Introduction to Machine Learning
 Universal Approximation Theorem of the Multilayer Perceptron

Andres Mendez-Vazquez

October 28, 2020

Outline

(1) Introduction
- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Outline

(1) Introduction

- The Representation of Functions

2 Basic Definitions

-

Topology

- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Introduction

Representation of functions

The main result in multi-layer perceptron is its power of representation.

Introduction

Representation of functions

The main result in multi-layer perceptron is its power of representation.

Furthermore

After all, it is quite striking if we can represent continuous functions of the form $f: \mathbb{R}^{n} \longmapsto \mathbb{R}$ as a finite sum of simple functions.

Therefore

Our main goal

We want to know under which conditions the sum of the form:

$$
\begin{equation*}
G(\boldsymbol{x})=\sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta_{j}\right) \tag{1}
\end{equation*}
$$

can represent continuous functions in a specific domain.

Setup of the problem

Definition of I_{n}

It is an n-dimensional unit cube $[0,1]^{n}$

Setup of the problem

Definition of I_{n}

It is an n-dimensional unit cube $[0,1]^{n}$
In addition, we have the following set of functions

$$
\begin{equation*}
C\left(I_{n}\right)=\left\{f: I_{n} \rightarrow \mathbb{R} \mid f \text { is a continous function }\right\} \tag{2}
\end{equation*}
$$

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Topology

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called open sets and satisfying the following axioms:

Topology

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called open sets and satisfying the following axioms:
(1) The empty set and X itself are open.

Topology

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called open sets and satisfying the following axioms:
(1) The empty set and X itself are open.
(2) Any union of open sets is open.

Topology

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called open sets and satisfying the following axioms:
(1) The empty set and X itself are open.
(2) Any union of open sets is open.
(3) The intersection of any finite number of open sets is open.

Topology

Definition (Topological Space)

A topological space is then a set X together with a collection of subsets of X, called open sets and satisfying the following axioms:
(1) The empty set and X itself are open.
(2) Any union of open sets is open.
(3) The intersection of any finite number of open sets is open.

Remark

- This is quite axiomatic... because any set in the collection of X is open...

Example

We have

- Given any set X, one can define a topology on X where every subset of X is an open set.

Example

We have

- Given any set X, one can define a topology on X where every subset of X is an open set.

Also

- Let (X, d) be a metric space. The sets (called open Balls) are a Topology

$$
S\left(x_{0}, r\right)=\left\{x \in X \mid d\left(x_{0}, x\right)<r\right\} \text { where } r>0 \text { and } x_{0} \in X
$$

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

Topology

- Compactness

Continuous Functions

- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Definition

Open Cover Definition

- A topological space X is called compact if each of its open covers has a finite subcover.

Definition

Open Cover Definition

- A topological space X is called compact if each of its open covers has a finite subcover.

In Our Case

- I_{n} is compact

Compactness

Theorem
A compact set is closed and bounded.

Compactness

Theorem
A compact set is closed and bounded.
Thus
I_{n} is a compact set in \mathbb{R}^{n}.

Why Compactness?

Basically

- Given that in Topology we care in how something behaves in open sets!!!

Why Compactness?

Basically

- Given that in Topology we care in how something behaves in open sets!!!

Compactness

- Establish some sort of "fitness" in a Topological sense

Why Compactness?

Basically

- Given that in Topology we care in how something behaves in open sets!!!

Compactness

- Establish some sort of "fitness" in a Topological sense

Therefore

- There are only finitely many possible behaviors.

Outline

1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Continuous Functions

Theorem

- A function f from a topological space X into another topological space Y is continuous if and only if every open set V in Y,

$$
f^{-1}(V)=\{x \mid f(x) \in V\}
$$

Continuous Functions

Theorem

- A function f from a topological space X into another topological space Y is continuous if and only if every open set V in Y,

$$
f^{-1}(V)=\{x \mid f(x) \in V\}
$$

Example, Is $f:[0,1] \longrightarrow \mathbb{R}, f(x)=1 / x$ a continuous function in $[0,1]$?

It is not!!

Define with g a continuous function

$$
B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)=\left\{y \in \mathbb{R} \mid\left\|y-f\left(x_{0}\right)\right\|<\epsilon\right\}
$$

It is not!!

Define with g a continuous function

$$
B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)=\left\{y \in \mathbb{R} \mid\left\|y-f\left(x_{0}\right)\right\|<\epsilon\right\}
$$

Therefore, its pre-image is open

$$
f^{-1}\left(B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)\right)
$$

It is not!!

