Introduction to Machine Learning Universal Approximation Theorem of the Multilayer Perceptron

Andres Mendez-Vazquez

October 28, 2020

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Outline

Introduction The Representation of Functions

2) Basic Definition

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Introduction

Representation of functions

The main result in multi-layer perceptron is its power of representation.

Furthermore

After all, it is quite striking if we can represent continuous functions of the form $f : \mathbb{R}^n \mapsto \mathbb{R}$ as a finite sum of simple functions.

Introduction

Representation of functions

The main result in multi-layer perceptron is its power of representation.

Furthermore

After all, it is quite striking if we can represent continuous functions of the form $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ as a finite sum of simple functions.

Therefore

Our main goal

We want to know under which conditions the sum of the form:

$$G(\boldsymbol{x}) = \sum_{j=1}^{N} \alpha_j f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta_j\right)$$
(1)

can represent continuous functions in a specific domain.

Setup of the problem

Definition of I_n

It is an *n*-dimensional unit cube $[0,1]^n$

addition, we have the following set of functions

$C(I_n) = \{f: I_n \to \mathbb{R} | f \text{ is a continous function} \}$

(2)

Setup of the problem

Definition of I_n

It is an *n*-dimensional unit cube $[0,1]^n$

In addition, we have the following set of functions

$$C\left(I_{n}
ight) = \left\{f: I_{n}
ightarrow \mathbb{R}| f \text{ is a continous function}
ight\}$$

・ロト ・日下・ ・ ヨト ・

(2

Outline

Introduction The Representation of Functions

Basic Definitions

Compactness

- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called **open sets** and satisfying the following axioms:

If the empty set and X itself are open.

Any union of open sets is open.

The intersection of any finite number of open sets is open.

イロト イボト イヨト イヨト

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called **open sets** and satisfying the following axioms:

• The empty set and X itself are open.

The intersection of any finite number of open sets is open.

• This is quite axiomatic... because any set in the collection of X is open...

< ロ > < 同 > < 回 > < 回 >

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called **open sets** and satisfying the following axioms:

- **①** The empty set and X itself are open.
- Any union of open sets is open.

• This is quite axiomatic... because any set in the collection of X is open...

< ロ > < 同 > < 回 > < 回 >

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called **open sets** and satisfying the following axioms:

- **①** The empty set and X itself are open.
- Any union of open sets is open.
 - The intersection of any finite number of open sets is open.

• This is quite axiomatic... because any set in the collection of X is open...

< ロ > < 同 > < 回 > < 回 >

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called **open sets** and satisfying the following axioms:

- **①** The empty set and X itself are open.
- Any union of open sets is open.
- 3 The intersection of any finite number of open sets is open.

Remark

• This is quite axiomatic... because any set in the collection of X is open...

イロト イヨト イヨト

Example

We have

• Given any set X, one can define a topology on X where every subset of X is an open set.

Also

• Let (X, d) be a metric space. The sets (called open Balls) are a Topology

 $S\left(x_{0},r
ight)=\left\{x\in X|d\left(x_{0},x
ight)< r
ight\}$ where r>0 and $x_{0}\in X$

イロト イヨト イヨト イヨト

Example

We have

• Given any set X, one can define a topology on X where every subset of X is an open set.

Also

 $\bullet\,$ Let (X,d) be a metric space. The sets (called open Balls) are a Topology

$$S\left(x_{0},r
ight) = \left\{x \in X | d\left(x_{0},x
ight) < r
ight\}$$
 where $r > 0$ and $x_{0} \in X$

イロト イヨト イヨト

Outline

Introduction The Representation of Functions

2 Basic Definitions

Topology

Compactness

- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Definition

Open Cover Definition

• A topological space ${\boldsymbol X}$ is called compact if each of its open covers has a finite subcover.

• I_n is compact

Definition

Open Cover Definition

• A topological space ${\boldsymbol X}$ is called compact if each of its open covers has a finite subcover.

In Our Case

• I_n is compact

イロト イボト イヨト イヨト

Compactness

Theorem

A compact set is closed and bounded.

Thus

 I_n is a compact set in \mathbb{R}^n

Compactness

Theorem

A compact set is closed and bounded.

Thus

 I_n is a compact set in \mathbb{R}^n .

Why Compactness?

Basically

• Given that in Topology we care in how something behaves in open sets!!!

Compactness

• Establish some sort of "fitness" in a Topological sense

Therefore

• There are only finitely many possible behaviors.

Why Compactness?

Basically

• Given that in Topology we care in how something behaves in open sets!!!

Compactness

• Establish some sort of "fitness" in a Topological sense

Therefore

There are only finitely many possible behaviors.

イロト イヨト イヨト

Why Compactness?

Basically

• Given that in Topology we care in how something behaves in open sets!!!

Compactness

• Establish some sort of "fitness" in a Topological sense

Therefore

• There are only finitely many possible behaviors.

