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We have the following process in Computer Vision

We have the following steps in Computer Vision
1 Acquisition :

1 Sampling, Quantization
2 Image processing

1 Point operators
2 Linear filtering
3 Fourier transforms
4 Pyramids and wavelets

3 Feature detection
1 Descriptors
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Then

At the very end, we have Recognition
Object detection
Face recognition
Instance recognition
Category recognition

What if we could summarize everything on a single architecture?
K. Fukushima (1980)

I Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position.”

Yann LeCun, Yoshua Bengio, Yoshua (1995).
I "Convolutional networks for images, speech, and time series".
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Digital Images as pixels in a digitized matrix
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Further

Pixel values typically represent
Gray levels, colours, heights, opacities etc

Something Notable
Remember digitization implies that a digital image is an
approximation of a real scene
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Images

Common image formats include
On sample/pixel per point (B&W or Grayscale)
Three samples/pixel per point (Red, Green, and Blue)
Four samples/pixel per point (Red, Green, Blue, and “Alpha”)
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Therefore, we have the following process

Low Level Process
Input Processes Output

Noise
Image Removal Improved

Image Image
Sharpening

Example, Edge Detection
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Then

Mid Level Process
Input Processes Output

Object
Image Recognition Attributes

Segmentation

Object Recognition
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Therefore

It would be nice to automatize all these processes
We would solve a lot of headaches when setting up such process

Why not to use the data sets
By using a Neural Networks that replicates the process.
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Multilayer Neural Network Classification

We have the following classification
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Drawbacks of previous neural networks

The number of trainable parameters becomes extremely large

Large N

A

Z
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In addition, little or no invariance to shifting, scaling, and other forms
of distortion

Large N

A

Z

17 / 116



Drawbacks of previous neural networks
In addition, little or no invariance to shifting, scaling, and other forms
of distortion

Large N

A

Z

Shift to the Left

18 / 116



Drawbacks of previous neural networks

The topology of the input data is completely ignored
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For Example

We have
Black and white patterns: 232×32 = 21024

Gray scale patterns: 25632×32 = 2561024
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For Example

If we have an element that the network has never seen
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Possible Solution

We can minimize these drawbacks by getting
Fully connected network of sufficient size can produce outputs that
are invariant with respect to such variations.

Problem!!!
Training time
Network size
Free parameters
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Hubel/Wiesel Architecture

Something Notable
D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

They commented
The visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells
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Something Like

We have
Feature Hierarchy

Simple cells

Complex cells

Hyper-complex cells
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History
Convolutional Neural Networks (CNN) were invented by
In 1989, Yann LeCun and Yoshua Bengio introduced the concept of
Convolutional Neural networks.
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About CNN’s

Something Notable
CNN’s Were neurobiologically motivated by the findings of locally sensitive
and orientation-selective nerve cells in the visual cortex.

In addition
They designed a network structure that implicitly extracts relevant
features.

Properties
Convolutional Neural Networks are a special kind of multilayer neural
networks.
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About CNN’s

In addition
CNN is a feed-forward network that can extract topological properties
from an image.
Like almost every other neural networks they are trained with a
version of the back-propagation algorithm.
Convolutional Neural Networks are designed to recognize visual
patterns directly from pixel images with minimal preprocessing.
They can recognize patterns with extreme variability.
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Local Connectivity

We have the following idea
Instead of using a full connectivity...

Input Image

We would have something like this

yi = f

(
n∑
i=1

wixi

)
(1)
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Local Connectivity

We decide only to connect the neurons in a local way
Each hidden unit is connected only to a subregion (patch) of the
input image.
It is connected to all channels:

I 1 if gray scale
I 3 in the RGB case
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Example

For gray scale, we get something like this

Input Image

Then, our formula changes

yi = f

∑
i∈Lp

wixi

 (2)
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Example

In the case of the 3 channels

Input Image

Thus

yi = f

 ∑
i∈Lp,c

wix
c
i

 (3)
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Solving the following problems...

