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Many Times

We have this kind of data sets (House Prices)
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Thus

We can adjust a line/hyperplane to be able to forecast prices
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Thus, Our Objective

To find such hyperplane
To do forecasting on the prices of a house given its surface!!!

Here, where “Learning” Machine Learning style comes around
Basically, the process defined in Machine Learning!!!
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Then, in Supervised Training

We have the following process

Training Set Validation Set

Training Learning Algorithm

g(x)Testing Set Predicted Price

Price House Price House

Price House x
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What is it?

First than anything, we have a parametric model!!!
Here, we have an hyperplane as a model:

g(x) = wTx + w0 (1)

Note: wTx is also know as dot product

In the case of R2

We have:

g (x) = (w1, w2)
(
x1
x2

)
+ w0 = w1x1 + w2x2 + w0 (2)
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Example

Hyperplane in R3
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Splitting The Space R2

Using a simple straight line (Hyperplane)

Class 

Class
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Splitting the Space?

For example, assume the following vector w and constant w0

w = (−1, 2)T and w0 = 0

Hyperplane
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Then, we have

The following results

g

((
1
2

))
= (−1, 2)

(
1
2

)
= −1× 1 + 2× 2 = 3

g

((
3
1

))
= (−1, 2)

(
3
1

)
= −1× 3 + 2× 1 = −1

YES!!! We have a positive side and a negative side!!!
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The Decision Surface

The equation g (x) = 0 defines a decision surface
Separating the elements in classes, ω1 and ω2.

When g (x) is linear the decision surface is an hyperplane
Now assume x1 and x2 are both on the decision surface

wTx1 + w0 = 0
wTx2 + w0 = 0

Thus

wTx1 + w0 = wTx2 + w0 (3)
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Defining a Decision Surface

Then

wT (x1 − x2) = 0 (4)
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Therefore
x1 − x2 lives in the hyperplane i.e. it is perpendicular to wT

Remark: any vector in the hyperplane is a linear combination of
elements in a basis
Therefore any vector in the plane is perpendicular to wT
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Therefore

The space is split in two regions (Example in R3) by the hyperplane H
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Some Properties of the Hyperplane

Given that g (x) > 0 if x ∈ R1
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It is more
We can say the following

Any x ∈ R1 is on the positive side of H.
Any x ∈ R2 is on the negative side of H.

In addition, g (x) can give us a way to obtain the distance from x to
the hyperplane H
First, we express any x as follows

x = xp + r
w

‖w‖

Where
xp is the normal projection of x onto H.
r is the desired distance

I Positive, if x is in the positive side
I Negative, if x is in the negative side
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We have something like this

We have then
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Now
Since g (xp) = 0
We have that

g (x) = g

(
xp + r

w

‖w‖

)
= wT

(
xp + r

w

‖w‖

)
+ w0

= wTxp + w0 + r
wTw

‖w‖

= g (xp) + r
‖w‖2

‖w‖
= r ‖w‖

Then, we have

r = g (x)
‖w‖

(5)
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In particular

The distance from the origin to H

r = g (0)
‖w‖

= wT (0) + w0
‖w‖

= w0
‖w‖

(6)

Remarks
If w0 > 0, the origin is on the positive side of H.
If w0 < 0, the origin is on the negative side of H.
If w0 = 0, the hyperplane has the homogeneous form wTx and
hyperplane passes through the origin.
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We want to solve the independence of w0

We would like w0 as part of the dot product by making x0 = 1

g (x) = w0 × 1 +
d∑
i=1

wixi = w0 × x0 +
d∑
i=1

wixi =
d∑
i=0

wixi (7)

By making

xaug =


1
x1
...
xd

 =


1

x



Where
xaug is called an augmented feature vector.
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In a similar way

We have the augmented weight vector

waug =


w0
w1
...
wd

 =


w0

w



Remarks
The addition of a constant component to x preserves all the distance
relationship between samples.
The resulting xaug vectors, all lie in a d-dimensional subspace which
is the x-space itself.
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More Remarks

In addition
The hyperplane decision surface Ĥ defined by

wT
augxaug = 0

passes through the origin in xaug-space.