Define with g a continuous function

$$
B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)=\left\{y \in \mathbb{R} \mid\left\|y-f\left(x_{0}\right)\right\|<\epsilon\right\}
$$

Therefore, its pre-image is open

$$
f^{-1}\left(B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)\right)
$$

Therefore exist a ball around $B_{[0,1]}\left(\delta, x_{0}\right)$

$$
B_{[0,1]}\left(\delta, x_{0}\right) \subseteq f^{-1}\left(B_{\mathbb{R}}\left(\epsilon, g\left(x_{0}\right)\right)\right)
$$

The well know $\epsilon-\delta$ definition

What about the $+\infty$ and our original f

- You need to use a sequence $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow+\infty$ when $n \rightarrow \infty$

The well know $\epsilon-\delta$ definition

What about the $+\infty$ and our original f

- You need to use a sequence $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow+\infty$ when $n \rightarrow \infty$

Therefore, we have for some $\epsilon>$

- We have that $\lim _{n \rightarrow \infty} B\left(\epsilon, f\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} x_{n}$

The well know $\epsilon-\delta$ definition

What about the $+\infty$ and our original f

- You need to use a sequence $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow+\infty$ when $n \rightarrow \infty$

Therefore, we have for some $\epsilon>$

- We have that $\lim _{n \rightarrow \infty} B\left(\epsilon, f\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} x_{n}$

Therefore

$$
\lim _{n \rightarrow \infty} f^{-1}\left(B_{\mathbb{R}}\left(\epsilon, g\left(x_{n}\right)\right)\right)=\{0\}
$$

Therefore

The pre-image is closed

- The function f is not continuous!!!

All the continuous functions are bounded

For Example

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Thus

Theorem

- Let K be a nonempty subset of \mathbb{R}^{n}, where $n>1$. If K is compact, then every continuous real-valued function defined on K is bounded.

Thus

Theorem

- Let K be a nonempty subset of \mathbb{R}^{n}, where $n>1$. If K is compact, then every continuous real-valued function defined on K is bounded.

Definition (Supremum Norm)

- Let X be a topological space and let F be the space of all bounded complex-valued continuous functions defined on K.
- The supremum norm is the norm defined on F by

$$
\begin{equation*}
\|f\|=\sup _{x \in X}|f(x)| \tag{3}
\end{equation*}
$$

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

I give you an idea

We would like, given $C\left(I_{n}\right)$

- To prove that there is a function

$$
\sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta_{j}\right)
$$

I give you an idea

We would like, given $C\left(I_{n}\right)$

- To prove that there is a function

$$
\sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta_{j}\right)
$$

Nearby any $f(x) \in C\left[I_{n}\right]$

- Basically, we want a set

$$
R=\left\{G(\boldsymbol{x}) \mid G(\boldsymbol{x})=\sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta_{j}\right)\right\}
$$

such that $R \subseteq C\left[I_{n}\right]$ and given $G \in R$, for all $\epsilon>0$, $\sup _{\boldsymbol{x} \in I_{n}}|G(\boldsymbol{x})-f(\boldsymbol{x})|<\epsilon$.

Limit Points

Definition

If X is a topological space and p is a point in X, a neighborhood of p is a subset V of X that includes an open set U containing $p, p \in U \subseteq V$.

- This is also equivalent to $p \in X$ being in the interior of V.

Limit Points

Definition

If X is a topological space and p is a point in X, a neighborhood of p is a subset V of X that includes an open set U containing $p, p \in U \subseteq V$.

- This is also equivalent to $p \in X$ being in the interior of V.

Example in a metric space

In a metric space (X, d), a set V is a neighborhood of a point p if there exists an open ball with center at p and radius $r>0$, such that

$$
\begin{equation*}
B_{r}(p)=B(p ; r)=\{x \in X \mid d(x, p)<r\} \tag{4}
\end{equation*}
$$

is contained in V.

Limit Points

Definition of a Limit Point

Let S be a subset of a topological space X. A point $x \in X$ is a limit point of S if every neighborhood of x contains at least one point of S different from x itself.

Limit Points

Definition of a Limit Point

Let S be a subset of a topological space X. A point $x \in X$ is a limit point of S if every neighborhood of x contains at least one point of S different from x itself.