イロト イヨト イヨト

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness

Continuous Functions

- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Continuous Functions

Theorem

• A function f from a topological space X into another topological space Y is continuous if and only if every open set V in Y,

$$f^{-1}(V) = \{x | f(x) \in V\}$$

イロト イヨト イヨト

Continuous Functions

Theorem

• A function f from a topological space X into another topological space Y is continuous if and only if every open set V in Y,

$$f^{-1}(V) = \{x | f(x) \in V\}$$

Example, Is $f:[0,1] \longrightarrow \mathbb{R}$, f(x) = 1/x a continuous function in [0,1]?

It is not!!

Define with \boldsymbol{g} a continuous function

$$B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right) = \left\{y \in \mathbb{R} | \left\|y - f\left(x_{0}\right)\right\| < \epsilon\right\}$$

Therefore, its pre-image is open

 $f^{-1}\left(B_{\mathbb{R}}\left(\epsilon,g\left(x_{0}\right)\right)\right)$

Therefore exist a ball around $B_{[0,1]}\left(\delta,x_{0} ight)$

 $B_{[0,1]}\left(\delta, x_{0}\right) \subseteq f^{-1}\left(B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)\right)$

イロン イロン イヨン イヨン

It is not!!

Define with g a continuous function

$$B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right) = \left\{y \in \mathbb{R} | \left\|y - f\left(x_{0}\right)\right\| < \epsilon\right\}$$

Therefore, its pre-image is open

 $f^{-1}\left(B_{\mathbb{R}}\left(\epsilon,g\left(x_{0}\right)\right)\right)$

Therefore exist a ball around $B_{0,11}(\delta)$

 $B_{[0,1]}\left(\delta, x_{0}\right) \subseteq f^{-1}\left(B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)\right)$

It is not!!

Define with g a continuous function

$$B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right) = \left\{y \in \mathbb{R} | \left\|y - f\left(x_{0}\right)\right\| < \epsilon\right\}$$

Therefore, its pre-image is open

$$f^{-1}\left(B_{\mathbb{R}}\left(\epsilon,g\left(x_{0}\right)\right)\right)$$

Therefore exist a ball around $B_{[0,1]}(\delta, x_0)$

 $B_{[0,1]}(\delta, x_0) \subseteq f^{-1}(B_{\mathbb{R}}(\epsilon, g(x_0)))$

The well know $\epsilon-\delta$ definition

What about the $+\infty$ and our original f

• You need to use a sequence $\{x_n\}$ such that $x_n \to +\infty$ when $n \to \infty$

Fherefore, we have for some ϵ

• We have that $\lim_{n\to\infty} B\left(\epsilon, f\left(x_n\right)\right) = \lim_{n\to\infty} x_n$

Therefore

イロト イロト イヨト イヨト

The well know $\epsilon-\delta$ definition

What about the $+\infty$ and our original f

• You need to use a sequence $\{x_n\}$ such that $x_n \to +\infty$ when $n \to \infty$

Therefore, we have for some $\epsilon >$

• We have that $\lim_{n\to\infty}B\left(\epsilon,f\left(x_{n}\right)\right)=\lim_{n\to\infty}x_{n}$

Therefore

The well know $\epsilon-\delta$ definition

What about the $+\infty$ and our original f

• You need to use a sequence $\{x_n\}$ such that $x_n \to +\infty$ when $n \to \infty$

Therefore, we have for some $\epsilon >$

• We have that $\lim_{n\to\infty}B\left(\epsilon,f\left(x_{n}\right)\right)=\lim_{n\to\infty}x_{n}$

Therefore

$$\lim_{n \to \infty} f^{-1} \left(B_{\mathbb{R}} \left(\epsilon, g \left(x_n \right) \right) \right) = \{ 0 \}$$

Therefore

The pre-image is closed

• The function *f* is not continuous!!!

All the continuous functions are bounded

2

ヘロト ヘロト ヘヨト ヘヨト

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Thus

Theorem

• Let K be a nonempty subset of \mathbb{R}^n , where n > 1. If K is compact, then every continuous real-valued function defined on K is **bounded**.

Definition (Supremum Norm

- Let X be a topological space and let F be the space of all bounded complex-valued continuous functions defined on K.
 - The supremum norm is the norm defined on F by

$$\left\|f\right\| = \sup_{x \in X} \left|f\left(x\right)\right|$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Thus

Theorem

• Let K be a nonempty subset of \mathbb{R}^n , where n > 1. If K is compact, then every continuous real-valued function defined on K is **bounded**.