Even Though
The corresponding hyperplane H can be in any position of the x-space.
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More Remarks

In addition
The distance from y to Ĥ is:∣∣∣wT

augxaug
∣∣∣

‖waug‖
= |g (xaug)|
‖waug‖
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Now

Is ‖w‖ ≤ ‖waug‖
Ideas? √√√√ d∑

i=1
w2
i ≤

√√√√ d∑
i=1

w2
i + w2

0

This mapping is quite useful
Because we only need to find a weight vector waug instead of finding the
weight vector w and the threshold w0.
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Initial Supposition

Suppose, we have
n samples x1,x2, ...,xn some labeled ω1 and some labeled ω2.

We want a vector weight w such that
wTxi > 0, if xi ∈ ω1.
wTxi < 0, if xi ∈ ω2.

The name of this weight vector
It is called a separating vector or solution vector.
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Now, assume the following

Imagine that your problem has two classes ω1 and ω2 in R2

1 They are linearly separable!!!
2 You require to label them.

We have a problem!!!
Which is the problem?

We do not know the hyperplane!!!
Thus, what distance each point has to the hyperplane?
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A Simple Solution For Our Quandary

Label the Classes
ω1 =⇒ +1
ω2 =⇒ −1

We produce the following labels
1 if x ∈ ω1 then yideal = gideal (x) = +1.
2 if x ∈ ω2 then yideal = gideal (x) = −1.

Remark: We have a problem with this labels!!!
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Now, What?

Assume true function f is given by

ynoise = gnoise (x) = wTx + w0 + e (8)

Where the e
It has a e ∼ N

(
µ, σ2)

Thus, we can do the following

ynoise = gnoise (x) = gideal (x) + e (9)
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Thus, we have

What to do?

e = ynoise − gideal (x) (10)

Graphically
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Then, we have

A TRICK... Quite a good one!!! Instead of using ynoise

e = ynoise − gideal (x) (11)

We use yideal

e = yideal − gideal (x) (12)

We will see
How the geometry will solve the problem with using these labels.
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Here, we have multiple errors

What can we do?
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Sum Over All the Errors

We can do the following

J (w) =
N∑
i=1

e2
i =

N∑
i=1

(yi − gideal (xi))2 (13)

Remark: This is know as the Least Squared Error cost function

Generalizing
The dimensionality of each sample (data point) is d.
You can extend each vector sample to be xT = (1,x′).
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We can use a trick

The following function

gideal (x) =
(

1 x1 x2 ... xd
)

w0
w2
w3
...
wd

 = xTw

We can rewrite the error equation as

J (w) =
N∑
i=1

(yi − gideal (xi))2 =
N∑
i=1

(
yi − xTi w

)2
(14)
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Furthermore

Then stacking all the possible estimations into the product Data
Matrix and weight vector

Xw =



1 (x1)1 · · · (x1)j · · · (x1)d
...

...
...

1 (xi)1 (xi)j (xi)d
...

...
...

1 (xN )1 · · · (xN )j · · · (xN )d




w1
w2
w3
...

wd+1
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Note about other representations

We could have xT = (x1, x2, ..., xd, 1) thus

X =



(x1)1 · · · (x1)j · · · (x1)d 1
...

...
...

(xi)1 (xi)j (xi)d 1
...

...
...

(xN )1 · · · (xN )j · · · (xN )d 1


(15)
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Then, we have the following trick with X

With the Data Matrix

Xw =


xT1 w
xT2 w
xT3 w
...

xTNw

 (16)
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Therefore

We have that 
y1
y2
y3
...
y4

−


xT1 w
xT2 w
xT3 w
...

xTNw

 =


y1 − xT1 w
y2 − xT2 w
y3 − xT3 w

...
y4 − xTNw


Then, we have the following equality

(
y1 − xT

1 w y2 − xT
2 w y3 − xT

3 w · · · y4 − xT
N w

)
y1 − xT

1 w

y2 − xT
2 w

y3 − xT
3 w

...
y4 − xT

N w

 =

N∑
i=1

(
yi − x

T
i w
)2

48 / 122



Therefore

We have that 
y1
y2
y3
...
y4

−


xT1 w
xT2 w
xT3 w
...

xTNw

 =


y1 − xT1 w
y2 − xT2 w
y3 − xT3 w

...
y4 − xTNw


Then, we have the following equality

(
y1 − xT

1 w y2 − xT
2 w y3 − xT

3 w · · · y4 − xT
N w

)
y1 − xT

1 w

y2 − xT
2 w

y3 − xT
3 w

...
y4 − xT

N w

 =

N∑
i=1

(
yi − x

T
i w
)2

48 / 122



Then, we have

The following equality
N∑
i=1

(
yi − xTi w

)2
= (y −Xw)T (y −Xw) = ‖y −Xw‖22 (17)
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We can expand our quadratic formula!!!