Example in \mathbb{R}

Which are the limit points of the set $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$?

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

This allows to define the idea of density

Something Notable

A subset A of a topological space X is dense in X, if for any point $x \in X$, any neighborhood of x contains at least one point from A.

This allows to define the idea of density

Something Notable

A subset A of a topological space X is dense in X, if for any point $x \in X$, any neighborhood of x contains at least one point from A.

Classic Example

The real numbers with the usual topology have the rational numbers as a countable dense subset.

- Why do you believe the floating-point numbers are rational?

This allows to define the idea of density

Something Notable

A subset A of a topological space X is dense in X, if for any point $x \in X$, any neighborhood of x contains at least one point from A.

Classic Example

The real numbers with the usual topology have the rational numbers as a countable dense subset.

- Why do you believe the floating-point numbers are rational?

In addition

Also the irrational numbers.

From this, you have the idea of closure

Definition

The closure of a set S is the set of all points of closure of S, that is, the set S together with all of its limit points.

From this, you have the idea of closure

Definition

The closure of a set S is the set of all points of closure of S, that is, the set S together with all of its limit points.

Example

The closure of the following set $(0,1) \cup\{2\}$

From this, you have the idea of closure

Definition

The closure of a set S is the set of all points of closure of S, that is, the set S together with all of its limit points.

Example

The closure of the following set $(0,1) \cup\{2\}$

Meaning

Not all points in the closure are limit points.

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

What Characteristics we would like to have

First

- We would love to be able to say that separation exist!!!

What Characteristics we would like to have

First

- We would love to be able to say that separation exist!!!
- Given two functions, we can say they are different if their mappings are different!!!

What Characteristics we would like to have

First

- We would love to be able to say that separation exist!!!
- Given two functions, we can say they are different if their mappings are different!!!

Second

- We want to define a way to measure the open spaces and their pre-images under continuous functions:

What Characteristics we would like to have

First

- We would love to be able to say that separation exist!!!
- Given two functions, we can say they are different if their mappings are different!!!

Second

- We want to define a way to measure the open spaces and their pre-images under continuous functions:
- So we can integrate them!!!

Hausdorff Space

Definition of Separation

Points x and y in a topological space X can be separated by neighborhoods if there exists a neighborhood U of x and a neighborhood V of y such that U and V are disjoint.

Hausdorff Space

Definition of Separation

Points x and y in a topological space X can be separated by neighborhoods if there exists a neighborhood U of x and a neighborhood V of y such that U and V are disjoint.

Definition

X is a Hausdorff space if any two distinct points of X can be separated by neighborhoods.

Hausdorff Space

Definition of Separation

Points x and y in a topological space X can be separated by neighborhoods if there exists a neighborhood U of x and a neighborhood V of y such that U and V are disjoint.

Definition

X is a Hausdorff space if any two distinct points of X can be separated by neighborhoods.

This solve the first issue!!!

- We can identify different functions... by open sets

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

We have then

Look at what we have
(1) $C\left(I_{n}\right)$ is compact

We have then

Look at what we have

(1) $C\left(I_{n}\right)$ is compact
(2) The continuous functions there are bounded!!!

We have then

Look at what we have

(1) $C\left(I_{n}\right)$ is compact
(2) The continuous functions there are bounded!!!

Therefore

We can integrate $f \in C\left(I_{n}\right)$

- However, we need to have a measure μ to integrate such functions

Therefore

We can integrate $f \in C\left(I_{n}\right)$

- However, we need to have a measure μ to integrate such functions

Why?

- We want to construct an existence theorem by contradiction and integration is necessary

Now, the Measure Concept
Definition of σ-algebra
Let $\mathcal{A} \subset \mathcal{P}(X)$, we say that \mathcal{A} to be an algebra if

Now, the Measure Concept
Definition of σ-algebra
Let $\mathcal{A} \subset \mathcal{P}(X)$, we say that \mathcal{A} to be an algebra if
(1) $\emptyset, X \in \mathcal{A}$.

Now, the Measure Concept

Definition of σ-algebra

Let $\mathcal{A} \subset \mathcal{P}(X)$, we say that \mathcal{A} to be an algebra if
(1) $\emptyset, X \in \mathcal{A}$.
(2) $A, B \in \mathcal{A}$ then $A \cup B \in \mathcal{A}$.