Definition (Supremum Norm)

- Let X be a topological space and let F be the space of all bounded complex-valued continuous functions defined on K.
 - The supremum norm is the norm defined on F by

$$|f|| = \sup_{x \in X} |f(x)|$$

イロト イヨト イヨト

(3)

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions

About Density in a Topology

- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

I give you an idea

We would like, given $C(I_n)$

• To prove that there is a function

$$\sum_{j=1}^{N} \alpha_j f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta_j\right)$$

Nearby any $f(\boldsymbol{x}) \in C[I_n]$

Basically, we want a set

$$R = \left\{ G\left(oldsymbol{x}
ight) | G\left(oldsymbol{x}
ight) = \sum_{j=1}^{N} lpha_{j} f\left(oldsymbol{w}^{T} oldsymbol{x} + heta_{j}
ight)
ight\}$$

such that $R \subseteq C[I_n]$ and given $G \in R$, for all $\epsilon > 0$, $\sup_{x \in I_n} |G(x) - f(x)| < \epsilon$.

A D > A D > A D > A D >

I give you an idea

We would like, given $C(I_n)$

• To prove that there is a function

$$\sum_{j=1}^{N} \alpha_j f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta_j\right)$$

Nearby any $f(\boldsymbol{x}) \in C[I_n]$

• Basically, we want a set

$$R = \left\{ G\left(\boldsymbol{x}\right) | G\left(\boldsymbol{x}\right) = \sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}^{T} \boldsymbol{x} + \theta_{j}\right) \right\}$$

such that $R \subseteq C[I_n]$ and given $G \in R$, for all $\epsilon > 0$, $\sup_{\boldsymbol{x} \in I_n} |G(\boldsymbol{x}) - f(\boldsymbol{x})| < \epsilon$.

Cinvestav ク へ (~ 23 / 55

3

イロト イボト イヨト イヨト

Definition

If X is a topological space and p is a point in X, a neighborhood of p is a subset V of X that includes an open set U containing $p, p \in U \subseteq V$.

• This is also equivalent to $p \in X$ being in the interior of V.

Example in a metric space

In a metric space (X, d), a set V is a neighborhood of a point p if there exists an open ball with center at p and radius r > 0, such that

$$B_{r}(p) = B(p; r) = \{x \in X | d(x, p) < r\}$$

is contained in V.

イロト イヨト イヨト

Definition

If X is a topological space and p is a point in X, a neighborhood of p is a subset V of X that includes an open set U containing $p, p \in U \subseteq V$.

• This is also equivalent to $p \in X$ being in the interior of V.

Example in a metric space

In a metric space (X, d), a set V is a neighborhood of a point p if there exists an open ball with center at p and radius r > 0, such that

$$B_r(p) = B(p; r) = \{ x \in X | d(x, p) < r \}$$
(4)

イロト イボト イヨト イヨト

is contained in V.

Definition of a Limit Point

Let S be a subset of a topological space X. A point $x \in X$ is a limit point of S if every neighborhood of x contains at least one point of S different from x itself.

Example in ${\mathbb R}$

Which are the limit points of the set $\left\{rac{1}{n}
ight\}^{\infty}$

Definition of a Limit Point

Let S be a subset of a topological space X. A point $x \in X$ is a limit point of S if every neighborhood of x contains at least one point of S different from x itself.

Example in \mathbb{R}

Which are the limit points of the set {

$$\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$
?

イロト イヨト イヨト

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology

Density Concept

- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

This allows to define the idea of density

Something Notable

A subset A of a topological space X is dense in X, if for any point $x \in X$, any neighborhood of x contains at least one point from A.

Classic Example

The real numbers with the usual topology have the rational numbers as a countable dense subset.

• Why do you believe the floating-point numbers are rational?

In addition

Also the irrational numbers.

< ロ > < 同 > < 回 > < 回 >

This allows to define the idea of density

Something Notable

A subset A of a topological space X is dense in X, if for any point $x \in X$, any neighborhood of x contains at least one point from A.

Classic Example

The real numbers with the usual topology have the rational numbers as a countable dense subset.

• Why do you believe the floating-point numbers are rational?

Also the irrational numbers.

イロト イヨト イヨト

This allows to define the idea of density

Something Notable

A subset A of a topological space X is dense in X, if for any point $x \in X$, any neighborhood of x contains at least one point from A.

Classic Example

The real numbers with the usual topology have the rational numbers as a countable dense subset.

• Why do you believe the floating-point numbers are rational?

In addition

Also the irrational numbers.

From this, you have the idea of closure

Definition

The closure of a set S is the set of all points of closure of S, that is, the set S together with all of its limit points.

Example

The closure of the following set $(0,1)\cup\{2\}$

Meaning

Not all points in the closure are limit points.

From this, you have the idea of closure

Definition

The closure of a set S is the set of all points of closure of S, that is, the set S together with all of its limit points.

Example

The closure of the following set $(0,1) \cup \{2\}$

Meaning

Not all points in the closure are limit points.

From this, you have the idea of closure

Definition

The closure of a set S is the set of all points of closure of S, that is, the set S together with all of its limit points.

Example

The closure of the following set $(0,1) \cup \{2\}$

Meaning

Not all points in the closure are limit points.

