Introduction to Artificial Intelligence A Basic Introduction to Learning

Andres Mendez-Vazquez

March 8, 2019

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

2 Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

Outline

Learning in the World

What do we want?

What type of Variables do we have?

2 Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Clearly, there are many problems important for us

- Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack,
- Predict the price of a stock in 6 months from now,
- Given a market population what products to recommend to them
- How to recognize in a video a car or person,
- How to predict maintenance in a factory,
- etc.

Clearly, there are many problems important for us

- Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack,
- Predict the price of a stock in 6 months from now,
- Given a market population what products to recommend to them
- How to recognize in a video a car or person,
- How to predict maintenance in a factory
- etc.

Clearly, there are many problems important for us

- Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack,
- Predict the price of a stock in 6 months from now,
- Given a market population what products to recommend to them,

How to recognize in a video a car or person,

How to predict maintenance in a factory

Clearly, there are many problems important for us

- Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack,
- Predict the price of a stock in 6 months from now,
- Given a market population what products to recommend to them,
- How to recognize in a video a car or person,

Clearly, there are many problems important for us

- Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack,
- Predict the price of a stock in 6 months from now,
- Given a market population what products to recommend to them,
- How to recognize in a video a car or person,
- How to predict maintenance in a factory,

Clearly, there are many problems important for us

- Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack,
- Predict the price of a stock in 6 months from now,
- Given a market population what products to recommend to them,

4/91

- How to recognize in a video a car or person,
- How to predict maintenance in a factory,
- etc.

Example

Given a sample on frequency of the most common words in a series of 4601 emails

	george	you	your	hp	free	hpl	!	our	re	edu
Spam	0.00	2.26	1.38	0.002	0.52	0.01	0.51	0.51	0.13	0.01
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29

Example

Given a sample on frequency of the most common words in a series of 4601 emails

	george	you	your	hp	free	hpl	ļ	our	re	edu
Spam	0.00	2.26	1.38	0.002	0.52	0.01	0.51	0.51	0.13	0.01
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29

We want to design a series of rules to guess when you have a Spam or a genuine email

$$f_1(message) = \begin{cases} \% george < 0.6 \text{ and } \% you > 1.5 & spam \\ \text{Otherwhise} & email \end{cases}$$

$$f_2(message) = \begin{cases} 0.2 \times \% you - 0.3 \times \% george > 1.5 & spam \\ \text{Otherwhise} & email \end{cases}$$

Example

Given a sample on frequency of the most common words in a series of 4601 emails

	george	you	your	hp	free	hpl	!	our	re	edu
Spam	0.00	2.26	1.38	0.002	0.52	0.01	0.51	0.51	0.13	0.01
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29

We want to design a series of rules to guess when you have a Spam or a genuine email

$$f_1 \left(message\right) = \begin{cases} \% george < 0.6 \text{ and } \% you > 1.5 & spam \\ \text{Otherwhise} & email \end{cases}$$

$$f_2(message) = \begin{cases} 0.2 \times \% you - 0.3 \times \% george > 1.5 & spam \\ \text{Otherwhise} & email \end{cases}$$

Outline

Learning in the World

Introduction

What do we want?

What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Therefore

Let $X \in \mathbb{R}^d$ a real valued random input and $Y \in \mathbb{R}$ a real valued output

With joint distribution P(X, Y)

We are looking for a function that takes the variables in X to map them into Y

f(X) predicting Y

<ロト < 回 > < 言 > < 言 > 三 の Q C 7 / 91

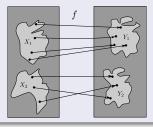
Therefore

Let $X \in \mathbb{R}^d$ a real valued random input and $Y \in \mathbb{R}$ a real valued output

With joint distribution P(X, Y)

We are looking for a function that takes the variables in \boldsymbol{X} to map them into \boldsymbol{Y}

 $f\left(X\right) \text{ predicting } Y$



Outline

Learning in the World

Introduction
 What do we want?

What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Quantitative Data

• They are measures of values or counts and are expressed as numbers.

Quantitative Data

- They are measures of values or counts and are expressed as numbers.
 - Quantitative data are data about numeric variables (e.g. how many; how much; or how often).

Qualitative Data

- They are measures of 'types' and may be represented by a name, symbol, or a number code.
 - Qualitative data are data about categorical variables (e.g. what type)

Quantitative Data

- They are measures of values or counts and are expressed as numbers.
 - Quantitative data are data about numeric variables (e.g. how many; how much; or how often).

Qualitative Data

• They are measures of 'types' and may be represented by a name, symbol, or a number code.

Quantitative Data

- They are measures of values or counts and are expressed as numbers.
 - Quantitative data are data about numeric variables (e.g. how many; how much; or how often).

Qualitative Data

- They are measures of 'types' and may be represented by a name, symbol, or a number code.
 - Qualitative data are data about categorical variables (e.g. what type).

For Example (In the case of Outputs)

If we are classifying digits

The Outputs are Quantitative

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

For Example (In the case of Outputs)

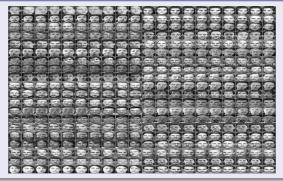
If we are classifying digits

The Outputs are Quantitative

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Therefore

We want to use the Quantitative or Qualitative variables

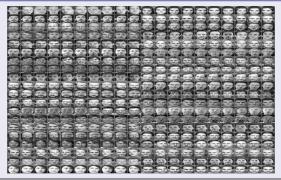


To obtain the correct sought output

Andres,Fabiola} = People that can drive a certain car

Therefore

We want to use the Quantitative or Qualitative variables



To obtain the correct sought output

 ${Andres, Fabiola} = People that can drive a certain car$

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting Polynomial Curve Fitting

- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

Suppose

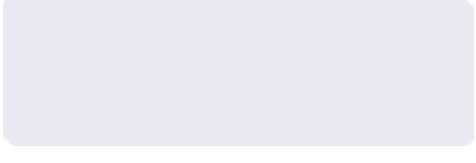
• We observe a real-valued input variable $x \in \mathbb{R}$

Suppose

• We observe a real-valued input variable $x \in \mathbb{R}$

We are looking to predict

• The value of a real valued variable $y \in \mathbb{R}$



Suppose

 \bullet We observe a real-valued input variable $x\in\mathbb{R}$

We are looking to predict

• The value of a real valued variable $y \in \mathbb{R}$

Thus, we have the following training data set of size N

$$\boldsymbol{x} \equiv (x_1, x_2, \cdots, x_N)^T$$

$y\equiv(y_1,y_2,\cdots,y_N)$

lote: We need data to construct prediction rules, often a lot of

Suppose

 \bullet We observe a real-valued input variable $x\in\mathbb{R}$

We are looking to predict

• The value of a real valued variable $y \in \mathbb{R}$

Thus, we have the following training data set of size N

$$oldsymbol{x} \equiv (x_1, x_2, \cdots, x_N)^T$$

 $oldsymbol{y} \equiv (y_1, y_2, \cdots, y_N)^T$

Note: We need data to construct prediction rules, often a lot of

Suppose

• We observe a real-valued input variable $x \in \mathbb{R}$

We are looking to predict

• The value of a real valued variable $y \in \mathbb{R}$

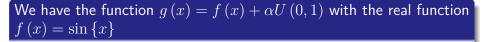
Thus, we have the following training data set of size N

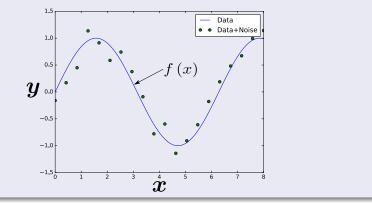
$$oldsymbol{x} \equiv (x_1, x_2, \cdots, x_N)^T$$

 $oldsymbol{y} \equiv (y_1, y_2, \cdots, y_N)^T$

Note: We need data to construct prediction rules, often a lot of *it*.

For Example





< □ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 클 ∽ 의< ☉ 14/91

What is our Goal?

Our goal is to exploit this training set

• We want to make predictions of the value \hat{y} (pronounced y-hat) given a new value \hat{x} (y-hat).

What can we use first?

