equally.
- Relevant dimensions might be averaged with irrelevant ones.

< ロ > < 同 > < 回 > < 回)

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \blacksquare Remember in matrices of $3\,\times\,3$
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions

What can be done?

- Using Statistics to find Important Features
- What about Numerical Stability?
- Ridge Regression

Exercise

Some Stuff for the Lab

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- \blacksquare Remember in matrices of $3\,\times\,3$
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions

What can be done?

Using Statistics to find Important Features

- What about Numerical Stability?
- Ridge Regression

Exercises

We will start using some statistics

We want to obtain sampling properties for $\widehat{\boldsymbol{w}}$

For this remember:

$$\widehat{oldsymbol{w}} = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}$$

For this assume,

ullet The observations y_i are uncorrelated and have constant variance σ^2

• The x_i are fixed = not random.

We will start using some statistics

We want to obtain sampling properties for $\widehat{\boldsymbol{w}}$

For this remember:

$$\widehat{oldsymbol{w}} = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}$$

For this assume,

- The observations y_i are uncorrelated and have constant variance σ^2 .
- The x_i are fixed = not random.

< ロ > < 同 > < 回 > < 回 >

Then, we have the variance-covariance matrix

We have

$$Var\left(\widehat{\boldsymbol{w}}\right) = Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right]$$

We have the following equivalence

 $Var\left(Aoldsymbol{y}
ight) = AVar\left(oldsymbol{y}
ight)A^{T}$

イロン イロン イヨン イヨン

Then, we have the variance-covariance matrix

We have

$$Var\left(\widehat{\boldsymbol{w}}\right) = Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right]$$

We have the following equivalence

$$Var(A\boldsymbol{y}) = AVar(\boldsymbol{y})A^{T}$$

Therefore

Something Notable

$$Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

Therefore

Something Notable

$$Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\sigma^{2}I\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

$G(x \in n \text{ that}) = \begin{bmatrix} V_{0}r_{1}(y_{1}) & C_{0}r_{1}(y_{1},y_{2}) & \cdots & C_{0}r_{1}(y_{1},y_{1}) \\ C_{0}r_{1}(y_{2},y_{2}) & \cdots & V_{0}r_{1}(y_{2}) & \cdots & C_{0}r_{1}(y_{1},y_{1}) \\ \vdots & \vdots & \vdots & \vdots \\ C_{0}r_{1}(y_{1},y_{2}) & C_{0}r_{1}(y_{1},y_{2}) & \cdots & V_{0}r_{1}(y_{1}) \end{bmatrix} = \begin{bmatrix} r^{2} & 0 & \cdots & 0 \\ 0 & r^{2} & 0 & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

イロト イヨト イヨト イヨト

э
Something Notable

$$Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\sigma^{2}I\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \sigma^{2}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

Given that

 $Var(y) = \begin{bmatrix} Var(y_1) & Cov(y_1, y_2) & \cdots & Cov(y_1, y_N) \\ Cov(y_2, y_1) & \cdots & Var(y_2) & \cdots & Cov(y_2, y_N) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(y_N, y_1) & Cov(y_N, y_2) & \cdots & Var(y_N) \end{bmatrix} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \sigma^2 \end{bmatrix}$

Cinvestav

э

イロト イヨト イヨト イヨト

Something Notable

$$Var\left[\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}\right] = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}Var\left(\boldsymbol{y}\right)\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\sigma^{2}I\boldsymbol{X}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$
$$= \sigma^{2}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

Given that

$$Var\left(\boldsymbol{y}\right) = \begin{bmatrix} Var\left(y_{1}\right) & Cov\left(y_{1}, y_{2}\right) & \cdots & Cov\left(y_{1}, y_{N}\right) \\ Cov\left(y_{2}, y_{1}\right) & \cdots & Var\left(y_{2}\right) & \cdots & Cov\left(y_{2}, y_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ Cov\left(y_{N}, y_{1}\right) & Cov\left(y_{N}, y_{2}\right) & \cdots & Var\left(y_{N}\right) \end{bmatrix} = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \sigma^{2} \end{bmatrix}$$

102/122

Thus

Typically, we can use the following unbiased estimator

$$\widehat{\sigma}^2 = \frac{1}{N-d-1} \sum_{i=1}^{N} (y_i - \widehat{y}_i)$$

• Which is an unbiased estimator $E\left[\widehat{\sigma}^{2}\right] = \sigma^{2}$.