First
Fully connected hidden layer would have an unmanageable number of
parameters

Second
Computing the linear activation of the hidden units would have been quite
expensive
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How this looks in the image...

We have

Receptive Field
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Parameter Sharing

Second Idea
Share matrix of parameters across certain units.

These units are organized into
The same feature “map”

I Where the units share same parameters (For example, the same mask)

37 / 116



Parameter Sharing

Second Idea
Share matrix of parameters across certain units.

These units are organized into
The same feature “map”

I Where the units share same parameters (For example, the same mask)

37 / 116



Example

We have something like this
Feature Map 1 Feature Map 2 Feature Map 3
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Now, in our notation

We have a collection of matrices representing this connectivity
Wij is the connection matrix the ith input channel with the jth
feature map.
In each cell of these matrices is the weight to be multiplied with the
local input to the local neuron.

An now why the name of convolution
Yes!!! The definition is coming now.

39 / 116



Now, in our notation

We have a collection of matrices representing this connectivity
Wij is the connection matrix the ith input channel with the jth
feature map.
In each cell of these matrices is the weight to be multiplied with the
local input to the local neuron.

An now why the name of convolution
Yes!!! The definition is coming now.

39 / 116



Outline
1 Image Processing

Introduction
Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

40 / 116



Digital Images

In computer vision
We usually operate on digital (discrete) images:

Sample the 2D space on a regular grid.
Quantize each sample (round to nearest integer).

The image can now be represented as a matrix of integer values,
f : [a, b]× [c, d]→ I

i ↓

j−→
79 5 6 90 12 34 2 1
8 90 12 34 26 78 34 5
8 1 3 90 12 34 11 61
77 90 12 34 200 2 9 45
1 3 90 12 20 1 6 23


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We can see the coordinate of f as follows

We have the following subsection of the image centered at certain x, y

fx,y =



f−n,−n f−n,−n+1 · · · f−n,(n−1) f−n,n
...

. . .
... . .

. ...
... · · · fx,y0,0 · · ·

...
... . .

. ...
. . .

...
fn×−n fn×−n+1 · · · fn×(n−1) fn,n


(4)
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Many times we want to eliminate noise in a image
By using for example a moving average

This last moving average can be seen as

(f ∗ g) (i) =
n∑

j=−n

f (j) g (i− j) = 1
N

−m∑
j=m

f (j) (5)

With f (j) representing the value of the pixel at position i,

g (h) =
{ 1

N
if h ∈ {−m,−m + 1, ..., 1, 0, 1, ..., m− 1, m}

0 else
with 0 < m < n.
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This can be generalized into the 2D images

Left f and Right f ∗ g
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Moving average in 2D

Basically in 2D
We have that we can define different types of filter using the idea of
weighted average

(f ∗ g) (i, j) =
−n∑
k=n

n∑
l=−n

f (k, l)× g (i− k, j − l) (6)

What is this weight matrix also called a kernel of 3× 3 moving
average

1
9

 1 1 1
1 1 1
1 1 1

 "The Box Filter" (7)

48 / 116



Moving average in 2D

Basically in 2D
We have that we can define different types of filter using the idea of
weighted average

(f ∗ g) (i, j) =
−n∑
k=n

n∑
l=−n

f (k, l)× g (i− k, j − l) (6)

What is this weight matrix also called a kernel of 3× 3 moving
average

1
9

 1 1 1
1 1 1
1 1 1

 "The Box Filter" (7)

48 / 116



Outline
1 Image Processing

Introduction
Image Processing
Multilayer Neural Network Classification
Drawbacks
Possible Solution

2 Convolutional Networks
History
Local Connectivity
Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation

49 / 116



Convolution

Definition
Let f : [a, b]× [c, d]→ I be the image and g : [e, f ]× [h, i]→ V be the
kernel. The output of convolving f with g, denoted f ∗ g is

(f ∗ g) [x, y] =
n∑

k=−n

n∑
l=−n

f (k, l) g (x− k, y − l) (8)

The Flipped Kernel
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The Flipped Kernel

Imagine the following with with an image centered at (2, 2) wit n = 1
With a kernel g of 3× 3  1 2 3

4 5 6
7 8 9


and image f of  a b c

d e f
g h i


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Therefore, we have the following

The convolution is equal to

(f ∗ g) [2, 2] = [f(−1,−1)× g (3, 3)] + [f(−1, 0)× g (3, 2)] + [f(−1, 1)× g (3, 1)] + ...