Thus

(y −Xw)T (y −Xw) = yTy− yTXw−wTXT y+ wTXTXw (18)

Now
Derive with respect to w

Assume that XTX is invertible
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Some Basic Definitions

Transpose of a Matrix a11 a12 a13
a21 a22 a23
a31 a32 a33


T

=

 a11 a21 a31
a12 a22 a32
a13 a23 a33


 a1
a2
a3


T

=
(
a1 a2 a2

)
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Additionally

We have
Given A and B matrices:

(A+B)T = AT +BT

(AB)T = BTAT

Given vectors x, y and a matrix A such that you can multiply them:

xTAy =
[
xTAy

]T
= yTATx given that the transpose of a number is

the number itself.
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Some Basic Definitions for

Derivative on Matrices

dAx

dx
=

d

 a11 a12 a13
a21 a22 a23
a31 a32 a33


 x1
x2
x3


d

 x1
x2
x3
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Therefore

We have

d

(
a11x1+ a12x2+ a13x3
a21x1+ a22x2+ a23x3
a31x1+ a32x2+ a33x3

)

d

(
x1
x2
x3

) = ...

 d(a11x1+a12x2+a13x3)
dx1

d(a11x1+a12x2+a13x3)
dx2

d(a11x1+a12x2+a13x3)
dx3

d(a21x1+a22x2+a23x3)
dx1

d(a21x1+a22x2+a23x3)
dx2

d(a21x1+a22x2+a23x3)
dx3

d(a31x1+a32x2+a33x3)
dx1

d(a31x1+a32x2+a33x3)
dx2

d(a31x1+a32x2+a33x3)
dx3

 = ...

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
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Therefore

We have the following equivalences
dwTAw

dw
= wT

(
A+AT

)
,
dwTA

dw
= AT (19)

Now given that the transpose of a number is the number itself

yTXw =
[
yTXw

]T
= wTXTy
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Then, when we derive by w

We have then

d
(
yTy − 2wTXT y + wTXTXw

)
dw

= −2yTX + wT
(
XTX +

(
XTX

))
= −2yTX + 2wT

(
XTX

)
Making this equal to the zero row vector

− 2yTX + 2wT
(
XTX

)
= 0

We apply the transpose

[
−2yTX + 2wT

(
XTX

)]T
= [0]T

− 2XTy + 2
(
XTX

)
w = 0 (column vector)
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Solving for w

We have then

w =
(
XT X

)−1
XT y (20)

Note:XTX is always positive semi-definite. If it is also invertible, it is
positive definite.

Thus, How we get the discriminant function?
Any Ideas?
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The Final Discriminant Function

Very Simple!!!

g(x) = xTw = xT
(
XT X

)−1
XT y (21)
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Pseudo-inverse of a Matrix
Definition
Suppose that X ∈ Rm×n and rank (X) = m. We call the matrix

X+ =
(
XTX

)−1
XT

the pseudo inverse of X.

Reason
X+ inverts X on its image

What?
First a definition

I If w ∈ image (X), then there is some v ∈ Rn such that w = Xv.

Hence, X+w = X+Xv =
(
XTX

)−1
XTXv = v
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We have that

The Data Matrix

X ∈ RN×(d+1)

Image (X)

Image (X) = span
{
Xcol

1 , ...,Xcol
d+1

}
Note: Remember that the image of a matrix X is all the vectors

Xv ∈ RN with v ∈ Rd+1

The Inputs

xi ∈ Rd
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We have that

The Weight Vector w

w ∈ Rd+1

What about the column space of X and the ideal input vector y

Xcol
i ,y ∈ RN
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We can now see where y is being projected

Basically y, the list of real inputs is being proyected into

span
{

Xcol
1 ,Xcol

2 , ...,Xcol
d+1

}
(22)

by the projection operator X
(
XT X

)−1
XT .
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Geometric Interpretation

We have
The image of the mapping:

h : w 7−→Xw

h :Rd+1 7−→ RN

is a linear subspace of RN .