Now, the Measure Concept
Definition of σ-algebra
Let $\mathcal{A} \subset \mathcal{P}(X)$, we say that \mathcal{A} to be an algebra if
(1) $\emptyset, X \in \mathcal{A}$.
(2) $A, B \in \mathcal{A}$ then $A \cup B \in \mathcal{A}$.

- $A \in \mathcal{A}$ then $A^{c} \in \mathcal{A}$.

Now, the Measure Concept

Definition of σ-algebra

Let $\mathcal{A} \subset \mathcal{P}(X)$, we say that \mathcal{A} to be an algebra if
(1) $\emptyset, X \in \mathcal{A}$.
(2) $A, B \in \mathcal{A}$ then $A \cup B \in \mathcal{A}$.
(3) $A \in \mathcal{A}$ then $A^{c} \in \mathcal{A}$.

Definition

An algebra \mathcal{A} in $\mathcal{P}(X)$ is said to be a σ-algebra, if for any sequence $\left\{A_{n}\right\}$ of elements in \mathcal{A}, we have $\cup_{n=1}^{\infty} A_{n} \in \mathcal{A}$

Now, the Measure Concept

Definition of σ-algebra

Let $\mathcal{A} \subset \mathcal{P}(X)$, we say that \mathcal{A} to be an algebra if
(1) $\emptyset, X \in \mathcal{A}$.
(2) $A, B \in \mathcal{A}$ then $A \cup B \in \mathcal{A}$.
(3) $A \in \mathcal{A}$ then $A^{c} \in \mathcal{A}$.

Definition

An algebra \mathcal{A} in $\mathcal{P}(X)$ is said to be a σ-algebra, if for any sequence $\left\{A_{n}\right\}$ of elements in \mathcal{A}, we have $\cup_{n=1}^{\infty} A_{n} \in \mathcal{A}$

Example

In $X=[0,1)$, the class \mathcal{A}_{0} consisting of \emptyset, and all finite unions $A=\cup_{i=1}^{n}\left[a_{i}, b_{i}\right)$ with $0 \leq a_{i}<b_{i} \leq a_{i+1} \leq 1$ is an algebra.

Now, the Measure Concept

Definition of additivity

Let $\mu: \mathcal{A} \rightarrow[0,+\infty]$ be such that $\mu(\emptyset)=0$, we say that μ is σ-additive if for any $\left\{A_{i}\right\}_{i \in I} \subset \mathcal{A}$ (Where I can be finite of infinite countable) of mutually disjoint sets such that $\cup_{i \in I} A_{i} \in \mathcal{A}$, we have that

$$
\begin{equation*}
\mu\left(\cup_{i \in I} A_{i}\right)=\sum_{i \in I} \mu\left(A_{i}\right) \tag{5}
\end{equation*}
$$

Now, the Measure Concept

Definition of additivity

Let $\mu: \mathcal{A} \rightarrow[0,+\infty]$ be such that $\mu(\emptyset)=0$, we say that μ is σ-additive if for any $\left\{A_{i}\right\}_{i \in I} \subset \mathcal{A}$ (Where I can be finite of infinite countable) of mutually disjoint sets such that $\cup_{i \in I} A_{i} \in \mathcal{A}$, we have that

$$
\begin{equation*}
\mu\left(\cup_{i \in I} A_{i}\right)=\sum_{i \in I} \mu\left(A_{i}\right) \tag{5}
\end{equation*}
$$

Definition of Measurability

Let \mathcal{A} be a σ-algebra of subsets of X, we say that the [air (X, \mathcal{A}) is a measurable space where a σ-additive function $\mu: \mathcal{A} \rightarrow[0,+\infty]$ is called a measure on (X, \mathcal{A}).

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

A Borel Measure

Definition

The Borel σ-algebra is defined to be the σ-algebra generated by the open sets (or equivalently, by the closed sets).

A Borel Measure

Definition

The Borel σ-algebra is defined to be the σ-algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ-algebra on some topological space, then a measure $\mu: \mathcal{F} \rightarrow \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

A Borel Measure

Definition

The Borel σ-algebra is defined to be the σ-algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ-algebra on some topological space, then a measure $\mu: \mathcal{F} \rightarrow \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu: \mathcal{B}(X) \rightarrow$ is a measure such that

A Borel Measure

Definition

The Borel σ-algebra is defined to be the σ-algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ-algebra on some topological space, then a measure $\mu: \mathcal{F} \rightarrow \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu: \mathcal{B}(X) \rightarrow$ is a measure such that
(1) $\mu(\emptyset)=0$.

