Introduction to Artificial Intelligence Introduction Single-Layer Perceptron

Andres Mendez-Vazquez

March 11, 2019

Outline

(1) Introduction

- History

2) Adapting Filtering Problem

- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Outline

1 Introduction

- History

2) Adapting Filtering Problem

- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method

4. Linear Least-Squares Filter

- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

History

At the beginning of Neural Networks (1943-1958)

- McCulloch and Pitts (1943) for introducing the idea of neural networks as computing machines.

History

At the beginning of Neural Networks (1943-1958)

- McCulloch and Pitts (1943) for introducing the idea of neural networks as computing machines.
- Hebb (1949) for postulating the first rule for self-organized learning.

History

At the beginning of Neural Networks (1943-1958)

- McCulloch and Pitts (1943) for introducing the idea of neural networks as computing machines.
- Hebb (1949) for postulating the first rule for self-organized learning.
- Rosenblatt (1958) for proposing the perceptron as the first model for learning with a teacher (i.e., supervised learning).

History

At the beginning of Neural Networks (1943-1958)

- McCulloch and Pitts (1943) for introducing the idea of neural networks as computing machines.
- Hebb (1949) for postulating the first rule for self-organized learning.
- Rosenblatt (1958) for proposing the perceptron as the first model for learning with a teacher (i.e., supervised learning).

In this chapter, we are interested in the perceptron

The perceptron is the simplest form of a neural network used for the classifica tion of patterns said to be linearly separable (i.e., patterns that lie on opposite sides of a hyperplane).

In addition

Something Notable

- The single neuron also forms the basis of an adaptive filter.

In addition

Something Notable

- The single neuron also forms the basis of an adaptive filter.
- A functional block that is basic to the ever-expanding subject of signal processing.

In addition

Something Notable

- The single neuron also forms the basis of an adaptive filter.
- A functional block that is basic to the ever-expanding subject of signal processing.

Furthermore

The development of adaptive filtering owes much to the classic paper of Widrow and Hoff (1960) for pioneering the so-called least-mean-square (LMS) algorithm, also known as the delta rule.

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3 Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Adapting Filtering Problem

Consider a dynamical system

Signal-Flow Graph of Adaptive Model

We have the following equivalence

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Description of the Behavior of the System

We have the data set

$$
\begin{equation*}
\mathcal{T}=\{(\boldsymbol{x}(i), d(i)) \mid i=1,2, \ldots, n, \ldots\} \tag{1}
\end{equation*}
$$

Description of the Behavior of the System

We have the data set

$$
\begin{equation*}
\mathcal{T}=\{(\boldsymbol{x}(i), d(i)) \mid i=1,2, \ldots, n, \ldots\} \tag{1}
\end{equation*}
$$

Where

$$
\begin{equation*}
\boldsymbol{x}(i)=\left(x_{1}(i), x_{2}(i) \ldots, x_{m}(i)\right)^{T} \tag{2}
\end{equation*}
$$

The Stimulus $\boldsymbol{x}(i)$

The stimulus $\boldsymbol{x}(i)$ can arise from
The m elements of $\boldsymbol{x}(i)$ originate at different points in space (spatial)

The Stimulus $\boldsymbol{x}(i)$

The stimulus $\boldsymbol{x}(i)$ can arise from

The m elements of $\boldsymbol{x}(i)$ represent the set of present and $(m-1)$ past values of some excitation that are uniformly spaced in time (temporal).

Problem

Quite important

How do we design a multiple input-single output model of the unknown dynamical system?

Problem

Quite important

How do we design a multiple input-single output model of the unknown dynamical system?

It is more

We want to build this around a single neuron!!!

Thus, we have the following...

We need an algorithm to control the weight adjustment of the neuron

Which steps do you need for the algorithm?

First

The algorithms starts from an arbitrary setting of the neuron's synaptic weight.

Which steps do you need for the algorithm?

First

The algorithms starts from an arbitrary setting of the neuron's synaptic weight.

Second

Adjustments, with respect to changes on the environment, are made on a continuous basis.

- Time is incorporated to the algorithm.

Which steps do you need for the algorithm?

First

The algorithms starts from an arbitrary setting of the neuron's synaptic weight.

Second

Adjustments, with respect to changes on the environment, are made on a continuous basis.

- Time is incorporated to the algorithm.

Third

Computation of adjustments to synaptic weights are completed inside a time interval that is one sampling period long.

Signal-Flow Graph of Adaptive Model

We have the following equivalence

Thus, This Neural Model \approx Adaptive Filter with two continous processes

Filtering processes

(1) An output, denoted by $y(i)$, that is produced in response to the m elements of the stimulus vector $\boldsymbol{x}(i)$.
(2) An error signal, $e(i)$, that is obtained by comparing the output $y(i)$ to the corresponding desired output $d(i)$ produced by the unknown system.

Thus, This Neural Model \approx Adaptive Filter with two continous processes

Filtering processes

(1) An output, denoted by $y(i)$, that is produced in response to the m elements of the stimulus vector $\boldsymbol{x}(i)$.
(2) An error signal, $e(i)$, that is obtained by comparing the output $y(i)$ to the corresponding desired output $d(i)$ produced by the unknown system.

Adaptive Process

It involves the automatic adjustment of the synaptic weights of the neuron in accordance with the error signal $e(i)$

Thus, This Neural Model \approx Adaptive Filter with two

 continous processes
Filtering processes

(1) An output, denoted by $y(i)$, that is produced in response to the m elements of the stimulus vector $\boldsymbol{x}(i)$.
(2) An error signal, $e(i)$, that is obtained by comparing the output $y(i)$ to the corresponding desired output $d(i)$ produced by the unknown system.

Adaptive Process

It involves the automatic adjustment of the synaptic weights of the neuron in accordance with the error signal $e(i)$

Remark

The combination of these two processes working together constitutes a feedback loop acting around the neuron.

Thus

The output $y(i)$ is exactly the same as the induced local field $v(i)$

$$
\begin{equation*}
y(i)=v(i)=\sum_{i=1}^{m} w_{k}(i) x_{k}(i) \tag{3}
\end{equation*}
$$

Thus

The output $y(i)$ is exactly the same as the induced local field $v(i)$

$$
\begin{equation*}
y(i)=v(i)=\sum_{i=1}^{m} w_{k}(i) x_{k}(i) \tag{3}
\end{equation*}
$$

In matrix form, we have - remember we only have a neuron, so we do not have neuron k

$$
\begin{equation*}
y(i)=\boldsymbol{x}^{T}(i) \boldsymbol{w}(i) \tag{4}
\end{equation*}
$$

Thus

The output $y(i)$ is exactly the same as the induced local field $v(i)$

$$
\begin{equation*}
y(i)=v(i)=\sum_{i=1}^{m} w_{k}(i) x_{k}(i) \tag{3}
\end{equation*}
$$

In matrix form, we have - remember we only have a neuron, so we do not have neuron k

$$
\begin{equation*}
y(i)=\boldsymbol{x}^{T}(i) \boldsymbol{w}(i) \tag{4}
\end{equation*}
$$

Error

$$
\begin{equation*}
e(i)=d(i)-y(i) \tag{5}
\end{equation*}
$$

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Consider

A continous differentiable function $J(\boldsymbol{w})$

We want to find an optimal solution \boldsymbol{w}^{*} such that

$$
\begin{equation*}
J\left(\boldsymbol{w}^{*}\right) \leq J(\boldsymbol{w}), \forall \boldsymbol{w} \tag{6}
\end{equation*}
$$

Consider

A continous differentiable function $J(\boldsymbol{w})$

We want to find an optimal solution \boldsymbol{w}^{*} such that

$$
\begin{equation*}
J\left(\boldsymbol{w}^{*}\right) \leq J(\boldsymbol{w}), \forall \boldsymbol{w} \tag{6}
\end{equation*}
$$

We want to

Minimize the cost function $J(\boldsymbol{w})$ with respect to the weight vector \boldsymbol{w}.

Consider

A continous differentiable function $J(\boldsymbol{w})$
We want to find an optimal solution \boldsymbol{w}^{*} such that

$$
\begin{equation*}
J\left(\boldsymbol{w}^{*}\right) \leq J(\boldsymbol{w}), \forall \boldsymbol{w} \tag{6}
\end{equation*}
$$

We want to

Minimize the cost function $J(\boldsymbol{w})$ with respect to the weight vector \boldsymbol{w}.

For this

$$
\begin{equation*}
\nabla J(\boldsymbol{w})=0 \tag{7}
\end{equation*}
$$

Where

∇ is the gradient operator

$$
\begin{equation*}
\nabla=\left[\frac{\partial}{\partial w_{1}}, \frac{\partial}{\partial w_{2}}, \ldots, \frac{\partial}{\partial w_{m}}\right]^{T} \tag{8}
\end{equation*}
$$

Where
∇ is the gradient operator

$$
\begin{equation*}
\nabla=\left[\frac{\partial}{\partial w_{1}}, \frac{\partial}{\partial w_{2}}, \ldots, \frac{\partial}{\partial w_{m}}\right]^{T} \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\nabla J(\boldsymbol{w})=\left[\frac{\partial J(\boldsymbol{w})}{\partial w_{1}}, \frac{\partial J(\boldsymbol{w})}{\partial w_{2}}, \ldots, \frac{\partial J(\boldsymbol{w})}{\partial w_{m}}\right]^{T} \tag{9}
\end{equation*}
$$

Thus

Starting with an initial guess denoted by $\boldsymbol{w}(0)$,

Then, generate a sequence of weight vectors $\boldsymbol{w}(1), \boldsymbol{w}(2), \ldots$

Thus

Starting with an initial guess denoted by $\boldsymbol{w}(0)$,

Then, generate a sequence of weight vectors $\boldsymbol{w}(1), \boldsymbol{w}(2), \ldots$

Such that you can reduce $J(\boldsymbol{w})$ at each iteration

$$
\begin{equation*}
J(\boldsymbol{w}(n+1))<J(\boldsymbol{w}(n)) \tag{10}
\end{equation*}
$$

Where: $\boldsymbol{w}(n)$ is the old value and $\boldsymbol{w}(n+1)$ is the new value.

