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Statistical Learning

Clearly, there are many problems important for us
Predict whether a patient, hospitalized due to a heart attack, will
have a second heart attack,
Predict the price of a stock in 6 months from now,
Given a market population what products to recommend to them,
How to recognize in a video a car or person,
How to predict maintenance in a factory,
etc.
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Example
Given a sample on frequency of the most common words in a series of
4601 emails

george you your hp free hpl ! our re edu

Spam 0.00 2.26 1.38 0.002 0.52 0.01 0.51 0.51 0.13 0.01
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29

We want to design a series of rules to guess when you have a Spam
or a genuine email

f1 (message) =
{

%george < 0.6 and %you > 1.5 spam

Otherwhise email

f2 (message) =
{

0.2×%you− 0.3×%george > 1.5 spam

Otherwhise email
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Therefore

Let X ∈ Rd a real valued random input and Y ∈ R a real valued
output

With joint distribution P (X, Y )

We are looking for a function that takes the variables in X to map
them into Y

f (X) predicting Y
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We have two main types

Quantitative Data
They are measures of values or counts and are expressed as numbers.

I Quantitative data are data about numeric variables (e.g. how many;
how much; or how often).

Qualitative Data
They are measures of ’types’ and may be represented by a name,
symbol, or a number code.

I Qualitative data are data about categorical variables (e.g. what type).
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For Example (In the case of Outputs)

If we are classifying digits

The Outputs are Quantitative

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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Therefore

We want to use the Quantitative or Qualitative variables

To obtain the correct sought output

{Andres,Fabiola} = People that can drive a certain car

11 / 91



Therefore

We want to use the Quantitative or Qualitative variables

To obtain the correct sought output

{Andres,Fabiola} = People that can drive a certain car

11 / 91



Outline
1 Learning in the World

Introduction
What do we want?
What type of Variables do we have?

2 Regression as Controlled Overfitting
Polynomial Curve Fitting
A Loss Function
“Extreme” Cases of Fitting

3 Example of Approaches to Prediction
Two Simple Models
Linear Models
Nearest-Neighbor Methods

Many Methods are Variants of Them
Statistical Decision Theory
Loss Function
Nearest Neighborhood Example
Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation
Statistical Model for P (X, Y )
Supervised Learning
Function Approximation
Parameters in Function Approximation

5 Some Classes of Estimators
Roughness Penalty and Bayesian Methods
Kernel Methods and Local Regression
Basis Functions and Dictionary Methods

6 Conclusions
A Vast Field

12 / 91



The Basic Problem

Suppose
We observe a real-valued input variable x ∈ R

We are looking to predict
The value of a real valued variable y ∈ R

Thus, we have the following training data set of size N

x ≡ (x1, x2, · · · , xN )T

y ≡ (y1, y2, · · · , yN )T

Note: We need data to construct prediction rules, often a lot of
it.
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For Example

We have the function g (x) = f (x) + αU (0, 1) with the real function
f (x) = sin {x}
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What is our Goal?

Our goal is to exploit this training set
We want to make predictions of the value ŷ (pronounced y-hat) given
a new value x̂ (y-hat).

What can we use first?

y = g (x,w) = w0 + w1x+ w2x
2 + · · ·+ wMx

d =
d∑
i=0

wix
i

Where
d is the order of the polynomial.
xi denotes x raised to the power i.
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Further

These functions are linear at the parameter w
They are quite important and are called linear models!!!

How do we guess these values?
By fitting the polynomial to the training data.

How do we do this?
This can be done by minimizing an error function or loss function
measuring, ε:

I The difference between the function g (x,w), for any given value of w,
and the training set data points.
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One simple choice of error function

The Sum of the Squares of the Errors

E (w) = 1
2

N∑
i=1

[g (xi,w)− yi]2

Something Notable
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Case 1

Choose the estimate of f (x), g (x,w), to be independent of D
For example, g (x,w) = w1x+ w0

We call this HIGH BIAS
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Case 2

In the other hand
Now, g (x,w) corresponds to a polynomial of high degree so it can pass
through each training point.

We call this HIGH VARIANCE
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Our General Case

Our Data Set
1 A Series of X ∈ Rd of real valued random input vector.

x =


x1
x2
...
xd


I Here, each variable Xi is Quantitative or Qualitative variables in the

correct numeric representation.
2 A Series of Y ∈ R a real valued random output variables.
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Linear Models

We have the following model
The linear model has been a mainstay of statistics for the past 30
years.