A Borel Measure

Definition

The Borel σ-algebra is defined to be the σ-algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ-algebra on some topological space, then a measure $\mu: \mathcal{F} \rightarrow \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu: \mathcal{B}(X) \rightarrow$ is a measure such that
(1) $\mu(\emptyset)=0$.
(2) μ is σ-additive.

A Borel Measure

Definition

The Borel σ-algebra is defined to be the σ-algebra generated by the open sets (or equivalently, by the closed sets).

Definition of a Borel Measure

If \mathcal{F} is the Borel σ-algebra on some topological space, then a measure $\mu: \mathcal{F} \rightarrow \mathbb{R}$ is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.

Definition of a signed Borel Measure

A signed Borel measure $\mu: \mathcal{B}(X) \rightarrow$ is a measure such that
(1) $\mu(\emptyset)=0$.
(2) μ is σ-additive.
(3) $\sup _{A \in \mathcal{B}(X)}|\mu(A)|<\infty$

A Borel Measure

Regularity
A measure μ is Borel regular measure:

A Borel Measure

Regularity

A measure μ is Borel regular measure:
(1) For every Borel set $B \subseteq \mathbb{R}^{n}$ and $A \subseteq \mathbb{R}^{n}$, $\mu(A)=\mu(A \cap B)+\mu(A-B)$.

A Borel Measure

Regularity

A measure μ is Borel regular measure:
(1) For every Borel set $B \subseteq \mathbb{R}^{n}$ and $A \subseteq \mathbb{R}^{n}$, $\mu(A)=\mu(A \cap B)+\mu(A-B)$.
(2) For every $A \subseteq \mathbb{R}^{n}$, there exists a Borel set $B \subseteq \mathbb{R}^{n}$ such that $A \subseteq B$ and $\mu(A)=\mu(B)$.

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

Discriminatory Functions

Definition

Given the set $M\left(I_{n}\right)$ of signed regular Borel measures, a function f is discriminatory if for a measure $\mu \in M\left(I_{n}\right)$

$$
\begin{equation*}
\int_{I_{n}} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta\right) d \mu=0 \tag{6}
\end{equation*}
$$

for all $\boldsymbol{w} \in \mathbb{R}^{n}$ and $\theta \in \mathbb{R}$ implies that $\mu=0$

Discriminatory Functions

Definition

Given the set $M\left(I_{n}\right)$ of signed regular Borel measures, a function f is discriminatory if for a measure $\mu \in M\left(I_{n}\right)$

$$
\begin{equation*}
\int_{I_{n}} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta\right) d \mu=0 \tag{6}
\end{equation*}
$$

for all $\boldsymbol{w} \in \mathbb{R}^{n}$ and $\theta \in \mathbb{R}$ implies that $\mu=0$

Definition

We say that f is sigmoidal if

$$
f(t) \rightarrow \begin{cases}1 & \text { as } t \rightarrow+\infty \\ 0 & \text { as } t \rightarrow-\infty\end{cases}
$$

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

The Important Theorem

Theorem 1

Let f a be any continuous discriminatory function. Then finite sums of the form

$$
\begin{equation*}
G(\boldsymbol{x})=\sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}_{j}^{T} \boldsymbol{x}+\theta_{j}\right) \tag{7}
\end{equation*}
$$

where $\boldsymbol{w}_{j} \in \mathbb{R}^{n}$ and $\alpha_{j}, \theta_{j} \in \mathbb{R}$ are fixed, are dense in $C\left(I_{n}\right)$

Meaning

In other words

Given any $g \in C\left(I_{n}\right)$ and $\epsilon>0$, there is a sum, $G(\boldsymbol{x})$, of the above form, for which

$$
\begin{equation*}
|G(\boldsymbol{x})-g(\boldsymbol{x})|<\epsilon \forall \boldsymbol{x} \in I_{n} \tag{8}
\end{equation*}
$$

Proof

Let $S \subset C\left(I_{n}\right)$ be the set of functions of the form $G(x)$
First, S is a linear subspace of $C\left(I_{n}\right)$

Proof

Let $S \subset C\left(I_{n}\right)$ be the set of functions of the form $G(\boldsymbol{x})$

First, S is a linear subspace of $C\left(I_{n}\right)$

Definition

A subset V of \mathbb{R}^{n} is called a linear subspace of \mathbb{R}^{n} if V contains the zero vector, and is closed under vector addition and scaling. That is, for $X, Y \in V$ and $c \in \mathbb{R}$, we have $X+Y \in V$ and $c X \in V$.