... [f(0,−1)× g (2, 3)] + [f(0, 0)× g (2, 2)] + [f(0, 1)× g (2, 1)] + ...

... [f(1,−1)× g (1, 3)] + [f(1, 0)× g (1, 2)] + [f(1, 1)× g (1, 1)]

Simply this is

(f ∗ g) [2, 2] = [a× 9] + [b× 8] + [c× 7] + ...

... [d× 6] + [e× 5] + [f × 4] + ...

... [g × 3] + [h× 2] + [i× 1]
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Back on the Convolutional Architecture

We have then something like this
Feature Maps
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Thus

Each Feature Map forms a 2D grid of features
That can be computed with a discrete convolution (*) of a kernel matrix
kij which is the hidden weights matrix Wij with rows and columns with its
rows and columns flipped.

In addition
xi is the ith channel of input.
kij is the convolution kernel.
yj is the hidden layer output.

Thus the total output

yj =
∑
i

kij ∗ xi (9)
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Furthermore

Let layer l be a Convolutional Layer
Then, the input of layer l comprises m(l−1)

1 feature maps from the previous
layer.

Each input layer has a size of m
(l−1)
2 ×m

(l−1)
3

In the case where l = 1, the input is a single image I consisting of one or
more channels.

Thus
The output of layer l consists of m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .
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Remark

We have that
A Convolutional Neural Network (CNN) directly accepts raw images
as input.

Thus, their importance when training discrete filters
Instead of assuming a certain comprehension of Computer Vision, one
could think this is as a Silver Bullet.

However, you still
You still need to be aware of :

I The need of great quantities of data.
I And there is not an understanding why this work.
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A Small Remark

We have the following
Y

(l)
j is a matrix representing the l layer and jth feature map.

Therefore
We can see the convolutional as a fusion of information from different
feature maps.

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j
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Thus
Given a specific layer l, we have that ith feature map in such layer
equal to

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
ij ∗ Y

(l−1)
j (10)

Where
Y

(l)
i is the ith feature map in layer l.
B

(l)
i is the bias matrix for output j.

K
(l)
ij is the filter of size

[
2h(l)

1 + 1
]
×
[
2h(l)

2 + 1
]
.

Thus
The input of layer l comprises m(l−1)

1 feature maps from the previous
layer, each of size m(l−1)

2 ×m(l−1)
3
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Therefore

Thew output of layer l

It consists m(l)
1 feature maps of size m(l)

2 ×m
(l)
3

Something Notable
m

(l)
2 and m(l)

3 are influenced by border effects.
Therefore, the output feature maps when the convolutional sum is
defined properly have size

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

m
(l)
3 = m

(l−1)
3 − 2h(l)

2
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Why?

Example
Convolutional Maps
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Special Case

When l = 1
The input is a single image I consisting of one or more channels.
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Thus

We have
Each feature map Y (l)

i in layer l consists of m(l)
1 ·m

(l)
2 units arranged in a

two dimensional array.