How? Ideas
Think about this!!!
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What about w?

As w can moves through all points in Rd+1 when being generated
The function value h (w) = Xw can move through all points in the image
space:

image (X) = span
{

Xcol
1 ,Xcol

2 , ...,Xcol
d+1

}
Additionally, each w defines one point in
span

{
Xcol

1 ,Xcol
2 , ...,Xcol

d+1

}
⊆ RN

h (w) = Xw =
d+1∑
i=1

wiX
col
i .
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What about the optimality of w?

We have a composition of functions that are convex

f (w) = wTx

g (t) = (y − t)

h (e) =
n∑
i=1

e2

Making the Least Squared Error a Convex function with a single
minimum!!!

The derivative method produces a ŵ

Such that ŵ minimizes the distance d (y, image (X)).
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Geometrically

Given a y, you obtain a projected ŷ through the process XT y
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This Resolve Our Problem

With the Labels being chosen at the beginning
Question? Did you noticed the following?

We assume a similar number of elements in both classes
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Multi-Class Solution

What to do?
1 We might reduce the problem to c− 1 two-class problems.
2 We might use c(c−1)

2 linear discriminants, one for every pair of classes.

However
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What to Do?

Define c linear discriminant functions

gi (x) = wTx + wi0 for i = 1, ..., c (23)

This is known as a linear machine
Rule: if gk (x) > gj (x) for all j 6= k =⇒ x ∈ ωk

Nice Properties (It can be proved!!!)
1 Decision Regions are Singly Connected.
2 Decision Regions are Convex.
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Proof of Properties

Proof

Actually quite simple
Given

y = λxA + (1− λ) xB

with λ ∈ (0, 1).
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Proof of Properties

We know that

gk (y) = wT (λxA + (1− λ) xB) + w0

= λwT xA + λw0 + (1− λ) wT xB + (1− λ)w0

= λgk (xA) + (1− λ) gk (xA)
> λgj (xA) + (1− λ) gj (xA)
> gj (λxA + (1− λ) xB)
> gj (y)

For all j 6= k

Or...
y belongs to an area k defined by the rule!!!
This area is Convex and Singly Connected because the definition of
y.
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However!!!

No so nice properties!!!
It limits the power of classification for
multi-objective function.
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How do we train this Linear Machine?

We know that each ωk class is described by
gk (x) = wT

k x + w0 where k = 1, ..., c

We then design a single machine

g (x) = W T x (24)
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Where

We have the following

W T =


1 w11 w12 · · · w1d
1 w21 w22 · · · w2d
1 w31 w32 · · · w3d
...

...
...

...
1 wc1 wc2 · · · wcd

 (25)

What about the labels?
OK, we know how to do with 2 classes, What about many classes?
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How do we train this Linear Machine?

Use a vector ti with dimensionality c to identify each element at each
class
We have then the following dataset

{xi, ti} for i = 1, 2, ..., N

We build the following Matrix of Vectors

T =


tT1
tT2
...

tTN−1
tTN

 (26)
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Examples for the ti

Vectors like

xi 6= 0, i Class→



0
0
...
0
1
0
...
0


Another possible vector

xi 6= −1, i Class→



−1
−1
...
−1
1
−1
...
−1
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Thus, we create the following Matrix
A Matrix containing all the required information

XW − T (27)

Where we have the following vector[
xTi w1,x

T
i w2,x

T
i w3, ...,x

T
i wc

]
(28)

Remark: It is the vector result of multiplication of row i of X against
W on XW .

That is compared to the vector tTi on T by using the subtraction of
vectors

ei =
[
xTi w1,x

T
i w2,x

T
i w3, ...,x

T
i wc

]
− tTi (29)
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What do we want?

We want the quadratic error
1
2e

2
i

This specific quadratic errors are at the diagonal of the matrix

(XW − T )T (XW − T )

We can use the trace function to generate the desired total error of

J (·) = 1
2

N∑
i=1

e2
i (30)
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Then

The trace allows to express the total error

J (W ) = 1
2Trace

{
(XW − T )T (XW − T )

}
(31)

Thus, we have by the same derivative method

W =
(
XTX

)
XTT = X+T (32)

83 / 122



Then

The trace allows to express the total error

J (W ) = 1
2Trace

{
(XW − T )T (XW − T )

}
(31)

Thus, we have by the same derivative method

W =
(
XTX

)
XTT = X+T (32)

83 / 122



How do we obtain the discriminant?