Proof

Let $S \subset C\left(I_{n}\right)$ be the set of functions of the form $G(x)$

First, S is a linear subspace of $C\left(I_{n}\right)$

Definition

A subset V of \mathbb{R}^{n} is called a linear subspace of \mathbb{R}^{n} if V contains the zero vector, and is closed under vector addition and scaling. That is, for $X, Y \in V$ and $c \in \mathbb{R}$, we have $X+Y \in V$ and $c X \in V$.

We claim that the closure of S is all of $C\left(I_{n}\right)$
Assume that the closure of S is not all of $C\left(I_{n}\right)$

Proof

Then
The closure of S, say R, is a closed proper subspace of $C\left(I_{n}\right)$

Proof

Then

The closure of S, say R, is a closed proper subspace of $C\left(I_{n}\right)$

We use the Hahn-Banach Theorem

If $p: V \rightarrow \mathbb{R}$ is a sub-linear function (i.e. you have
$p(x+y) \leq p(x)+p(y)$ and the product against scalar is the same), and $\varphi: U \rightarrow \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \forall x \in U$.

Proof

Then

The closure of S, say R, is a closed proper subspace of $C\left(I_{n}\right)$

We use the Hahn-Banach Theorem

If $p: V \rightarrow \mathbb{R}$ is a sub-linear function (i.e. you have
$p(x+y) \leq p(x)+p(y)$ and the product against scalar is the same), and $\varphi: U \rightarrow \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \forall x \in U$.

Then

There exists a linear extension $\psi: V \rightarrow \mathbb{R}$ of φ to the whole space V, i.e., there exists a linear functional ψ such that

Proof

Then

The closure of S, say R, is a closed proper subspace of $C\left(I_{n}\right)$

We use the Hahn-Banach Theorem

If $p: V \rightarrow \mathbb{R}$ is a sub-linear function (i.e. you have
$p(x+y) \leq p(x)+p(y)$ and the product against scalar is the same), and $\varphi: U \rightarrow \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \forall x \in U$.

Then

There exists a linear extension $\psi: V \rightarrow \mathbb{R}$ of φ to the whole space V, i.e., there exists a linear functional ψ such that
(1) $\psi(x)=\varphi(x) \forall x \in U$.

Proof

Then

The closure of S, say R, is a closed proper subspace of $C\left(I_{n}\right)$

We use the Hahn-Banach Theorem

If $p: V \rightarrow \mathbb{R}$ is a sub-linear function (i.e. you have
$p(x+y) \leq p(x)+p(y)$ and the product against scalar is the same), and $\varphi: U \rightarrow \mathbb{R}$ is a linear functional on a linear subspace $U \subseteq V$ which is dominated by p on U, i.e. $\varphi(x) \leq p(x) \forall x \in U$.

Then

There exists a linear extension $\psi: V \rightarrow \mathbb{R}$ of φ to the whole space V, i.e., there exists a linear functional ψ such that
(1) $\psi(x)=\varphi(x) \forall x \in U$.
(2) $\psi(x) \leq p(x) \forall x \in V$.

Proof

It is possible to construct sub-linear function defined as follow
We define the following linear functional

$$
T(f)= \begin{cases}f & \text { if } f \in C\left(I_{n}\right)-R \tag{9}\\ 0 & \text { if } f \in R\end{cases}
$$

Proof

It is possible to construct sub-linear function defined as follow
We define the following linear functional

$$
T(f)= \begin{cases}f & \text { if } f \in C\left(I_{n}\right)-R \tag{9}\\ 0 & \text { if } f \in R\end{cases}
$$

Then

- Using T as p and φ
- $V=C\left(I_{n}\right)$
- $U=R$

Therefore

We have

There is a bounded linear functional called $L \neq 0$

- The ψ in the Hahn-Banach Theorem
- With $L(R)=L(S)=0$, but $L\left(C\left(I_{n}\right)-R\right) \neq 0$

