Introduction to Artificial Intelligence Belief Propagation and Junction Trees

Andres Mendez-Vazquez

March 8, 2019

Outline

(1) Introduction

- What do we want?
(2) Belief Propagation
- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Outline

(1) Introduction

- What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Introduction

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm

Introduction

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm
- Junction Tree Algorithm

Introduction

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm
- Junction Tree Algorithm

Belief Propagation Algorithm

- The algorithm was first proposed by Judea Pearl in 1982, who formulated this algorithm on trees, and was later extended to polytrees.

Introduction

Something Notable

- It has since been shown to be a useful approximate algorithm on general graphs.

Introduction

Something Notable

- It has since been shown to be a useful approximate algorithm on general graphs.

Junction Tree Algorithm

- The junction tree algorithm (also known as 'Clique Tree') is a method used in machine learning to extract marginalization in general graphs.
- it entails performing belief propagation on a modified graph called a junction tree by cycle elimination

Outline

(1) Introduction

- What do we want?
(2) Belief Propagation
- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Example

The Message Passing Stuff

Thus

We can do the following
To pass information from below and from above to a certain node V.

Thus

We can do the following

To pass information from below and from above to a certain node V.

Thus

We call those messages

Thus

We can do the following

To pass information from below and from above to a certain node V.

Thus

We call those messages

- π from above.

Thus

We can do the following

To pass information from below and from above to a certain node V.

Thus

We call those messages

- π from above.
- λ from below.

Outline

(1) Introduction

- What do we want?

(2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of CliquesPotential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Inference on Trees

Recall
 A rooted tree is a DAG

Inference on Trees

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.

Inference on Trees

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

Inference on Trees

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

For simplicity

- Imagine that each node has two children.

Inference on Trees

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

For simplicity

- Imagine that each node has two children.
- The general case can be inferred from it.

Then

Let D_{X} be the subset of A

- Containing all members that are in the subtree rooted at X

Then

Let D_{X} be the subset of A

- Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

Then

Let D_{X} be the subset of A

- Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

Let N_{X} be the subset

- Containing all members of A that are non-descendant's of X.

Then

Let D_{X} be the subset of A

- Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

Let N_{X} be the subset

- Containing all members of A that are non-descendant's of X.
- This set includes X if $X \in A$

Example

We have that $A=N_{X} \cup D_{X}$

Thus

We have for each value of x

$P(x \mid A)=P\left(x \mid d_{X}, n_{X}\right)$

Thus

We have for each value of x

$$
\begin{aligned}
P(x \mid A) & =P\left(x \mid d_{X}, n_{X}\right) \\
& =\frac{P\left(d_{X}, n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)}
\end{aligned}
$$

Thus

We have for each value of x

$$
\begin{aligned}
P(x \mid A) & =P\left(x \mid d_{X}, n_{X}\right) \\
& =\frac{P\left(d_{X}, n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)}
\end{aligned}
$$

Thus

We have for each value of x

$$
\begin{aligned}
P(x \mid A) & =P\left(x \mid d_{X}, n_{X}\right) \\
& =\frac{P\left(d_{X}, n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X}, x\right) P(x)}{P(x) P\left(d_{X}, n_{X}\right)}
\end{aligned}
$$

Thus

We have for each value of x

$$
\begin{aligned}
P(x \mid A) & =P\left(x \mid d_{X}, n_{X}\right) \\
& =\frac{P\left(d_{X}, n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X}, x\right) P(x)}{P(x) P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x\right) P\left(x \mid n_{X}\right) P\left(n_{X}\right)}{P\left(d_{X}, n_{X}\right)} \text { Here because } d \text {-speration if } X \notin A
\end{aligned}
$$

Thus

We have for each value of x

$$
\begin{aligned}
P(x \mid A) & =P\left(x \mid d_{X}, n_{X}\right) \\
& =\frac{P\left(d_{X}, n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X}, x\right) P(x)}{P(x) P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x\right) P\left(x \mid n_{X}\right) P\left(n_{X}\right)}{P\left(d_{X}, n_{X}\right)} \text { Here because } d \text {-speration if } X \notin A \\
& =\frac{P\left(d_{X} \mid x\right) P\left(x \mid n_{X}\right) P\left(n_{X}\right)}{P\left(d_{X} \mid n_{X}\right) P\left(n_{X}\right)}
\end{aligned}
$$

Note:

Thus

We have for each value of x

$$
\begin{aligned}
P(x \mid A) & =P\left(x \mid d_{X}, n_{X}\right) \\
& =\frac{P\left(d_{X}, n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X} \mid x\right) P(x)}{P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x, n_{X}\right) P\left(n_{X}, x\right) P(x)}{P(x) P\left(d_{X}, n_{X}\right)} \\
& =\frac{P\left(d_{X} \mid x\right) P\left(x \mid n_{X}\right) P\left(n_{X}\right)}{P\left(d_{X}, n_{X}\right)} \text { Here because } d \text {-speration if } X \notin A \\
& =\frac{P\left(d_{X} \mid x\right) P\left(x \mid n_{X}\right) P\left(n_{X}\right)}{P\left(d_{X} \mid n_{X}\right) P\left(n_{X}\right)}
\end{aligned}
$$

Note: You need to prove when $X \in A$

Thus

We have for each value of x

$$
\begin{aligned}
P(x \mid A) & =\frac{P\left(d_{X} \mid x\right) P\left(x \mid n_{X}\right)}{P\left(d_{X} \mid n_{X}\right)} \\
& =\beta P\left(d_{X} \mid x\right) P\left(x \mid n_{X}\right)
\end{aligned}
$$

where β, the normalizing factor, is a constant not depending on x.

Outline

- What do we want?

(2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Now, we develop the messages
We want

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$

Now, we develop the messages

We want

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$
- $\pi(x) \simeq P\left(x \mid n_{X}\right)$

Now, we develop the messages

We want

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$
- $\pi(x) \simeq P\left(x \mid n_{X}\right)$
- Where \simeq means "proportional to"

Now, we develop the messages

We want

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$
- $\pi(x) \simeq P\left(x \mid n_{X}\right)$
- Where \simeq means "proportional to"

> Meaning
> $\pi(x)$ may not be equal to $P\left(x \mid n_{X}\right)$, but $\pi(x)=k \times P\left(x \mid n_{X}\right)$.

Now, we develop the messages

We want

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$
- $\pi(x) \simeq P\left(x \mid n_{X}\right)$
- Where \simeq means "proportional to"

Meaning

$\pi(x)$ may not be equal to $P\left(x \mid n_{X}\right)$, but $\pi(x)=k \times P\left(x \mid n_{X}\right)$.

Once, we have that

$$
P(x \mid a)=\alpha \lambda(x) \pi(x)
$$

Now, we develop the messages

We want

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$
- $\pi(x) \simeq P\left(x \mid n_{X}\right)$
- Where \simeq means "proportional to"

Meaning

$\pi(x)$ may not be equal to $P\left(x \mid n_{X}\right)$, but $\pi(x)=k \times P\left(x \mid n_{X}\right)$.

Once, we have that

$$
P(x \mid a)=\alpha \lambda(x) \pi(x)
$$

where α, the normalizing factor, is a constant not depending on x.

Developing $\lambda(x)$

We need

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$

Developing $\lambda(x)$

We need

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$

Case 1: $X \in A$ and $X \in D_{X}$
Given any $X=\hat{x}$, we have that for $P\left(d_{X} \mid x\right)=0$ for $x \neq \hat{x}$

Developing $\lambda(x)$

We need

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$

Case 1: $X \in A$ and $X \in D_{X}$
Given any $X=\hat{x}$, we have that for $P\left(d_{X} \mid x\right)=0$ for $x \neq \hat{x}$
Thus, to achieve proportionality, we can set

- $\lambda(\hat{x}) \equiv 1$

Developing $\lambda(x)$

We need

- $\lambda(x) \simeq P\left(d_{X} \mid x\right)$

Case 1: $X \in A$ and $X \in D_{X}$
Given any $X=\hat{x}$, we have that for $P\left(d_{X} \mid x\right)=0$ for $x \neq \hat{x}$
Thus, to achieve proportionality, we can set

- $\lambda(\hat{x}) \equiv 1$
- $\lambda(x) \equiv 0$ for $x \neq \hat{x}$

Now

Case 2: $X \notin A$ and X is a leaf
Then, $d_{X}=\emptyset$ and

$$
P\left(d_{X} \mid x\right)=P(\emptyset \mid x)=1 \text { for all values of } x
$$

Now

Case 2: $X \notin A$ and X is a leaf
Then, $d_{X}=\emptyset$ and

$$
P\left(d_{X} \mid x\right)=P(\emptyset \mid x)=1 \text { for all values of } x
$$

Thus, to achieve proportionality, we can set

$$
\lambda(x) \equiv 1 \text { for all values of } x
$$

Finally

Case 3: $X \notin A$ and X is a non-leaf
Let Y be X 's left child, W be X 's right child.