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

First

- We would love to be able to say that separation exist!!!
- Given two functions, we can say they are different if their mappings are different!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

First

- We would love to be able to say that separation exist!!!
- Given two functions, we can say they are different if their mappings are different!!!

We want to define a way to measure the open spaces and their pre-images under continuous functions:

So we can integrate them!!!

First

- We would love to be able to say that separation exist!!!
- Given two functions, we can say they are different if their mappings are different!!!

Second

• We want to define a way to measure the open spaces and their pre-images under continuous functions:

イロト イヨト イヨト

First

- We would love to be able to say that separation exist!!!
- Given two functions, we can say they are different if their mappings are different!!!

Second

- We want to define a way to measure the open spaces and their pre-images under continuous functions:
 - So we can integrate them!!!

イロト 不得 トイヨト イヨト

Hausdorff Space

Definition of Separation

Points x and y in a topological space X can be separated by neighborhoods if there exists a neighborhood U of x and a neighborhood V of y such that U and V are disjoint.

Definition

X is a Hausdorff space if any two distinct points of X can be separated by neighborhoods.

This solve the first issue!!!

We can identify different functions... by open sets

< ロ > < 同 > < 回 > < 回 >

Hausdorff Space

Definition of Separation

Points x and y in a topological space X can be separated by neighborhoods if there exists a neighborhood U of x and a neighborhood V of y such that U and V are disjoint.

Definition

 \boldsymbol{X} is a Hausdorff space if any two distinct points of \boldsymbol{X} can be separated by neighborhoods.

This solve the first issue!!!

We can identify different functions... by open sets

イロト 不得 トイヨト イヨト

Hausdorff Space

Definition of Separation

Points x and y in a topological space X can be separated by neighborhoods if there exists a neighborhood U of x and a neighborhood V of y such that U and V are disjoint.

Definition

 \boldsymbol{X} is a Hausdorff space if any two distinct points of \boldsymbol{X} can be separated by neighborhoods.

This solve the first issue!!!

• We can identify different functions... by open sets

イロト 不得 トイヨト イヨト

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space

Measures

- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

We have then

Look at what we have

• $C(I_n)$ is compact

The continuous functions there are bounded!!!

We have then

Look at what we have

• $C(I_n)$ is compact

The continuous functions there are bounded!!!

We have then

Look at what we have

• $C(I_n)$ is compact

The continuous functions there are bounded!!!

Therefore

We can integrate $f \in C(I_n)$

 $\bullet\,$ However, we need to have a measure μ to integrate such functions

 We want to construct an existence theorem by contradiction and integration is necessary

Therefore

We can integrate $f \in C(I_n)$

• However, we need to have a measure μ to integrate such functions

Why?

 We want to construct an existence theorem by contradiction and integration is necessary

イロト イヨト イヨト イヨト

Definition of σ -algebra

Let $\mathcal{A}\subset\mathcal{P}\left(X
ight)$, we say that \mathcal{A} to be an algebra if

• $A, B \in \mathcal{A}$ then $A \cup B \in \mathcal{A}$.

 $A \in \mathcal{A} \text{ then } A^c \in \mathcal{A}.$

Definition of σ -algebra

Let $\mathcal{A} \subset \mathcal{P}(X)$, we say that \mathcal{A} to be an algebra if \emptyset , $X \in \mathcal{A}$.

- \bullet $\psi, \Lambda \in \mathcal{A}.$
- $\ O \ \ A, B \in \mathcal{A} \text{ then } A \cup B \in \mathcal{A}.$
 - $A \in \mathcal{A} \text{ then } A^c \in \mathcal{A}.$

Definition

An algebra \mathcal{A} in $\mathcal{P}(X)$ is said to be a σ -algebra, if for any sequence $\{A_n\}$ of elements in \mathcal{A} , we have $\cup_{n=1}^{\infty} A_n \in \mathcal{A}$

Definition of σ -algebra

Let $\mathcal{A}\subset\mathcal{P}\left(X
ight)$, we say that \mathcal{A} to be an algebra if

- $0 \emptyset, X \in \mathcal{A}.$
- $\ 2 \ \, A,B \in \mathcal{A} \ \, {\rm then} \ \, A \cup B \in \mathcal{A}.$

• $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$.

Definition

An algebra \mathcal{A} in $\mathcal{P}(X)$ is said to be a σ -algebra, if for any sequence $\{A_n\}$ of elements in \mathcal{A} , we have $\cup_{n=1}^{\infty} A_n \in \mathcal{A}$

Example

In X = [0, 1), the class \mathcal{A}_0 consisting of \emptyset , and all finite unions $A = \bigcup_{i=1}^n [a_i, b_i)$ with $0 \le a_i < b_i \le a_{i+1} \le 1$ is an algebra.