Where

- d is the order of the polynomial.
- x^i denotes x raised to the power i.

What is our Goal?

Our goal is to exploit this training set

• We want to make predictions of the value \hat{y} (pronounced y-hat) given a new value \hat{x} (y-hat).

What can we use first?

$$y = g(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^d = \sum_{i=0}^d w_i x^i$$

Where

• d is the order of the polynomial.

• x^i denotes x raised to the power i.

What is our Goal?

Our goal is to exploit this training set

• We want to make predictions of the value \hat{y} (pronounced y-hat) given a new value \hat{x} (y-hat).

What can we use first?

$$y = g(x, \boldsymbol{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^d = \sum_{i=0}^d w_i x^i$$

Where

- d is the order of the polynomial.
- x^i denotes x raised to the power i.

Further

These functions are linear at the parameter $oldsymbol{w}$

• They are quite important and are called *linear models!!!*

How do we guess these values?

By fitting the polynomial to the training data.

How do we do this?

- This can be done by minimizing an error function or loss function measuring, ε:
 - ▶ The difference between the function g(x, w), for any given value of w, and the training set data points.

Further

These functions are linear at the parameter $m{w}$

They are quite important and are called *linear models*!!!

How do we guess these values?

• By fitting the polynomial to the training data.

How do we do this?

- This can be done by minimizing an error function or loss function measuring, ε:
 - The difference between the function g (x, w), for any given value of w, and the training set data points.

Further

These functions are linear at the parameter $oldsymbol{w}$

They are quite important and are called *linear models*!!!

How do we guess these values?

• By fitting the polynomial to the training data.

How do we do this?

- This can be done by minimizing an error function or loss function measuring, ϵ :
 - ► The difference between the function g (x, w), for any given value of w, and the training set data points.

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

2 Regression as Controlled Overfitting

Polynomial Curve Fitting

A Loss Function

"Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

One simple choice of error function

The Sum of the Squares of the Errors

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} [g(x_i, \boldsymbol{w}) - y_i]^2$$

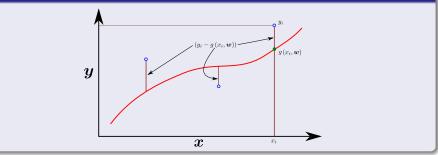
Something Notable

One simple choice of error function

The Sum of the Squares of the Errors

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} \left[g(x_i, \boldsymbol{w}) - y_i \right]^2$$

Something Notable



Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

2 Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Choose the estimate of f(x), g(x, w), to be independent of $\mathcal D$

For example, $g(x, \boldsymbol{w}) = w_1 x + w_0$

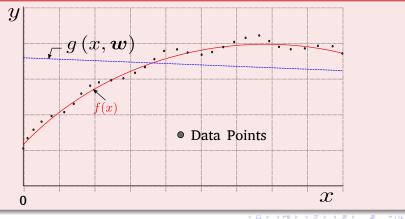
We call this **HIGH BIAS**

Case 1

Choose the estimate of f(x), g(x, w), to be independent of \mathcal{D}

For example,
$$g\left(x,oldsymbol{w}
ight)=w_{1}x+w_{0}$$

We call this HIGH BIAS



20/91

Case 2

In the other hand

Now, $g\left(x, \bm{w}\right)$ corresponds to a polynomial of high degree so it can pass through each training point.

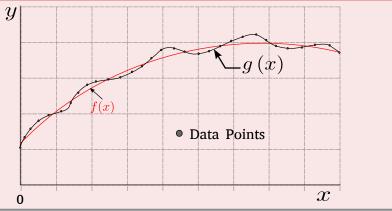
We call this **HIGH VARIANCE**

Case 2

In the other hand

Now, g(x, w) corresponds to a polynomial of high degree so it can pass through each training point.

We call this HIGH VARIANCE



Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

Example of Approaches to Prediction

- Linear Models
- Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

Two Simple Models

Linear Models

- Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Our General Case

Our Data Set

() A Series of $X \in \mathbb{R}^d$ of real valued random input vector.

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

Here, each variable X_i is Quantitative or Qualitative variables in the correct numeric representation.

) A Series of $Y \in \mathbb{R}$ a real valued random output variables.

Our General Case

Our Data Set

() A Series of $X \in \mathbb{R}^d$ of real valued random input vector.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

► Here, each variable X_i is Quantitative or Qualitative variables in the correct numeric representation.

A Series of $Y \in \mathbb{R}$ a real valued random output variables

Our General Case

Our Data Set

() A Series of $X \in \mathbb{R}^d$ of real valued random input vector.

$$c = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

- ► Here, each variable X_i is Quantitative or Qualitative variables in the correct numeric representation.
- **2** A Series of $Y \in \mathbb{R}$ a real valued random output variables.

Linear Models

We have the following model

• The linear model has been a mainstay of statistics for the past 30 years.

The Model looks like on an input $X^T = (X_1, X_2, \dots, X_d)$

$$\widehat{Y} = \widehat{w}_0 + \sum_{i=1}^d X_i \widehat{w}_i$$

Linear Models

We have the following model

• The linear model has been a mainstay of statistics for the past 30 years.

The Model looks like on an input $X^T = (X_1, X_2, \dots, X_d)$

$$\widehat{Y} = \widehat{w}_0 + \sum_{i=1}^d X_i \widehat{w}_i$$

ヘロト ヘロト ヘヨト ヘヨト

3

25/91

It is many times convenient

To use the dot product in Linear Algebra

$$\widehat{Y} = (1, X_1, X_2, \dots, X_d) \begin{pmatrix} \widehat{w}_0 \\ \widehat{w}_1 \\ \vdots \\ \widehat{w}_d \end{pmatrix} = X^T \widehat{\boldsymbol{w}}$$

Furthermore, Y could be a constant or a N vector

It is many times convenient

To use the dot product in Linear Algebra

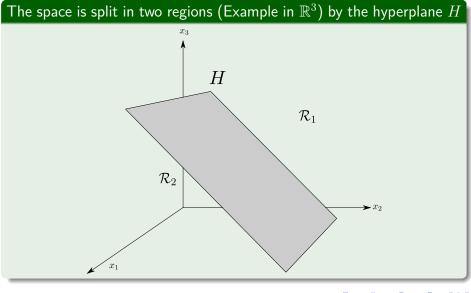
$$\widehat{Y} = (1, X_1, X_2, \dots, X_d) \begin{pmatrix} \widehat{w}_0 \\ \widehat{w}_1 \\ \vdots \\ \widehat{w}_d \end{pmatrix} = X^T \widehat{\boldsymbol{w}}$$

Furthermore, \hat{Y} could be a constant or a N vector

$$\widehat{Y} = \begin{pmatrix} \widehat{Y}_1 \\ \widehat{Y}_2 \\ \vdots \\ \widehat{Y}_N \end{pmatrix} = \begin{pmatrix} 1 & X_1^{(1)} & X_2^{(1)} & \cdots & X_d^{(1)} \\ 1 & X_1^{(2)} & X_2^{(2)} & \cdots & X_d^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_1^{(N)} & X_2^{(N)} & \cdots & X_d^{(N)} \end{pmatrix} \begin{pmatrix} \widehat{w}_0 \\ \widehat{w}_1 \\ \vdots \\ \widehat{w}_d \end{pmatrix} = \boldsymbol{X} \boldsymbol{w}$$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ◆ ○ Q (○
26 / 91

This basically define an hyperplane



A Convenient Loss Functions

Thus, we look for a Loss function (A convenient one the LSE)

$$L(\boldsymbol{w}) = \sum_{i=1}^{N} \left(\boldsymbol{y}_{i} - \boldsymbol{x}_{i}^{T} \boldsymbol{w} \right)^{2}$$

◆□ → < □ → < 三 → < 三 → < 三 → ○ < ○ </p>
28 / 91

It is possible to get a unique solution

$$oldsymbol{w} = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}$$

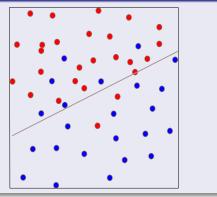
Then, it is possible to fit the linear model to the following data

Then

It is possible to get a unique solution

$$oldsymbol{w} = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}$$

Then, it is possible to fit the linear model to the following data



How do we do classification here?