Finally

Case 3: $X \notin A$ and X is a non-leaf

Let Y be X 's left child, W be X 's right child.

Since $X \notin A$

$$
D_{X}=D_{Y} \cup D_{W}
$$

Thus

We have then

$$
P\left(d_{X} \mid x\right)=P\left(d_{Y}, d_{W} \mid x\right)
$$

Thus

We have then

$$
\begin{aligned}
P\left(d_{X} \mid x\right) & =P\left(d_{Y}, d_{W} \mid x\right) \\
& =P\left(d_{Y} \mid x\right) P\left(d_{W} \mid x\right) \text { Because the d-separation at } X
\end{aligned}
$$

Thus

We have then

$$
\begin{aligned}
P\left(d_{X} \mid x\right) & =P\left(d_{Y}, d_{W} \mid x\right) \\
& =P\left(d_{Y} \mid x\right) P\left(d_{W} \mid x\right) \text { Because the d-separation at } X \\
& =\sum_{y} P\left(d_{Y}, y \mid x\right) \sum_{w} P\left(d_{W}, w \mid x\right)
\end{aligned}
$$

Thus

We have then

$$
\begin{aligned}
P\left(d_{X} \mid x\right) & =P\left(d_{Y}, d_{W} \mid x\right) \\
& =P\left(d_{Y} \mid x\right) P\left(d_{W} \mid x\right) \text { Because the d-separation at } X \\
& =\sum_{y} P\left(d_{Y}, y \mid x\right) \sum_{w} P\left(d_{W}, w \mid x\right) \\
& =\sum_{y} P(y \mid x) P\left(d_{Y} \mid y\right) \sum_{w} P(w \mid x) P\left(d_{W} \mid w\right)
\end{aligned}
$$

Thus

We have then

$$
\begin{aligned}
P\left(d_{X} \mid x\right) & =P\left(d_{Y}, d_{W} \mid x\right) \\
& =P\left(d_{Y} \mid x\right) P\left(d_{W} \mid x\right) \text { Because the d-separation at } X \\
& =\sum_{y} P\left(d_{Y}, y \mid x\right) \sum_{w} P\left(d_{W}, w \mid x\right) \\
& =\sum_{y} P(y \mid x) P\left(d_{Y} \mid y\right) \sum_{w} P(w \mid x) P\left(d_{W} \mid w\right) \\
& \simeq \sum_{y} P(y \mid x) \lambda(y) \sum_{w} P(w \mid x) \lambda(w)
\end{aligned}
$$

Thus, we can get proportionality by defining for all values of x

Thus

We have then

$$
\begin{aligned}
P\left(d_{X} \mid x\right) & =P\left(d_{Y}, d_{W} \mid x\right) \\
& =P\left(d_{Y} \mid x\right) P\left(d_{W} \mid x\right) \text { Because the d-separation at } X \\
& =\sum_{y} P\left(d_{Y}, y \mid x\right) \sum_{w} P\left(d_{W}, w \mid x\right) \\
& =\sum_{y} P(y \mid x) P\left(d_{Y} \mid y\right) \sum_{w} P(w \mid x) P\left(d_{W} \mid w\right) \\
& \simeq \sum_{y} P(y \mid x) \lambda(y) \sum_{w} P(w \mid x) \lambda(w)
\end{aligned}
$$

Thus, we can get proportionality by defining for all values of x

- $\lambda_{Y}(x)=\sum_{y} P(y \mid x) \lambda(y)$

Thus

We have then

$$
\begin{aligned}
P\left(d_{X} \mid x\right) & =P\left(d_{Y}, d_{W} \mid x\right) \\
& =P\left(d_{Y} \mid x\right) P\left(d_{W} \mid x\right) \text { Because the d-separation at } X \\
& =\sum_{y} P\left(d_{Y}, y \mid x\right) \sum_{w} P\left(d_{W}, w \mid x\right) \\
& =\sum_{y} P(y \mid x) P\left(d_{Y} \mid y\right) \sum_{w} P(w \mid x) P\left(d_{W} \mid w\right) \\
& \simeq \sum_{y} P(y \mid x) \lambda(y) \sum_{w} P(w \mid x) \lambda(w)
\end{aligned}
$$

Thus, we can get proportionality by defining for all values of x

- $\lambda_{Y}(x)=\sum_{y} P(y \mid x) \lambda(y)$
- $\lambda_{W}(x)=\sum_{w} P(w \mid x) \lambda(w)$

Thus

We have then

$$
\lambda(x)=\lambda_{Y}(x) \lambda_{W}(x) \text { for all values } x
$$

Developing $\pi(x)$

We need

- $\pi(x) \simeq P\left(x \mid n_{X}\right)$

Developing $\pi(x)$

We need

- $\pi(x) \simeq P\left(x \mid n_{X}\right)$

Case 1: $X \in A$ and $X \in N_{X}$

Given any $X=\hat{x}$, we have:

- $P\left(\hat{x} \mid n_{X}\right)=P(\hat{x} \mid \hat{x})=1$

Developing $\pi(x)$

We need

$$
\text { - } \pi(x) \simeq P\left(x \mid n_{X}\right)
$$

Case 1: $X \in A$ and $X \in N_{X}$

Given any $X=\hat{x}$, we have:

- $P\left(\hat{x} \mid n_{X}\right)=P(\hat{x} \mid \hat{x})=1$
- $P\left(x \mid n_{X}\right)=P(x \mid \hat{x})=0$ for $x \neq \hat{x}$

Developing $\pi(x)$

We need

$$
\text { - } \pi(x) \simeq P\left(x \mid n_{X}\right)
$$

Case 1: $X \in A$ and $X \in N_{X}$

Given any $X=\hat{x}$, we have:

- $P\left(\hat{x} \mid n_{X}\right)=P(\hat{x} \mid \hat{x})=1$
- $P\left(x \mid n_{X}\right)=P(x \mid \hat{x})=0$ for $x \neq \hat{x}$

Thus, to achieve proportionality, we can set

- $\pi(\hat{x}) \equiv 1$

Developing $\pi(x)$

We need

$$
\text { - } \pi(x) \simeq P\left(x \mid n_{X}\right)
$$

Case 1: $X \in A$ and $X \in N_{X}$

Given any $X=\hat{x}$, we have:

- $P\left(\hat{x} \mid n_{X}\right)=P(\hat{x} \mid \hat{x})=1$
- $P\left(x \mid n_{X}\right)=P(x \mid \hat{x})=0$ for $x \neq \hat{x}$

Thus, to achieve proportionality, we can set

- $\pi(\hat{x}) \equiv 1$
- $\pi(x) \equiv 0$ for $x \neq \hat{x}$

Developing $\pi(x)$

We need

$$
\text { - } \pi(x) \simeq P\left(x \mid n_{X}\right)
$$

Case 1: $X \in A$ and $X \in N_{X}$

Given any $X=\hat{x}$, we have:

- $P\left(\hat{x} \mid n_{X}\right)=P(\hat{x} \mid \hat{x})=1$
- $P\left(x \mid n_{X}\right)=P(x \mid \hat{x})=0$ for $x \neq \hat{x}$

Thus, to achieve proportionality, we can set

- $\pi(\hat{x}) \equiv 1$
- $\pi(x) \equiv 0$ for $x \neq \hat{x}$

Now

Case 2: $X \notin A$ and X is the root
In this specific case $n_{X}=\emptyset$ or the empty set of random variables.

Now

Case 2: $X \notin A$ and X is the root

In this specific case $n_{X}=\emptyset$ or the empty set of random variables.