・ロト ・日ト ・ヨト ・ヨト

Definition of σ -algebra

Let $\mathcal{A}\subset\mathcal{P}\left(X
ight)$, we say that \mathcal{A} to be an algebra if

- $\ 2 \ \ A,B \in \mathcal{A} \ \ \text{then} \ \ A \cup B \in \mathcal{A}.$
- $A \in \mathcal{A} \text{ then } A^c \in \mathcal{A}.$

An algebra \mathcal{A} in $\mathcal{P}(X)$ is said to be a σ -algebra, if for any sequence $\{A_n\}$ of elements in \mathcal{A} , we have $\cup_{n=1}^{\infty} A_n \in \mathcal{A}$

Example

In X = [0, 1), the class \mathcal{A}_0 consisting of \emptyset , and all finite unions $A = \bigcup_{i=1}^n [a_i, b_i)$ with $0 \le a_i < b_i \le a_{i+1} \le 1$ is an algebra.

Cinvestav ∽ < ભ 35 / 55

・ロト ・四ト ・ヨト ・ヨト

Definition of σ -algebra

Let $\mathcal{A}\subset\mathcal{P}\left(X
ight)$, we say that \mathcal{A} to be an algebra if

- $\ 2 \ \, A,B \in \mathcal{A} \ \, \text{then} \ \, A \cup B \in \mathcal{A}.$
- $\ \, {\bf 3} \ \, A \in {\cal A} \ \, {\rm then} \ \, A^c \in {\cal A}.$

Definition

An algebra \mathcal{A} in $\mathcal{P}(X)$ is said to be a σ -algebra, if for any sequence $\{A_n\}$ of elements in \mathcal{A} , we have $\cup_{n=1}^{\infty} A_n \in \mathcal{A}$

35 / 55

Definition of σ -algebra

Let $\mathcal{A}\subset\mathcal{P}\left(X
ight)$, we say that \mathcal{A} to be an algebra if

- $\ 2 \ \, A,B \in \mathcal{A} \ \, \text{then} \ \, A \cup B \in \mathcal{A}.$
- $\ \, {\bf 3} \ \, A \in {\cal A} \ \, {\rm then} \ \, A^c \in {\cal A}.$

Definition

An algebra \mathcal{A} in $\mathcal{P}(X)$ is said to be a σ -algebra, if for any sequence $\{A_n\}$ of elements in \mathcal{A} , we have $\cup_{n=1}^{\infty} A_n \in \mathcal{A}$

Example

In X = [0, 1), the class \mathcal{A}_0 consisting of \emptyset , and all finite unions $A = \bigcup_{i=1}^n [a_i, b_i)$ with $0 \le a_i < b_i \le a_{i+1} \le 1$ is an algebra.

Now, the Measure Concept

Definition of additivity

Let $\mu : \mathcal{A} \to [0, +\infty]$ be such that $\mu (\emptyset) = 0$, we say that μ is σ -additive if for any $\{A_i\}_{i \in I} \subset \mathcal{A}$ (Where I can be finite of infinite countable) of mutually disjoint sets such that $\cup_{i \in I} A_i \in \mathcal{A}$, we have that

$$\mu\left(\cup_{i\in I}A_i\right) = \sum_{i\in I}\mu\left(A_i\right) \tag{5}$$

Definition of Measurability

Let \mathcal{A} be a σ -algebra of subsets of X, we say that the [air (X, \mathcal{A}) is a measurable space where a σ -additive function $\mu : \mathcal{A} \to [0, +\infty]$ is called a measure on (X, \mathcal{A}) .

Now, the Measure Concept

Definition of additivity

Let $\mu : \mathcal{A} \to [0, +\infty]$ be such that $\mu (\emptyset) = 0$, we say that μ is σ -additive if for any $\{A_i\}_{i \in I} \subset \mathcal{A}$ (Where I can be finite of infinite countable) of mutually disjoint sets such that $\cup_{i \in I} A_i \in \mathcal{A}$, we have that

$$\mu\left(\cup_{i\in I}A_i\right) = \sum_{i\in I}\mu\left(A_i\right) \tag{5}$$

イロト イヨト イヨト

Definition of Measurability

Let \mathcal{A} be a σ -algebra of subsets of X, we say that the [air (X, \mathcal{A}) is a measurable space where a σ -additive function $\mu : \mathcal{A} \to [0, +\infty]$ is called a measure on (X, \mathcal{A}) .

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures

The Borel Measure

- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Definition

The Borel σ -algebra is defined to be the σ -algebra generated by the open sets (or equivalently, by the closed sets).

イロト イヨト イヨト イヨト

э

38 / 55

Definition

The Borel σ -algebra is defined to be the σ -algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ -algebra on some topological space, then a measure $\mu: \mathcal{F} \to \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

・ コ マ ・ 雪 マ ・ 日 マ ・ 日 マ

Definition

The Borel σ -algebra is defined to be the σ -algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ -algebra on some topological space, then a measure $\mu: \mathcal{F} \to \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu: \mathcal{B}(X) \rightarrow$ is a measure such that

) μ is σ -additive.