Thus, the unit at position (r, s) computes

(
Y

(l)
i

)
r,s

=
(
B

(l)
i

)
r,s

+
m

(l−1)
1∑
j=1

(
K

(l)
ij ∗ Y

(l−1)
j

)
r,s

=
(
B

(l)
i

)
r,s

+
m

(l−1)
1∑
j=1

h
(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(l)
ij

)
k,t

(
Y

(l−1)
j

)
r+k,s+t
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Example

A Convolutional Layer against a RGB Image using three masks/filters

Layered Image

Convolutional Masks
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Outline
1 Image Processing

Introduction
Image Processing
Multilayer Neural Network Classification
Drawbacks
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History
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Sharing Parameters

3 Layers
Convolutional Layer
Definition of Convolution
Non-Linearity Layer
Fixing the Problem, ReLu function
Back to the Non-Linearity Layer

Rectification Layer
Local Contrast Normalization Layer
Feature Pooling and Subsampling Layer
Subsampling=Skipping Layer
A Little Linear Algebra
Pooling Layer

Finally, The Fully Connected Layer

4 An Example of CNN
The Proposed Architecture
Backpropagation
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As in Multilayer Perceptron
We use a non-linearity

However, there is a drawback when using Back-Propagation under a
sigmoid function

s (x) = 1
1 + e−x

Because if we imagine a Convolutional Network as a series of layer
functions fi

y (A) = ft ◦ ft−1 ◦ · · · ◦ f2 ◦ f1 (A)

With ft is the last layer.

Therefore, we finish with a sequence of derivatives
∂y (A)
∂w1i

= ∂ft (ft−1)
∂ft−1

· ∂ft−1 (ft−2)
∂ft−2

· · · · · ∂f2 (f1)
∂f2

· ∂f1 (A)
∂w1i
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Therefore

Given the commutativity of the product
You could put together the derivative of the sigmoid’s

f (x) = ds (x)
dx

= e−x

(1 + e−x)2

Therefore, deriving again
df (x)
dx

= − e−x

(1 + e−x)2 + 2 (e−x)2

(1 + e−x)3

After making df(x)
dx

= 0
We have the maximum is at x = 0
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Therefore

The maximum for the derivative of the sigmoid
f (0) = 0.25

Therefore, Given a Deep Convolutional Network
We could finish with

lim
k→∞

(
ds (x)
dx

)k
= lim

k→∞
(0.25)k → 0

A vanishing derivative
Making quite difficult to do train a deeper network using this
activation function
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Thus

The need to introduce a new function

f (x) = x+ = max (0, x)

It is called ReLu or Rectifier
With a smooth approximation (Softplus function)

f (x) =
ln
(
1 + ekx

)
k

68 / 116



Thus

The need to introduce a new function

f (x) = x+ = max (0, x)

It is called ReLu or Rectifier
With a smooth approximation (Softplus function)

f (x) =
ln
(
1 + ekx

)
k

68 / 116



Therefore, we have

When k = 1

+0.4 +1.0 +1.6 +2.2 +2.8−0.4−1.0−1.6−2.2−2.8
−0.5

+0.5

+1.0

+1.5

+2.0

+2.5

+3.0

+3.5Softplus

ReLu
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Increase k

When k = 104

+0.0006 +0.0012 +0.0018 +0.0024−0.0004−0.001−0.0016−0.0022

−0.001

+0.001

+0.002

+0.003

+0.004

Softplus

ReLu
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Non-Linearity Layer

If layer l is a non-linearity layer
Its input is given by m(l)

1 feature maps.

What about the output
Its output comprises again m(l)

1 = m
(l−1)
1 feature maps

Each of them of size

m
(l−1)
2 ×m(l−1)

3 (11)

With m(l)
2 = m

(l−1)
2 and m(l)

3 = m
(l−1)
3 .
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Thus

With the final output

Y
(l)
i = f

(
Y

(l−1)
i

)
(12)

Where
f is the activation function used in layer l and operates point wise.

You can also add a gain

Y
(l)
i = gif

(
Y

(l−1)
i

)
(13)
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Rectification Layer, Rabs

Now a rectification layer
Then its input comprises m(l)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 .