Then

$$
P\left(x \mid n_{X}\right)=P(x \mid \emptyset)=P(x) \text { for all values of } x
$$

Now

Case 2: $X \notin A$ and X is the root

In this specific case $n_{X}=\emptyset$ or the empty set of random variables.

Then

$$
P\left(x \mid n_{X}\right)=P(x \mid \emptyset)=P(x) \text { for all values of } x
$$

Enforcing the proportionality, we get

$$
\pi(x) \equiv P(x) \text { for all values of } x
$$

Then

Case 3: $X \notin A$ and X is not the root

Without loss of generality assume X is Z 's right child and T is the Z 's left child

Then

Case 3: $X \notin A$ and X is not the root
Without loss of generality assume X is Z 's right child and T is the Z 's left child

Then, $N_{X}=N_{Z} \cup D_{T}$

Then

We have

$$
P\left(x \mid n_{X}\right)=\sum_{z} P(x \mid z) P\left(z \mid n_{X}\right)
$$

Then

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) P\left(z \mid n_{X}\right) \\
& =\sum_{z} P(x \mid z) P\left(z \mid n_{Z}, d_{T}\right)
\end{aligned}
$$

Then

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) P\left(z \mid n_{X}\right) \\
& =\sum_{z} P(x \mid z) P\left(z \mid n_{Z}, d_{T}\right) \\
& =\sum_{z} P(x \mid z) \frac{P\left(z, n_{Z}, d_{T}\right)}{P\left(n_{Z}, d_{T}\right)}
\end{aligned}
$$

Then

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) P\left(z \mid n_{X}\right) \\
& =\sum_{z} P(x \mid z) P\left(z \mid n_{Z}, d_{T}\right) \\
& =\sum_{z} P(x \mid z) \frac{P\left(z, n_{Z}, d_{T}\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\sum_{z} P(x \mid z) \frac{P\left(d_{T}, z \mid n_{Z}\right) P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)}
\end{aligned}
$$

Then

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) P\left(z \mid n_{X}\right) \\
& =\sum_{z} P(x \mid z) P\left(z \mid n_{Z}, d_{T}\right) \\
& =\sum_{z} P(x \mid z) \frac{P\left(z, n_{Z}, d_{T}\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\sum_{z} P(x \mid z) \frac{P\left(d_{T}, z \mid n_{Z}\right) P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\sum_{z} P(x \mid z) \frac{P\left(d_{T} \mid z, n_{Z}\right) P\left(z \mid n_{Z}\right) P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)}
\end{aligned}
$$

Then

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) P\left(z \mid n_{X}\right) \\
& =\sum_{z} P(x \mid z) P\left(z \mid n_{Z}, d_{T}\right) \\
& =\sum_{z} P(x \mid z) \frac{P\left(z, n_{Z}, d_{T}\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\sum_{z} P(x \mid z) \frac{P\left(d_{T}, z \mid n_{Z}\right) P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\sum_{z} P(x \mid z) \frac{P\left(d_{T} \mid z, n_{Z}\right) P\left(z \mid n_{Z}\right) P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\sum_{z} P(x \mid z) \frac{P\left(d_{T} \mid z\right) P\left(z \mid n_{Z}\right) P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)} \text { Again the d-separation for } z
\end{aligned}
$$

Last Step

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) \frac{P\left(z \mid n_{Z}\right) P\left(n_{Z}\right) P\left(d_{T} \mid z\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\gamma \sum_{z} P(x \mid z) \pi(z) \lambda_{T}(z)
\end{aligned}
$$

where $\gamma=\frac{P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)}$

Last Step

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) \frac{P\left(z \mid n_{Z}\right) P\left(n_{Z}\right) P\left(d_{T} \mid z\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\gamma \sum_{z} P(x \mid z) \pi(z) \lambda_{T}(z)
\end{aligned}
$$

where $\gamma=\frac{P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)}$
Thus, we can achieve proportionality by

$$
\pi_{X}(z) \equiv \pi(z) \lambda_{T}(z)
$$

Last Step

We have

$$
\begin{aligned}
P\left(x \mid n_{X}\right) & =\sum_{z} P(x \mid z) \frac{P\left(z \mid n_{Z}\right) P\left(n_{Z}\right) P\left(d_{T} \mid z\right)}{P\left(n_{Z}, d_{T}\right)} \\
& =\gamma \sum_{z} P(x \mid z) \pi(z) \lambda_{T}(z)
\end{aligned}
$$

where $\gamma=\frac{P\left(n_{Z}\right)}{P\left(n_{Z}, d_{T}\right)}$
Thus, we can achieve proportionality by

$$
\pi_{X}(z) \equiv \pi(z) \lambda_{T}(z)
$$

Then, setting

$$
\pi(x) \equiv \sum_{z} P(x \mid z) \pi_{X}(z) \text { for all values of } x
$$

Outline

1) Introduction

- What do we want?

(2) Belief Propagation

- The Intuition
- Inference on Trees

The Messages

- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of CliquesPotential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

How do we implement this?

We require the following functions

- initial_tree
- update-tree

How do we implement this?

We require the following functions

- initial_tree
- update-tree

intial_tree has the following input and outputs

Input: $((G, P), \mathrm{A}, a, P(x \mid a))$
Output: After this call A and a are both empty making $P(x \mid a)$ the prior probability of x.

How do we implement this?

We require the following functions

- initial_tree
- update-tree

intial_tree has the following input and outputs

Input: $((G, P), \mathrm{A}, a, P(x \mid a))$
Output: After this call A and a are both empty making $P(x \mid a)$ the prior probability of x.

Then each time a variable V is instantiated for \hat{v} the routine update-tree is called

Input: $((G, P), \mathrm{A}, a, V, \hat{v}, P(x \mid a))$
Output: After this call V has been added to A, \hat{v} has been added to a and for every value of $x, P(x \mid a)$ has been updated to be the conditional probability of x given the new a.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Input

Bayesian network (G, P) whose DAG is a tree, where $G=(V, E)$, and a set of values a of a subset $\mathrm{A} \subseteq \mathrm{V}$.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Input

Bayesian network (G, P) whose DAG is a tree, where $G=(V, E)$, and a set of values a of a subset $\mathrm{A} \subseteq \mathrm{V}$.

Output

The Bayesian network (G, P) updated according to the values in a. The λ and π values and messages and $P(x \mid a)$ for each $\mathrm{X} \in \mathrm{V}$ are considered part of the network.

Initializing the tree

void initial_tree

input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& \mathbf{A}, set-of-variable-values\& a)
(1) $\mathbf{A}=\emptyset$
(2) $\mathbf{a}=\emptyset$

Initializing the tree

void initial_tree

input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& \mathbf{A}, set-of-variable-values\& a)
(1) $\mathbf{A}=\emptyset$
(2) $\mathbf{a}=\emptyset$
(3) for (each $X \in V$)
(4) for (each value x of \mathbf{X})

Initializing the tree

void initial_tree

input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& \mathbf{A}, set-of-variable-values\& a)
(1) $\mathbf{A}=\emptyset$
(2) $\mathbf{a}=\emptyset$
(3) for (each $X \in V$)
(4) for (each value x of \mathbf{X})
(5)
$\lambda(x)=1 \quad / /$ Compute λ values.

Initializing the tree

void initial_tree

input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a)
(1) $\mathbf{A}=\emptyset$
(2) $\mathbf{a}=\emptyset$
(3) for (each $X \in V$)
4) for (each value x of \mathbf{X})
(5) $\lambda(x)=1 \quad / /$ Compute λ values.
(6) for (the parent Z of X) // Does nothing if X is the a root.
(7) for (each value z of Z)
(8)

$$
\lambda_{X}(z)=1 \quad / / \text { Compute } \lambda \text { messages. }
$$

Initializing the tree

void initial_tree

input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a)
(1) $\mathbf{A}=\emptyset$
(2) $\mathbf{a}=\emptyset$
(3) for (each $X \in V$)
4) for (each value x of \mathbf{X})
(5)
$\lambda(x)=1 \quad / /$ Compute λ values.
(6) for (the parent Z of X) // Does nothing if X is the a root.
(7) for (each value z of Z)
(8) $\lambda_{X}(z)=1 \quad / /$ Compute λ messages.
(9) for (each value r of the root R)

10
(11)

$$
P(r \mid \mathbf{a})=P(r)
$$

$$
/ / \text { Compute } P(r \mid \mathbf{a}) \text {. }
$$

// Compute R's π values.