If we have the following relation

$$Y = E\left(Y|X_1, X_2, \dots, X_d\right) + \epsilon$$

Where

•
$$\epsilon \sim N\left(0,\sigma^2\right)$$

Thus

Typically, we can use the following unbiased estimator

$$\widehat{\sigma}^2 = \frac{1}{N-d-1} \sum_{i=1}^{N} \left(y_i - \widehat{y}_i \right)$$

• Which is an unbiased estimator $E\left[\hat{\sigma}^2\right] = \sigma^2$.

If we have the following relation

$$Y = E\left(Y|X_1, X_2, \dots, X_d\right) + \epsilon$$

Where

• $\epsilon \sim N\left(0,\sigma^2\right)$

Thus

Typically, we can use the following unbiased estimator

$$\widehat{\sigma}^2 = \frac{1}{N-d-1} \sum_{i=1}^{N} (y_i - \widehat{y}_i)$$

• Which is an unbiased estimator $E\left[\hat{\sigma}^2\right] = \sigma^2$.

If we have the following relation

$$Y = E\left(Y|X_1, X_2, \dots, X_d\right) + \epsilon$$

Where

•
$$\epsilon \sim N\left(0,\sigma^2\right)$$

We have

$$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1}\right)$$

Thus, we can be a little bit smart

$$H_0: \beta_j = 0$$
$$H_1: \beta_j \neq 0$$

corrections for Hypothesis 0, we get the following α−score

$$z_j = rac{\widehateta_j - eta_j}{\widehat\sigma\sqrt{v_j}} = rac{\widehateta_j}{\widehat\sigma\sqrt{v_j}}$$
 with v_j the j^{th} diagonal element at $\left(\widehat z_j \right)$

Cinvestav

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > のへの 104/122

We have

$$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1}\right)$$

Thus, we can be a little bit smart

$$H_0: \beta_j = 0$$
$$H_1: \beta_j \neq 0$$

for test for Hypothesis 0, we get the following z-score

$$z_j = rac{\widehateta_j - eta_j}{\widehat\sigma\sqrt{v_j}} = rac{\widehateta_j}{\widehat\sigma\sqrt{v_j}}$$
 with v_j the j^{th} diagonal element at $\left(X^T\right)$

Cinvestav

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We have

$$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1}\right)$$

Thus, we can be a little bit smart

$$H_0: \beta_j = 0$$
$$H_1: \beta_j \neq 0$$

To test for Hypothesis 0, we get the following z-score

$$z_j = \frac{\widehat{eta}_j - eta_j}{\widehat{\sigma}\sqrt{v_j}} = \frac{\widehat{eta}_j}{\widehat{\sigma}\sqrt{v_j}}$$
 with v_j the j^{th} diagonal element at $\left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1}$

Cinvestav

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$z_j \sim t_{N-d-1}$ a t-student distribution

• Therefore, a large (absolute) value of z_{j} will lead to rejection of the Null Hypothesis

$z_j \sim t_{N-d-1}$ a t-student distribution

• Therefore, a large (absolute) value of z_{j} will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

• Accept H_0 remove the feature

Reject H_0 keep the feature

$z_j \sim t_{N-d-1}$ a t-student distribution

• Therefore, a large (absolute) value of z_{j} will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

• Accept H_0 remove the feature

• Reject H_0 keep the feature

There are still more techniques for feature selection quite more advanced.

$z_j \sim t_{N-d-1}$ a t-student distribution

• Therefore, a large (absolute) value of z_{j} will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

- Accept H_0 remove the feature
- Reject H₀ keep the feature

There are still more techniques for feature selection quite more advanced.

$z_j \sim t_{N-d-1}$ a t-student distribution

• Therefore, a large (absolute) value of z_{j} will lead to rejection of the Null Hypothesis

Therefore

You can use the simple rule:

- Accept H_0 remove the feature
- Reject *H*₀ keep the feature

However

There are still more techniques for feature selection quite more advanced...

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- ${\small \bigcirc}$ Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions

What can be done?

Using Statistics to find Important Features

What about Numerical Stability?