Then, the absolute value for each component of the feature maps is
computed

Y
(l)
i =

∣∣∣Y (l)
i

∣∣∣ (14)

Where the absolute value
It is computed point wise such that the output consists of m(l)

1 = m
(l−1)
1

feature maps unchanged in size.
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Thus

f (x) =
ln
(
1 + ekx

)
k

We have that
Experiments show that rectification plays a central role in achieving good
performance.

You can find this in
K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In Computer Vision,
International Conference on, pages 2146–2153, 2009.

Remark
Rectification could be included in the non-linearity layer.
But also it can be seen as an independent layer.
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Given that we are using Backpropagation

We need a soft approximation to f (x) = |x|
For this, we have

∂f

∂x
= sgn (x)

When x 6= 0. Why?

We can use the following approximation

sgn (x) = 2
( exp {kx}

1 + exp {kx}

)
− 1

Therefore, we have by integration and working the C

f (x) = 2
k

ln (1 + exp {kx})− x− 2
k

ln (2)
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We get the following situation

Something Notable

+0.0001 +0.00025 +0.0004−0.0001−0.00025−0.0004

−0 0001

+0.0001

+0.0002

+0.0003

+0.0004

+0.0005

+0.0006

+0.0007
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Normalizing

Contrast normalization layer
The task of a local contrast normalization layer:

To enforce local competitiveness between adjacent units within a
feature map.
To enforce competitiveness units at the same spatial location.

We have two types of operations
Subtractive Normalization.
Brightness Normalization.
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Subtractive Normalization

Given m
(l−1)
1 feature maps of size m

(l−1)
2 ×m

(l−1)
3

The output of layer l comprises m(l)
1 = m

(l−1)
1 feature maps unchanged in

size.

With the operation

Y
(l)
i = Y

(l−1)
i −

m
(l−1)
1∑
j=1

KG(σ) ∗ Y
(l−1)
j (15)

With (
KG(σ)

)
r,s

= 1√
2πσ2 exp

{
r2 + s2

2σ2

}
(16)
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Brightness Normalization

An alternative is to normalize the brightness in combination with the
rectified linear units

(
Y

(l)
i

)
r,s

=

(
Y

(l−1)
i

)
r,s(

κ+ λ
∑m

(l−1)
1

j=1

(
Y

(l−1)
j

)2

r,s

)µ (17)

Where
κ, µ and λ are hyperparameters which can be set using a

f (x) =
ln
(
1 + ekx

)
k

validation set.
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Subsampling Layer

Motivation
The motivation of subsampling the feature maps obtained by previous
layers is robustness to noise and distortions.

How?
Normally, in traditional Convolutional Networks subsampling this is
done by applying skipping factors!!!
However, it is possible to combine subsampling with pooling and do it
in a separate laye
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Sub-sampling

The subsampling layer
It seems to be acting as the well know sub-sampling pyramid
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How is subsampling implemented?

We know that Image Pyramids
They were designed to find:

1 filter-based representations to decompose images into information at
multiple scales,

2 To extract features/structures of interest,
3 To attenuate noise.

Example of usage of this filters
The SURF and SIFT filters
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Projection Vectors

Let I ∈ RN an image
And a projection transformation such that

a = PI

Where

a =
[

a0 a1 · · · aM−1
]
∈ RM

The transformation coefficients...

Additionally, we have the projection vectors in P

P =
[

p0 p1 · · · pM−1

]
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Thus, we have the following cases

When M = N

Thus, the projection P is to be critically sampled (Relation with the
rank of P )

When N < M

Over-sampled

When M < N

Under-sampled
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Therefore

We have that we can build a series of subsampled images{
I0 I1 · · · IT

}
Usually constructed with a separable 1D kernel h

Ik+1 = PIk =


1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


︸ ︷︷ ︸

down-sampling



. . .

− h −
− h −
− h −

. . .


Ik

︸ ︷︷ ︸
conv toplitz matrix
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There are also other ways of doing this

subsampling can be done using so called skipping factors

s
(l)
1 and s(l)

2

The basic idea is to skip a fixed number of pixels
Therefore the size of the output feature map is given by

m
(l)
2 = m

(l−1)
2 − 2h(l)

1

s
(l)
1 + 1

and m(l)
3 = m

(l−1)
3 − 2h(l)

2

s
(l)
2 + 1
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What is Pooling?