The Three Main Methods for Unconstrained Optimization

We will look at

(1) Steepest Descent.
(2) Newton's Method
(3) Gauss-Newton Method

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(- Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Steepest Descent

In the method of steepest descent, we have a cost function $J(\boldsymbol{w})$ where

$$
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\eta \nabla J(\boldsymbol{w}(\boldsymbol{n}))
$$

Steepest Descent

In the method of steepest descent, we have a cost function $J(\boldsymbol{w})$ where

$$
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\eta \nabla J(\boldsymbol{w}(\boldsymbol{n}))
$$

How, we prove that $J(\boldsymbol{w}(n+1))<J(\boldsymbol{w}(n))$?
We use the first-order Taylor series expansion around $\boldsymbol{w}(n)$

$$
\begin{equation*}
J(\boldsymbol{w}(n+1)) \approx J(\boldsymbol{w}(n))+\nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n) \tag{11}
\end{equation*}
$$

Remark: This is quite true when the step size is quite small!!! In addition, $\Delta \boldsymbol{w}(n)=\boldsymbol{w}(n+1)-\boldsymbol{w}(n)$

Why? Look at the case in \mathbb{R}

The equation of the tangent line to the curve $y=J(w(n))$

$$
\begin{equation*}
L(w(n))=J^{\prime}(w(n))[w(n+1)-w(n)]+J(w(n)) \tag{12}
\end{equation*}
$$

Why? Look at the case in \mathbb{R}

The equation of the tangent line to the curve $y=J(w(n))$

$$
\begin{equation*}
L(w(n))=J^{\prime}(w(n))[w(n+1)-w(n)]+J(w(n)) \tag{12}
\end{equation*}
$$

Example

Thus, we have that in \mathbb{R}

Remember Something quite Classic

Thus, we have that in \mathbb{R}

Remember Something quite Classic

$$
\tan \theta=\frac{J(w(n+1))-J(w(n))}{w(n+1)-w(n)}
$$

$\tan \theta(w(n+1)-w(n))=J(w(n+1))-J(w(n))$

Thus, we have that in \mathbb{R}

Remember Something quite Classic

Thus, we have that

Using the First Taylor expansion

$$
\begin{equation*}
J(w(n)) \approx J(w(n))+J^{\prime}(w(n))[w(n+1)-w(n)] \tag{13}
\end{equation*}
$$

Now, for Many Variables

An hyperplane in \mathbb{R}^{n} is a set of the form

$$
\begin{equation*}
H=\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\} \tag{14}
\end{equation*}
$$

Now, for Many Variables

An hyperplane in \mathbb{R}^{n} is a set of the form

$$
\begin{equation*}
H=\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\} \tag{14}
\end{equation*}
$$

Given $x \in H$ and $x_{0} \in H$

$$
b=\boldsymbol{a}^{T} \boldsymbol{x}=\boldsymbol{a}^{T} \boldsymbol{x}_{0}
$$

Now, for Many Variables

An hyperplane in \mathbb{R}^{n} is a set of the form

$$
\begin{equation*}
H=\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\} \tag{14}
\end{equation*}
$$

Given $\boldsymbol{x} \in H$ and $x_{0} \in H$

$$
b=\boldsymbol{a}^{T} \boldsymbol{x}=\boldsymbol{a}^{T} \boldsymbol{x}_{0}
$$

Thus, we have that

$$
H=\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)=0\right\}
$$

Definition (Differentiability)

Assume that J is defined in a disk D containing $\boldsymbol{w}(n)$. We say that J is differentiable at $\boldsymbol{w}(n)$ if:

Definition (Differentiability)

Assume that J is defined in a disk D containing $\boldsymbol{w}(n)$. We say that J is differentiable at $\boldsymbol{w}(n)$ if:
(1) $\frac{\partial J(\boldsymbol{w}(n))}{\partial w_{i}}$ exist for all $i=1, \ldots, n$.

Definition (Differentiability)

Assume that J is defined in a disk D containing $\boldsymbol{w}(n)$. We say that J is differentiable at $\boldsymbol{w}(n)$ if:
(1) $\frac{\partial J(\boldsymbol{w}(n))}{\partial w_{i}}$ exist for all $i=1, \ldots, n$.
(2) J is locally linear at $\boldsymbol{w}(n)$.

Thus, given $J(\boldsymbol{w}(n))$

We know that we have the following operator

$$
\begin{equation*}
\nabla=\left(\frac{\partial}{\partial w_{1}}, \frac{\partial}{\partial w_{2}}, \ldots, \frac{\partial}{\partial w_{m}}\right) \tag{15}
\end{equation*}
$$

Thus, given $J(\boldsymbol{w}(n))$

We know that we have the following operator

$$
\begin{equation*}
\nabla=\left(\frac{\partial}{\partial w_{1}}, \frac{\partial}{\partial w_{2}}, \ldots, \frac{\partial}{\partial w_{m}}\right) \tag{15}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
\nabla J(\boldsymbol{w}(n)) & =\left(\frac{\partial J(\boldsymbol{w}(n))}{\partial w_{1}}, \frac{\partial J(\boldsymbol{w}(n))}{\partial w_{2}}, \ldots, \frac{\partial J(\boldsymbol{w}(n))}{\partial w_{m}}\right) \\
& =\sum_{i=1}^{m} \hat{w}_{i} \frac{\partial J(\boldsymbol{w}(n))}{\partial w_{i}}
\end{aligned}
$$

Where: $\hat{w}_{i}^{T}=(1,0, \ldots, 0) \in \mathbb{R}$

Now

Given a curve function $r(t)$ that lies on the level set $J(\boldsymbol{w}(n))=c$ (When is in \mathbb{R}^{3})

Level Set

Definition

$$
\begin{equation*}
\left\{\left(w_{1}, w_{2}, \ldots, w_{m}\right) \in \mathbb{R}^{m} \mid J\left(w_{1}, w_{2}, \ldots, w_{m}\right)=c\right\} \tag{16}
\end{equation*}
$$

Remark: In a normal Calculus course we will use x and f instead of \boldsymbol{w} and J.

Where

Any curve has the following parametrization

$$
\begin{aligned}
& r:[a, b] \rightarrow \mathbb{R}^{m} \\
& \quad r(t)=\left(w_{1}(t), \ldots, w_{m}(t)\right)
\end{aligned}
$$

With $r(n+1)=\left(w_{1}(n+1), \ldots, w_{m}(n+1)\right)$

Where

Any curve has the following parametrization

$$
\begin{aligned}
& r:[a, b] \rightarrow \mathbb{R}^{m} \\
& r(t)=\left(w_{1}(t), \ldots, w_{m}(t)\right)
\end{aligned}
$$

With $r(n+1)=\left(w_{1}(n+1), \ldots, w_{m}(n+1)\right)$

We can write the parametrized version of it

$$
\begin{equation*}
z(t)=J\left(w_{1}(t), w_{2}(t), \ldots, w_{m}(t)\right)=c \tag{17}
\end{equation*}
$$

Where

Any curve has the following parametrization

$$
\begin{aligned}
& r:[a, b] \rightarrow \mathbb{R}^{m} \\
& \quad r(t)=\left(w_{1}(t), \ldots, w_{m}(t)\right)
\end{aligned}
$$

With $r(n+1)=\left(w_{1}(n+1), \ldots, w_{m}(n+1)\right)$

We can write the parametrized version of it

$$
\begin{equation*}
z(t)=J\left(w_{1}(t), w_{2}(t), \ldots, w_{m}(t)\right)=c \tag{17}
\end{equation*}
$$

Differentiating with respect to t and using the chain rule for multiple variables

$$
\begin{equation*}
\frac{d z(t)}{d t}=\sum_{i=1}^{m} \frac{\partial J(\boldsymbol{w}(t))}{\partial w_{i}} \cdot \frac{d w_{i}(t)}{d t}=0 \tag{18}
\end{equation*}
$$

Note

First
 Given $y=f(\boldsymbol{u})=\left(f_{1}(\boldsymbol{u}), \ldots, f_{l}(\boldsymbol{u})\right)$ and $\boldsymbol{u}=g(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right)$.

Note

First

Given $y=f(\boldsymbol{u})=\left(f_{1}(\boldsymbol{u}), \ldots, f_{l}(\boldsymbol{u})\right)$ and $\boldsymbol{u}=g(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right)$.

We have then that

$$
\begin{equation*}
\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{l}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{k}\right)}=\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{l}\right)}{\partial\left(g_{1}, g_{2}, \ldots, g_{m}\right)} \cdot \frac{\partial\left(g_{1}, g_{2}, \ldots, g_{m}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{k}\right)} \tag{19}
\end{equation*}
$$

Note

First

Given $y=f(\boldsymbol{u})=\left(f_{1}(\boldsymbol{u}), \ldots, f_{l}(\boldsymbol{u})\right)$ and $\boldsymbol{u}=g(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right)$.