Given

- Y = 0 for the **blue** data set.
- **2** Y = 1 for the **red** data set.

Then, the fitted values Y are converted to a fitted class variable ${\cal G}$ according

$$\widehat{G} = \begin{cases} \text{red} & \text{ if } \widehat{Y} > 0.5 \\ \text{blue} & \text{ if } \widehat{Y} \leq 0.5 \end{cases}$$

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q @ 30 / 91

How do we do classification here?

Given

- Y = 0 for the **blue** data set.
- **2** Y = 1 for the **red** data set.

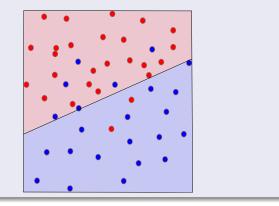
Then, the fitted values \hat{Y} are converted to a fitted class variable \hat{G} according

$$\widehat{G} = \begin{cases} \mathsf{red} & \text{ if } \widehat{Y} > 0.5 \\ \mathsf{blue} & \text{ if } \widehat{Y} \le 0.5 \end{cases}$$

Decision Boundary

The two predicted classes are separated

Decision Boundary
$$\left\{ oldsymbol{x} | oldsymbol{x}^T \widehat{oldsymbol{w}} = 0.5
ight\}$$



We have a Problem

We have and issue

We do not know the underlaying models that generates the data.

Scenario 1

 The training data in each class were generated from bivariate Gaussian distributions with uncorrelated components and different means.

[hus!!!

Look at the Blackboard

We have a Problem

We have and issue

We do not know the underlaying models that generates the data.

Scenario 1

• The training data in each class were generated from bivariate Gaussian distributions with uncorrelated components and different means.

Thus!!!

Look at the Blackboard

We have a Problem

We have and issue

We do not know the underlaying models that generates the data.

Scenario 1

• The training data in each class were generated from bivariate Gaussian distributions with uncorrelated components and different means.

Thus!!!

Look at the Blackboard

What is happening?

Scenario 2

• The training data in each class came from a mixture of 10 lowvariance Gaussian distributions, with individual means themselves distributed as Gaussian.

Again to the Blackboard!!!

What is happening?

Scenario 2

• The training data in each class came from a mixture of 10 lowvariance Gaussian distributions, with individual means themselves distributed as Gaussian.

Then

• Again to the Blackboard!!!

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models

Nearest-Neighbor Methods

- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set

• Which are closets in the input space to a sample x to from \widehat{Y} .

K-Nearest Formulation

Where $N_k(x)$ is the neighborhood of x defined by the k closest points x_i in the training sample.

Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set

• Which are closets in the input space to a sample x to from Y.

K-Nearest Formulation

$$\widehat{Y}(\boldsymbol{x}) = \frac{1}{k} \sum_{\boldsymbol{x}_i \in N_k(\boldsymbol{x})} y_i$$

Where $N_k(x)$ is the neighborhood of x defined by the k closest points x_i in the training sample.

Clearly $N_k(\boldsymbol{x})$ requires a distance

Implies a Distance!!! Which one?

$$d_{2}\left(oldsymbol{x},oldsymbol{y}
ight)=\sqrt{oldsymbol{x}^{T}oldsymbol{y}}$$

-- Euclidean Distance

 $d_1\left(x,y
ight)=\sum\left||x_i-y_i|
ight|$ <-- $\,$ Manhattan Distance .

 $d_p\left(m{x},m{y}
ight) = \Big(\sum |x_i-y_i|^p\Big)$, (-- Minkowski distance of order p

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Clearly $N_{k}\left(oldsymbol{x} ight)$ requires a distance

Implies a Distance!!! Which one?

$$d_2(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\boldsymbol{x}^T \boldsymbol{y}} \leftarrow -$$
 Euclidean Distance
 $d_1(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^d |x_i - y_i| \leftarrow -$ Manhattan Distance
 $d_2(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^d |x_i - y_i| \leftarrow -$ Manhattan Distance

Clearly $N_{k}\left(\boldsymbol{x}\right)$ requires a distance

Implies a Distance!!! Which one?

$$d_{2}(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\boldsymbol{x}^{T} \boldsymbol{y}} \leftarrow - \text{ Euclidean Distance}$$

$$d_{1}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=}^{d} |x_{i} - y_{i}| \leftarrow - \text{ Manhattan Distance}$$

$$d_{p}(\boldsymbol{x}, \boldsymbol{y}) = \left(\sum_{i=}^{d} |x_{i} - y_{i}|^{p}\right)^{\frac{1}{p}} \leftarrow - \text{ Minkowski distance of order } p$$

Furthermore

Given a Data Matrix X and the Mean Data Matrix \overline{X}

$$\boldsymbol{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Np} \end{pmatrix}, \ \boldsymbol{\overline{X}} = \begin{pmatrix} \boldsymbol{\overline{x}} \\ \boldsymbol{\overline{x}} \\ \vdots \\ \boldsymbol{\overline{x}} \end{pmatrix} \text{ with }$$
$$\boldsymbol{\overline{X}} = \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{ip} \end{pmatrix}^{T}$$

We generate the variance-covariance matrix

$$C_{\boldsymbol{X}} = \frac{1}{N-1} \left[\boldsymbol{X} - \overline{\boldsymbol{X}} \right]^{T} \left[\boldsymbol{X} - \overline{\boldsymbol{X}} \right]^{T}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 37/91

Furthermore

Given a Data Matrix X and the Mean Data Matrix \overline{X}

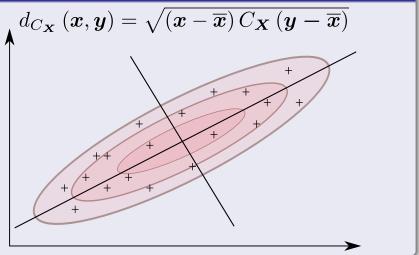
$$\boldsymbol{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Np} \end{pmatrix}, \ \boldsymbol{\overline{X}} = \begin{pmatrix} \boldsymbol{\overline{x}} \\ \boldsymbol{\overline{x}} \\ \vdots \\ \boldsymbol{\overline{x}} \end{pmatrix} \text{ with }$$
$$\boldsymbol{\overline{X}} = \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{ip} \end{pmatrix}^{T}$$

We generate the variance-covariance matrix

$$C_{\boldsymbol{X}} = \frac{1}{N-1} \left[\boldsymbol{X} - \overline{\boldsymbol{X}} \right]^{T} \left[\boldsymbol{X} - \overline{\boldsymbol{X}} \right]$$

Then, we have

The Mahalanobis Distance



Therefore

we find the k observations

With x_i closest to x in input space, and average their responses.

$\widehat{G} = \begin{cases} \mathsf{red} & \text{ if } \widehat{Y} > 0.5 \\ \mathsf{blue} & \text{ if } \widehat{Y} \leq 0.5 \end{cases}$

<ロト < 回 ト < 目 ト < 目 ト 注 の Q (C 39 / 91

Therefore

we find the k observations

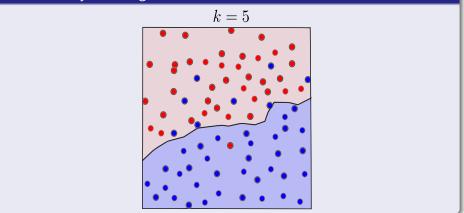
With x_i closest to x in input space, and average their responses.

And Again

$$\widehat{G} = \begin{cases} \mathsf{red} & \text{ if } \widehat{Y} > 0.5 \\ \mathsf{blue} & \text{ if } \widehat{Y} \le 0.5 \end{cases}$$

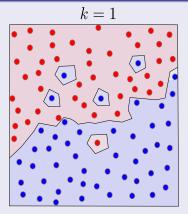
Example

We have only five neighbor, K = 5



Example - Actually The Voronoi Tessellation of the Training Data

We have only one neighbor, K = 1



Note: Each point x_i has an associated tile bounding the region for which it is the closest input point.

Therefore

K = 1 Vs. K = 5

For $K=5,\,\rm we$ see that far fewer training observations are misclassified when compared with the Linear Model

None of the training data are misclassified!!!