Ridge Regression

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

- A matrix which is not invertible is also called a singular matrix.
 - A matrix which is invertible (not singular) is called regular.

Definition

- A matrix which is not invertible is also called a singular matrix.
- A matrix which is invertible (not singular) is called regular.

Definition

- A matrix which is not invertible is also called a singular matrix.
- A matrix which is invertible (not singular) is called regular.

What is the Meaning?

Imagine the following in \mathbb{R}^3

$$A = \left(\begin{array}{rrrr} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

Given that the columns are vectors

They span a subspace for those column vectors in \mathbb{R}^3

$$span \left\{ \left(egin{array}{c} a_{11} \ a_{21} \ a_{31} \end{array}
ight), \left(egin{array}{c} a_{12} \ a_{22} \ a_{32} \end{array}
ight), \left(egin{array}{c} a_{13} \ a_{23} \ a_{33} \end{array}
ight)
ight]$$

Definition

- A matrix which is not invertible is also called a singular matrix.
- A matrix which is invertible (not singular) is called regular.

What is the Meaning?

Imagine the following in \mathbb{R}^3

$$A = \left(\begin{array}{rrrr} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

Given that the columns are vectors

They span a subspace for those column vectors in \mathbb{R}^3

$$span\left\{ \left(\begin{array}{c} a_{11} \\ a_{21} \\ a_{31} \end{array} \right), \left(\begin{array}{c} a_{12} \\ a_{22} \\ a_{32} \end{array} \right), \left(\begin{array}{c} a_{13} \\ a_{23} \\ a_{33} \end{array} \right) \right\}$$

If a matrix is singular

Its Rank is less than 3, i.e :

The subspace is squashed into a plane.

The subspace is squashed into a line.

The subspace in the WORST CASE into a point.

< ロ > < 回 > < 回 > < 回 > < 回 >

If a matrix is singular

Its Rank is less than 3, i.e :

- **1** The subspace is squashed into a plane.
 - The subspace is squashed into a line.

The subspace in the WORST CASE into a point.

< ロ > < 回 > < 回 > < 回 > < 回 >

If a matrix is singular

Its Rank is less than 3, i.e :

- The subspace is squashed into a plane.
- In the subspace is squashed into a line.

The subspace in the WORST CASE into a point.

(日) (日) (日) (日) (日)

If a matrix is singular

Its Rank is less than 3, i.e :

- The subspace is squashed into a plane.
- In the subspace is squashed into a line.
- Interstation of the WORST CASE into a point.

< ロ > < 同 > < 回 > < 回 >

Remember

That, we have

$$oldsymbol{v} = \lambda_1 \left(egin{array}{c} a_{11} \ a_{21} \ a_{31} \end{array}
ight) + \lambda_2 \left(egin{array}{c} a_{12} \ a_{22} \ a_{32} \end{array}
ight) + \lambda_3 \left(egin{array}{c} a_{13} \ a_{23} \ a_{33} \end{array}
ight)$$

Cinvestav

・ロト ・四ト ・ヨト ・ヨト

Thus, if for example, the matrix projects into a plane

$$\begin{aligned} v &= \lambda_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + \lambda_2 \begin{bmatrix} a_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \end{bmatrix} + \lambda_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \\ &= c_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + c_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \text{ with } c_1 = \lambda_1 + \alpha_1 \lambda_2, c_2 = \alpha_2 \lambda_2 + \lambda_3 \end{aligned}$$

Remember

That, we have

$$oldsymbol{v} = \lambda_1 \left(egin{array}{c} a_{11} \ a_{21} \ a_{31} \end{array}
ight) + \lambda_2 \left(egin{array}{c} a_{12} \ a_{22} \ a_{32} \end{array}
ight) + \lambda_3 \left(egin{array}{c} a_{13} \ a_{23} \ a_{33} \end{array}
ight)$$

Thus, if for example, the matrix projects into a plane

$$\boldsymbol{v} = \lambda_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + \lambda_2 \begin{bmatrix} \alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + \alpha_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} + \lambda_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$$
$$= c_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + c_2 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \text{ with } c_1 = \lambda_1 + \alpha_1 \lambda_2, c_2 = \alpha_2 \lambda_2 + \lambda_3$$

Cinvestav ∽ < ↔ 109 / 122

2

・ロト ・回ト ・ヨト ・ヨト

For Example

We have a squashing into a plane

イロト イヨト イヨト イヨト

Computational Intuition

First Intuition

A singular matrix maps an entire linear subspace into a single point.