We have then that

$$
\begin{equation*}
\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{l}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{k}\right)}=\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{l}\right)}{\partial\left(g_{1}, g_{2}, \ldots, g_{m}\right)} \cdot \frac{\partial\left(g_{1}, g_{2}, \ldots, g_{m}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{k}\right)} \tag{19}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{l}\right)}{\partial x_{i}} & =\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{l}\right)}{\partial\left(g_{1}, g_{2}, \ldots, g_{m}\right)} \cdot \frac{\partial\left(g_{1}, g_{2}, \ldots, g_{m}\right)}{\partial x_{i}} \\
& =\sum_{k=1}^{m} \frac{\partial\left(f_{1}, f_{2}, \ldots, f_{l}\right)}{\partial g_{k}} \frac{\partial g_{k}}{\partial x_{i}}
\end{aligned}
$$

Thus

Evaluating at $t=n$

$$
\sum_{i=1}^{m} \frac{\partial J(\boldsymbol{w}(n))}{\partial w_{i}} \cdot \frac{d w_{i}(n)}{d t}=0
$$

Thus

Evaluating at $t=n$

$$
\sum_{i=1}^{m} \frac{\partial J(\boldsymbol{w}(n))}{\partial w_{i}} \cdot \frac{d w_{i}(n)}{d t}=0
$$

We have that

$$
\begin{equation*}
\nabla J(\boldsymbol{w}(n)) \cdot r^{\prime}(n)=0 \tag{20}
\end{equation*}
$$

Thus

Evaluating at $t=n$

$$
\sum_{i=1}^{m} \frac{\partial J(\boldsymbol{w}(n))}{\partial w_{i}} \cdot \frac{d w_{i}(n)}{d t}=0
$$

We have that

$$
\begin{equation*}
\nabla J(\boldsymbol{w}(n)) \cdot r^{\prime}(n)=0 \tag{20}
\end{equation*}
$$

This proves that for every level set the gradient is perpendicular to the tangent to any curve that lies on the level set
In particular to the point $\boldsymbol{w}(n)$.

Now the tangent plane to the surface can be described generally

Thus

$$
\begin{equation*}
L(\boldsymbol{w}(n+1))=J(\boldsymbol{w}(n))+\nabla J^{T}(\boldsymbol{w}(\boldsymbol{n}))[\boldsymbol{w}(n+1)-\boldsymbol{w}(n)] \tag{21}
\end{equation*}
$$

Now the tangent plane to the surface can be described generally

Thus

$$
\begin{equation*}
L(\boldsymbol{w}(n+1))=J(\boldsymbol{w}(n))+\nabla J^{T}(\boldsymbol{w}(\boldsymbol{n}))[\boldsymbol{w}(n+1)-\boldsymbol{w}(n)] \tag{21}
\end{equation*}
$$

This looks like

Proving the fact about the Steepest Descent

We want the following

$$
J(\boldsymbol{w}(n+1))<J(\boldsymbol{w}(n))
$$

Proving the fact about the Steepest Descent

We want the following

$$
J(\boldsymbol{w}(n+1))<J(\boldsymbol{w}(n))
$$

Using the first-order Taylor approximation

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n)) \approx \nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n)
$$

Proving the fact about the Steepest Descent

We want the following

$$
J(\boldsymbol{w}(n+1))<J(\boldsymbol{w}(n))
$$

Using the first-order Taylor approximation

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n)) \approx \nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n)
$$

So, we ask the following

$$
\Delta \boldsymbol{w}(n) \approx-\eta \nabla J(\boldsymbol{w}(\boldsymbol{n})) \text { with } \eta>0
$$

Then

We have that

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n)) \approx-\eta \nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \nabla J(\boldsymbol{w}(\boldsymbol{n}))=-\eta\|\nabla J(\boldsymbol{w}(\boldsymbol{n}))\|^{2}
$$

Then

We have that

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n)) \approx-\eta \nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \nabla J(\boldsymbol{w}(\boldsymbol{n}))=-\eta\|\nabla J(\boldsymbol{w}(\boldsymbol{n}))\|^{2}
$$

Thus

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n))<0
$$

Then

We have that

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n)) \approx-\eta \nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \nabla J(\boldsymbol{w}(\boldsymbol{n}))=-\eta\|\nabla J(\boldsymbol{w}(\boldsymbol{n}))\|^{2}
$$

Thus

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n))<0
$$

Or

$$
J(\boldsymbol{w}(n+1))<J(\boldsymbol{w}(n))
$$

Outline

Introduction

- History

2) Adapting Filtering Problem

- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS

5. Perceptron

- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Newton's Method

Here

The basic idea of Newton's method is to minimize the quadratic approximation of the cost function $J(\boldsymbol{w})$ around the current point $\boldsymbol{w}(n)$.

Newton's Method

Here

The basic idea of Newton's method is to minimize the quadratic approximation of the cost function $J(\boldsymbol{w})$ around the current point $\boldsymbol{w}(n)$.

Using a second-order Taylor series expansion of the cost function around the point $\boldsymbol{w}(n)$

$$
\begin{aligned}
\Delta J(\boldsymbol{w}(n)) & =J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n)) \\
& \approx \nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n)+\frac{1}{2} \Delta \boldsymbol{w}^{T}(n) H(n) \Delta \boldsymbol{w}(n)
\end{aligned}
$$

Newton's Method

Here

The basic idea of Newton's method is to minimize the quadratic approximation of the cost function $J(\boldsymbol{w})$ around the current point $\boldsymbol{w}(n)$.

Using a second-order Taylor series expansion of the cost function around the point $\boldsymbol{w}(n)$

$$
\begin{aligned}
\Delta J(\boldsymbol{w}(n)) & =J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n)) \\
& \approx \nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n)+\frac{1}{2} \Delta \boldsymbol{w}^{T}(n) H(n) \Delta \boldsymbol{w}(n)
\end{aligned}
$$

Where given that $\boldsymbol{w}(n)$ is a vector with dimension m

$$
H=\nabla^{2} J(\boldsymbol{w})=\left(\begin{array}{cccc}
\frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{1}^{2}} & \frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{1} \partial w_{2}} & \cdots & \frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{1} \partial w_{m}} \\
\frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{2} \partial w_{1}} & \frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{2}^{2}} & \cdots & \frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{2} \partial w_{m}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{m} \partial w_{1}} & \frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{m} \partial w_{2}} & \cdots & \frac{\partial^{2} J(\boldsymbol{w})}{\partial w_{m}^{2}}
\end{array}\right)
$$

Now, we want to minimize $J(\boldsymbol{w}(n+1))$

Do you have any idea?
Look again

$$
\begin{equation*}
J(\boldsymbol{w}(n))+\nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n)+\frac{1}{2} \Delta \boldsymbol{w}^{T}(n) H(n) \Delta \boldsymbol{w}(n) \tag{22}
\end{equation*}
$$

Now, we want to minimize $J(\boldsymbol{w}(n+1))$

Do you have any idea?
Look again

$$
\begin{equation*}
J(\boldsymbol{w}(n))+\nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n)+\frac{1}{2} \Delta \boldsymbol{w}^{T}(n) H(n) \Delta \boldsymbol{w}(n) \tag{22}
\end{equation*}
$$

Derive with respect to $\Delta \boldsymbol{w}(n)$

$$
\begin{equation*}
\nabla J(\boldsymbol{w}(\boldsymbol{n}))+H(n) \Delta \boldsymbol{w}(n)=0 \tag{23}
\end{equation*}
$$

Now, we want to minimize $J(\boldsymbol{w}(n+1))$

Do you have any idea?
Look again

$$
\begin{equation*}
J(\boldsymbol{w}(n))+\nabla J^{T}(\boldsymbol{w}(\boldsymbol{n})) \Delta \boldsymbol{w}(n)+\frac{1}{2} \Delta \boldsymbol{w}^{T}(n) H(n) \Delta \boldsymbol{w}(n) \tag{22}
\end{equation*}
$$

Derive with respect to $\Delta \boldsymbol{w}(n)$

$$
\begin{equation*}
\nabla J(\boldsymbol{w}(\boldsymbol{n}))+H(n) \Delta \boldsymbol{w}(n)=0 \tag{23}
\end{equation*}
$$

Thus

$$
\Delta \boldsymbol{w}(n)=-H^{-1}(n) \nabla J(\boldsymbol{w}(\boldsymbol{n}))
$$

The Final Method

Define the following

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n))=-H^{-1}(n) \nabla J(\boldsymbol{w}(\boldsymbol{n}))
$$

The Final Method

Define the following

$$
J(\boldsymbol{w}(n+1))-J(\boldsymbol{w}(n))=-H^{-1}(n) \nabla J(\boldsymbol{w}(\boldsymbol{n}))
$$

Then

$$
J(\boldsymbol{w}(n+1))=J(\boldsymbol{w}(n))-H^{-1}(n) \nabla J(\boldsymbol{w}(\boldsymbol{n}))
$$

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

We have then an error

Something Notable

$$
J(\boldsymbol{w})=\frac{1}{2} \sum_{i=1}^{n} e^{2}(i)
$$

We have then an error

Something Notable

$$
J(\boldsymbol{w})=\frac{1}{2} \sum_{i=1}^{n} e^{2}(i)
$$

Thus using the first order Taylor expansion, we linearize

$$
e_{l}(i, \boldsymbol{w})=e(i)+\left[\frac{\partial e(i)}{\partial \boldsymbol{w}}\right]^{T}[\boldsymbol{w}-\boldsymbol{w}(n)]
$$

We have then an error

Something Notable

$$
J(\boldsymbol{w})=\frac{1}{2} \sum_{i=1}^{n} e^{2}(i)
$$

Thus using the first order Taylor expansion, we linearize

$$
e_{l}(i, \boldsymbol{w})=e(i)+\left[\frac{\partial e(i)}{\partial \boldsymbol{w}}\right]^{T}[\boldsymbol{w}-\boldsymbol{w}(n)]
$$

In matrix form

$$
\boldsymbol{e}_{l}(n, \boldsymbol{w})=\boldsymbol{e}(n)+\mathbf{J}(n)[\boldsymbol{w}-\boldsymbol{w}(n)]
$$

Where

The error vector is equal to

$$
\begin{equation*}
\boldsymbol{e}(n)=[e(1), e(2), \ldots, e(n)]^{T} \tag{24}
\end{equation*}
$$

Where

The error vector is equal to

$$
\begin{equation*}
\boldsymbol{e}(n)=[e(1), e(2), \ldots, e(n)]^{T} \tag{24}
\end{equation*}
$$

Thus, we get the famous Jacobian once we derive $\frac{\partial e(i)}{\partial w}$

$$
J(n)=\left(\begin{array}{cccc}
\frac{\partial e(1)}{\partial w_{1}} & \frac{\partial e(1)}{\partial w_{2}} & \ldots & \frac{\partial e(1)}{\partial w_{m}} \\
\frac{\partial e(2)}{\partial w_{1}} & \frac{\partial e(2)}{\partial w_{2}} & \ldots & \frac{\partial e(2)}{\partial w_{m}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial e(n)}{\partial w_{1}} & \frac{\partial e(n)}{\partial w_{2}} & \ldots & \frac{\partial e(n)}{\partial w_{m}}
\end{array}\right)
$$

Where

We want the following

$$
\boldsymbol{w}(n+1)=\arg \min _{\boldsymbol{w}}\left\{\frac{1}{2}\left\|\boldsymbol{e}_{l}(n, \boldsymbol{w})\right\|^{2}\right\}
$$

Where

We want the following

$$
\boldsymbol{w}(n+1)=\underset{\boldsymbol{w}}{\arg \min }\left\{\frac{1}{2}\left\|\boldsymbol{e}_{l}(n, \boldsymbol{w})\right\|^{2}\right\}
$$

Ideas

What if we expand out the equation?