Thus, we obtain the discriminant

g (x) = W T x = T T
(
X+

)T
x (33)
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Let me show you the covariance matrix
We have in matrix notation

S = 1
N − 1

(
X − 1xT

)T (
X − 1xT

)

Thus

XTX

It looks a lot like a covariance matrix
Actually, the dependency observed in matrix XTX between its
columns!!!
It is the same dependency as the dependency between the features in
the data observed after the featured have been centered by x.
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Thus

We can apply a similar analysis...
To obtain some of the possible cases that make XTX singular

A Classical One
If there is a interdependence between features

I Meaning some feature is an exact linear combination of the other
features.

I The XTX matrix of the features will be singular.
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When does this happen?

First
Number of features is equal or greater than the number of samples.

Second
Two or more features sum up to a constant

For example, x2 − 5x10 = 0

Third
Two features are identical or differ merely in mean or variance.
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Still

The least squares coefficients ŵ are not uniquely defined.
The fitted values ŷ = Xŵ are still the projection of y onto the
column space of X.
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Additionally

Duplicate observations in a data set
It will lead the matrix toward singularity.

Cautionary Tale
When doing some sort of imputation of missing features it is always
beneficial (from both statistical and mathematical view) to add some noise
to the imputed data.

This can happen in the preprocessing phase
Be careful.

91 / 122



Additionally

Duplicate observations in a data set
It will lead the matrix toward singularity.

Cautionary Tale
When doing some sort of imputation of missing features it is always
beneficial (from both statistical and mathematical view) to add some noise
to the imputed data.

This can happen in the preprocessing phase
Be careful.

91 / 122



Additionally

Duplicate observations in a data set
It will lead the matrix toward singularity.

Cautionary Tale
When doing some sort of imputation of missing features it is always
beneficial (from both statistical and mathematical view) to add some noise
to the imputed data.

This can happen in the preprocessing phase
Be careful.

91 / 122



Also

It can happen also that
XT X could be almost not invertible, making Least Squares
numerically unstable.

Statistical consequence
High variance of predictions.
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When can this happen?

The non-full-rank case occurs
Most often when one or more qualitative inputs are coded in a
redundant fashion.

How do we solve this?
Re-encode or dropping redundant columns in X.

Most regression software packages
They detect these redundancies and automatically implement some
strategies for removing them.
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Issues with Least Squares

Problem with Outliers
No Outliers Outliers
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Problems with a High Number of Dimensions

In Many Modern Problems
Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important
It needs some form of feature selection.
Possible some type of regularization.

Why?
Least Square Error Regression treats all dimensions equally.
Relevant dimensions might be averaged with irrelevant ones.
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We will start using some statistics

We want to obtain sampling properties for ŵ

For this remember:

ŵ =
(
XT X

)−1
XT y

For this assume,
The observations yi are uncorrelated and have constant variance σ2.
The xi are fixed = not random.
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Then, we have the variance-covariance matrix

We have

V ar (ŵ) = V ar

[(
XT X

)−1
XT y

]

We have the following equivalence

V ar (Ay) = AV ar (y)AT
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Therefore

Something Notable

V ar

[(
XT X

)−1
XT y

]
=
(
XT X

)−1
XTV ar (y) X

(
XT X

)−1

=
(
XT X

)−1
XTσ2IX

(
XT X

)−1

= σ2
(
XT X

)−1

Given that

V ar (y) =


V ar (y1) Cov (y1, y2) · · · Cov (y1, yN )

Cov (y2, y1) · · ·V ar (y2) · · · Cov (y2, yN )
...

...
. . .

...
Cov (yN , y1) Cov (yN , y2) · · · V ar (yN )

 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 σ2
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Thus

Typically, we can use the following unbiased estimator

σ̂2 = 1
N − d− 1

N∑
i=1

(yi − ŷi)

Which is an unbiased estimator E
[
σ̂2] = σ2.