Second Intuitions

If a matrix maps points far away from each other to points very close to each other, it almost behaves like a singular matrix.

イロン イロン イヨン イヨン

Computational Intuition

First Intuition

A singular matrix maps an entire linear subspace into a single point.

Second Intuitions

If a matrix maps points far away from each other to points very close to each other, it almost behaves like a singular matrix.

イロト イヨト イヨト

Mapping is related to the eigenvalues!!!

• Large positive eigenvalues ⇒ the mapping is large!!!

Mapping is related to the eigenvalues!!!

- Large positive eigenvalues \Rightarrow the mapping is large!!!
- \bullet Small positive eigenvalues \Rightarrow the mapping is small!!!

There is a statement to support this

All this comes from the following statement

A positive semi-definite matrix A is singular \iff smallest eigenvalue is 0

Consequence for Statistics

If a statistical prediction involves the inverse of an almost-singular matrix, the predictions become unreliable (high variance).

イロト イロト イヨト イヨト

There is a statement to support this

All this comes from the following statement

A positive semi-definite matrix A is singular \iff smallest eigenvalue is 0

Consequence for Statistics

If a statistical prediction involves the inverse of an almost-singular matrix, the predictions become unreliable (high variance).

イロト イボト イヨト イヨト

Outline

Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- ${\small \bigcirc}$ Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions

What can be done?

- Using Statistics to find Important Features
- What about Numerical Stability?
- Ridge Regression

Exercises Some Stuff for the Lab

イロト イヨト イヨト

What can be done?

What could be the problem?

We need to pull equilibrate the optimal in some way!!

IDEAS?

イロト イロト イヨト イヨト

What can be done?

What could be the problem?

We need to pull equilibrate the optimal in some way!!!

IDEAS?

< ロ > < 回 > < 回 > < 回 > < 回 >

We want to avoid the problem of an eigenvalue to become zero!!!

Thus, we can do the following given that $X^T X$ is positive definite

Assume that $\xi_1, \xi_2, ..., \xi_{d+1}$ are eigenvectors of $X^T X$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_{d+1}$

We have

$$\left(oldsymbol{X}^T oldsymbol{X}
ight) \xi_i = \lambda_i \xi_i ext{ for all } i=1,...,d+1$$

Given that $oldsymbol{X}^Toldsymbol{X}$ is singular, some λ_i is equal to 0.

Very Simple, add a convenient λ

$$\left(\boldsymbol{X}^{T} \boldsymbol{X} + \lambda I \right) \xi_{i} = \left(\lambda_{i} + \lambda \right) \xi_{i}$$

i.e. $\lambda_i + \lambda$ is an eigenvalue for $(\mathbf{X}^T \mathbf{X} + \lambda I)$.

We want to avoid the problem of an eigenvalue to become zero!!!

Thus, we can do the following given that $X^T X$ is positive definite

Assume that $\xi_1, \xi_2, ..., \xi_{d+1}$ are eigenvectors of $X^T X$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_{d+1}$

We have

$$\left(\boldsymbol{X}^{T} \boldsymbol{X} \right) \xi_{i} = \lambda_{i} \xi_{i} \text{ for all } i = 1, ..., d+1$$
 (3)

Given that $X^T X$ is singular, some λ_i is equal to 0.

/ery Simple, add a convenient /

$$\left(\boldsymbol{X}^{T} \boldsymbol{X} + \lambda I \right) \xi_{i} = \left(\lambda_{i} + \lambda \right) \xi_{i}$$

i.e. $\lambda_i + \lambda$ is an eigenvalue for $\left(oldsymbol{X}^T oldsymbol{X} + \lambda I
ight)$
We want to avoid the problem of an eigenvalue to become zero!!!

Thus, we can do the following given that $X^T X$ is positive definite

Assume that $\xi_1, \xi_2, ..., \xi_{d+1}$ are eigenvectors of $X^T X$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_{d+1}$

We have

$$\left(\boldsymbol{X}^{T} \boldsymbol{X} \right) \xi_{i} = \lambda_{i} \xi_{i} \text{ for all } i = 1, ..., d+1$$
 (34)

Given that $X^T X$ is singular, some λ_i is equal to 0.