Expanded Version

We get

$$
\begin{aligned}
\frac{1}{2}\left\|\boldsymbol{e}_{l}(n, \boldsymbol{w})\right\|^{2}= & \frac{1}{2}\|\boldsymbol{e}(n)\|^{2}+\boldsymbol{e}^{T}(n) \boldsymbol{J}(n)(\boldsymbol{w}-\boldsymbol{w}(n))+\ldots \\
& \frac{1}{2}(\boldsymbol{w}-\boldsymbol{w}(n))^{T} \boldsymbol{J}^{T}(n) \boldsymbol{J}(n)(\boldsymbol{w}-\boldsymbol{w}(n))
\end{aligned}
$$

Now, doing the Differential, we get

Differentiating the equation with respect to w

$$
\boldsymbol{J}^{T}(n) \boldsymbol{e}(n)+\boldsymbol{J}^{T}(n) \boldsymbol{J}(n)[\boldsymbol{w}-\boldsymbol{w}(n)]=0
$$

Now, doing the Differential, we get

Differentiating the equation with respect to w

$$
\boldsymbol{J}^{T}(n) \boldsymbol{e}(n)+\boldsymbol{J}^{T}(n) \boldsymbol{J}(n)[\boldsymbol{w}-\boldsymbol{w}(n)]=0
$$

We get finally

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\left(J^{T}(n) J(n)\right)^{-1} \mathrm{~J}^{T}(n) e(n) \tag{25}
\end{equation*}
$$

Remarks

We have that

- The Newton's method that requires knowledge of the Hessian matrix of the cost function.
- The Gauss-Newton method only requires the Jacobian matrix of the error vector $\boldsymbol{e}(n)$.

Remarks

We have that

- The Newton's method that requires knowledge of the Hessian matrix of the cost function.
- The Gauss-Newton method only requires the Jacobian matrix of the error vector $\boldsymbol{e}(n)$.

However

The Gauss-Newton iteration to be computable, the matrix product $\mathrm{J}^{T}(n) \mathrm{J}(n)$ must be nonsingular!!!

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS

5. Perceptron

- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Introduction

A linear least-squares filter has two distinctive characteristics

- First, the single neuron around which it is built is linear.
- The cost function $J(\boldsymbol{w})$ used to design the filter consists of the sum of error squares.

Introduction

A linear least-squares filter has two distinctive characteristics

- First, the single neuron around which it is built is linear.
- The cost function $J(\boldsymbol{w})$ used to design the filter consists of the sum of error squares.

Thus, expressing the error

$$
e(n)=d(n)-(\boldsymbol{x}(1), \ldots, \boldsymbol{x}(n))^{T} \boldsymbol{w}(n)
$$

Introduction

A linear least-squares filter has two distinctive characteristics

- First, the single neuron around which it is built is linear.
- The cost function $J(\boldsymbol{w})$ used to design the filter consists of the sum of error squares.

Thus, expressing the error

$$
e(n)=d(n)-(\boldsymbol{x}(1), \ldots, \boldsymbol{x}(n))^{T} \boldsymbol{w}(n)
$$

Short Version - error is linear in the weight vector $\boldsymbol{w}(n)$

$$
e(n)=d(n)-\boldsymbol{X}(n) \boldsymbol{w}(n)
$$

- Where $d(n)$ is a $n \times 1$ desired response vector.
- Where $\boldsymbol{X}(n)$ is the $n \times m$ data matrix.

Now, differentiate $e(n)$ with respect to $\boldsymbol{w}(n)$

Thus

$$
\nabla e(n)=-\boldsymbol{X}^{T}(n)
$$

Now, differentiate $e(n)$ with respect to $\boldsymbol{w}(n)$

Thus

$$
\nabla e(n)=-\boldsymbol{X}^{T}(n)
$$

Correspondingly, the Jacobian of $e(n)$ is

$$
\mathrm{J}(n)=-\boldsymbol{X}(n)
$$

Now, differentiate $e(n)$ with respect to $\boldsymbol{w}(n)$

Thus

$$
\nabla e(n)=-\boldsymbol{X}^{T}(n)
$$

Correspondingly, the Jacobian of $e(n)$ is

$$
\mathrm{J}(n)=-\boldsymbol{X}(n)
$$

Let us to use the Gaussian-Newton

$$
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\left(J^{T}(n) J(n)\right)^{-1} \mathrm{~J}^{T}(n) e(n)
$$

Thus

We have the following

$$
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\left(-\boldsymbol{X}^{T}(n) \cdot-\boldsymbol{X}(n)\right)^{-1} \cdot-\boldsymbol{X}^{T}(n)[d(n)-\boldsymbol{X}(n) \boldsymbol{w}(n)]
$$

Thus

We have the following

$$
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\left(-\boldsymbol{X}^{T}(n) \cdot-\boldsymbol{X}(n)\right)^{-1} \cdot-\boldsymbol{X}^{T}(n)[d(n)-\boldsymbol{X}(n) \boldsymbol{w}(n)]
$$

We have then

$$
\begin{aligned}
\boldsymbol{w}(n+1)= & \boldsymbol{w}(n)+\left(\boldsymbol{X}^{T}(n) \boldsymbol{X}(n)\right)^{-1} \boldsymbol{X}^{T}(n) d(n)-\ldots \\
& \left(\boldsymbol{X}^{T}(n) \boldsymbol{X}(n)\right)^{-1} \boldsymbol{X}^{T}(n) \boldsymbol{X}(n) \boldsymbol{w}(n)
\end{aligned}
$$

Thus

We have the following

$$
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\left(-\boldsymbol{X}^{T}(n) \cdot-\boldsymbol{X}(n)\right)^{-1} \cdot-\boldsymbol{X}^{T}(n)[d(n)-\boldsymbol{X}(n) \boldsymbol{w}(n)]
$$

We have then

$$
\begin{aligned}
\boldsymbol{w}(n+1)= & \boldsymbol{w}(n)+\left(\boldsymbol{X}^{T}(n) \boldsymbol{X}(n)\right)^{-1} \boldsymbol{X}^{T}(n) d(n)-\ldots \\
& \left(\boldsymbol{X}^{T}(n) \boldsymbol{X}(n)\right)^{-1} \boldsymbol{X}^{T}(n) \boldsymbol{X}(n) \boldsymbol{w}(n)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\boldsymbol{w}(\boldsymbol{n}+\mathbf{1}) & =\boldsymbol{w}(n)+\left(\boldsymbol{X}^{T}(n) \boldsymbol{X}(n)\right)^{-1} \boldsymbol{X}^{T}(n) d(n)-\boldsymbol{w}(n) \\
& =\left(\boldsymbol{X}^{T}(n) \boldsymbol{X}(n)\right)^{-1} \boldsymbol{X}^{T}(n) d(n)
\end{aligned}
$$

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method

4 Linear Least-Squares Filter

- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Again Our Error Cost function

We have

$$
J(\boldsymbol{w})=\frac{1}{2} e^{2}(n)
$$

where $e(n)$ is the error signal measured at time n.

Again Our Error Cost function

We have

$$
J(\boldsymbol{w})=\frac{1}{2} e^{2}(n)
$$

where $e(n)$ is the error signal measured at time n.
Again differentiating against the vector \boldsymbol{w}

$$
\frac{\partial J(\boldsymbol{w})}{\partial \boldsymbol{w}}=e(n) \frac{\partial e(n)}{\partial \boldsymbol{w}}
$$

Again Our Error Cost function

We have

$$
J(\boldsymbol{w})=\frac{1}{2} e^{2}(n)
$$

where $e(n)$ is the error signal measured at time n.

Again differentiating against the vector \boldsymbol{w}

$$
\frac{\partial J(\boldsymbol{w})}{\partial \boldsymbol{w}}=e(n) \frac{\partial e(n)}{\partial \boldsymbol{w}}
$$

LMS algorithm operates with a linear neuron so we may express the error signal as

$$
\begin{equation*}
e(n)=d(n)-\boldsymbol{x}^{T}(n) \boldsymbol{w}(n) \tag{26}
\end{equation*}
$$

We have

Something Notable

$$
\frac{\partial e(n)}{\partial \boldsymbol{w}}=-\boldsymbol{x}(n)
$$

We have

Something Notable

$$
\frac{\partial e(n)}{\partial \boldsymbol{w}}=-\boldsymbol{x}(n)
$$

Then

$$
\frac{\partial J(\boldsymbol{w})}{\partial \boldsymbol{w}}=-\boldsymbol{x}(n) e(n)
$$

We have

Something Notable

$$
\frac{\partial e(n)}{\partial \boldsymbol{w}}=-\boldsymbol{x}(n)
$$

Then

$$
\frac{\partial J(\boldsymbol{w})}{\partial \boldsymbol{w}}=-\boldsymbol{x}(n) e(n)
$$

Using this as an estimate for the gradient vector, we have for the gradient descent

$$
\begin{equation*}
\widehat{\boldsymbol{w}}(n+1)=\widehat{\boldsymbol{w}}(n)+\eta \boldsymbol{x}(n) e(n) \tag{27}
\end{equation*}
$$

Remarks

The feedback loop around the weight vector low-pass filter

- It behaves like a low-pass filter.