Proof

Now, we use the Riesz Representation Theorem

Let X be a locally compact Hausdorff space. For any positive linear functional ψ on $C(X)$, there is a unique regular Borel measure μ on X such that

$$
\begin{equation*}
\psi=\int_{X} f(x) d \mu(x) \tag{10}
\end{equation*}
$$

for all f in $C(X)$

Proof

Now, we use the Riesz Representation Theorem

Let X be a locally compact Hausdorff space. For any positive linear functional ψ on $C(X)$, there is a unique regular Borel measure μ on X such that

$$
\begin{equation*}
\psi=\int_{X} f(x) d \mu(x) \tag{10}
\end{equation*}
$$

for all f in $C(X)$
We can then do the following

$$
\begin{equation*}
L(h)=\int_{I_{n}} h(\boldsymbol{x}) d \mu(\boldsymbol{x}) \tag{11}
\end{equation*}
$$

Proof

Now, we use the Riesz Representation Theorem

Let X be a locally compact Hausdorff space. For any positive linear functional ψ on $C(X)$, there is a unique regular Borel measure μ on X such that

$$
\begin{equation*}
\psi=\int_{X} f(x) d \mu(x) \tag{10}
\end{equation*}
$$

for all f in $C(X)$
We can then do the following

$$
\begin{equation*}
L(h)=\int_{I_{n}} h(\boldsymbol{x}) d \mu(\boldsymbol{x}) \tag{11}
\end{equation*}
$$

Where?

For some $\mu \in M\left(I_{n}\right)$, for all $h \in C\left(I_{n}\right)$

Proof

In particular

Given that $f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta\right)$ is in R for all \boldsymbol{w} and θ

Proof

In particular

Given that $f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta\right)$ is in R for all \boldsymbol{w} and θ

We must have that

$$
\begin{equation*}
\int_{I_{n}} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta\right) d \mu(\boldsymbol{x})=0 \tag{12}
\end{equation*}
$$

for all \boldsymbol{w} and θ

Proof

In particular

Given that $f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta\right)$ is in R for all \boldsymbol{w} and θ

We must have that

$$
\begin{equation*}
\int_{I_{n}} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta\right) d \mu(\boldsymbol{x})=0 \tag{12}
\end{equation*}
$$

for all \boldsymbol{w} and θ

But we assumed that f is discriminatory!!!

- Then... $\mu=0$ contradicting the fact that $L \neq 0$!!! $\operatorname{In} f \in C\left(I_{n}\right)-R$
- We have a contradiction!!!

Proof

Finally

The subspace S of sums of the form G is dense!!!

Now, we deal with the sigmoidal function

Lemma 1

Any bounded, measurable sigmoidal function, f, is discriminatory. In particular, any continuous sigmoidal function is discriminatory.

Now, we deal with the sigmoidal function

Lemma 1

Any bounded, measurable sigmoidal function, f, is discriminatory. In particular, any continuous sigmoidal function is discriminatory.

Proof

I will leave this to you... it is possible I will get a question from this proof for the firs midterm.

Outline

(1) Introduction

- The Representation of Functions

(2) Basic Definitions

- Topology
- Compactness
- Continuous Functions
- Bounding Continuous Functions
- About Density in a Topology
- Density Concept
- Having a Nice Space
- Hausdorff Space
- Measures
- The Borel Measure
- Discriminatory Functions
- The Important Theorem
- Universal Representation Theorem

We have the theorem finally!!!

Universal Representation Theorem for the multi-layer perceptron

Let f be any continuous sigmoidal function. Then finite sums of the form

$$
\begin{equation*}
G(\boldsymbol{x})=\sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta_{j}\right) \tag{13}
\end{equation*}
$$

are dense in $C\left(I_{n}\right)$.

We have the theorem finally!!!

Universal Representation Theorem for the multi-layer perceptron

Let f be any continuous sigmoidal function. Then finite sums of the form

$$
\begin{equation*}
G(\boldsymbol{x})=\sum_{j=1}^{N} \alpha_{j} f\left(\boldsymbol{w}^{T} \boldsymbol{x}+\theta_{j}\right) \tag{13}
\end{equation*}
$$

are dense in $C\left(I_{n}\right)$.

In other words

Given any $g \in C\left(I_{n}\right)$ and $\epsilon>0$, there is a sum $G(\boldsymbol{x})$ of the above form, for which

$$
\begin{equation*}
|G(\boldsymbol{x})-g(\boldsymbol{x})|<\epsilon \forall \boldsymbol{x} \in I_{n} \tag{14}
\end{equation*}
$$

Proof

Simple

Combine the theorem and lemma $1 \ldots$ and because the continuous sigmoidals satisfy the conditions of the lemma

- We have our representation!!!