The Model looks like on an input XT = (X1, X2, . . . , Xd)

Ŷ = ŵ0 +
d∑
i=1

Xiŵi
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It is many times convenient

To use the dot product in Linear Algebra

Ŷ = (1, X1, X2, . . . , Xd)


ŵ0
ŵ1
...
ŵd

 = XT ŵ

Furthermore, Ŷ could be a constant or a N vector

Ŷ =


Ŷ1
Ŷ2
...
ŶN

 =


1 X

(1)
1 X

(1)
2 · · · X

(1)
d

1 X
(2)
1 X

(2)
2 · · · X

(2)
d

...
...

... . . . ...
1 X

(N)
1 X

(N)
2 · · · X

(N)
d



ŵ0
ŵ1
...
ŵd

 = Xw
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This basically define an hyperplane

The space is split in two regions (Example in R3) by the hyperplane H
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A Convenient Loss Functions

Thus, we look for a Loss function (A convenient one the LSE)

L (w) =
N∑
i=1

(
yi − xTi w

)2

28 / 91



Then

It is possible to get a unique solution

w =
(
XTX

)−1
XTy

Then, it is possible to fit the linear model to the following data
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How do we do classification here?

Given
1 Y = 0 for the blue data set.
2 Y = 1 for the red data set.

Then, the fitted values Ŷ are converted to a fitted class variable Ĝ
according

Ĝ =
{
red if Ŷ > 0.5
blue if Ŷ ≤ 0.5

30 / 91



How do we do classification here?

Given
1 Y = 0 for the blue data set.
2 Y = 1 for the red data set.
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Decision Boundary

The two predicted classes are separated

Decision Boundary
{
x|xT ŵ = 0.5

}

31 / 91



We have a Problem

We have and issue
We do not know the underlaying models that generates the data.

Scenario 1
The training data in each class were generated from bivariate Gaussian
distributions with uncorrelated components and different means.

Thus!!!
Look at the Blackboard
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What is happening?

Scenario 2
The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

Then
Again to the Blackboard!!!
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Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set
Which are closets in the input space to a sample x to from Ŷ .

K-Nearest Formulation

Ŷ (x) = 1
k

∑
xi∈Nk(x)

yi

Where Nk (x) is the neighborhood of x defined by the k closest
points xi in the training sample.
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Clearly Nk (x) requires a distance

Implies a Distance!!! Which one?

d2 (x,y) =
√
xTy L99 Euclidean Distance

d1 (x,y) =
d∑
i=
|xi − yi| L99 Manhattan Distance

dp (x,y) =
(

d∑
i=
|xi − yi|p

) 1
p

L99 Minkowski distance of order p
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Furthermore

Given a Data Matrix X and the Mean Data Matrix X

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

... . . . ...
xN1 xN2 · · · xNp

 , X =


x
x
...
x

 with

X = 1
N

N∑
i=1

(
xi1 xi2 · · · xip

)T

We generate the variance-covariance matrix

CX = 1
N − 1

[
X −X

]T [
X −X

]
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CX = 1
N − 1

[
X −X

]T [
X −X

]
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Then, we have

The Mahalanobis Distance
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Therefore

we find the k observations
With xi closest to x in input space, and average their responses.

And Again

Ĝ =
{
red if Ŷ > 0.5
blue if Ŷ ≤ 0.5
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Ĝ =
{
red if Ŷ > 0.5
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Example

We have only five neighbor, K = 5
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Example - Actually The Voronoi Tessellation of the
Training Data
We have only one neighbor, K = 1

Note: Each point xi has an associated tile bounding the region for
which it is the closest input point.

41 / 91



Therefore

K = 1 Vs. K = 5
For K = 5, we see that far fewer training observations are misclassified
when compared with the Linear Model

With K = 1
None of the training data are misclassified!!!
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For example

Kernel methods
They use weights that decrease smoothly to zero with distance from the target
point,

I Quite different rather from using 0/1 weights used by k-nearest neighbors.
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Furthermore

Something Notable
In High-Dimensional spaces the distance kernels are modified to
obtain better classifications.
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Example

Local Regression
Local regression fits linear models by locally weighted least squares.

Data
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The Samples as Random Variables

As Always Probability
We first consider:

X ∈ Rd denote a real valued input vector
Y ∈ R a real valued random output

Therefore, we have a Joint Distribution P (X, Y ) and we seek

f (X) predicting Y
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We require a Loss Function

A convenient one is the Squared Error Loss

L (Y, f (X)) = (Y − f (X))2

There is a relation to noise ε ∼ N (0, 1)

Ynoise (X) = f (X) + ε

The Squared Error Loss
It tries to minimize the error ε!!!
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This leads us to a criterion for choosing f

The Expected Prediction Error (EPE)

EPE = E (Y − f (X))2

=
∫

[y − f (x)]2 pxy (x, y) dxdy

Now, we can condition the probability density function with respect to
X

p (X,Y ) = p (Y |X) p (X)
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Thus

We have
∫

[y − f (x)]2 pxy (x, y) dxdy =
∫
X

∫
Y

[y − f (x)]2 py|x (y|x) px (x) dxdy

=
∫
X

[∫
Y

[y − f (x)]2 py|x (y|x) dy
]
dx

= EX

[∫
Y

[y − f (x)]2 py|x (y|x) dy
]

= EXEY |X
[
(Y − f (X))2 |X

]
What happens if we fix X?