Therefore

K = 1 Vs. K = 5

For $K=5,\,\rm we$ see that far fewer training observations are misclassified when compared with the Linear Model

With K = 1

None of the training data are misclassified!!!

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods

Many Methods are Variants of Them

- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

For example

Kernel methods

• They use weights that decrease smoothly to zero with distance from the target point,

Quite different rather from using 0/1 weights used by k-nearest neighbors.

For example

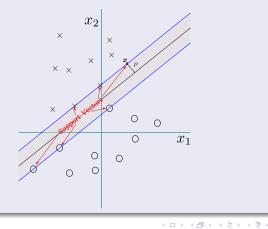
Kernel methods

- They use weights that decrease smoothly to zero with distance from the target point,
 - Quite different rather from using 0/1 weights used by k-nearest neighbors.

For example

Kernel methods

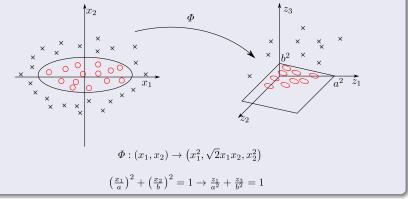
- They use weights that decrease smoothly to zero with distance from the target point,
 - Quite different rather from using 0/1 weights used by k-nearest neighbors.



Furthermore

Something Notable

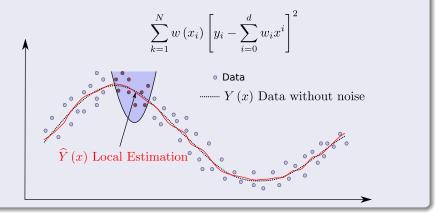
 In High-Dimensional spaces the distance kernels are modified to obtain better classifications.



Example

Local Regression

Local regression fits linear models by locally weighted least squares.



Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them

Statistical Decision Theory

- Loss Function
- Nearest Neighborhood Example
- Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

The Samples as Random Variables

As Always Probability

We first consider:

- $X \in \mathbb{R}^d$ denote a real valued input vector
- $Y \in \mathbb{R}$ a real valued random output

Therefore, we have a Joint Distribution $P\left(X,Y ight)$ and we seek

f(X) predicting Y

The Samples as Random Variables

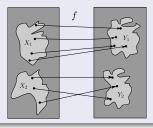
As Always Probability

We first consider:

- $X \in \mathbb{R}^d$ denote a real valued input vector
- $Y \in \mathbb{R}$ a real valued random output

Therefore, we have a Joint Distribution P(X, Y) and we seek

 $f\left(X\right) \text{ predicting } Y$



< ロ > < 同 > < 回 > < 回 >

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them

Statistical Decision Theory

Loss Function

- Nearest Neighborhood Example
- Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

We require a Loss Function

A convenient one is the Squared Error Loss

$$L(Y, f(X)) = (Y - f(X))^{2}$$

There is a relation to noise $\epsilon \sim N\left(0,1 ight)$

$Y_{noise}\left(X ight) = f\left(X ight) + \epsilon$

The Squared Error Loss

• It tries to minimize the error ϵ !!!

We require a Loss Function

A convenient one is the Squared Error Loss

$$L(Y, f(X)) = (Y - f(X))^{2}$$

There is a relation to noise $\epsilon \sim N(0, 1)$

 $Y_{noise}\left(X\right) = f\left(X\right) + \epsilon$

The Squared Error Loss

• It tries to minimize the error ϵ !!!

<ロト < 回 > < 臣 > < 臣 > 三 の Q (C 50 / 91

We require a Loss Function

A convenient one is the Squared Error Loss

$$L(Y, f(X)) = (Y - f(X))^{2}$$

There is a relation to noise $\epsilon \sim N(0, 1)$

$$Y_{noise}\left(X\right) = f\left(X\right) + \epsilon$$

The Squared Error Loss

• It tries to minimize the error $\epsilon!!!$

This leads us to a criterion for choosing f

The Expected Prediction Error (EPE)

$$EPE = E (Y - f (X))^{2}$$
$$= \int [y - f (x)]^{2} p_{xy} (x, y) dxdy$$

Now, we can condition the probability density function with respect to

p(X,Y) = p(Y|X) p(X)

This leads us to a criterion for choosing f

The Expected Prediction Error (EPE)

$$EPE = E (Y - f (X))^{2}$$
$$= \int [y - f (x)]^{2} p_{xy} (x, y) dxdy$$

Now, we can condition the probability density function with respect to \boldsymbol{X}

$$p\left(X,Y\right) = p\left(Y|X\right)p\left(X\right)$$

We have

$$\int [y - f(x)]^2 p_{xy}(x, y) \, dx \, dy = \int_X \int_Y [y - f(x)]^2 p_{y|x}(y|x) \, p_x(x) \, dx \, dy$$

<ロト < 回 > < 直 > < 直 > < 直 > < 三 > < 三 > 三 の Q (~ 52/91

We have

$$\int [y - f(x)]^2 p_{xy}(x, y) \, dx \, dy = \int_X \int_Y [y - f(x)]^2 p_{y|x}(y|x) \, p_x(x) \, dx \, dy$$
$$= \int_X \left[\int_Y [y - f(x)]^2 \, p_{y|x}(y|x) \, dy \right] \, dx$$

 $EPE(f)_{X=x} = E_{Y|X=x} \left[(Y - f(x))^2 | X = x \right]$

<ロト < 部ト < 語ト < 語ト < 語ト 目 の Q (* 52 / 91

We have

$$\int [y - f(x)]^2 p_{xy}(x, y) \, dx \, dy = \int_X \int_Y [y - f(x)]^2 p_{y|x}(y|x) \, p_x(x) \, dx \, dy$$
$$= \int_X \left[\int_Y [y - f(x)]^2 \, p_{y|x}(y|x) \, dy \right] \, dx$$
$$= E_X \left[\int_Y [y - f(x)]^2 \, p_{y|x}(y|x) \, dy \right]$$

 $EPE(f)_{X=x} = E_{Y|X=x} |(Y - f(x))^2|_X = x$

We have

$$\int [y - f(x)]^2 p_{xy}(x, y) \, dx dy = \int_X \int_Y [y - f(x)]^2 p_{y|x}(y|x) \, p_x(x) \, dx dy$$
$$= \int_X \left[\int_Y [y - f(x)]^2 \, p_{y|x}(y|x) \, dy \right] dx$$
$$= E_X \left[\int_Y [y - f(x)]^2 \, p_{y|x}(y|x) \, dy \right]$$
$$= E_X E_{Y|X} \left[(Y - f(X))^2 \, |X \right]$$

What happens if we fix X? $EPE(f)_{X=x} = E_{Y|X=x} \left[(Y - f(x))^2 | X = x \right]$

We have

$$\int [y - f(x)]^2 p_{xy}(x, y) \, dx dy = \int_X \int_Y [y - f(x)]^2 p_{y|x}(y|x) \, p_x(x) \, dx dy$$
$$= \int_X \left[\int_Y [y - f(x)]^2 \, p_{y|x}(y|x) \, dy \right] \, dx$$
$$= E_X \left[\int_Y [y - f(x)]^2 \, p_{y|x}(y|x) \, dy \right]$$
$$= E_X E_{Y|X} \left[(Y - f(X))^2 \, |X \right]$$

What happens if we fix X?

$$EPE(f)_{X=\boldsymbol{x}} = E_{Y|X=\boldsymbol{x}} \left[(Y - f(\boldsymbol{x}))^2 | X = \boldsymbol{x} \right]$$

We can optimize the function

By a Simple Analysis

$$E_{Y|X=x}\left[\left(Y-f\left(x\right)\right)^{2}|X=x\right] = E_{Y|X=x}\left[\left(Y+\overline{Y}-\overline{Y}-f\left(x\right)\right)^{2}|X=x\right]$$