Very Simple, add a convenient λ

$$\left(\boldsymbol{X}^{T}\boldsymbol{X}+\lambda I\right)\xi_{i}=\left(\lambda_{i}+\lambda\right)\xi_{i}$$
(35)

i.e. $\lambda_i + \lambda$ is an eigenvalue for $(\mathbf{X}^T \mathbf{X} + \lambda I)$.

What does this mean?

Something Notable

You can control the singularity by detecting the smallest eigenvalue.

We add an appropriate tunning value eta

What does this mean?

Something Notable

You can control the singularity by detecting the smallest eigenvalue.

Thus

We add an appropriate tunning value λ .

How do we integrate this solution to the Least Squared Error Solution?

We modify it by adding en extra parameter

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}_i^T \boldsymbol{w} \right)^2 - \lambda \sum_{i=1}^{d+1} w_i^2$$

Geometrically Equivalent to

(36)

How do we integrate this solution to the Least Squared Error Solution?

We modify it by adding en extra parameter

$$\sum_{i=1}^{N} \left(y_i - oldsymbol{x}_i^T oldsymbol{w}
ight)^2 - \lambda \sum_{i=1}^{d+1} w_i^2$$

Geometrically Equivalent to

(36)

Ridge Regression

It tries to make least squares more robust if $X^T X$ is almost singular.

Ridge Regression

It tries to make least squares more robust if $X^T X$ is almost singular.

Process

- Find the eigenvalues of $X^T X$
 - If all of them are bigger enough than zero we are fine!!!
 - Find the smallest one, then tune if necessary.
 -) Build $\widehat{w}^{Ridge} = \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda I \right)^{-1} \boldsymbol{X}^T \boldsymbol{u}.$

Ridge Regression

It tries to make least squares more robust if $X^T X$ is almost singular.

Process

- Find the eigenvalues of $X^T X$
- If all of them are bigger enough than zero we are fine!!!

Ridge Regression

It tries to make least squares more robust if $X^T X$ is almost singular.

Process

- Find the eigenvalues of $X^T X$
- If all of them are bigger enough than zero we are fine!!!
- Sind the smallest one, then tune if necessary.

Ridge Regression

It tries to make least squares more robust if $X^T X$ is almost singular.

Process

- Find the eigenvalues of $X^T X$
- If all of them are bigger enough than zero we are fine!!!
- Sind the smallest one, then tune if necessary.

• Build
$$\hat{\boldsymbol{w}}^{Ridge} = \left(\boldsymbol{X}^T\boldsymbol{X} + \lambda I\right)^{-1} \boldsymbol{X}^T\boldsymbol{y}.$$

Outline

1 Introduction

- Introduction
- The Simplest Functions
- Splitting the Space
- Defining the Decision Surface
- Properties of the Hyperplane $\boldsymbol{w}^T \boldsymbol{x} + w_0$
- Augmenting the Vector

Developing a Solution

- Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
- The Error Idea
- The Final Error Equation
- ${\small \bigcirc}$ Remember in matrices of 3 \times 3
- What Lives Where?
- Geometric Interpretation
- Multi-Class Solution
- Issues with Least Squares!!!
 - Singularity Notes
 - Problem with Outliers
 - Problem with High Number of Dimensions
- What can be done?
 - Using Statistics to find Important Features
 - What about Numerical Stability?
 - Ridge Regression

< ロ > < 回 > < 回 > < 回 > < 回 >

Exercises

Duda and Hart

Chapter 5

• 1, 3, 4, 7, 13, 17

Bishop

Chapter 4

• 4.1, 4.4, 4.7,

Hastie-Tibishirani

Chapter 3 - Problems

- Ex 3.5
- Ex 3.6

< ロ > < 回 > < 回 > < 回 > < 回 >

Exercises

Duda and Hart

Chapter 5

• 1, 3, 4, 7, 13, 17

Bishop

Chapter 4

• 4.1, 4.4, 4.7,

Hastie-Tibishirani

Chapter 3 - Problems

- Ex 3.5
- Ex 3.6

イロト イヨト イヨト イヨト

Exercises

Theodoridis

Chapter 3 - Problems