Remarks

The feedback loop around the weight vector low-pass filter

- It behaves like a low-pass filter.
- It passes the low frequency component of the error signal and attenuating its high frequency component.

Remarks

The feedback loop around the weight vector low-pass filter

- It behaves like a low-pass filter.
- It passes the low frequency component of the error signal and attenuating its high frequency component.

Low-Pass filter

Actually

Thus

The average time constant of this filtering action is inversely proportional to the learning-rate parameter η.

Actually

Thus

The average time constant of this filtering action is inversely proportional to the learning-rate parameter η.

Thus

Assigning a small value to η, the adaptive process progresses slowly.

Actually

Thus

The average time constant of this filtering action is inversely proportional to the learning-rate parameter η.

Thus

Assigning a small value to η, the adaptive process progresses slowly.

Thus

- More of the past data are remembered by the LMS algorithm.

Actually

Thus

The average time constant of this filtering action is inversely proportional to the learning-rate parameter η.

Thus

Assigning a small value to η, the adaptive process progresses slowly.

Thus

- More of the past data are remembered by the LMS algorithm.
- Thus, LMS is a more accurate filter.

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method

4 Linear Least-Squares Filter

- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Convergence of the LMS

This convergence depends on the following points

- The statistical characteristics of the input vector $\boldsymbol{x}(n)$.
- The learning-rate parameter η.

Convergence of the LMS

This convergence depends on the following points

- The statistical characteristics of the input vector $\boldsymbol{x}(n)$.
- The learning-rate parameter η.

Something Notable

However instead using $E[\widehat{\boldsymbol{w}}(n)]$ as $n \rightarrow \infty$, we use $E\left[e^{2}(n)\right] \rightarrow$ constant as $n \rightarrow \infty$

To make this analysis practical

We take the following assumptions

- The successive input vectors $\boldsymbol{x}(1), \boldsymbol{x}(2), .$. are statistically independent of each other.

To make this analysis practical

We take the following assumptions

- The successive input vectors $\boldsymbol{x}(1), \boldsymbol{x}(2), .$. are statistically independent of each other.
- At time step n, the input vector $\boldsymbol{x}(n)$ is statistically independent of all previous samples of the desired response, namely $d(1), d(2), \ldots, d(n-1)$.

To make this analysis practical

We take the following assumptions

- The successive input vectors $\boldsymbol{x}(1), \boldsymbol{x}(2), .$. are statistically independent of each other.
- At time step n, the input vector $\boldsymbol{x}(n)$ is statistically independent of all previous samples of the desired response, namely $d(1), d(2), \ldots, d(n-1)$.
- At time step n, the desired response $d(n)$ is dependent on $x(n)$, but statistically independent of all previous values of the desired response.

To make this analysis practical

We take the following assumptions

- The successive input vectors $\boldsymbol{x}(1), \boldsymbol{x}(2), .$. are statistically independent of each other.
- At time step n, the input vector $\boldsymbol{x}(n)$ is statistically independent of all previous samples of the desired response, namely $d(1), d(2), \ldots, d(n-1)$.
- At time step n, the desired response $d(n)$ is dependent on $x(n)$, but statistically independent of all previous values of the desired response.
- The input vector $x(n)$ and desired response $d(n)$ are drawn from Gaussiandistributed populations.

We get the following

The LMS is convergent in the mean square provided that η satisfies

$$
\begin{equation*}
0<\eta<\frac{2}{\lambda_{\max }} \tag{28}
\end{equation*}
$$

We get the following

The LMS is convergent in the mean square provided that η satisfies

$$
\begin{equation*}
0<\eta<\frac{2}{\lambda_{\max }} \tag{28}
\end{equation*}
$$

Because $\lambda_{\max }$ is the largest eigenvalue of the correlation sample \boldsymbol{R}_{x}
This can be difficult in reality.... then we use the trace instead

$$
\begin{equation*}
0<\eta<\frac{2}{\operatorname{trace}\left[\boldsymbol{R}_{\boldsymbol{x}}\right]} \tag{29}
\end{equation*}
$$

We get the following

The LMS is convergent in the mean square provided that η satisfies

$$
\begin{equation*}
0<\eta<\frac{2}{\lambda_{\max }} \tag{28}
\end{equation*}
$$

Because $\lambda_{\text {max }}$ is the largest eigenvalue of the correlation sample \boldsymbol{R}_{x}
This can be difficult in reality.... then we use the trace instead

$$
\begin{equation*}
0<\eta<\frac{2}{\operatorname{trace}\left[\boldsymbol{R}_{\boldsymbol{x}}\right]} \tag{29}
\end{equation*}
$$

However, each diagonal element of \boldsymbol{R}_{x} is equal the mean-squared value of the corresponding of the sensor input
We can re-state the previous condition as

$$
0<\eta<\frac{2}{\text { sum of the mean-square values of the sensor input }}
$$

Virtues and Limitations of the LMS Algorithm

Virtues

- An important virtue of the LMS algorithm is its simplicity.

Virtues and Limitations of the LMS Algorithm

Virtues

- An important virtue of the LMS algorithm is its simplicity.
- The model is independent and robust to the error (small disturbances $=$ small estimation error).

Virtues and Limitations of the LMS Algorithm

Virtues

- An important virtue of the LMS algorithm is its simplicity.
- The model is independent and robust to the error (small disturbances $=$ small estimation error).

```
Not only that, the LMS algorithm is optimal in accordance with the minimax criterion
If you do not know what you are up against, plan for the worst and optimize.
```


Virtues and Limitations of the LMS Algorithm

Virtues

- An important virtue of the LMS algorithm is its simplicity.
- The model is independent and robust to the error (small disturbances $=$ small estimation error).

Not only that, the LMS algorithm is optimal in accordance with the minimax criterion
If you do not know what you are up against, plan for the worst and optimize.

Primary Limitation

- The slow rate of convergence and sensitivity to variations in the eigenstructure of the input.

Virtues and Limitations of the LMS Algorithm

Virtues

- An important virtue of the LMS algorithm is its simplicity.
- The model is independent and robust to the error (small disturbances $=$ small estimation error).

Not only that, the LMS algorithm is optimal in accordance with the minimax criterion
If you do not know what you are up against, plan for the worst and optimize.

Primary Limitation

- The slow rate of convergence and sensitivity to variations in the eigenstructure of the input.
- The LMS algorithms requires about 10 times the dimensionality of the input space for convergence.

More of this in...

Simon Haykin

Simon Haykin - Adaptive Filter Theory (3rd Edition)

Exercises

We have from NN by Haykin
$3.1,3.2,3.3,3.4,3.5,3.7$ and 3.8

Outline

Introduction

- History

2) Adapting Filtering Problem

- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Objective

Goal
Correctly classify a series of samples (External applied stimuli) $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ into one of two classes, C_{1} and C_{2}.

Objective

Goal

Correctly classify a series of samples (External applied stimuli) $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ into one of two classes, C_{1} and C_{2}.

Output of each input

(1) Class C_{1} output $\mathrm{y}+1$.
(2) Class C_{2} output y -1 .

History

Frank Rosenblatt

The perceptron algorithm was invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt.

History

Frank Rosenblatt

The perceptron algorithm was invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt.

Something Notable

Frank Rosenblatt was a Psychologist!!! Working at a militar R\&D!!!

History

Frank Rosenblatt

The perceptron algorithm was invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt.

Something Notable

Frank Rosenblatt was a Psychologist!!! Working at a militar R\&D!!!

Frank Rosenblatt

He helped to develop the Mark I Perceptron - a new machine based in the connectivity of neural networks!!!

History

Frank Rosenblatt

The perceptron algorithm was invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt.

Something Notable

Frank Rosenblatt was a Psychologist!!! Working at a militar R\&D!!!

Frank Rosenblatt

He helped to develop the Mark I Perceptron - a new machine based in the connectivity of neural networks!!!

Some problems with it

- The most important is the impossibility to use the perceptron with a single neuron to solve the XOR problem

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Perceptron: Local Field of a Neuron

Signal-Flow

Perceptron: Local Field of a Neuron

Signal-Flow

Induced local field of a neuron

$$
\begin{equation*}
v=\sum_{i=1}^{m} w_{i} x_{i}+b \tag{31}
\end{equation*}
$$

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Perceptron: One Neuron Structure

Based in the previous induced local field

In the simplest form of the perceptron there are two decision regions separated by an hyperplane:

$$
\begin{equation*}
\sum_{i=1}^{m} w_{i} x_{i}+b=0 \tag{32}
\end{equation*}
$$

Perceptron: One Neuron Structure

Based in the previous induced local field

In the simplest form of the perceptron there are two decision regions separated by an hyperplane:

$$
\begin{equation*}
\sum_{i=1}^{m} w_{i} x_{i}+b=0 \tag{32}
\end{equation*}
$$

Example with two signals

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Deriving the Algorithm

First, you put signals together

$$
\begin{equation*}
x(n)=\left[1, x_{1}(n), x_{2}(n), \ldots, x_{m}(n)\right]^{T} \tag{33}
\end{equation*}
$$

Deriving the Algorithm

First, you put signals together

$$
\begin{equation*}
x(n)=\left[1, x_{1}(n), x_{2}(n), \ldots, x_{m}(n)\right]^{T} \tag{33}
\end{equation*}
$$

Weights

$$
\begin{equation*}
v(n)=\sum_{i=0}^{m} w_{i}(n) x_{i}(n)=\boldsymbol{w}^{T}(n) \boldsymbol{x}(n) \tag{34}
\end{equation*}
$$

Deriving the Algorithm

First, you put signals together

$$
\begin{equation*}
x(n)=\left[1, x_{1}(n), x_{2}(n), \ldots, x_{m}(n)\right]^{T} \tag{33}
\end{equation*}
$$

Weights

$$
\begin{equation*}
v(n)=\sum_{i=0}^{m} w_{i}(n) x_{i}(n)=\boldsymbol{w}^{T}(n) \boldsymbol{x}(n) \tag{34}
\end{equation*}
$$

Note IMPORTANT - Perceptron works only if C_{1} and C_{2} are linearly separable

Rule for Linear Separable Classes

There must exist a vector \boldsymbol{w}
(1) $\boldsymbol{w}^{T} \boldsymbol{x}>0$ for every input vector \boldsymbol{x} belonging to class C_{1}.