We can optimize the function

By a Simple Analysis

$$E_{Y|X=x}\left[\left(Y-f\left(x\right)\right)^{2}|X=x\right] = E_{Y|X=x}\left[\left(Y+\overline{Y}-\overline{Y}-f\left(x\right)\right)^{2}|X=x\right]$$
$$= E_{Y|X=x}\left[\left(Y-\overline{Y}\right)^{2}|X=x\right] + \dots$$
$$E_{Y|X=x}\left[\left(\overline{Y}-f\left(x\right)\right)^{2}|X=x\right] + \dots$$
$$2E_{Y|X=x}\left[\left(\overline{Y}-f\left(x\right)\right)\left(Y-\overline{Y}\right)|X=x\right]$$

< □ ト < □ ト < ⊇ ト < ⊇ ト < ⊇ ト ⊇ 少 < ○ 53 / 91

We can optimize the function

By a Simple Analysis

$$E_{Y|X=x}\left[\left(Y-f\left(x\right)\right)^{2}|X=x\right] = E_{Y|X=x}\left[\left(Y+\overline{Y}-\overline{Y}-f\left(x\right)\right)^{2}|X=x\right]$$
$$= E_{Y|X=x}\left[\left(Y-\overline{Y}\right)^{2}|X=x\right] + \dots$$
$$E_{Y|X=x}\left[\left(\overline{Y}-f\left(x\right)\right)^{2}|X=x\right] + \dots$$
$$2E_{Y|X=x}\left[\left(\overline{Y}-f\left(x\right)\right)\left(Y-\overline{Y}\right)|X=x\right]$$
$$= E_{Y|X=x}\left[\left(Y-\overline{Y}\right)^{2}|X=x\right] + \dots$$
$$E_{Y|X=x}\left[\left(\overline{Y}-f\left(x\right)\right)^{2}|X=x\right] + \dots$$
$$2\left(\overline{Y}-f\left(x\right)\right)E_{Y|X=x}\left[\left(Y-\overline{Y}\right)|X=x\right]$$

We have

$$E_{Y|X=x}\left[\left(Y-\overline{Y}\right)|X=x\right] = E_{Y|X=x}\left[Y\right] - E_{Y|X=x}\left[\frac{1}{N}\sum_{i=1}^{N}Y_i\right]$$

λT

We have

$$E_{Y|X=x}\left[\left(Y-\overline{Y}\right)|X=x\right] = E_{Y|X=x}\left[Y\right] - E_{Y|X=x}\left[\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right]$$
$$= \mu_{Y} - \frac{1}{N}\sum_{i=1}^{N}E_{Y|X=x}\left[Y_{i}\right]$$

<ロト < 部 > < E > < E > E の Q () 54 / 91

We have

$$E_{Y|X=x}\left[\left(Y-\overline{Y}\right)|X=x\right] = E_{Y|X=x}\left[Y\right] - E_{Y|X=x}\left[\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right]$$
$$= \mu_{Y} - \frac{1}{N}\sum_{i=1}^{N}E_{Y|X=x}\left[Y_{i}\right]$$
$$= \mu_{Y} - \frac{N\mu_{Y}}{N}$$

<ロト < 部 > < E > < E > E の Q () 54 / 91

We have

$$E_{Y|X=x}\left[\left(Y-\overline{Y}\right)|X=x\right] = E_{Y|X=x}\left[Y\right] - E_{Y|X=x}\left\lfloor\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right\rfloor$$
$$= \mu_{Y} - \frac{1}{N}\sum_{i=1}^{N}E_{Y|X=x}\left[Y_{i}\right]$$
$$= \mu_{Y} - \frac{N\mu_{Y}}{N}$$
$$= 0$$

<ロト < 部 ト < 注 ト < 注 ト 差 と 注 の Q (C 54 / 91

Finally

We have

$$E_{Y|X=x}\left[\left(Y-f\left(x\right)\right)^{2}|X=x\right] = E_{Y|X=x}\left[\left(Y-\overline{Y}\right)^{2}|X=x\right] + \dots$$
$$E_{Y|X=x}\left[\left(\overline{Y}-f\left(x\right)\right)^{2}|X=x\right]$$

We have that we can optimize point-wise

Then, if we choose

$$f(X) = \overline{Y} \approx E_Y \left[Y | X = \boldsymbol{x} \right]$$

The conditional expectation, also known as the regression function!!

We have that we can optimize point-wise

Then, if we choose

$$f(X) = \overline{Y} \approx E_Y \left[Y | X = \boldsymbol{x} \right]$$

• The conditional expectation, also known as the regression function!!!

We have that we can optimize point-wise

Then, if we choose

$$f(X) = \overline{Y} \approx E_Y \left[Y | X = \boldsymbol{x} \right]$$

• The conditional expectation, also known as the regression function!!!

Additionally, we have

$$E_{Y|X=\boldsymbol{x}}\left[\left(Y-f\left(\boldsymbol{x}\right)\right)^{2}|X=\boldsymbol{x}\right]=E_{Y|X=\boldsymbol{x}}\left[\left(Y-\overline{Y}\right)^{2}|X=\boldsymbol{x}\right]$$

The variance for Y that can be approximated by

$$\widehat{\sigma}_Y^2 = \frac{1}{N-1} \sum_{i=1}^N \left(Y_i - \overline{Y}\right)^2$$

We have that we can optimize point-wise

Then, if we choose

$$f(X) = \overline{Y} \approx E_Y \left[Y | X = \boldsymbol{x} \right]$$

The conditional expectation, also known as the regression function!!!

Additionally, we have

$$E_{Y|X=\boldsymbol{x}}\left[\left(Y-f\left(\boldsymbol{x}\right)\right)^{2}|X=\boldsymbol{x}\right]=E_{Y|X=\boldsymbol{x}}\left[\left(Y-\overline{Y}\right)^{2}|X=\boldsymbol{x}\right]$$

The variance for Y that can be approximated by

We have that we can optimize point-wise

Then, if we choose

$$f(X) = \overline{Y} \approx E_Y \left[Y | X = \boldsymbol{x} \right]$$

The conditional expectation, also known as the regression function!!!

Additionally, we have

$$E_{Y|X=\boldsymbol{x}}\left[\left(Y-f\left(\boldsymbol{x}\right)\right)^{2}|X=\boldsymbol{x}\right]=E_{Y|X=\boldsymbol{x}}\left[\left(Y-\overline{Y}\right)^{2}|X=\boldsymbol{x}\right]$$

The variance for Y that can be approximated by

$$\widehat{\sigma}_Y^2 = \frac{1}{N-1} \sum_{i=1}^N \left(Y_i - \overline{Y} \right)^2$$

Thus, the best prediction of Y at any point $X=\pmb{x}$ the regression function for LSE

• It is the conditional mean.

$$E_Y\left[Y|X=\boldsymbol{x}\right]$$

When best is measured by average squared error.

Finally

Thus, the best prediction of Y at any point $X=\pmb{x}$ the regression function for LSE

• It is the conditional mean.

$$E_Y\left[Y|X=\boldsymbol{x}\right]$$

When best is measured by average squared error.

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them

Statistical Decision Theory

- Loss Function
- Nearest Neighborhood Example
- Nearest Neighborhood vs Liner Regression

Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Now Nearest Neighborhood

At each point x

The method calculates the average of all those $y'_i s$ with input $x_i = x$

 $\frac{1}{n_{\boldsymbol{x}_i=\boldsymbol{x}}}\sum_{\boldsymbol{x}_i=\boldsymbol{x}}y_i$

Or in other way, an estimation based in the average

 $\widehat{f}(\boldsymbol{x}) = Ave\left(y_{i}|\boldsymbol{x}_{i}\in N_{k}\left(x\right)\right)$

Now Nearest Neighborhood

At each point x

The method calculates the average of all those $y_i's$ with input ${m x}_i={m x}$

 $\frac{1}{n_{\boldsymbol{x}_i=\boldsymbol{x}}}\sum_{\boldsymbol{x}_i=\boldsymbol{x}}y_i$

Or in other way, an estimation based in the average

 $\widehat{f}(\boldsymbol{x}) = Ave\left(y_{i} | \boldsymbol{x}_{i} \in N_{k}\left(x\right)\right)$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 59 / 91

Two things happen here

• Expectation is approximated by averaging over sample data

$$\frac{1}{k}\sum_{\boldsymbol{x}_i\in N_k(\boldsymbol{x})}y$$

Thus, conditioning

It is relaxing to some region "close" to the target point.