 $\sup_{A\in\mathcal{B}(X)}\left|\mu\left(A\right)\right|<\infty$

Definition

The Borel σ -algebra is defined to be the σ -algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ -algebra on some topological space, then a measure $\mu: \mathcal{F} \to \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu : \mathcal{B}(X) \to \text{is a measure such that}$ $\mu (\emptyset) = 0.$

 $\sup_{A \in \mathcal{B}(X)} |\mu(A)| < \infty$

Definition

The Borel σ -algebra is defined to be the σ -algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ -algebra on some topological space, then a measure $\mu: \mathcal{F} \to \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu: \mathcal{B}(X) \rightarrow$ is a measure such that

2 μ is σ -additive.

Definition

The Borel σ -algebra is defined to be the σ -algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ -algebra on some topological space, then a measure $\mu: \mathcal{F} \to \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu: \mathcal{B}(X) \rightarrow \text{is a measure such that}$

2 μ is σ -additive.

Regularity

A measure μ is Borel regular measure:

• For every Borel set $B \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}^n$,

 $\mu(A) = \mu(A \cap B) + \mu(A - B).$

For every A ⊆ ℝⁿ, there exists a Borel set B ⊆ ℝⁿ such that A ⊆ B and µ(A) = µ(B).

イロン イロン イヨン イヨン

Regularity

A measure μ is Borel regular measure:

• For every Borel set
$$B \subseteq \mathbb{R}^n$$
 and $A \subseteq \mathbb{R}^n$,
 $\mu(A) = \mu(A \cap B) + \mu(A - B)$.

For every $A \subseteq \mathbb{R}^n$, there exists a Borel set $B \subseteq \mathbb{R}^n$ such that $A \subseteq B$ and $\mu(A) = \mu(B)$.

イロト イヨト イヨト イヨト

Regularity

A measure μ is Borel regular measure:

- For every Borel set $B \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}^n$, $\mu(A) = \mu(A \cap B) + \mu(A - B).$
- **②** For every $A ⊆ ℝ^n$, there exists a Borel set $B ⊆ ℝ^n$ such that A ⊆ B and μ(A) = μ(B).

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure

Discriminatory Functions

- The Important Theorem
- Universal Representation Theorem

Discriminatory Functions

Definition

Given the set $M\left(I_n\right)$ of signed regular Borel measures, a function f is discriminatory if for a measure $\mu \in M\left(I_n\right)$

$$\int_{I_n} f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta\right) d\mu = 0 \tag{6}$$

イロン イロン イヨン イヨン

for all ${\boldsymbol w} \in {\mathbb R}^n$ and $\theta \in {\mathbb R}$ implies that $\mu = 0$

Definition

We say that f is sigmoidal if

$$f\left(t
ight)
ightarrow egin{cases} 1 & ext{as }t
ightarrow +\infty \ 0 & ext{as }t
ightarrow -\infty \end{cases}$$

Cinvestav © Q (~ 41 / 55

Discriminatory Functions

Definition

Given the set $M(I_n)$ of signed regular Borel measures, a function f is discriminatory if for a measure $\mu \in M(I_n)$

$$\int_{I_n} f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta\right) d\mu = 0 \tag{6}$$

イロト イボト イヨト イヨト

for all $\boldsymbol{w} \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$ implies that $\mu = 0$

Definition

We say that f is sigmoidal if

$$f\left(t\right) \rightarrow \begin{cases} 1 & \text{ as } t \rightarrow +\infty \\ 0 & \text{ as } t \rightarrow -\infty \end{cases}$$

୬ ୯.୧° 41 / 55

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions

The Important Theorem

Universal Representation Theorem

The Important Theorem

Theorem 1

Let $f\xspace$ a be any continuous discriminatory function. Then finite sums of the form

$$G(\boldsymbol{x}) = \sum_{j=1}^{N} \alpha_j f\left(\boldsymbol{w}_j^T \boldsymbol{x} + \theta_j\right), \qquad (7)$$

where $\boldsymbol{w}_j \in \mathbb{R}^n$ and α_j , $\theta_j \in \mathbb{R}$ are fixed, are dense in $C(I_n)$

Meaning

In other words

Given any $g \in C(I_n)$ and $\epsilon > 0$, there is a sum, G(x), of the above form, for which

$$|G(\boldsymbol{x}) - g(\boldsymbol{x})| < \epsilon \; \forall \boldsymbol{x} \in I_n \tag{8}$$

Let $S \subset C(I_n)$ be the set of functions of the form $G(\boldsymbol{x})$

First, S is a linear subspace of $C(I_n)$

Definition

A subset V of \mathbb{R}^n is called a linear subspace of \mathbb{R}^n if V contains the zero vector, and is closed under vector addition and scaling. That is, for $X, Y \in V$ and $c \in \mathbb{R}$, we have $X + Y \in V$ and $cX \in V$.