Rule for Linear Separable Classes

There must exist a vector \boldsymbol{w}
(1) $\boldsymbol{w}^{T} \boldsymbol{x}>0$ for every input vector \boldsymbol{x} belonging to class C_{1}.
(2) $\boldsymbol{w}^{T} \boldsymbol{x} \leq 0$ for every input vector \boldsymbol{x} belonging to class C_{2}.

Rule for Linear Separable Classes

There must exist a vector w
(1) $\boldsymbol{w}^{T} \boldsymbol{x}>0$ for every input vector \boldsymbol{x} belonging to class C_{1}.
(2) $\boldsymbol{w}^{T} \boldsymbol{x} \leq 0$ for every input vector \boldsymbol{x} belonging to class C_{2}.

What is the derivative of $\frac{d v(n)}{d w}$?

$$
\begin{equation*}
\frac{d v(n)}{d \boldsymbol{w}}=\boldsymbol{x}(n) \tag{35}
\end{equation*}
$$

Finally

No correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if $\boldsymbol{w}^{T} \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{1}.

Finally

No correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if $\boldsymbol{w}^{T} \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{1}.
(2) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if and $\boldsymbol{w}^{T} \boldsymbol{x}(n) \leq 0$ and $\boldsymbol{x}(n)>0$ belongs to class C_{2}.

Finally

No correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if $\boldsymbol{w}^{T} \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{1}.
(2) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if and $\boldsymbol{w}^{T} \boldsymbol{x}(n) \leq 0$ and $\boldsymbol{x}(n)>0$ belongs to class C_{2}.

Correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\eta(n) \boldsymbol{x}(n)$ if $\boldsymbol{w}^{T}(n) \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{2}.

Finally

No correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if $\boldsymbol{w}^{T} \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{1}.
(2) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if and $\boldsymbol{w}^{T} \boldsymbol{x}(n) \leq 0$ and $\boldsymbol{x}(n)>0$ belongs to class C_{2}.

Correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\eta(n) \boldsymbol{x}(n)$ if $\boldsymbol{w}^{T}(n) \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{2}.
(2) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)+\eta(n) \boldsymbol{x}(n)$ if and $\boldsymbol{w}^{T}(n) \boldsymbol{x}(n) \leq 0$ and $\boldsymbol{x}(n)$ belongs to class C_{1}.

Finally

No correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if $\boldsymbol{w}^{T} \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{1}.
(2) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)$ if and $\boldsymbol{w}^{T} \boldsymbol{x}(n) \leq 0$ and $\boldsymbol{x}(n)>0$ belongs to class C_{2}.

Correction is necessary

(1) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\eta(n) \boldsymbol{x}(n)$ if $\boldsymbol{w}^{T}(n) \boldsymbol{x}(n)>0$ and $\boldsymbol{x}(n)$ belongs to class C_{2}.
(2) $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)+\eta(n) \boldsymbol{x}(n)$ if and $\boldsymbol{w}^{T}(n) \boldsymbol{x}(n) \leq 0$ and $\boldsymbol{x}(n)$ belongs to class C_{1}.

Where $\eta(n)$ is a learning parameter adjusting the learning rate.

A little bit on the Geometry

For Example, $\boldsymbol{w}(n+1)=\boldsymbol{w}(n)-\eta(n) \boldsymbol{x}(n)$

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Under Linear Separability - Convergence happens!!!

If we assume

Linear Separabilty for the classes C_{1} and C_{2}.

Under Linear Separability - Convergence happens!!!

If we assume Linear Separabilty for the classes C_{1} and C_{2}.

Rosenblatt - 1962

- Let the subsets of training vectors C_{1} and C_{2} be linearly separable.
- Let the inputs presented to the perceptron originate from these two subsets.

Under Linear Separability - Convergence happens!!!

If we assume

 Linear Separabilty for the classes C_{1} and C_{2}.
Rosenblatt - 1962

- Let the subsets of training vectors C_{1} and C_{2} be linearly separable.
- Let the inputs presented to the perceptron originate from these two subsets.
- The perceptron converges after some n_{0} iterations, in the sense that is a solution vector for

Under Linear Separability - Convergence happens!!!

If we assume

 Linear Separabilty for the classes C_{1} and C_{2}.
Rosenblatt - 1962

- Let the subsets of training vectors C_{1} and C_{2} be linearly separable.
- Let the inputs presented to the perceptron originate from these two subsets.
- The perceptron converges after some n_{0} iterations, in the sense that is a solution vector for

$$
\begin{equation*}
\boldsymbol{w}\left(n_{0}\right)=\boldsymbol{w}\left(n_{0}+1\right)=\boldsymbol{w}\left(n_{0}+2\right)=\ldots \tag{36}
\end{equation*}
$$

is a solution vector for $n_{0} \leq n_{\text {max }}$

Outline

Introduction

- History

2. Adapting Filtering Problem

- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS

5 Perceptron

- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Proof I - First a Lower Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Initialization

$$
\begin{equation*}
\boldsymbol{w}(0)=0 \tag{37}
\end{equation*}
$$

Proof I - First a Lower Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Initialization

$$
\begin{equation*}
\boldsymbol{w}(0)=0 \tag{37}
\end{equation*}
$$

Now assume for time $n=1,2,3, \ldots$

$$
\begin{equation*}
\boldsymbol{w}^{T}(n) \boldsymbol{x}(n)<0 \tag{38}
\end{equation*}
$$

Proof I - First a Lower Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Initialization

$$
\begin{equation*}
\boldsymbol{w}(0)=0 \tag{37}
\end{equation*}
$$

Now assume for time $n=1,2,3, \ldots$

$$
\begin{equation*}
\boldsymbol{w}^{T}(n) \boldsymbol{x}(n)<0 \tag{38}
\end{equation*}
$$

with $\boldsymbol{x}(n)$ belongs to class C_{1}.

Proof I - First a Lower Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Initialization

$$
\begin{equation*}
\boldsymbol{w}(0)=0 \tag{37}
\end{equation*}
$$

Now assume for time $n=1,2,3, \ldots$

$$
\begin{equation*}
\boldsymbol{w}^{T}(n) \boldsymbol{x}(n)<0 \tag{38}
\end{equation*}
$$

with $\boldsymbol{x}(n)$ belongs to class C_{1}.

PERCEPTRON INCORRECTLY CLASSIFY THE VECTORS

$$
\boldsymbol{x}(1), \boldsymbol{x}(2), \ldots
$$

Proof I - First a Lower Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Initialization

$$
\begin{equation*}
\boldsymbol{w}(0)=0 \tag{37}
\end{equation*}
$$

Now assume for time $n=1,2,3, \ldots$

$$
\begin{equation*}
\boldsymbol{w}^{T}(n) \boldsymbol{x}(n)<0 \tag{38}
\end{equation*}
$$

with $\boldsymbol{x}(n)$ belongs to class C_{1}.

PERCEPTRON INCORRECTLY CLASSIFY THE VECTORS

$$
\boldsymbol{x}(1), \boldsymbol{x}(2), \ldots
$$

Apply the correction formula

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{w}(n)+\boldsymbol{x}(n) \tag{39}
\end{equation*}
$$

Proof II

Apply the correction iteratively

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{x}(1)+\boldsymbol{x}(2)+\ldots+\boldsymbol{x}(n) \tag{40}
\end{equation*}
$$

Proof II

Apply the correction iteratively

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{x}(1)+\boldsymbol{x}(2)+\ldots+\boldsymbol{x}(n) \tag{40}
\end{equation*}
$$

We know that there is a solution \boldsymbol{w}_{0} (Linear Separability)

$$
\begin{equation*}
\alpha=\min _{\boldsymbol{x}(n) \in C_{1}} \boldsymbol{w}_{0}^{T} \boldsymbol{x}(n) \tag{41}
\end{equation*}
$$

Proof II

Apply the correction iteratively

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{x}(1)+\boldsymbol{x}(2)+\ldots+\boldsymbol{x}(n) \tag{40}
\end{equation*}
$$

We know that there is a solution \boldsymbol{w}_{0} (Linear Separability)

$$
\begin{equation*}
\alpha=\min _{\boldsymbol{x}(n) \in C_{1}} \boldsymbol{w}_{0}^{T} \boldsymbol{x}(n) \tag{41}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{w}(n+1)=\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{x}(1)+\boldsymbol{w}_{0}^{T} \boldsymbol{x}(2)+\ldots+\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{x}(n) \tag{42}
\end{equation*}
$$

Proof III

Apply the correction iteratively

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{x}(1)+\boldsymbol{x}(2)+\ldots+\boldsymbol{x}(n) \tag{43}
\end{equation*}
$$

Proof III

Apply the correction iteratively

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{x}(1)+\boldsymbol{x}(2)+\ldots+\boldsymbol{x}(n) \tag{43}
\end{equation*}
$$

We know that there is a solution \boldsymbol{w}_{0} (Linear Separability)

$$
\begin{equation*}
\alpha=\min _{\boldsymbol{x}(n) \in C_{1}} \boldsymbol{w}_{0}^{T} \boldsymbol{x}(n) \tag{44}
\end{equation*}
$$

Proof III

Apply the correction iteratively

$$
\begin{equation*}
\boldsymbol{w}(n+1)=\boldsymbol{x}(1)+\boldsymbol{x}(2)+\ldots+\boldsymbol{x}(n) \tag{43}
\end{equation*}
$$

We know that there is a solution \boldsymbol{w}_{0} (Linear Separability)

$$
\begin{equation*}
\alpha=\min _{\boldsymbol{x}(n) \in C_{1}} \boldsymbol{w}_{0}^{T} \boldsymbol{x}(n) \tag{44}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{w}(n+1)=\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{x}(1)+\boldsymbol{w}_{0}^{T} \boldsymbol{x}(2)+\ldots+\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{x}(n) \tag{45}
\end{equation*}
$$

Proof IV

Thus we use the α

$$
\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{w}(n+1) \geq n \alpha
$$

Proof IV

Thus we use the α

$$
\begin{equation*}
\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{w}(n+1) \geq n \alpha \tag{46}
\end{equation*}
$$

Thus using the Cauchy-Schwartz Inequality

$$
\begin{equation*}
\left\|\boldsymbol{w}_{0}^{T}\right\|^{2}\|\boldsymbol{w}(n+1)\|^{2} \geq\left[\boldsymbol{w}_{0}^{\boldsymbol{T}} \boldsymbol{w}(n+1)\right]^{2} \tag{47}
\end{equation*}
$$

$\|\cdot\|$ is the Euclidean distance.