Initializing the tree

void initial_tree

input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a)
(1) $\mathbf{A}=\emptyset$
(2) $\mathrm{a}=\emptyset$
(3) for (each $X \in V$)
(4) for (each value x of \mathbf{X})

$$
\lambda(x)=1 \quad / / \text { Compute } \lambda \text { values. }
$$

(6)
for (the parent \mathbf{Z} of \mathbf{X}) // Does nothing if \mathbf{X} is the a root. for (each value z of \mathbf{Z})

$$
\lambda_{X}(z)=1 \quad / / \text { Compute } \lambda \text { messages. }
$$

(9) for (each value r of the root R)
(10)
(11)

$$
\begin{aligned}
& P(r \mid \mathbf{a})=P(r) \\
& \pi(r)=P(r)
\end{aligned}
$$

$$
/ / \text { Compute } P(r \mid \mathbf{a})
$$

// Compute R's π values.
(12) for (each child X of R)
(13)

$$
\text { send } _\pi _\mathbf{m s g}(R, X)
$$

Updating the tree

void update_tree

Input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a, variable V, variable-value \hat{v})
(1) $\mathrm{A}=\mathrm{A} \cup\{V\}, \mathrm{a}=\mathrm{a} \cup\{\hat{v}\}, \lambda(\hat{v})=1, \pi(\hat{v})=1, P(\hat{v} \mid \mathrm{a})=1 / /$ Add V to A and instantiate V to \hat{v}

Updating the tree

void update_tree

Input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a, variable V, variable-value \hat{v})
(1) $\mathrm{A}=\mathrm{A} \cup\{V\}, \mathrm{a}=\mathrm{a} \cup\{\hat{v}\}, \lambda(\hat{v})=1, \pi(\hat{v})=1, P(\hat{v} \mid \mathrm{a})=1 / /$ Add V to A and instantiate V to \hat{v}
(2) $a=\emptyset$

Updating the tree

void update_tree

Input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a, variable V, variable-value \hat{v})
(1) $\mathrm{A}=\mathrm{A} \cup\{V\}, \mathrm{a}=\mathrm{a} \cup\{\hat{v}\}, \lambda(\hat{v})=1, \pi(\hat{v})=1, P(\hat{v} \mid \mathrm{a})=1 / /$ Add V to A and instantiate V to \hat{v}
(2) $\mathrm{a}=\emptyset$
(3) for (each value of $v \neq \hat{v}$)
(9) $\quad \lambda(v)=0, \pi(v)=0, P(v \mid a)=0$

Updating the tree

void update_tree

Input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a, variable V, variable-value \hat{v})
(1) $\mathrm{A}=\mathrm{A} \cup\{V\}, \mathrm{a}=\mathrm{a} \cup\{\hat{v}\}, \lambda(\hat{v})=1, \pi(\hat{v})=1, P(\hat{v} \mid \mathrm{a})=1 / /$ Add V to A and instantiate V to \hat{v}
(2) $\mathrm{a}=\emptyset$
(3) for (each value of $v \neq \hat{v}$)
(9) $\lambda(v)=0, \pi(v)=0, P(v \mid a)=0$
(6) if $(V$ is not the root $\& \& \mathrm{~V}$'s parent $Z \notin \mathrm{~A})$
(0) send_ $\lambda _m s g(V, Z)$

Updating the tree

void update_tree

Input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a, variable V, variable-value \hat{v})
(1) $\mathrm{A}=\mathrm{A} \cup\{V\}, \mathrm{a}=\mathrm{a} \cup\{\hat{v}\}, \lambda(\hat{v})=1, \pi(\hat{v})=1, P(\hat{v} \mid \mathrm{a})=1 / /$ Add V to A and instantiate V to \hat{v}
(2) $\mathrm{a}=\emptyset$
(3) for (each value of $v \neq \hat{v}$)
(4) $\lambda(v)=0, \pi(v)=0, P(v \mid a)=0$
(6) if (V is not the root \&\& V 's parent $Z \notin \mathrm{~A}$)
(0) send_ $\lambda _m s g(V, Z)$
(0) for (each child X of V such that $X \notin \mathrm{~A})$)
(8) send_ $\pi _\operatorname{msg}(V, X)$

Updating the tree

void update_tree

Input: (Bayesian-network\& (\mathbb{G}, P) where $\mathbb{G}=(V, E)$, set-of-variables\& A, set-of-variable-values\& a, variable V, variable-value \hat{v})
(1) $\mathrm{A}=\mathrm{A} \cup\{V\}, \mathrm{a}=\mathrm{a} \cup\{\hat{v}\}, \lambda(\hat{v})=1, \pi(\hat{v})=1, P(\hat{v} \mid \mathrm{a})=1 / /$ Add V to A and instantiate V to \hat{v}
(2) $\mathrm{a}=\emptyset$
(3) for (each value of $v \neq \hat{v}$)
(4) $\lambda(v)=0, \pi(v)=0, P(v \mid a)=0$
(6) if (V is not the root \&\& V 's parent $Z \notin \mathrm{~A}$)
(0) send_ $\lambda _m s g(V, Z)$
(3) for (each child X of V such that $X \notin \mathrm{~A})$)
(8) send_ $\pi _\operatorname{msg}(V, X)$

Sending the λ message

void send_ $\lambda _m s g($ node Y, node $X)$

Note: For simplicity (\mathbb{G}, P) is not shown as input.
(1) for (each value of x)
(2) $\quad \lambda_{Y}(x)=\sum_{y} P(y \mid x) \lambda(y)$
// Y sends X a λ message
(3) $\quad \lambda(x)=\prod_{U \in C H_{X}} \lambda_{U}(x) \quad / /$ Compute $X^{\prime} s \lambda$ values
(9) $P(x \mid \mathrm{a})=\alpha \lambda(x) \pi(x) \quad / /$ Compute $P(x \mid \mathrm{a})$

Sending the λ message

void send_ $\lambda _m s g($ node Y, node $X)$

Note: For simplicity (\mathbb{G}, P) is not shown as input.
(1) for (each value of x)
(2) $\quad \lambda_{Y}(x)=\sum_{y} P(y \mid x) \lambda(y)$
// Y sends X a λ message
(3) $\quad \lambda(x)=\prod_{U \in C H_{X}} \lambda_{U}(x) \quad / /$ Compute $X^{\prime} s \lambda$ values
(9) $\quad P(x \mid \mathrm{a})=\alpha \lambda(x) \pi(x) \quad / /$ Compute $P(x \mid \mathrm{a})$
(6) normalize $P(x \mid \mathrm{a})$

Sending the λ message

void send_ $\lambda _m s g($ node Y, node $X)$

Note: For simplicity (\mathbb{G}, P) is not shown as input.
(1) for (each value of x)
(2) $\quad \lambda_{Y}(x)=\sum_{y} P(y \mid x) \lambda(y)$ // Y sends X a λ message
(3) $\quad \lambda(x)=\prod_{U \in C H_{X}} \lambda_{U}(x) \quad / /$ Compute $X^{\prime} s \lambda$ values
(9) $P(x \mid \mathrm{a})=\alpha \lambda(x) \pi(x) \quad / /$ Compute $P(x \mid \mathrm{a})$
(6) normalize $P(x \mid a)$
(6) if (X is not the root and $X^{\prime} s$ parent $Z \notin \mathrm{~A}$)
(3) $\operatorname{send} _\lambda _m s g(X, Z)$

Sending the λ message

void send_ $\lambda _m s g($ node Y, node $X)$

Note: For simplicity (\mathbb{G}, P) is not shown as input.
(1) for (each value of x)
(2) $\quad \lambda_{Y}(x)=\sum_{y} P(y \mid x) \lambda(y)$ // Y sends X a λ message
(3) $\quad \lambda(x)=\prod_{U \in C H_{X}} \lambda_{U}(x) \quad / /$ Compute $X^{\prime} s \lambda$ values
(9) $P(x \mid \mathrm{a})=\alpha \lambda(x) \pi(x) \quad / /$ Compute $P(x \mid \mathrm{a})$
(6) normalize $P(x \mid a)$
(0) if (X is not the root and $X^{\prime} s$ parent $Z \notin \mathrm{~A}$)
(3) send_ $\lambda _m s g(X, Z)$
(8) for (each child W of X such that $W \neq Y$ and $W \in \mathrm{~A}$))
(9) send_ π _msg (X, W)