If we have the following relation

Y = E (Y |X1, X2, ..., Xd) + ε

Where
ε ∼ N (0, σ2)
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Then

We have

β̂ ∼ N
(
β, σ2

(
XT X

)−1
)

Thus, we can be a little bit smart

H0 :βj = 0
H1 :βj 6= 0

To test for Hypothesis 0, we get the following z−score

zj = β̂j − βj
σ̂
√
vj

= β̂j
σ̂
√
vj

with vj the jth diagonal element at
(
XT X

)−1
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Therefore

zj ∼ tN−d−1 a t-student distribution
Therefore, a large(absolute) value of zj will lead to rejection of the
Null Hypothesis

Therefore
You can use the simple rule:

Accept H0 remove the feature
Reject H0 keep the feature

However

There are still more techniques for feature selection quite more advanced...
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What to Do About Numerical Stability?
Definition

A matrix which is not invertible is also called a singular matrix.
A matrix which is invertible (not singular) is called regular.

What is the Meaning?
Imagine the following in R3

A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)

Given that the columns are vectors
They span a subspace for those column vectors in R3

span

{(
a11
a21
a31

)
,

(
a12
a22
a32

)
,

(
a13
a23
a33

)}
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Relation with the Rank

If a matrix is singular
Its Rank is less than 3, i.e :

1 The subspace is squashed into a plane.
2 The subspace is squashed into a line.
3 The subspace in the WORST CASE into a point.
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Remember

That, we have

v = λ1

 a11
a21
a31

+ λ2

 a12
a22
a32

+ λ3

 a13
a23
a33


Thus, if for example, the matrix projects into a plane

v =λ1

 a11
a21
a31

+ λ2

α1

 a11
a21
a31

+ α2

 a13
a23
a33


+ λ3

 a13
a23
a33


=c1

 a11
a21
a31

+ c2

 a13
a23
a33

 with c1 = λ1 + α1λ2, c2 = α2λ2 + λ3
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For Example

We have a squashing into a plane
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Computational Intuition

First Intuition
A singular matrix maps an entire linear subspace into a single point.

Second Intuitions
If a matrix maps points far away from each other to points very close to
each other, it almost behaves like a singular matrix.
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Thus

Mapping is related to the eigenvalues!!!
Large positive eigenvalues ⇒ the mapping is large!!!
Small positive eigenvalues ⇒ the mapping is small!!!
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There is a statement to support this

All this comes from the following statement
A positive semi-definite matrix A is singular ⇐⇒ smallest eigenvalue is 0

Consequence for Statistics
If a statistical prediction involves the inverse of an almost-singular matrix,
the predictions become unreliable (high variance).
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What can be done?

What could be the problem?

We need to pull equilibrate the optimal in some way!!!
IDEAS?
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We want to avoid the problem of an eigenvalue to become
zero!!!
Thus, we can do the following given that XT X is positive definite
Assume that ξ1, ξ2, ..., ξd+1 are eigenvectors of XT X with
eigenvalues λ1, λ2, ..., λd+1

We have (
XTX

)
ξi = λiξi for all i = 1, ..., d+ 1 (34)

Given that XTX is singular, some λi is equal to 0.

Very Simple, add a convenient λ(
XTX + λI

)
ξi = (λi + λ) ξi (35)

i.e. λi + λ is an eigenvalue for
(
XTX + λI

)
.
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What does this mean?

Something Notable
You can control the singularity by detecting the smallest eigenvalue.

Thus
We add an appropriate tunning value λ.
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How do we integrate this solution to the Least Squared
Error Solution?

We modify it by adding en extra parameter
N∑

i=1

(
yi − xT

i w
)2 − λ

d+1∑
i=1

w2
i (36)

Geometrically Equivalent to
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Ridge Regression

Ridge Regression
It tries to make least squares more robust if XT X is almost singular.

Process
1 Find the eigenvalues of XTX

2 If all of them are bigger enough than zero we are fine!!!
3 Find the smallest one, then tune if necessary.
4 Build ŵRidge =

(
XTX + λI

)−1
XTy.
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Exercises

Duda and Hart
Chapter 5

1, 3, 4, 7, 13, 17

Bishop
Chapter 4

4.1, 4.4, 4.7,

Hastie-Tibishirani
Chapter 3 - Problems

Ex 3.5
Ex 3.6
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Exercises

Theodoridis
Chapter 3 - Problems
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