Two things happen here

• Expectation is approximated by averaging over sample data

$$\frac{1}{k} \sum_{\boldsymbol{x}_i \in N_k(\boldsymbol{x})} \boldsymbol{y}$$

Thus, conditioning

• It is relaxing to some region "close" to the target point

For large training sample size ${\cal N}$

• The points in the neighborhood are likely to be close to x.

▶ Then as k gets large the average will get more stable.

It is more under regularity conditions on $P\left({}_{\mathcal{A}} ight)$

ullet One can for that as $N o\infty$ and $k o\infty$ such that k/N o 0

 $\widehat{f}\left(\boldsymbol{x}\right) \rightarrow E\left(Y|X=\boldsymbol{x}\right)$

Problem

We often do not have very large number of samples!!!

For large training sample size ${\cal N}$

• The points in the neighborhood are likely to be close to x.

▶ Then as k gets large the average will get more stable.

It is more under regularity conditions on P(X, Y)

• One can for that as $N \to \infty$ and $k \to \infty$ such that ${k / N} \to 0$

$$\widehat{f}(\boldsymbol{x}) \to E(Y|X = \boldsymbol{x})$$

Problem

We often do not have very large number of samples!!!

For large training sample size ${\cal N}$

• The points in the neighborhood are likely to be close to x.

▶ Then as k gets large the average will get more stable.

It is more under regularity conditions on P(X, Y)

• One can for that as $N \to \infty$ and $k \to \infty$ such that $k/N \to 0$

$$\widehat{f}(\boldsymbol{x}) \to E(Y|X = \boldsymbol{x})$$

Problem

We often do not have very large number of samples!!!

As the dimension d gets large

Thus, the metric size of the k-nearest neighborhood also gets larger.

Making

$\widehat{f}(\boldsymbol{x}) \to E(Y|X = \boldsymbol{x})$

It fails miserably.

However

As the dimension d gets large

Thus, the metric size of the k-nearest neighborhood also gets larger.

Making

$$\widehat{f}(\boldsymbol{x}) \to E(Y|X = \boldsymbol{x})$$

It fails miserably.

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them

Statistical Decision Theory

- Loss Function
- Nearest Neighborhood Example
- Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

The regression function f(x) is approximately linear in its arguments

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w}$$

64/91

The regression function f(x) is approximately linear in its arguments

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w}$$

Plugging this linear model for $f(\boldsymbol{x})$ into EPE and differentiating

$$\boldsymbol{w} = \left[E\left(XX^T \right) \right]^{-1} E\left(XY \right)$$

64/91

The regression function f(x) is approximately linear in its arguments

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w}$$

Plugging this linear model for $f(\boldsymbol{x})$ into EPE and differentiating

$$\boldsymbol{w} = \left[E\left(XX^T \right) \right]^{-1} E\left(XY \right)$$

Note

• Note we have not conditioned on X.

The regression function f(x) is approximately linear in its arguments

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w}$$

Plugging this linear model for $f(\boldsymbol{x})$ into EPE and differentiating

$$\boldsymbol{w} = \left[E\left(XX^T \right) \right]^{-1} E\left(XY \right)$$

Note

- Note we have not conditioned on X.
- We have used our knowledge of the functional relationship.

The regression function f(x) is approximately linear in its arguments

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w}$$

Plugging this linear model for $f(\boldsymbol{x})$ into EPE and differentiating

$$\boldsymbol{w} = \left[E\left(XX^T \right) \right]^{-1} E\left(XY \right)$$

Note

- Note we have not conditioned on X.
- We have used our knowledge of the functional relationship.
 - for pooling over values of X.

The least squares solution

• It amounts to replacing the expectation in

$$\boldsymbol{w} = \left[E\left(XX^T \right) \right]^{-1} E\left(XY \right)$$

by averages over the training data.

Then, we have that

k-nearest neighbors and least squares end up approximating conditional expectations by averages.

The least squares solution

• It amounts to replacing the expectation in

$$\boldsymbol{w} = \left[E\left(XX^T \right) \right]^{-1} E\left(XY \right)$$

by averages over the training data.

Then, we have that

k-nearest neighbors and least squares end up approximating conditional expectations by averages.

We have the following differences

- Least squares assumes f(x) is well approximated by a globally linear function.
- k-nearest neighbors assumes f(x) is well approximated by a locally constant function.

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

Supervised Learning as a Function Approximation • Statistical Model for P(X, Y)

- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Some Times

We take the following assumption about the data

 $Y = f\left(X\right) + \epsilon$

Where

- The Random Error has $E[\epsilon] = 0$
- $\bullet\,$ And the error is independent of X

Under this model, we have already a solution

 $f(\boldsymbol{x}) = E[Y|X = \boldsymbol{x}]$

The conditional distribution P(Y|X) depends on X

• Only through the conditional mean $f\left(oldsymbol{x}
ight)$

Some Times

We take the following assumption about the data

 $Y = f\left(X\right) + \epsilon$

Where

- The Random Error has $E[\epsilon] = 0$
- And the error is independent of X

Under this model, we have already a solution

 $f(\boldsymbol{x}) = E[Y|X = \boldsymbol{x}]$

The conditional distribution $P\left(Y|X
ight)$ depends on X

• Only through the conditional mean $f\left(oldsymbol{x}
ight)$

Some Times

We take the following assumption about the data

$$Y = f\left(X\right) + \epsilon$$

Where

- The Random Error has $E[\epsilon] = 0$
- And the error is independent of X

Under this model, we have already a solution

 $f(\boldsymbol{x}) = E[Y|X = \boldsymbol{x}]$

The conditional distribution P(Y|X) depends on X

• Only through the conditional mean $f\left(\boldsymbol{x} \right)$

This is quite useful

Given that in most systems, the input-output pairs (X, Y)

• It will not have a deterministic relationship Y = f(X)

Nevertheless

• There will be other non measured variables that also contribute to Y

For example

• Error in the measurement of the system error!!!

This is quite useful

Given that in most systems, the input-output pairs (X, Y)

• It will not have a deterministic relationship Y = f(X)

Nevertheless

 $\bullet\,$ There will be other non measured variables that also contribute to Y

For example.

Error in the measurement of the system error!!!

This is quite useful

Given that in most systems, the input-output pairs (X, Y)

• It will not have a deterministic relationship Y = f(X)

Nevertheless

• There will be other non measured variables that also contribute to Y

For example

Error in the measurement of the system error!!!

It is natural to use

• Least Squares as a data criterion for model estimation!!!

Additionally, we can modify the independence assuming

$$Var\left(Y|X=\boldsymbol{x}\right)=\sigma\left(\boldsymbol{x}\right)$$

Then

Both the mean and variance depend on X

It is natural to use

• Least Squares as a data criterion for model estimation !!!

Additionally, we can modify the independence assuming

$$Var\left(Y|X=\boldsymbol{x}\right)=\sigma\left(\boldsymbol{x}\right)$$

Then

ullet Both the mean and variance depend on X

Therefore

It is natural to use

• Least Squares as a data criterion for model estimation !!!

Additionally, we can modify the independence assuming

$$Var\left(Y|X=\boldsymbol{x}\right)=\sigma\left(\boldsymbol{x}\right)$$

Then

 $\bullet\,$ Both the mean and variance depend on X

However

In general the conditional distribution P(Y|X)

• It can depend on X in complicated ways... and thus, the simplification models!!!

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

• Statistical Model for P(X, Y)

Supervised Learning

Function Approximation
 Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Given the model $Y = f(X) + \epsilon$

• Supervised Learning tries to learn f by data from a teacher.

Ithi much atab tanka2 a arabanasala ba asa galakata saklanasak as fikuuu 2.1 a shi ka sati jara 1 a

Now

Given the model $Y = f(X) + \epsilon$

• Supervised Learning tries to learn f by data from a teacher.

Thus

• It is necessary to observe the system

Assemble a training set of observations

$D = \{(x_i, y_i) | i = 1, 2, \dots, N\}$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < C 73 / 91

Now

Given the model $Y = f(X) + \epsilon$

• Supervised Learning tries to learn f by data from a teacher.