Sending the π message

void send_ $\pi _$msg(node Z, node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.
(1) for (each value of z)
©

$$
\pi_{X}(z)=\pi(z) \prod_{Y \in C H_{Z}-\{X\}} \lambda_{Y}(z) \quad / / Z \text { sends } X \text { a } \pi
$$ message

Sending the π message

void send_ $\pi _m s g($ node Z, node $X)$

Note: For simplicity (\mathbb{G}, P) is not shown as input.
(1) for (each value of z)
(2) $\pi_{X}(z)=\pi(z) \prod_{Y \in C H_{Z}-\{X\}} \lambda_{Y}(z) \quad / / Z$ sends X a π message
(3) for (each value of x)
(9) $\pi(x)=\sum_{z} P(x \mid z) \pi_{X}(z) \quad / /$ Compute $X^{\prime} s \pi$ values
(3) $P(x \mid a)=\alpha \lambda(x) \pi(x) \quad / /$ Compute $P(x \mid \mathrm{a})$

Sending the π message

void send_ $\pi _m s g($ node Z, node $X)$

Note: For simplicity (\mathbb{G}, P) is not shown as input.
(1) for (each value of z)
(2) $\pi_{X}(z)=\pi(z) \prod_{Y \in C H_{Z}-\{X\}} \lambda_{Y}(z) \quad / / Z$ sends X a π message
(3) for (each value of x)
(9) $\pi(x)=\sum_{z} P(x \mid z) \pi_{X}(z) \quad / /$ Compute $X^{\prime} s \pi$ values
(3) $P(x \mid a)=\alpha \lambda(x) \pi(x) \quad / /$ Compute $P(x \mid a)$
(6) normalize $P(x \mid a)$
(0) for (each child Y of X such that $Y \notin \mathrm{~A})$)
(8) $\operatorname{send_ \pi _ msg(X,Y)~}$

Example of Tree Initialization

We have then

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Compute λ values

- $\lambda(h 1)=1 ; \lambda(h 2)=1$;

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Compute λ values

- $\lambda(h 1)=1 ; \lambda(h 2)=1$;
- $\lambda(b 1)=1 ; \lambda(b 2)=1$;

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Compute λ values

- $\lambda(h 1)=1 ; \lambda(h 2)=1$;
- $\lambda(b 1)=1 ; \lambda(b 2)=1$;
- $\lambda(l 1)=1 ; \lambda(l 2)=1$;

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Compute λ values

- $\lambda(h 1)=1 ; \lambda(h 2)=1$;
- $\lambda(b 1)=1 ; \lambda(b 2)=1$;
- $\lambda(l 1)=1 ; \lambda(l 2)=1$;
- $\lambda(c 1)=1 ; \lambda(c 2)=1$;

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Compute λ values

- $\lambda(h 1)=1 ; \lambda(h 2)=1$;
- $\lambda(b 1)=1 ; \lambda(b 2)=1$;
- $\lambda(l 1)=1 ; \lambda(l 2)=1$;
- $\lambda(c 1)=1 ; \lambda(c 2)=1$;

Compute λ_{v} messages

- $\lambda_{B}(h 1)=1 ; \lambda_{B}(h 2)=1 ;$

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Compute λ values

- $\lambda(h 1)=1 ; \lambda(h 2)=1$;
- $\lambda(b 1)=1 ; \lambda(b 2)=1$;
- $\lambda(l 1)=1 ; \lambda(l 2)=1$;
- $\lambda(c 1)=1 ; \lambda(c 2)=1$;

Compute λ_{v} messages

- $\lambda_{B}(h 1)=1 ; \lambda_{B}(h 2)=1 ;$
- $\lambda_{L}(h 1)=1 ; \lambda_{L}(h 2)=1$;

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

We have then

- $A=\emptyset, a=\emptyset$

Compute λ values

- $\lambda(h 1)=1 ; \lambda(h 2)=1$;
- $\lambda(b 1)=1 ; \lambda(b 2)=1$;
- $\lambda(l 1)=1 ; \lambda(l 2)=1$;
- $\lambda(c 1)=1 ; \lambda(c 2)=1$;

Compute λ_{v} messages

- $\lambda_{B}(h 1)=1 ; \lambda_{B}(h 2)=1 ;$
- $\lambda_{L}(h 1)=1 ; \lambda_{L}(h 2)=1$;
- $\lambda_{C}(l 1)=1 ; \lambda_{C}(l 2)=1$;

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

Compute $P(h \mid \emptyset)$

- $P(h 1 \mid \emptyset)=P(h 1)=0.2$

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

Compute $P(h \mid \emptyset)$

- $P(h 1 \mid \emptyset)=P(h 1)=0.2$
- $P(h 2 \mid \emptyset)=P(h 2)=0.8$

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

Compute $P(h \mid \emptyset)$

- $P(h 1 \mid \emptyset)=P(h 1)=0.2$
- $P(h 2 \mid \emptyset)=P(h 2)=0.8$

Compute H's π values

- $\pi(h 1)=P(h 1)=0.2$

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

Compute $P(h \mid \emptyset)$

- $P(h 1 \mid \emptyset)=P(h 1)=0.2$
- $P(h 2 \mid \emptyset)=P(h 2)=0.8$

Compute H's π values

- $\pi(h 1)=P(h 1)=0.2$
- $\pi(h 2)=P(h 2)=0.8$

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

Compute $P(h \mid \emptyset)$

- $P(h 1 \mid \emptyset)=P(h 1)=0.2$
- $P(h 2 \mid \emptyset)=P(h 2)=0.8$

Compute H 's π values

- $\pi(h 1)=P(h 1)=0.2$
- $\pi(h 2)=P(h 2)=0.8$

Send messages

- send_ $\pi _\operatorname{msg}(H, B)$

Calling initial_tree $((\mathbb{G}, P), \mathrm{A}, \mathrm{a})$

Compute $P(h \mid \emptyset)$

- $P(h 1 \mid \emptyset)=P(h 1)=0.2$
- $P(h 2 \mid \emptyset)=P(h 2)=0.8$

Compute H 's π values

- $\pi(h 1)=P(h 1)=0.2$
- $\pi(h 2)=P(h 2)=0.8$

Send messages

- send_ $\pi _\operatorname{msg}(H, B)$
- send_ $\pi _\operatorname{msg}(H, L)$

The call send_ $\pi _\operatorname{msg}(H, B)$

H sends B a π message

- $\pi_{B}(h 1)=\pi(h 1) \lambda_{L}(h 1)=0.2 \times 1=0.2$

The call send_ $\pi _\operatorname{msg}(H, B)$

H sends B a π message

- $\pi_{B}(h 1)=\pi(h 1) \lambda_{L}(h 1)=0.2 \times 1=0.2$
- $\pi_{B}(h 2)=\pi(h 2) \lambda_{L}(h 2)=0.8 \times 1=0.8$

The call send_ $\pi _\operatorname{msg}(H, B)$

H sends B a π message

$$
\begin{aligned}
& \text { - } \pi_{B}(h 1)=\pi(h 1) \lambda_{L}(h 1)=0.2 \times 1=0.2 \\
& \pi_{B}(h 2)=\pi(h 2) \lambda_{L}(h 2)=0.8 \times 1=0.8
\end{aligned}
$$

Compute B 's π values

$$
\pi(b 1)=P(b 1 \mid h 1) \pi_{B}(h 1)+P(b 1 \mid h 2) \pi_{B}(h 2)
$$

The call send_ $\pi _\operatorname{msg}(H, B)$

H sends B a π message

$$
\begin{aligned}
& \text { - } \pi_{B}(h 1)=\pi(h 1) \lambda_{L}(h 1)=0.2 \times 1=0.2 \\
& \pi_{B}(h 2)=\pi(h 2) \lambda_{L}(h 2)=0.8 \times 1=0.8
\end{aligned}
$$

Compute B 's π values

$$
\begin{aligned}
\pi(b 1) & =P(b 1 \mid h 1) \pi_{B}(h 1)+P(b 1 \mid h 2) \pi_{B}(h 2) \\
& =(0.25)(0.2)+(0.05)(0.8)=0.09
\end{aligned}
$$