Proof IV

Thus we use the α

$$
\begin{equation*}
\boldsymbol{w}_{\mathbf{0}}^{\boldsymbol{T}} \boldsymbol{w}(n+1) \geq n \alpha \tag{46}
\end{equation*}
$$

Thus using the Cauchy-Schwartz Inequality

$$
\begin{equation*}
\left\|\boldsymbol{w}_{0}^{T}\right\|^{2}\|\boldsymbol{w}(n+1)\|^{2} \geq\left[\boldsymbol{w}_{0}^{\boldsymbol{T}} \boldsymbol{w}(n+1)\right]^{2} \tag{47}
\end{equation*}
$$

$\|\cdot\|$ is the Euclidean distance.

Thus

$$
\begin{aligned}
\left\|\boldsymbol{w}_{0}^{T}\right\|^{2}\|\boldsymbol{w}(n+1)\|^{2} & \geq n^{2} \alpha^{2} \\
\|\boldsymbol{w}(n+1)\|^{2} & \geq \frac{n^{2} \alpha^{2}}{\left\|\boldsymbol{w}_{0}^{T}\right\|^{2}}
\end{aligned}
$$

Proof V - Now a Upper Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Now rewrite equation 39

$$
\begin{equation*}
\boldsymbol{w}(k+1)=\boldsymbol{w}(k)+\boldsymbol{x}(k) \tag{48}
\end{equation*}
$$

for $k=1,2, \ldots, n$ and $\boldsymbol{x}(k) \in C_{1}$

Proof V - Now a Upper Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Now rewrite equation 39

$$
\begin{equation*}
\boldsymbol{w}(k+1)=\boldsymbol{w}(k)+\boldsymbol{x}(k) \tag{48}
\end{equation*}
$$

for $k=1,2, \ldots, n$ and $\boldsymbol{x}(k) \in C_{1}$

Squaring the Euclidean norm of both sides

$$
\begin{equation*}
\|\boldsymbol{w}(k+1)\|^{2}=\|\boldsymbol{w}(k)\|^{2}+\|\boldsymbol{x}(k)\|^{2}+2 \boldsymbol{w}^{T}(k) \boldsymbol{x}(k) \tag{49}
\end{equation*}
$$

Proof V - Now a Upper Bound for $\|\boldsymbol{w}(n+1)\|^{2}$

Now rewrite equation 39

$$
\begin{equation*}
\boldsymbol{w}(k+1)=\boldsymbol{w}(k)+\boldsymbol{x}(k) \tag{48}
\end{equation*}
$$

for $k=1,2, \ldots, n$ and $\boldsymbol{x}(k) \in C_{1}$

Squaring the Euclidean norm of both sides

$$
\begin{equation*}
\|\boldsymbol{w}(k+1)\|^{2}=\|\boldsymbol{w}(k)\|^{2}+\|\boldsymbol{x}(k)\|^{2}+2 \boldsymbol{w}^{T}(k) \boldsymbol{x}(k) \tag{49}
\end{equation*}
$$

Now taking that $\boldsymbol{w}^{T}(k) \boldsymbol{x}(k)<0$

$$
\begin{aligned}
\|\boldsymbol{w}(k+1)\|^{2} & \leq\|\boldsymbol{w}(k)\|^{2}+\|\boldsymbol{x}(k)\|^{2} \\
\|\boldsymbol{w}(k+1)\|^{2}-\|\boldsymbol{w}(k)\|^{2} & \leq\|\boldsymbol{x}(k)\|^{2}
\end{aligned}
$$

Proof VI

Use the telescopic sum

$$
\begin{equation*}
\sum_{k=0}^{n}\left[\|\boldsymbol{w}(k+1)\|^{2}-\|\boldsymbol{w}(k)\|^{2}\right] \leq \sum_{k=0}^{n}\|\boldsymbol{x}(k)\|^{2} \tag{50}
\end{equation*}
$$

Proof VI

Use the telescopic sum

$$
\begin{equation*}
\sum_{k=0}^{n}\left[\|\boldsymbol{w}(k+1)\|^{2}-\|\boldsymbol{w}(k)\|^{2}\right] \leq \sum_{k=0}^{n}\|\boldsymbol{x}(k)\|^{2} \tag{50}
\end{equation*}
$$

Assume

$$
\begin{aligned}
\boldsymbol{w}(0) & =\mathbf{0} \\
\boldsymbol{x}(0) & =\mathbf{0}
\end{aligned}
$$

Proof VI

Use the telescopic sum

$$
\begin{equation*}
\sum_{k=0}^{n}\left[\|\boldsymbol{w}(k+1)\|^{2}-\|\boldsymbol{w}(k)\|^{2}\right] \leq \sum_{k=0}^{n}\|\boldsymbol{x}(k)\|^{2} \tag{50}
\end{equation*}
$$

Assume

$$
\begin{aligned}
\boldsymbol{w}(0) & =\mathbf{0} \\
\boldsymbol{x}(0) & =\mathbf{0}
\end{aligned}
$$

Thus

$$
\|\boldsymbol{w}(n+1)\|^{2} \leq \sum_{k=1}^{n} \quad\|x(k)\|^{2}
$$

Proof VII

Then, we can define a positive number

$$
\begin{equation*}
\beta=\max _{\boldsymbol{x}(k) \in C_{1}}\|\boldsymbol{x}(k)\|^{2} \tag{51}
\end{equation*}
$$

Proof VII

Then, we can define a positive number

$$
\begin{equation*}
\beta=\max _{\boldsymbol{x}(k) \in C_{1}}\|\boldsymbol{x}(k)\|^{2} \tag{51}
\end{equation*}
$$

Thus

$$
\|\boldsymbol{w}(k+1)\|^{2} \leq \sum_{k=1}^{n} \quad\|x(k)\|^{2} \leq n \beta
$$

Proof VII

Then, we can define a positive number

$$
\begin{equation*}
\beta=\max _{x(k) \in C_{1}}\|\boldsymbol{x}(k)\|^{2} \tag{51}
\end{equation*}
$$

Thus

$$
\|\boldsymbol{w}(k+1)\|^{2} \leq \sum_{k=1}^{n} \quad\|x(k)\|^{2} \leq n \beta
$$

Thus, we satisfies the equations only when exists a $n_{\max }$ (Using Our Sandwich)

$$
\begin{equation*}
\frac{n_{\max }^{2} \alpha^{2}}{\left\|\boldsymbol{w}_{0}\right\|^{2}}=n_{\max } \beta \tag{52}
\end{equation*}
$$

Proof VIII

Solving

$$
\begin{equation*}
n_{\max }=\frac{\beta\left\|\boldsymbol{w}_{0}\right\|^{2}}{\alpha^{2}} \tag{53}
\end{equation*}
$$

Proof VIII

Solving

$$
\begin{equation*}
n_{\max }=\frac{\beta\left\|\boldsymbol{w}_{0}\right\|^{2}}{\alpha^{2}} \tag{53}
\end{equation*}
$$

Thus

For $\eta(n)=1$ for all $\mathrm{n}, \boldsymbol{w}(0)=\mathbf{0}$ and a solution vector \boldsymbol{w}_{0} :

- The rule for adaptying the synaptic weights of the perceptron must terminate after at most $n_{\max }$ steps.

Proof VIII

Solving

$$
\begin{equation*}
n_{\max }=\frac{\beta\left\|\boldsymbol{w}_{0}\right\|^{2}}{\alpha^{2}} \tag{53}
\end{equation*}
$$

Thus

For $\eta(n)=1$ for all $\mathrm{n}, \boldsymbol{w}(0)=\mathbf{0}$ and a solution vector \boldsymbol{w}_{0} :

- The rule for adaptying the synaptic weights of the perceptron must terminate after at most $n_{\max }$ steps.

In addition

Because \boldsymbol{w}_{0} the solution is not unique.

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

Algorithm Using Error-Correcting

Now, if we use the $\frac{1}{2} e_{k}(n)^{2}$
We can actually simplify the rules and the final algorithm!!!

Algorithm Using Error-Correcting

Now, if we use the $\frac{1}{2} e_{k}(n)^{2}$
We can actually simplify the rules and the final algorithm!!!
Thus, we have the following Delta Value

$$
\begin{equation*}
\Delta \boldsymbol{w}(n)=\eta\left(\left(d_{j}-y_{j}(n)\right)\right) \boldsymbol{x}(n) \tag{54}
\end{equation*}
$$

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System
(3) Unconstrained Optimization
- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

We could use the previous Rule

In order to generate an algorithm
However, you need classes that are linearly separable!!!