Thus

- It is necessary to observe the system
- Collect data from it!!!
- Assemble a training set of observations

$\mathcal{D} = \{(x_i, y_i) | i = 1, 2, \dots, N\}$

Now

Given the model $Y = f(X) + \epsilon$

• Supervised Learning tries to learn f by data from a teacher.

Thus

- It is necessary to observe the system
- Collect data from it!!!
- Assemble a training set of observations

$$\mathcal{D} = \{(x_i, y_i) | i = 1, 2, \dots, N\}$$

Then

This training set is feed into a learning algorithm

This system produces an output

 $\widehat{f}(x_i)$

Something Notable

The Learning algorithm has the ability to modify its input/output relationship \widehat{f} based on the difference $y_i - f(x_i)$.

This is similar to function Approximation

 At Applied Mathematics and Statistics the input D are viewed as points in (d + 1) – dimensional space

Then

This training set is feed into a learning algorithm

This system produces an output

$$\widehat{f}(x_i)$$

Something Notable

The Learning algorithm has the ability to modify its input/output relationship \hat{f} based on the difference $y_i - f(x_i)$.

his is similar to function Approximation

At Applied Mathematics and Statistics the input D are viewed as points in (d + 1) –dimensional space

Then

This training set is feed into a learning algorithm

This system produces an output

$$\widehat{f}(x_i)$$

Something Notable

The Learning algorithm has the ability to modify its input/output relationship \hat{f} based on the difference $y_i - f(x_i)$.

This is similar to function Approximation

• At Applied Mathematics and Statistics the input ${\mathcal D}$ are viewed as points in (d+1) –dimensional space

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning

Function Approximation

Parameters in Function Approximation

Some Classes of Estimator

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Domain

• The domain of a function is the complete set of possible values of the independent variable.

• In our case, the d-dimensional subspace

Domain

- The domain of a function is the complete set of possible values of the independent variable.
- $\bullet\,$ In our case, the $d-{\rm dimensional}$ subspace.

 The range of a function is the complete set of all possible resulting values of the dependent variable.

ullet In our case, the output of $y_i's$ of our training data set.

Domain

- The domain of a function is the complete set of possible values of the independent variable.
- In our case, the d-dimensional subspace.

Range

• The range of a function is the complete set of all possible resulting values of the dependent variable.

In our case, the output of $y_i^\prime s$ of our training data set

Fhat, we relate by the following function

$$y_i = f\left(x_i\right) + \epsilon_i$$

Assuming linear additivity structure between noise input and outputs.

Domain

- The domain of a function is the complete set of possible values of the independent variable.
- In our case, the d-dimensional subspace.

Range

- The range of a function is the complete set of all possible resulting values of the dependent variable.
- In our case, the output of y'_is of our training data set.

That, we relate by the following function

$y_i = f\left(x_i\right) + \epsilon_i$

Assuming linear additivity structure between noise input and outputs.

Domain

- The domain of a function is the complete set of possible values of the independent variable.
- In our case, the d-dimensional subspace.

Range

- The range of a function is the complete set of all possible resulting values of the dependent variable.
- In our case, the output of $y'_i s$ of our training data set.

That, we relate by the following function

$$y_i = f\left(x_i\right) + \epsilon_i$$

Assuming linear additivity structure between noise input and outputs.

The Final Goal

Something Notable

• It is to obtain a useful approximation (fitting) to f(x) for all x in some region of \mathbb{R}^d , given the representations in \mathcal{D} .

You can think as no so glamorous than the learning paradigm

 But using this approach, we can use all the tools generated in the last 200 years for function approximation!!!

Basically

We can see Supervised Learning as a controlled over-fitting!!!

The Final Goal

Something Notable

• It is to obtain a useful approximation (fitting) to f(x) for all x in some region of \mathbb{R}^d , given the representations in \mathcal{D} .

You can think as no so glamorous than the learning paradigm

• But using this approach, we can use all the tools generated in the last 200 years for function approximation!!!

Basically

We can see Supervised Learning as a controlled over-fitting!!!

The Final Goal

Something Notable

• It is to obtain a useful approximation (fitting) to f(x) for all x in some region of \mathbb{R}^d , given the representations in \mathcal{D} .

You can think as no so glamorous than the learning paradigm

• But using this approach, we can use all the tools generated in the last 200 years for function approximation!!!

Basically

We can see Supervised Learning as a controlled over-fitting!!!

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

Parameters in the Approximations

For example, in the linear model $f(x) = \boldsymbol{x}^T w$

• There is a parameter for approximation $\theta=w$

In another example, using linear basis expansion

Traditional examples of these functions

- $x_1^2, x_1 x_2^2, \cos(x_1)$
- An also

$$h_{k}\left(\boldsymbol{x}\right)=\frac{1}{1+\exp\left\{-\boldsymbol{x}^{T}\boldsymbol{\theta}_{k}\right\}}$$

Parameters in the Approximations

For example, in the linear model $f(x) = \boldsymbol{x}^T w$

 $\bullet\,$ There is a parameter for approximation $\theta=w$

In another example, using linear basis expansion

$$f_{ heta}\left(oldsymbol{x}
ight) = \sum_{k=1}^{K} h_{k}\left(oldsymbol{x}
ight) heta_{k}$$

Traditional examples of these functions

• $x_1^2, x_1 x_2^2, \cos(x_1)$

An also

$$h_{k}\left(\boldsymbol{x}\right)=\frac{1}{1+\exp\left\{-\boldsymbol{x}^{T}\boldsymbol{\theta}_{k}\right\}}$$

Parameters in the Approximations

For example, in the linear model $f(x) = \boldsymbol{x}^T w$

• There is a parameter for approximation $\theta=w$

In another example, using linear basis expansion

$$f_{ heta}\left(oldsymbol{x}
ight) = \sum_{k=1}^{K} h_{k}\left(oldsymbol{x}
ight) heta_{k}$$

Traditional examples of these functions

•
$$x_1^2, x_1 x_2^2, \cos(x_1)$$

An also

$$h_k\left(\boldsymbol{x}\right) = rac{1}{1 + \exp\left\{-\boldsymbol{x}^T \theta_k
ight\}}$$

79/91

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

Roughness Penalty and Bayesian Methods

- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

Residual Sum of Squares (RSS)

Here, the general structure for the $\mathsf{RSS}(f)$ under a $\mathsf{Penalty}/\mathsf{Regularization}$

 $PRSS\left(f,\lambda
ight) = RSS\left(f
ight) + \lambda J\left(f
ight)$

For Example, we have Ridge Regression

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}^T\right)^2 + \lambda \sum_{i=1}^{d} w_i^2$$

・ロト ・ 一 ト ・ 注 ト ・ 注 ト う へ C
81 / 91

Residual Sum of Squares (RSS)

Here, the general structure for the $\mathsf{RSS}(f)$ under a $\mathsf{Penalty}/\mathsf{Regularization}$

$$PRSS(f, \lambda) = RSS(f) + \lambda J(f)$$

For Example, we have Ridge Regression

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}^T \right)^2 + \lambda \sum_{i=1}^{d} w_i^2 \tag{1}$$

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

5 Some Classes of Estimators

Roughness Penalty and Bayesian Methods

Kernel Methods and Local Regression

Basis Functions and Dictionary Methods

6 Conclusions • A Vast Field

<ロト < 団ト < 国ト < 国ト < 国ト = うへで 82/91

Kernel Methods

You can think on these methods as

- They try to estimate the regression function or conditional expectation by specifying:
 - The properties of the local Neighborhood,

Kernel Methods

You can think on these methods as

- They try to estimate the regression function or conditional expectation by specifying:
 - The properties of the local Neighborhood,
 - The class of regular functions fitted locally.

Kernel Methods

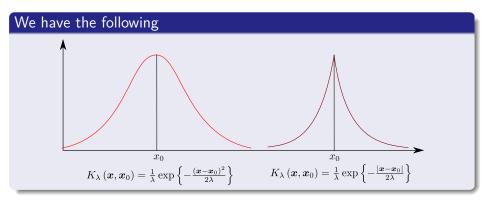
You can think on these methods as

- They try to estimate the regression function or conditional expectation by specifying:
 - The properties of the local Neighborhood,
 - The class of regular functions fitted locally.