Pooling
Spatial pooling is way to compute image representation based
on encoded local features.
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Pooling

Let l be a pooling layer
Its output comprises m(l)

1 = m
(l−1)
1 feature maps of reduced size.

Pooling Operation
It operates by placing windows at non-overlapping positions in each
feature map and keeping one value per window such that the feature maps
are subsampled.
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Example

If layer l is a pooling and subsampling layer and given m
(l−1)
1 = 4

feature maps
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Thus

In the previous example
All feature maps are pooled and subsampled individually.

Each unit
In one of the m(l)

1 = 4 output feature maps represents the average or the
maximum within a fixed window of the corresponding feature map in layer
(l − 1).

93 / 116



Thus

In the previous example
All feature maps are pooled and subsampled individually.

Each unit
In one of the m(l)

1 = 4 output feature maps represents the average or the
maximum within a fixed window of the corresponding feature map in layer
(l − 1).

93 / 116



We distinguish two types of pooling

Average pooling
When using a boxcar filter, the operation is called average pooling and the
layer denoted by PA.

4 5
2 6

1 1

2 6
5 7 3

2 11

3

9

4.5 5

9 6.5
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We distinguish two types of pooling

Max pooling
For max pooling, the maximum value of each window is taken. The layer
is denoted by PM .

4 5
2 6

1 1

2 6
5 7 3

2 11

3

9

5

9 7

6
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Fully Connected Layer

If a layer l is a fully connected layer
If layer (l − 1) is a fully connected layer, use the equation to compute the
output of ith unit at layer l:

z
(l)
i =

m(l)∑
k=0

w
(l)
i,ky

(l)
k thus y(l)

i = f
(
z

(l)
i

)

Otherwise
Layer l expects m(l−1)

1 feature maps of size m(l−1)
2 ×m(l−1)

3 as input.
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Then

Thus, the ith unit in layer l computes

y
(l)
i =f

(
z

(l)
i

)
z

(l)
i =

m
(l−1)
1∑
j=1

m
(l−1)
2∑
r=1

m
(l−1)
3∑
s=1

w
(l)
i,j,r,s

(
Y

(l−1)
j

)
r,s
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Here

Where w
(l)
i,j,r,s

It denotes the weight connecting the unit at position (r, s) in the jth
feature map of layer (l − 1) and the ith unit in layer l.

Something Notable
In practice, Convolutional Layers are used to learn a feature hierarchy
and one or more fully connected layers are used for classification
purposes based on the computed features.
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Basically

We can use a loss function at the output of such layer

L (W ) =
N∑
n=1

En (W ) =
N∑
n=1

K∑
k=1

(
y

(l)
nk − tnk

)2
(Sum of Squared Error)

L (W ) =
N∑
n=1

En (W ) =
N∑
n=1

K∑
k=1

tnk log
(
y

(l)
nk

)
(Cross-Entropy Error)

Assuming W the tensor used to represent all the possible weights
We can use the Backpropagation idea as long we can apply the
corresponding derivatives.
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We have the following Architecture

Simplified Architecture by Jean LeCun “Backpropagation applied to
handwritten zip code recognition”
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Therefore, we have

Layer l = 1
This Layer is using a Softplus f with 1 channels j = 1 Black and
White

f

[(
Y

(1)
1

)
r,s

]
= f

(B(l)
1

)
r,s

+
h

(1)
1∑

k=−h(1)
1

h
(1)
2∑

t=−h(1)
2

(
K

(1)
ij

)
k,t

(
Y

(0)
1

)
r+k,s+t


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Now

We have the l = 2 subsampling for each coordinate

Y
(3)

1 =


1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

 f
[(
Y

(1)
1

)]


1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


T
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Then, you repeat the previous

Thus we obtain a reduced convoluted version Y
(6)

1 of the Y
(4)

1
convolution and subsampling

Thus, we use those as inputs for the fully connected layer of input.