We claim that the closure of S is all of $C(I_n)$

Assume that the closure of S is not all of $C\left(I_{n}
ight)$

イロト イロト イヨト イヨト

Let $S \subset C(I_n)$ be the set of functions of the form $G(\boldsymbol{x})$

First, S is a linear subspace of $C(I_n)$

Definition

A subset V of \mathbb{R}^n is called a linear subspace of \mathbb{R}^n if V contains the zero vector, and is closed under vector addition and scaling. That is, for $X, Y \in V$ and $c \in \mathbb{R}$, we have $X + Y \in V$ and $cX \in V$.

Assume that the closure of S is not all of $C\left(I_{n} ight)$

Let $S \subset C(I_n)$ be the set of functions of the form $G(\boldsymbol{x})$

First, S is a linear subspace of $C(I_n)$

Definition

A subset V of \mathbb{R}^n is called a linear subspace of \mathbb{R}^n if V contains the zero vector, and is closed under vector addition and scaling. That is, for $X, Y \in V$ and $c \in \mathbb{R}$, we have $X + Y \in V$ and $cX \in V$.

We claim that the closure of S is all of $C(I_n)$

Assume that the closure of S is not all of $C(I_n)$

Then

The closure of S, say R, is a **closed proper subspace** of $C(I_n)$

Then

The closure of S, say R, is a **closed proper subspace** of $C(I_n)$

We use the Hahn-Banach Theorem

If $p: V \to \mathbb{R}$ is a sub-linear function (i.e. you have $p(x+y) \leq p(x) + p(y)$ and the product against scalar is the same), and $\varphi: U \to \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \ \forall x \in U$.

Then

The closure of S, say R, is a **closed proper subspace** of $C(I_n)$

We use the Hahn-Banach Theorem

If $p: V \to \mathbb{R}$ is a sub-linear function (i.e. you have $p(x+y) \leq p(x) + p(y)$ and the product against scalar is the same), and $\varphi: U \to \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \ \forall x \in U$.

Then

There exists a linear extension $\psi: V \to \mathbb{R}$ of φ to the whole space V, i.e., there exists a linear functional ψ such that

A D > A D > A D > A D >

Then

The closure of S, say R, is a **closed proper subspace** of $C(I_n)$

We use the Hahn-Banach Theorem

If $p: V \to \mathbb{R}$ is a sub-linear function (i.e. you have $p(x+y) \leq p(x) + p(y)$ and the product against scalar is the same), and $\varphi: U \to \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \ \forall x \in U$.

Then

There exists a linear extension $\psi:V\to\mathbb{R}$ of φ to the whole space V, i.e., there exists a linear functional ψ such that

A D > A D > A D > A D >

Then

The closure of S, say R, is a **closed proper subspace** of $C(I_n)$

We use the Hahn-Banach Theorem

If $p: V \to \mathbb{R}$ is a sub-linear function (i.e. you have $p(x+y) \leq p(x) + p(y)$ and the product against scalar is the same), and $\varphi: U \to \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \ \forall x \in U$.

Then

There exists a linear extension $\psi: V \to \mathbb{R}$ of φ to the whole space V, i.e., there exists a linear functional ψ such that

$$\psi(x) \le p(x) \ \forall x \in V.$$

A D > A D > A D > A D >

It is possible to construct sub-linear function defined as follow

We define the following linear functional

$$T(f) = \begin{cases} f & \text{if } f \in C(I_n) - R \\ 0 & \text{if } f \in R \end{cases}$$

Then

Using T as p and φ
 V = C (I_n)
 U = R

(9)

It is possible to construct sub-linear function defined as follow

We define the following linear functional

$$T(f) = \begin{cases} f & \text{if } f \in C(I_n) - R\\ 0 & \text{if } f \in R \end{cases}$$
(9)

Then

 $\bullet~$ Using T~ as p~ and φ

•
$$V = C(I_n)$$

•
$$U = R$$

イロト イボト イヨト イヨト

Therefore

We have

There is a bounded linear functional called $L \neq 0$

- The ψ in the Hahn-Banach Theorem
- With L(R) = L(S) = 0, but $L(C(I_n) R) \neq 0$

Now, we use the Riesz Representation Theorem

Let X be a locally compact Hausdorff space. For any positive linear functional ψ on C(X), there is a unique regular Borel measure μ on X such that

$$\psi = \int_{X} f(x) d\mu(x)$$
(10)

for all f in ${\cal C}(X)$

We can then do the following

$$L(h) = \int_{I_n} h(\mathbf{x}) \, d\mu(\mathbf{x}) \tag{11}$$

Where?

For some $\mu \in M(I_n)$, for all $h \in C(I_n)$

Now, we use the Riesz Representation Theorem

Let X be a locally compact Hausdorff space. For any positive linear functional ψ on C(X), there is a unique regular Borel measure μ on X such that

$$\psi = \int_{X} f(x) d\mu(x)$$
(10)

for all f in ${\cal C}(X)$

We can then do the following

$$L(h) = \int_{I_n} h(\boldsymbol{x}) \, d\mu(\boldsymbol{x}) \tag{11}$$

ヘロト ヘロト ヘヨト ヘヨト

Where?