The call send_ $\pi _\operatorname{msg}(H, B)$

H sends B a π message

$$
\begin{aligned}
& \text { - } \pi_{B}(h 1)=\pi(h 1) \lambda_{L}(h 1)=0.2 \times 1=0.2 \\
& -\pi_{B}(h 2)=\pi(h 2) \lambda_{L}(h 2)=0.8 \times 1=0.8
\end{aligned}
$$

Compute B 's π values

$$
\begin{aligned}
\pi(b 1) & =P(b 1 \mid h 1) \pi_{B}(h 1)+P(b 1 \mid h 2) \pi_{B}(h 2) \\
& =(0.25)(0.2)+(0.05)(0.8)=0.09 \\
\pi(b 2) & =P(b 2 \mid h 1) \pi_{B}(h 1)+P(b 2 \mid h 2) \pi_{B}(h 2)
\end{aligned}
$$

The call send_ $\pi _\operatorname{msg}(H, B)$

H sends B a π message

$$
\begin{aligned}
& \text { - } \pi_{B}(h 1)=\pi(h 1) \lambda_{L}(h 1)=0.2 \times 1=0.2 \\
& \text { - } \pi_{B}(h 2)=\pi(h 2) \lambda_{L}(h 2)=0.8 \times 1=0.8
\end{aligned}
$$

Compute B 's π values

$$
\begin{aligned}
\pi(b 1) & =P(b 1 \mid h 1) \pi_{B}(h 1)+P(b 1 \mid h 2) \pi_{B}(h 2) \\
& =(0.25)(0.2)+(0.05)(0.8)=0.09 \\
\pi(b 2) & =P(b 2 \mid h 1) \pi_{B}(h 1)+P(b 2 \mid h 2) \pi_{B}(h 2) \\
& =(0.75)(0.2)+(0.95)(0.8)=0.91
\end{aligned}
$$

The call send_ $\pi _\operatorname{msg}(H, B)$

Compute $P(b \mid \emptyset)$

- $P(b 1 \mid \emptyset)=\alpha \lambda(b 1) \pi(b 1)=\alpha(1)(0.09)=0.09 \alpha$

The call send_ $\pi _\operatorname{msg}(H, B)$

Compute $P(b \mid \emptyset)$

- $P(b 1 \mid \emptyset)=\alpha \lambda(b 1) \pi(b 1)=\alpha(1)(0.09)=0.09 \alpha$
- $P(b 2 \mid \emptyset)=\alpha \lambda(b 2) \pi(b 2)=\alpha(1)(0.91)=0.91 \alpha$

The call send_ $\pi _\operatorname{msg}(H, B)$

Compute $P(b \mid \emptyset)$

- $P(b 1 \mid \emptyset)=\alpha \lambda(b 1) \pi(b 1)=\alpha(1)(0.09)=0.09 \alpha$
- $P(b 2 \mid \emptyset)=\alpha \lambda(b 2) \pi(b 2)=\alpha(1)(0.91)=0.91 \alpha$

Then, normalize

$$
P(b 1 \mid \emptyset)=\frac{0.09 \alpha}{0.09 \alpha+0.91 \alpha}=0.09
$$

The call send_ $\pi _\operatorname{msg}(H, B)$

Compute $P(b \mid \emptyset)$

- $P(b 1 \mid \emptyset)=\alpha \lambda(b 1) \pi(b 1)=\alpha(1)(0.09)=0.09 \alpha$
- $P(b 2 \mid \emptyset)=\alpha \lambda(b 2) \pi(b 2)=\alpha(1)(0.91)=0.91 \alpha$

Then, normalize

$$
\begin{aligned}
& P(b 1 \mid \emptyset)=\frac{0.09 \alpha}{0.09 \alpha+0.91 \alpha}=0.09 \\
& P(b 2 \mid \emptyset)=\frac{0.91 \alpha}{0.09 \alpha+0.91 \alpha}=0.91
\end{aligned}
$$

Send the call send_ $\pi _\operatorname{msg}(H, L)$
H sends L a π message

- $\pi_{L}(h 1)=\pi(h 1) \lambda_{B}(h 1)=(0.2)(1)=0.2$

Send the call send_ $\pi _\operatorname{msg}(H, L)$
H sends L a π message

- $\pi_{L}(h 1)=\pi(h 1) \lambda_{B}(h 1)=(0.2)(1)=0.2$
- $\pi_{L}(h 2)=\pi(h 2) \lambda_{B}(h 2)=(0.8)(1)=0.8$

Send the call send_ $\pi _\operatorname{msg}(H, L)$

H sends L a π message

$$
\begin{aligned}
& \text { - } \pi_{L}(h 1)=\pi(h 1) \lambda_{B}(h 1)=(0.2)(1)=0.2 \\
& \text { - } \pi_{L}(h 2)=\pi(h 2) \lambda_{B}(h 2)=(0.8)(1)=0.8
\end{aligned}
$$

Compute $L^{\prime} s \pi$ values

$$
\begin{aligned}
\pi(l 1) & =P(l 1 \mid h 1) \pi_{L}(h 1)+P(l 1 \mid h 2) \pi_{L}(h 2) \\
& =(0.003)(0.2)+(0.00005)(0.8)=0.00064
\end{aligned}
$$

Send the call send_ $\pi _\operatorname{msg}(H, L)$

H sends L a π message

$$
\begin{aligned}
& \text { - } \pi_{L}(h 1)=\pi(h 1) \lambda_{B}(h 1)=(0.2)(1)=0.2 \\
& \text { - } \pi_{L}(h 2)=\pi(h 2) \lambda_{B}(h 2)=(0.8)(1)=0.8
\end{aligned}
$$

Compute $L^{\prime} s \pi$ values

$$
\begin{aligned}
\pi(l 1) & =P(l 1 \mid h 1) \pi_{L}(h 1)+P(l 1 \mid h 2) \pi_{L}(h 2) \\
& =(0.003)(0.2)+(0.00005)(0.8)=0.00064 \\
\pi(l 2) & =P(l 2 \mid h 1) \pi_{B}(h 1)+P(l 2 \mid h 2) \pi_{B}(h 2) \\
& =(0.997)(0.2)+(0.99995)(0.8)=0.99936
\end{aligned}
$$

Compute $P(l \mid \emptyset)$

Send the call send_ $\pi _\operatorname{msg}(H, L)$

H sends L a π message

$$
\begin{aligned}
& \text { - } \pi_{L}(h 1)=\pi(h 1) \lambda_{B}(h 1)=(0.2)(1)=0.2 \\
& \text { - } \pi_{L}(h 2)=\pi(h 2) \lambda_{B}(h 2)=(0.8)(1)=0.8
\end{aligned}
$$

Compute $L^{\prime} s \pi$ values

$$
\begin{aligned}
\pi(l 1) & =P(l 1 \mid h 1) \pi_{L}(h 1)+P(l 1 \mid h 2) \pi_{L}(h 2) \\
& =(0.003)(0.2)+(0.00005)(0.8)=0.00064 \\
\pi(l 2) & =P(l 2 \mid h 1) \pi_{B}(h 1)+P(l 2 \mid h 2) \pi_{B}(h 2) \\
& =(0.997)(0.2)+(0.99995)(0.8)=0.99936
\end{aligned}
$$

Compute $P(l \mid \emptyset)$

- $P(l 1 \mid \emptyset)=\alpha \lambda(l 1) \pi(l 1)=\alpha(1)(0.00064)=0.00064 \alpha$

Send the call send_ $\pi _\operatorname{msg}(H, L)$

H sends L a π message

$$
\begin{aligned}
& \text { - } \pi_{L}(h 1)=\pi(h 1) \lambda_{B}(h 1)=(0.2)(1)=0.2 \\
& \text { - } \pi_{L}(h 2)=\pi(h 2) \lambda_{B}(h 2)=(0.8)(1)=0.8
\end{aligned}
$$

Compute $L^{\prime} s \pi$ values

$$
\begin{aligned}
\pi(l 1) & =P(l 1 \mid h 1) \pi_{L}(h 1)+P(l 1 \mid h 2) \pi_{L}(h 2) \\
& =(0.003)(0.2)+(0.00005)(0.8)=0.00064 \\
\pi(l 2) & =P(l 2 \mid h 1) \pi_{B}(h 1)+P(l 2 \mid h 2) \pi_{B}(h 2) \\
& =(0.997)(0.2)+(0.99995)(0.8)=0.99936
\end{aligned}
$$