We could use the previous Rule

In order to generate an algorithm
However, you need classes that are linearly separable!!!
Therefore, we can use a more generals Gradient Descent Rule
To obtain an algorithm to the best separation hyperplane!!!

Gradient Descent Algorithm

Gradient Descent Algorithm

Algorithm - Off-line/Batch Learning

(1) Set $n=0$.
(2) Set $d_{j}=\left\{\begin{array}{ll}+1 & \text { if } \boldsymbol{x}_{j}(n) \in \text { Class } 1 \\ -1 & \text { if } \boldsymbol{x}_{j}(n) \in \text { Class } 2\end{array}\right.$ for all $j=1,2, \ldots, m$.
(3) Initialize the weights, $\boldsymbol{w}^{T}=\left(w_{1}(n), w_{2}(n), \ldots, w_{n}(n)\right)$.

- Weights may be initialized to 0 or to a small random value.
(9) Initialize Dummy outputs so you can enter loop $\boldsymbol{y}^{\boldsymbol{t}}=\left\langle y_{1}(n) ., y_{2}(n), \ldots, y_{m}(n)\right\rangle$
(5) Initialize Stopping error $\epsilon>0$.
(6) Initialize learning error η.
(1) While $\frac{1}{m} \sum_{j=1}^{m}\left\|d_{j}-y_{j}(n)\right\|>\epsilon$
- For each sample $\left(x_{j}, d_{j}\right)$ for $j=1, \ldots, m$:
\star Calculate output $y_{j}=\varphi\left(\boldsymbol{w}^{T}(n) \cdot \boldsymbol{x}_{j}\right)$
\star Update weights $w_{i}(n+1)=w_{i}(n)+\eta\left(d_{j}-y_{j}(n)\right) x_{i j}$.
- $n=n+1$

Nevertheless

We have the following problem

$$
\begin{equation*}
\epsilon>0 \tag{55}
\end{equation*}
$$

Nevertheless

We have the following problem

$$
\epsilon>0
$$

Thus...

Convergence to the best linear separation is a tweaking business!!!

Outline

Introduction

- History
(2) Adapting Filtering Problem
- Definition
- Description of the Behavior of the System

3. Unconstrained Optimization

- Introduction
- Method of Steepest Descent
- Newton's Method
- Gauss-Newton Method
(4) Linear Least-Squares Filter
- Introduction
- Least-Mean-Square (LMS) Algorithm
- Convergence of the LMS
(5) Perceptron
- Objective
- Perceptron: Local Field of a Neuron
- Perceptron: One Neuron Structure
- Deriving the Algorithm
- Under Linear Separability - Convergence happens!!!
- Proof
- Algorithm Using Error-Correcting
- Final Perceptron Algorithm (One Version)
- Other Algorithms for the Perceptron

However, if we limit our features!!!

The Winnow Algorithm!!!
It converges even with no-linear separability.

However, if we limit our features!!!

The Winnow Algorithm!!!
It converges even with no-linear separability.

Feature Vector

A Boolean-valued features $X=\{0,1\}^{d}$

However, if we limit our features!!!

The Winnow Algorithm!!!

It converges even with no-linear separability.

Feature Vector

A Boolean-valued features $X=\{0,1\}^{d}$

Weight Vector \boldsymbol{w}

(1) $\boldsymbol{w}^{t}=\left(w_{1}, w_{2}, \ldots, w_{p}\right)$ for all $w_{i} \in \mathbb{R}$
(2) For all $i, w_{i} \geq 0$.

Classification Scheme

We use a specific θ
(1) $\boldsymbol{w}^{T} \boldsymbol{x} \geq \theta \Rightarrow$ positive classification Class 1 if $\boldsymbol{x} \in$ Class 1
(2) $\boldsymbol{w}^{T} \boldsymbol{x}<\theta \Rightarrow$ negative classification Class 2 if $\boldsymbol{x} \in$ Class 2

Classification Scheme

We use a specific θ

(1) $\boldsymbol{w}^{T} \boldsymbol{x} \geq \theta \Rightarrow$ positive classification Class 1 if $\boldsymbol{x} \in$ Class 1
(2) $\boldsymbol{w}^{T} \boldsymbol{x}<\theta \Rightarrow$ negative classification Class 2 if $\boldsymbol{x} \in$ Class 2

Rule

We use two possible Rules for training!!! With a learning rate of $\alpha>1$.

Classification Scheme

We use a specific θ

(1) $\boldsymbol{w}^{T} \boldsymbol{x} \geq \theta \Rightarrow$ positive classification Class 1 if $\boldsymbol{x} \in$ Class 1
(2) $\boldsymbol{w}^{T} \boldsymbol{x}<\theta \Rightarrow$ negative classification Class 2 if $\boldsymbol{x} \in$ Class 2

Rule

We use two possible Rules for training!!! With a learning rate of $\alpha>1$.

Rule 1

- When misclassifying a positive training example $\boldsymbol{x} \in$ Class 1 i.e.

$$
\boldsymbol{w}^{T} \boldsymbol{x}<\theta
$$

$$
\begin{equation*}
\forall x_{i}=1: w_{i} \leftarrow \alpha w_{i} \tag{56}
\end{equation*}
$$

Classification Scheme

Rule 2

- When misclassifying a negative training example $\boldsymbol{x} \in$ Class 2 i.e. $\boldsymbol{w}^{T} \boldsymbol{x} \geq \theta$

$$
\begin{equation*}
\forall x_{i}=1: w_{i} \leftarrow \frac{w_{i}}{\alpha} \tag{57}
\end{equation*}
$$

Classification Scheme

Rule 2

- When misclassifying a negative training example $\boldsymbol{x} \in$ Class 2 i.e. $\boldsymbol{w}^{T} \boldsymbol{x} \geq \theta$

$$
\begin{equation*}
\forall x_{i}=1: w_{i} \leftarrow \frac{w_{i}}{\alpha} \tag{57}
\end{equation*}
$$

Rule 3

- If samples are correctly classified do nothing!!!

Properties of Winnow

Property

- If there are many irrelevant variables Winnow is better than the Perceptron.

Properties of Winnow

Property

- If there are many irrelevant variables Winnow is better than the Perceptron.

Drawback

- Sensitive to the learning rate α.

The Pocket Algorithm

A variant of the Perceptron Algorithm
It was suggested by Geman et al. in

The Pocket Algorithm

A variant of the Perceptron Algorithm

It was suggested by Geman et al. in

- "Perceptron based learning algorithms," IEEE Transactions on Neural Networks,Vol. 1(2), pp. 179-191, 1990.

The Pocket Algorithm

A variant of the Perceptron Algorithm

It was suggested by Geman et al. in

- "Perceptron based learning algorithms," IEEE Transactions on Neural Networks,Vol. 1(2), pp. 179-191, 1990.
- It converges to an optimal solution even if the linear separability is not fulfilled.

Finally

It consists of the following steps

(1) Initialize the weight vector $\boldsymbol{w}(0)$ in a random way.

Finally

It consists of the following steps

(1) Initialize the weight vector $\boldsymbol{w}(0)$ in a random way.
(2) Define a storage pocket vector \boldsymbol{w}_{s} and a history counter h_{s} to zero for the same pocket vector.

Finally

It consists of the following steps

(1) Initialize the weight vector $\boldsymbol{w}(0)$ in a random way.
(2) Define a storage pocket vector \boldsymbol{w}_{s} and a history counter h_{s} to zero for the same pocket vector.
(3) At the $i^{\text {th }}$ iteration step compute the update $\boldsymbol{w}(n+1)$ using the Perceptron rule.

Finally

It consists of the following steps

(1) Initialize the weight vector $\boldsymbol{w}(0)$ in a random way.
(2) Define a storage pocket vector \boldsymbol{w}_{s} and a history counter h_{s} to zero for the same pocket vector.
(3) At the $i^{\text {th }}$ iteration step compute the update $\boldsymbol{w}(n+1)$ using the Perceptron rule.
(9) Use the update weight to find the number h of samples correctly classified.

Finally

It consists of the following steps

(1) Initialize the weight vector $\boldsymbol{w}(0)$ in a random way.
(2) Define a storage pocket vector \boldsymbol{w}_{s} and a history counter h_{s} to zero for the same pocket vector.
(3) At the $i^{\text {th }}$ iteration step compute the update $\boldsymbol{w}(n+1)$ using the Perceptron rule.
(9) Use the update weight to find the number h of samples correctly classified.
(6) If at any moment $h>h_{s}$ replace \boldsymbol{w}_{s} with $\boldsymbol{w}(n+1)$ and h_{s} with h

Finally

It consists of the following steps

(1) Initialize the weight vector $\boldsymbol{w}(0)$ in a random way.
(2) Define a storage pocket vector \boldsymbol{w}_{s} and a history counter h_{s} to zero for the same pocket vector.
(3) At the $i^{\text {th }}$ iteration step compute the update $\boldsymbol{w}(n+1)$ using the Perceptron rule.
(9) Use the update weight to find the number h of samples correctly classified.
(5) If at any moment $h>h_{s}$ replace \boldsymbol{w}_{s} with $\boldsymbol{w}(n+1)$ and h_{s} with h
(0) Keep iterating to 3 until convergence.

Finally

It consists of the following steps

(1) Initialize the weight vector $\boldsymbol{w}(0)$ in a random way.
(2) Define a storage pocket vector \boldsymbol{w}_{s} and a history counter h_{s} to zero for the same pocket vector.
(3) At the $i^{\text {th }}$ iteration step compute the update $\boldsymbol{w}(n+1)$ using the Perceptron rule.
(9) Use the update weight to find the number h of samples correctly classified.
(5) If at any moment $h>h_{s}$ replace \boldsymbol{w}_{s} with $\boldsymbol{w}(n+1)$ and h_{s} with h
(0) Keep iterating to 3 until convergence.
(3) Return \boldsymbol{w}_{s}.