Now assuming a single k = 1 neuron

y
(7)
1 =f

(
z

(7)
1

)
z

(7)
1 =

m
(6)
2∑

r=1

m
(6)
3∑

s=1
w(7)
r,s

(
Y

(6)
1

)
r,s
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We have

That our final cost function is equal to

L (t) = 1
2
(
y

(7)
1 − t

(7)
1

)2
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After collecting all input/output

Therefore
We have using sum of squared errors (loss function):

min
W

H (W ) = 1
2
(
y

(7)
1 − t

(7)
1

)2

Therefore, we can obtain

∂H (W )
∂w

(7)
1,r,s

= 1
2 ×

∂
(
y

(7)
1 − t

(7)
1

)2

∂w
(7)
1,r,s
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Therefore

We get in the first part of the equation

∂
(
t1 − y(7)

1

)2

∂w
(7)
1,r,s

=
(
y

(7)
1 − t

(7)
1

) ∂y
(7)
1

∂w
(7)
1,r,s

With

y
(7)
1 = f

(
z

(7)
1

)
=

ln
(

1 + ekz
(7)
k

)
k
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Therefore

We have

∂y
(7)
1

∂w
(7)
1,r,s

=
∂f
(
z

(7)
1

)
∂z

(7)
1

× ∂z
(7)
1

∂w
(7)
1,r,s

Therefore
∂f
(
z

(7)
1

)
∂z

(7)
1

= ekz
(7)
1(

1 + ekz
(7)
1
)

Finally

∂z
(7)
1

∂w
(7)
1,r,s

=
(
Y

(6)
1

)
r,s
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1
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1
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(7)
1
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z
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1
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Y
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Now

Given the pooling

Y
(6)

1 = Sf
[(
Y

(4)
1

)]
ST

We have that

(
Y

(4)
1

)
r,s

=
(
B

(4)
1

)
r,s

+
h

(l)
1∑

k=−h(l)
1

h
(l)
2∑

t=−h(l)
2

(
K

(4)
11

)
k,t

(
Y (3)

)
r+k,s+t
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Therefore

We have then

∂H (W )
∂
(
K

(4)
11

)
k,t

= 1
2 ×

∂
(
y

(7)
1 − t1

)2

∂
(
K

(4)
11

)
k,t

We have the following chain of derivations

∂H (W )
∂
(
K

(4)
11

)
k,t

=
(
y

(l)
i − ti

) ∂f (z(7)
i

)
∂z

(7)
i

× ∂z
(7)
i

∂
(
Y

(6)
1

)
r,s

×
∂
(
Y

(6)
1

)
r,s

∂
(
K

(4)
11

)
k,t

112 / 116



Therefore

We have then

∂H (W )
∂
(
K

(4)
11

)
k,t

= 1
2 ×

∂
(
y

(7)
1 − t1

)2

∂
(
K

(4)
11

)
k,t

We have the following chain of derivations

∂H (W )
∂
(
K

(4)
11

)
k,t

=
(
y

(l)
i − ti

) ∂f (z(7)
i

)
∂z

(7)
i
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∂
(
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1

)
r,s
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∂
(
Y

(6)
1

)
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∂
(
K
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)
k,t
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Therefore

We have
∂z

(7)
i

∂
(
Y

(6)
1

)
r,s

= w(7)
r,s

The final convolution is assuming that

∂
(
Y

(6)
1

)
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(4)
1

)
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]
∂
(
K

(4)
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)
k,t
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Therefore
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Finally, we have

The equation

∂
(
Y

(4)
1

)
2(r−1),2(s−1)

∂
(
K

(4)
11

)
k,t

=
(
Y (3)

)
2(r−1)+k,2(s−1)+t
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The Other Equations

I will leave you to devise them
They are a repetitive procedure.
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