Compute $P(l \mid \emptyset)$

- $P(l 1 \mid \emptyset)=\alpha \lambda(l 1) \pi(l 1)=\alpha(1)(0.00064)=0.00064 \alpha$
- $P(l 2 \mid \emptyset)=\alpha \lambda(l 2) \pi(l 2)=\alpha(1)(0.99936)=0.99936 \alpha$

Send the call send_ $\pi _\operatorname{msg}(H, L)$

Send the call send_ $\pi _\operatorname{msg}(H, L)$

Then, normalize

$$
\begin{aligned}
& P(l 1 \mid \emptyset)=\frac{0.00064 \alpha}{0.00064 \alpha+0.99936 \alpha}=0.00064 \\
& P(l 2 \mid \emptyset)=\frac{0.99936 \alpha}{0.00064 \alpha+0.99936 \alpha}=0.99936
\end{aligned}
$$

Send the call send_ $\pi _\operatorname{msg}(L, C)$

L sends C a π message

- $\pi_{C}(l 1)=\pi(l 1)=0.00064$

Send the call send_ $\pi _\operatorname{msg}(L, C)$

L sends C a π message

- $\pi_{C}(l 1)=\pi(l 1)=0.00064$
- $\pi_{C}(l 2)=\pi(l 2)=0.99936$

Send the call send_ $\pi _\operatorname{msg}(L, C)$

L sends C a π message

- $\pi_{C}(l 1)=\pi(l 1)=0.00064$
- $\pi_{C}(l 2)=\pi(l 2)=0.99936$

Compute $C^{\prime} s \pi$ values

$$
\begin{aligned}
\pi(c 1) & =P(c 1 \mid l 1) \pi_{C}(l 1)+P(c 1 \mid l 2) \pi_{C}(l 2) \\
& =(0.6)(0.00064)+(0.02)(0.99936)=0.02037 \\
\pi(c 2) & =P(c 2 \mid l 1) \pi_{C}(h 1)+P(c 2 \mid l 2) \pi_{C}(l 2) \\
& =(0.4)(0.00064)+(0.98)(0.99936)=0.97963
\end{aligned}
$$

Send the call send_ $\pi _\operatorname{msg}(L, C)$

Compute $P(c \mid \emptyset)$

- $P(c 1 \mid \emptyset)=\alpha \lambda(c 1) \pi(c 1)=\alpha(1)(0.02037)=0.02037 \alpha$

Send the call send_ $\pi _\operatorname{msg}(L, C)$

Compute $P(c \mid \emptyset)$

- $P(c 1 \mid \emptyset)=\alpha \lambda(c 1) \pi(c 1)=\alpha(1)(0.02037)=0.02037 \alpha$
- $P(c 2 \mid \emptyset)=\alpha \lambda(c 2) \pi(c 2)=\alpha(1)(0.97963)=0.97963 \alpha$

Send the call send_ $\pi _\operatorname{msg}(L, C)$

Compute $P(c \mid \emptyset)$

- $P(c 1 \mid \emptyset)=\alpha \lambda(c 1) \pi(c 1)=\alpha(1)(0.02037)=0.02037 \alpha$
- $P(c 2 \mid \emptyset)=\alpha \lambda(c 2) \pi(c 2)=\alpha(1)(0.97963)=0.97963 \alpha$

Normalize

$$
\begin{aligned}
& P(c 1 \mid \emptyset)=\frac{0.02037 \alpha}{0.02037 \alpha+0.97963 \alpha}=0.02037 \\
& P(c 2 \mid \emptyset)=\frac{0.99936 \alpha}{0.02037 \alpha+0.97963 \alpha}=0.97963
\end{aligned}
$$

Final Graph

We have then

For the Generalization Please look at...

Look at pages 123-156 at

Richard E. Neapolitan. 2003. Learning Bayesian Networks. Prentice-Hall, Inc

History

Invented in 1988

Invented by Lauritzen and Spiegelhalter, 1988

History

Invented in 1988

Invented by Lauritzen and Spiegelhalter, 1988

Something Notable

The general idea is that the propagation of evidence through the network can be carried out more efficiently by representing the joint probability distribution on an undirected graph called the Junction tree (or Join tree).

More in the Intuition

High-level Intuition

Computing marginals is straightforward in a tree structure.

Junction Tree Characteristics

The junction tree has the following characteristics

- It is an undirected tree

Junction Tree Characteristics

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)

Junction Tree Characteristics

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- Given two clusters, C_{1} and C_{2}, every node on the path between them contains their intersection $C_{1} \cap C_{2}$

Junction Tree Characteristics

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- Given two clusters, C_{1} and C_{2}, every node on the path between them contains their intersection $C_{1} \cap C_{2}$

In addition

A Separator, S, is associated with each edge and contains the variables in the intersection between neighboring nodes

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Simplicial Node

Simplicial Node

In a graph G, a vertex v is called simplicial if and only if the subgraph of G induced by the vertex set $\{v\} \cup N(v)$ is a clique.

- $N(v)$ is the neighbor of v in the Graph.

Example

Vertex 3 is simplicial, while 4 is not

Perfect Elimination Ordering

Definition

A graph G on n vertices is said to have a perfect elimination ordering if and only if there is an ordering $\left\{v_{1}, \ldots, v_{n}\right\}$ of G 's vertices, such that each v_{i} is simplicial in the subgraph induced by the vertices $\left\{v_{1}, \ldots, v_{i}\right\}$.

Clearly

This is a way to collapse seto of vertices

- Into a single node... for graph simplification... using the cliques....

Outline

I Introduction

－What do we want？

2）Belief Propagation
－The Intuition
－Inference on Trees
－The Messages
－The Implementation
（3）Junction Trees
－The Junction Tree Concept
－Chordal Graphs
－Maximal Clique
－Tree Graphs
－Junction Tree Formal Definition
－Algorithm For Building Junction TreesExample
－Moralize the DAG
－Triangulate
－Listing of CliquesPotential Function
－The Junction Tree Inference Algorithms
－Propagating Information in a Junction Tree
－Update
－Lemma of Propagation of Information
－Example
－Now，the Full Propagation
－Example of Propagation

Chordal Graph

Definition

A Chordal Graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

Chordal Graph

Definition

A Chordal Graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

Definition

For any two vertices $x, y \in G$ such that $(x, y) \in E$, a $x-y$ separator is a set $S \subset V$ such that the graph $G-S$ has at least two disjoint connected components, one of which contains x and another of which contains y.

Chordal Graph

Theorem

For a graph G on n vertices, the following conditions are equivalent:

Chordal Graph

Theorem
For a graph G on n vertices, the following conditions are equivalent:
(1) G has a perfect elimination ordering.

Chordal Graph

Theorem

For a graph G on n vertices, the following conditions are equivalent:
(1) G has a perfect elimination ordering.
(2) G is chordal.

Chordal Graph

Theorem

For a graph G on n vertices, the following conditions are equivalent:
(1) G has a perfect elimination ordering.
(2) G is chordal.
(3) If H is any induced subgraph of G and S is a vertex separator of H of minimal size, S 's vertices induce a clique.

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of CliquesPotential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims

(1) A chordal graph with N vertices can have no more than N maximal cliques.

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims

(1) A chordal graph with N vertices can have no more than N maximal cliques.
(2) Given a chordal graph with $G=(V, E)$, where $|V|=N$, there exists an algorithm to find all the maximal cliques of G which takes no more than $O\left(N^{4}\right)$ time.

Elimination Clique

Definition (Elimination Clique)

Given a chordal graph G, and an elimination ordering for G which does not add any edges.

- Suppose node i (Assuming a Labeling) is eliminated in some step of the elimination algorithm, then the clique consisting of the node i along with its neighbors during the elimination step (which must be fully connected since elimination does not add edges) is called an elimination clique.

Elimination Clique

Definition (Elimination Clique)

Given a chordal graph G, and an elimination ordering for G which does not add any edges.

- Suppose node i (Assuming a Labeling) is eliminated in some step of the elimination algorithm, then the clique consisting of the node i along with its neighbors during the elimination step (which must be fully connected since elimination does not add edges) is called an elimination clique.