For some $\mu\in M\left(I_{n}
ight)$, for all $h\in C\left(I_{n}
ight)$

Now, we use the Riesz Representation Theorem

Let X be a locally compact Hausdorff space. For any positive linear functional ψ on C(X), there is a unique regular Borel measure μ on X such that

$$\psi = \int_{X} f(x) d\mu(x)$$
(10)

for all f in ${\cal C}(X)$

We can then do the following

$$L(h) = \int_{I_n} h(\boldsymbol{x}) \, d\mu(\boldsymbol{x})$$
(11)

< (1) ト < 三

Where?

For some $\mu \in M(I_n)$, for all $h \in C(I_n)$

In particular

Given that
$$f\left(oldsymbol{w}^T oldsymbol{x} + heta
ight)$$
 is in R for all $oldsymbol{w}$ and $heta$

We must have that

$$\int_{\boldsymbol{I}_{\boldsymbol{n}}} f\left(oldsymbol{w}^T oldsymbol{x} + heta
ight) d\mu \left(oldsymbol{x}
ight) = 0$$
 ,

for all $oldsymbol{w}$ and $oldsymbol{ heta}$

But we assumed that *f* is discriminatory!!

- Then... $\mu=0$ contradicting the fact that L
 eq 0!!! In $f\in C\left(I_{n}
 ight) -R$
- We have a contradiction!!!

In particular

Given that
$$f\left(oldsymbol{w}^T oldsymbol{x} + heta
ight)$$
 is in R for all $oldsymbol{w}$ and $heta$

We must have that

$$\int_{I_n} f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta\right) d\mu\left(\boldsymbol{x}\right) = 0$$
(12)

for all \boldsymbol{w} and $\boldsymbol{\theta}$

But we assumed that *f* is discriminatory!!

Then... µ = 0 contradicting the fact that L ≠ 0!!! In f ∈ C (I_n) − R
 We have a contradiction!!!

In particular

Given that
$$f\left(oldsymbol{w}^T oldsymbol{x} + heta
ight)$$
 is in R for all $oldsymbol{w}$ and $heta$

We must have that

$$\int_{I_n} f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta\right) d\mu\left(\boldsymbol{x}\right) = 0$$
(12)

for all \boldsymbol{w} and $\boldsymbol{\theta}$

But we assumed that f is discriminatory!!!

• Then... $\mu = 0$ contradicting the fact that $L \neq 0!!!$ In $f \in C(I_n) - R$

• We have a contradiction!!!

Finally

The subspace S of sums of the form G is dense!!!

Now, we deal with the sigmoidal function

Lemma 1

Any bounded, measurable sigmoidal function, f, is discriminatory. In particular, any continuous sigmoidal function is discriminatory.

Proof

I will leave this to you... it is possible I will get a question from this proof for the firs midterm.

イロト イロト イヨト イヨト

Now, we deal with the sigmoidal function

Lemma 1

Any bounded, measurable sigmoidal function, f, is discriminatory. In particular, any continuous sigmoidal function is discriminatory.

Proof

I will leave this to you... it is possible I will get a question from this proof for the firs midterm.

イロト 不得 トイヨト イヨト

Outline

Introduction The Representation of Functions

2 Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
 - Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

We have the theorem finally!!!

Universal Representation Theorem for the multi-layer perceptron

Let f be any continuous sigmoidal function. Then finite sums of the form

$$G(\boldsymbol{x}) = \sum_{j=1}^{N} \alpha_j f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta_j\right)$$
(13)

are dense in $C(I_n)$.

In other words

Given any $g \in C(I_n)$ and $\epsilon > 0$, there is a sum G(x) of the above form, for which

 $\left|G\left(\boldsymbol{x}\right) - g\left(\boldsymbol{x}\right)\right| < \epsilon \; \forall \boldsymbol{x} \in I_{n}$

Cinvestav ≅ ∽ ⊂ © 54 / 55

A D A A B A A B A A B A

We have the theorem finally!!!

Universal Representation Theorem for the multi-layer perceptron

Let f be any continuous sigmoidal function. Then finite sums of the form

$$G(\boldsymbol{x}) = \sum_{j=1}^{N} \alpha_j f\left(\boldsymbol{w}^T \boldsymbol{x} + \theta_j\right)$$
(13)

are dense in $C(I_n)$.

In other words

Given any $g \in C(I_n)$ and $\epsilon > 0$, there is a sum $G(\mathbf{x})$ of the above form, for which

$$|G(\boldsymbol{x}) - g(\boldsymbol{x})| < \epsilon \; \forall \boldsymbol{x} \in I_n \tag{14}$$

Simple

Combine the theorem and lemma $1\ldots$ and because the continuous sigmoidals satisfy the conditions of the lemma

• We have our representation!!!