For this, they use kernels as

$$K_{\lambda}(\boldsymbol{x}, \boldsymbol{x}_{0}) = rac{1}{\lambda} \exp\left\{-rac{\|\boldsymbol{x} - \boldsymbol{x}_{0}\|^{2}}{2\lambda}
ight\}$$

What happens here?



<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへの 84/91

As in Regression

We can define a way of doing estimation

$$RSS(f_{\boldsymbol{w}}, \boldsymbol{x}_{0}) = \sum_{i=1}^{N} K_{\lambda} (\boldsymbol{x}_{i}, \boldsymbol{x}_{0}) (y_{i} - f_{\boldsymbol{w}} (\boldsymbol{x}_{i}))^{2}$$

As in Regression

We can define a way of doing estimation

$$RSS(f_{\boldsymbol{w}}, \boldsymbol{x}_{0}) = \sum_{i=1}^{N} K_{\lambda}(\boldsymbol{x}_{i}, \boldsymbol{x}_{0}) (y_{i} - f_{\boldsymbol{w}}(\boldsymbol{x}_{i}))^{2}$$

Where f_w • $f_w(x) = w_0$ the constant function (Nadaraya–Watson Estimate).

As in Regression

We can define a way of doing estimation

$$RSS(f_{\boldsymbol{w}}, \boldsymbol{x}_{0}) = \sum_{i=1}^{N} K_{\lambda}(\boldsymbol{x}_{i}, \boldsymbol{x}_{0}) (y_{i} - f_{\boldsymbol{w}}(\boldsymbol{x}_{i}))^{2}$$

Where f_w

f_w (x) = w₀ the constant function (Nadaraya-Watson Estimate).
 f_w (x) = ∑^d_{i=0} x_iw_i the classic local linear regression models.

For Example

Nearest-Neighbor Methods

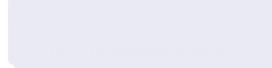
It can be thought as a kernel method with a data dependent metric:

$$K_k(m{x},m{x}_0) = I\left[\|m{x} - m{x}_0\| \le \|m{x}_{(i)} - m{x}_0\| | i = 1, 2, \dots, k
ight]$$

イロト イヨト イヨト イヨト

3

86 / 91



For Example

Nearest-Neighbor Methods

It can be thought as a kernel method with a data dependent metric:

$$K_{k}(\boldsymbol{x}, \boldsymbol{x}_{0}) = I\left[\|\boldsymbol{x} - \boldsymbol{x}_{0}\| \le \|\boldsymbol{x}_{(i)} - \boldsymbol{x}_{0}\| | i = 1, 2, \dots, k
ight]$$

Where

• $x_{(i)}$ is the training observation ranked i^{th} in distance from x_0 .

For Example

Nearest-Neighbor Methods

It can be thought as a kernel method with a data dependent metric:

$$K_k\left(oldsymbol{x},oldsymbol{x}_0
ight) = I\left[\left\|oldsymbol{x}-oldsymbol{x}_0
ight\| \le \left\|oldsymbol{x}_{(i)}-oldsymbol{x}_0
ight\| |i=1,2,\dots,k
ight]$$

Where

- $x_{(i)}$ is the training observation ranked i^{th} in distance from x_0 .
- I(S) is the indicator of the set S.

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

5 Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

For Example, Linear and Polynomial Expansions

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_m h_m\left(\boldsymbol{x}\right)$$

イロト イヨト イヨト イヨト

3

88 / 91

For Example, Linear and Polynomial Expansions

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_{m} h_{m}\left(\boldsymbol{x}\right)$$

Where

•
$$h_m$$
 is a function on x .

ullet with the linear term w_m acting on the function h_m

For Example, Linear and Polynomial Expansions

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_{m} h_{m}\left(\boldsymbol{x}\right)$$

Where

- h_m is a function on x.
- with the linear term w_m acting on the function h_m

For Example, Linear and Polynomial Expansions

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_{m} h_{m}\left(\boldsymbol{x}\right)$$

イロト 不得 トイヨト イヨト

88 / 91

Where

- h_m is a function on x.
- with the linear term w_m acting on the function h_m

Other Examples

Something Notable

• Tensor products of spline bases can be used for inputs with dimensions larger than one - CART and MARS models

Radial basis functions

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_m K_{\lambda_m}\left(\mu_m, \boldsymbol{x}\right) \text{ with } K_{\lambda}\left(\mu, \boldsymbol{x}\right) = \exp\left\{-\frac{\|\boldsymbol{x} - \mu\|^2}{2\lambda}\right\}$$

A single-layer feed-forward neural network

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_m S\left(\boldsymbol{\alpha}_m^T \boldsymbol{x} + \boldsymbol{b}_m\right) \text{ with } S\left(\boldsymbol{y}\right) = \frac{1}{1 + \exp\left\{-y\right\}}$$

Other Examples

Something Notable

• Tensor products of spline bases can be used for inputs with dimensions larger than one - CART and MARS models

Radial basis functions

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_m K_{\lambda_m}\left(\mu_m, \boldsymbol{x}\right) \text{ with } K_{\lambda}\left(\mu, \boldsymbol{x}\right) = \exp\left\{-\frac{\|\boldsymbol{x} - \mu\|^2}{2\lambda}\right\}$$

A single-layer feed-forward neural network

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_m S\left(\boldsymbol{\alpha}_m^T \boldsymbol{x} + \boldsymbol{b}_m\right) \text{ with } S\left(\boldsymbol{y}\right) = \frac{1}{1 + \exp\left\{-y\right\}}$$

Other Examples

Something Notable

 Tensor products of spline bases can be used for inputs with dimensions larger than one - CART and MARS models

Radial basis functions

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_m K_{\lambda_m}\left(\mu_m, \boldsymbol{x}\right) \text{ with } K_{\lambda}\left(\mu, \boldsymbol{x}\right) = \exp\left\{-\frac{\|\boldsymbol{x} - \mu\|^2}{2\lambda}\right\}$$

A single-layer feed-forward neural network

$$f_{\boldsymbol{w}}\left(\boldsymbol{x}\right) = \sum_{m=1}^{M} w_m S\left(\alpha_m^T \boldsymbol{x} + b_m\right) \text{ with } S\left(y\right) = \frac{1}{1 + \exp\left\{-y\right\}}$$

Outline

Learning in the World

- Introduction
- What do we want?
- What type of Variables do we have?

Regression as Controlled Overfitting

- Polynomial Curve Fitting
- A Loss Function
- "Extreme" Cases of Fitting

3 Example of Approaches to Prediction

- Two Simple Models
 - Linear Models
 - Nearest-Neighbor Methods
- Many Methods are Variants of Them
- Statistical Decision Theory
 - Loss Function
 - Nearest Neighborhood Example
 - Nearest Neighborhood vs Liner Regression

4 Supervised Learning as a Function Approximation

- Statistical Model for P(X, Y)
- Supervised Learning
- Function Approximation
 - Parameters in Function Approximation

Some Classes of Estimators

- Roughness Penalty and Bayesian Methods
- Kernel Methods and Local Regression
- Basis Functions and Dictionary Methods

Machine Learning is a quite wide and vast field

- It requires Time
- It requires Effort
 - It can be sometimes hard!!

Machine Learning is a quite wide and vast field

- It requires Time
- It requires Effort

It can be sometimes hard!!

I his is the main reason of this class

To take step by step into such interesting field as Machine Learning!!!

Machine Learning is a quite wide and vast field

- It requires Time
- It requires Effort
- It can be sometimes hard!!!

I his is the main reason of this class

To take step by step into such interesting field as Machine Learning!!!

hank you for being passengers.

• An Future Pilots in this class!!!

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ C
91 / 91

Machine Learning is a quite wide and vast field

- It requires Time
- It requires Effort
- It can be sometimes hard!!!

This is the main reason of this class

• To take step by step into such interesting field as Machine Learning!!!

hank you for being passengers.

• An Future Pilots in this class!!!

Machine Learning is a quite wide and vast field

- It requires Time
- It requires Effort
- It can be sometimes hard!!!

This is the main reason of this class

• To take step by step into such interesting field as Machine Learning!!!

Thank you for being passengers

• An Future Pilots in this class!!!