EPE (f)X=x = EY |X=x
[
(Y − f (x))2 |X = x

]
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We can optimize the function

By a Simple Analysis

EY |X=x

[
(Y − f (x))2 |X = x

]
= EY |X=x

[(
Y + Y − Y − f (x)

)2 |X = x
]

= EY |X=x

[(
Y − Y

)2 |X = x
]

+ ...

EY |X=x

[(
Y − f (x)

)2 |X = x
]

+ ...

2EY |X=x

[(
Y − f (x)

) (
Y − Y

)
|X = x

]
= EY |X=x

[(
Y − Y

)2 |X = x
]

+ ...

EY |X=x

[(
Y − f (x)

)2 |X = x
]

+ ...

2
(
Y − f (x)

)
EY |X=x

[(
Y − Y

)
|X = x

]
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Further, we have

We have

EY |X=x
[(
Y − Y

)
|X = x

]
= EY |X=x [Y ]− EY |X=x

[
1
N

N∑
i=1

Yi

]

= µY −
1
N

N∑
i=1

EY |X=x [Yi]

= µY −
NµY
N

= 0
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Finally

We have

EY |X=x
[
(Y − f (x))2 |X = x

]
= EY |X=x

[(
Y − Y

)2
|X = x

]
+ ...

EY |X=x

[(
Y − f (x)

)2
|X = x

]
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Then
We have that we can optimize point-wise
Then, if we choose

f (X) = Y ≈ EY [Y |X = x]

The conditional expectation, also known as the regression function!!!

Additionally, we have

EY |X=x
[
(Y − f (x))2 |X = x

]
= EY |X=x

[(
Y − Y

)2
|X = x

]

The variance for Y that can be approximated by

σ̂2
Y = 1

N − 1

N∑
i=1

(
Yi − Y

)2
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Finally

Thus, the best prediction of Y at any point X = x the regression
function for LSE

It is the conditional mean.

EY [Y |X = x]

I When best is measured by average squared error.
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Now Nearest Neighborhood

At each point x
The method calculates the average of all those y′is with input xi = x

1
nxi=x

∑
xi=x

yi

Or in other way, an estimation based in the average

f̂ (x) = Ave (yi|xi ∈ Nk (x))
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Therefore

Two things happen here
Expectation is approximated by averaging over sample data

1
k

∑
xi∈Nk(x)

y

Thus, conditioning
It is relaxing to some region “close” to the target point
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Therefore

For large training sample size N
The points in the neighborhood are likely to be close to x.

I Then as k gets large the average will get more stable.

It is more under regularity conditions on P (X, Y )
One can for that as N →∞ and k →∞ such that k/N → 0

f̂ (x)→ E (Y |X = x)

Problem
We often do not have very large number of samples!!!
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However

As the dimension d gets large
Thus, the metric size of the k-nearest neighborhood also gets larger.

Making

f̂ (x)→ E (Y |X = x)

It fails miserably.
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How does Linear Regression fit into this framework?

The regression function f(x) is approximately linear in its arguments

f (x) = xTw

Plugging this linear model for f(x) into EPE and differentiating

w =
[
E
(
XXT

)]−1
E (XY )

Note
Note we have not conditioned on X.
We have used our knowledge of the functional relationship.

I for pooling over values of X.
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Therefore

The least squares solution
It amounts to replacing the expectation in

w =
[
E
(
XXT

)]−1
E (XY )

by averages over the training data.

Then, we have that
k-nearest neighbors and least squares end up approximating conditional
expectations by averages.
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Therefore

We have the following differences
Least squares assumes f(x) is well approximated by a globally linear
function.
k-nearest neighbors assumes f(x) is well approximated by a locally
constant function.
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Some Times

We take the following assumption about the data

Y = f (X) + ε

Where
The Random Error has E [ε] = 0
And the error is independent of X

Under this model, we have already a solution

f (x) = E [Y |X = x]

The conditional distribution P (Y |X) depends on X
Only through the conditional mean f (x)
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This is quite useful

Given that in most systems, the input-output pairs (X, Y )
It will not have a deterministic relationship Y = f (X)

Nevertheless
There will be other non measured variables that also contribute to Y

For example
Error in the measurement of the system error!!!
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Therefore

It is natural to use
Least Squares as a data criterion for model estimation!!!
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However

In general the conditional distribution P (Y |X)
It can depend on X in complicated ways... and thus, the simplification
models!!!
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Now

Given the model Y = f (X) + ε

Supervised Learning tries to learn f by data from a teacher.

Thus
It is necessary to observe the system
Collect data from it!!!
Assemble a training set of observations

D = {(xi, yi) |i = 1, 2, . . . , N}

73 / 91



Now

Given the model Y = f (X) + ε

Supervised Learning tries to learn f by data from a teacher.

Thus
It is necessary to observe the system
Collect data from it!!!
Assemble a training set of observations

D = {(xi, yi) |i = 1, 2, . . . , N}

73 / 91



Now

Given the model Y = f (X) + ε

Supervised Learning tries to learn f by data from a teacher.

Thus
It is necessary to observe the system
Collect data from it!!!
Assemble a training set of observations

D = {(xi, yi) |i = 1, 2, . . . , N}

73 / 91



Now

Given the model Y = f (X) + ε

Supervised Learning tries to learn f by data from a teacher.

Thus
It is necessary to observe the system
Collect data from it!!!
Assemble a training set of observations

D = {(xi, yi) |i = 1, 2, . . . , N}

73 / 91



Then

This training set is feed into a learning algorithm
This system produces an output

f̂ (xi)

Something Notable
The Learning algorithm has the ability to modify its input/output
relationship f̂ based on the difference yi − f (xi).

This is similar to function Approximation
At Applied Mathematics and Statistics the input D are viewed as
points in (d+ 1)−dimensional space
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The function f (x)
Domain

The domain of a function is the complete set of possible values of the
independent variable.
In our case, the d−dimensional subspace.

Range
The range of a function is the complete set of all possible resulting
values of the dependent variable.
In our case, the output of y′is of our training data set.

That, we relate by the following function

yi = f (xi) + εi

Assuming linear additivity structure between noise input and
outputs.
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The Final Goal

Something Notable
It is to obtain a useful approximation (fitting) to f(x) for all x in
some region of Rd , given the representations in D.

You can think as no so glamorous than the learning paradigm
But using this approach, we can use all the tools generated in the last
200 years for function approximation!!!

Basically
We can see Supervised Learning as a controlled over-fitting!!!
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Parameters in the Approximations

For example, in the linear model f (x) = xTw

There is a parameter for approximation θ = w

In another example, using linear basis expansion

fθ (x) =
K∑
k=1

hk (x) θk

Traditional examples of these functions
x2

1, x1x
2
2, cos (x1)

An also

hk (x) = 1
1 + exp {−xT θk}
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Residual Sum of Squares (RSS)

Here, the general structure for the RSS(f) under a
Penalty/Regularization

PRSS (f, λ) = RSS (f) + λJ (f)

For Example, we have Ridge Regression
N∑
i=1

(
yi − xT

)2
+ λ

d∑
i=1

w2
i (1)
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Kernel Methods

You can think on these methods as
They try to estimate the regression function or conditional
expectation by specifying:

I The properties of the local Neighborhood,
I The class of regular functions fitted locally.

For this, they use kernels as

Kλ (x,x0) = 1
λ

exp
{
−‖x− x0‖2

2λ

}
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What happens here?

We have the following
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As in Regression

We can define a way of doing estimation

RSS (fw,x0) =
N∑
i=1

Kλ (xi,x0) (yi − fw (xi))2

Where fw
1 fw (x) = w0 the constant function (Nadaraya–Watson Estimate).
2 fw (x) =

∑d
i=0 xiwi the classic local linear regression models.
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For Example

Nearest-Neighbor Methods
It can be thought as a kernel method with a data dependent metric:

Kk (x,x0) = I
[
‖x− x0‖ ≤

∥∥∥x(i) − x0
∥∥∥ |i = 1, 2, . . . , k

]

Where
x(i) is the training observation ranked ith in distance from x0.
I(S) is the indicator of the set S.
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A more wide variety of flexible models

For Example, Linear and Polynomial Expansions

fw (x) =
M∑
m=1

wmhm (x)

Where
hm is a function on x.
with the linear term wm acting on the function hm
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Other Examples

Something Notable
Tensor products of spline bases can be used for inputs with
dimensions larger than one - CART and MARS models

Radial basis functions

fw (x) =
M∑
m=1

wmKλm (µm,x) with Kλ (µ,x) = exp
{
−‖x− µ‖

2

2λ

}

A single-layer feed-forward neural network

fw (x) =
M∑
m=1

wmS
(
αTmx+ bm

)
with S (y) = 1

1 + exp {−y}
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Conclusions

Machine Learning is a quite wide and vast field
It requires Time
It requires Effort
It can be sometimes hard!!!

This is the main reason of this class
To take step by step into such interesting field as Machine Learning!!!

Thank you for being passengers
An Future Pilots in this class!!!
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