Formally

Suppose node i is eliminated in the $k^{t h}$ step of the algorithm, and let $G^{(k)}$ be the graph just before the $k^{\text {th }}$ elimination step. Then, the clique $C_{i}=\{i\} \cup N^{(k)}(i)$ where $N^{(k)}(i)$ is the neighbor of i in the Graph $G^{(k)}$.

From this, we have

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let \mathcal{C} be the set of maximal cliques in the chordal graph, and let $\mathcal{C}_{e}=\left(\cup_{i \in V} C_{i}\right)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal{C} \subseteq \mathcal{C}_{e}$. In other words, every maximal clique is also an elimination clique for this particular ordering.

From this, we have

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let \mathcal{C} be the set of maximal cliques in the chordal graph, and let $\mathcal{C}_{e}=\left(\cup_{i \in V} C_{i}\right)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal{C} \subseteq \mathcal{C}_{e}$. In other words, every maximal clique is also an elimination clique for this particular ordering.

Something Notable

The theorem proves the $2^{\text {nd }}$ claims given earlier. Firstly, it shows that a chordal graph cannot have more than N maximal cliques, since we have only N elimination cliques.

From this, we have

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let \mathcal{C} be the set of maximal cliques in the chordal graph, and let $\mathcal{C}_{e}=\left(\cup_{i \in V} C_{i}\right)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal{C} \subseteq \mathcal{C}_{e}$. In other words, every maximal clique is also an elimination clique for this particular ordering.

Something Notable

The theorem proves the $2^{\text {nd }}$ claims given earlier. Firstly, it shows that a chordal graph cannot have more than N maximal cliques, since we have only N elimination cliques.

It is more

It gives us an efficient algorithm for finding these N maximal cliques.

- Simply go over each elimination clique and check whether it is maximal.

Therefore

Even with a brute force approach

It will not take more than $\left|\mathcal{C}_{e}\right|^{2} \times D=O\left(N^{3}\right)$ with $D=\max _{C \in \mathcal{C}}|C|$.

Therefore

Even with a brute force approach

It will not take more than $\left|\mathcal{C}_{e}\right|^{2} \times D=O\left(N^{3}\right)$ with $D=\max _{C \in \mathcal{C}}|C|$.

Because

Since both clique size and number of elimination cliques is bounded by N

Therefore

Even with a brute force approach

It will not take more than $\left|\mathcal{C}_{e}\right|^{2} \times D=O\left(N^{3}\right)$ with $D=\max _{C \in \mathcal{C}}|C|$.

Because

Since both clique size and number of elimination cliques is bounded by N

Observation

The maximum clique problem, which is NP-hard on general graphs, is easy on chordal graphs.

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

We have the following definitions

Definition

The following are equivalent to the statement " G is a tree"

We have the following definitions

Definition

The following are equivalent to the statement " G is a tree"
(1) G is a connected, acyclic graph over N nodes.

We have the following definitions

Definition

The following are equivalent to the statement " G is a tree"
(1) G is a connected, acyclic graph over N nodes.
(2) G is a connected graph over N nodes with $N-1$ edges.

We have the following definitions

Definition

The following are equivalent to the statement " G is a tree"
(1) G is a connected, acyclic graph over N nodes.
(2) G is a connected graph over N nodes with $N-1$ edges.
(3) G is a minimal connected graph over N nodes.

We have the following definitions

Definition

The following are equivalent to the statement " G is a tree"
(1) G is a connected, acyclic graph over N nodes.
(2) G is a connected graph over N nodes with $N-1$ edges.
(3) G is a minimal connected graph over N nodes.
(3) (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

We have the following definitions

Definition

The following are equivalent to the statement " G is a tree"
(1) G is a connected, acyclic graph over N nodes.
(2) G is a connected graph over N nodes with $N-1$ edges.
(3) G is a minimal connected graph over N nodes.
(9) (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Theorem

For any graph $G=(V, E)$, the following statements are equivalent:

We have the following definitions

Definition

The following are equivalent to the statement " G is a tree"
(1) G is a connected, acyclic graph over N nodes.
(2) G is a connected graph over N nodes with $N-1$ edges.
(3) G is a minimal connected graph over N nodes.
(9) (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Theorem

For any graph $G=(V, E)$, the following statements are equivalent:
(1) G has a junction tree.
(2) G is chordal.

Outline

1) Introduction

- What do we want?
(2) Belief Propagation
- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
- Moralize the DAG
- Triangulate
- Listing of CliquesPotential Function
- The Junction Tree Inference Algorithms

Propagating Information in a Junction Tree

- Úpdate
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Definition

Junction Tree

Given a graph $G=(V, E)$, a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is said to be a Junction Tree for G, iff:
(1) The nodes of G^{\prime} are the maximal cliques of G (i.e. G^{\prime} is a clique graph of G.)
(2) G^{\prime} is a tree.
(3) Running Intersection Property / Junction Tree Property:
(1) For each $v \in V$, define G_{v}^{\prime} to be the induced subgraph of G^{\prime} consisting of exactly those nodes which correspond to maximal cliques of G that contain v. Then G_{v}^{\prime} must be a connected graph.

Outline

(1) Introduction

- What do we want?
(2) Belief Propagation
- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of CliquesPotential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Step 1

Given a DAG $G=(V, E)$ and $|V|=N$

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

Step 1

Given a DAG $G=(V, E)$ and $|V|=N$

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm
Given a list of nodes:

Step 1

Given a DAG $G=(V, E)$ and $|V|=N$

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm
Given a list of nodes:
(1) Is the vertex simplicial? If it is not, make it simplicial.

Step 1

Given a DAG $G=(V, E)$ and $|V|=N$

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm
Given a list of nodes:
(1) Is the vertex simplicial? If it is not, make it simplicial.
(2) If not remove it from the list.

Step 1

Another way

(1) By the Moralization Procedure.
(2) Triangulate the moral graph.

Step 1

Another way

(1) By the Moralization Procedure.
(2) Triangulate the moral graph.

Moralization Procedure

(1) Add edges between all pairs of nodes that have a common child.
(2) Make all edges in the graph undirected.

Step 1

Another way

(1) By the Moralization Procedure.
(2) Triangulate the moral graph.

Moralization Procedure

(1) Add edges between all pairs of nodes that have a common child.
(2) Make all edges in the graph undirected.

Triangulate the moral graph

An undirected graph is triangulated if every cycle of length greater than 3 possesses a chord.

Step 2

Find the maximal cliques in the chordal graph

List the N Cliques

- $\left(\left\{v_{N}\right\} \cup N\left(v_{N}\right)\right) \cap\left\{v_{1}, \ldots, v_{N}\right\}$
- $\left(\left\{v_{N-1}\right\} \cup N\left(v_{N-1}\right)\right) \cap\left\{v_{1}, \ldots, v_{N-1}\right\}$
- ...
- $\left\{v_{1}\right\}$

Note: If the graph is Chordal this is not necessary because all the cliques are maximal.

Step 3

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph
For each pair of maximal cliques $\left(C_{i}, C_{j}\right)$ in the graph

Step 3

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques $\left(C_{i}, C_{j}\right)$ in the graph

- We check whether they posses any common variables.

Step 3

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph
For each pair of maximal cliques $\left(C_{i}, C_{j}\right)$ in the graph

- We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as $S_{i j}=C_{i} \cap C_{j}$.

Step 3

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph
For each pair of maximal cliques $\left(C_{i}, C_{j}\right)$ in the graph

- We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as $S_{i j}=C_{i} \cap C_{j}$.
Then, we compute these separators trees
We build a clique graph:

Step 3

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph
For each pair of maximal cliques $\left(C_{i}, C_{j}\right)$ in the graph

- We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as $S_{i j}=C_{i} \cap C_{j}$.
Then, we compute these separators trees
We build a clique graph:

- Nodes are the Cliques.

Step 3

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph
For each pair of maximal cliques $\left(C_{i}, C_{j}\right)$ in the graph

- We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as $S_{i j}=C_{i} \cap C_{j}$.
Then, we compute these separators trees
We build a clique graph:

- Nodes are the Cliques.
- Edges $\left(C_{i}, C_{j}\right)$ are added with weight $\left|C_{i} \cap C_{j}\right|$ if $\left|C_{i} \cap C_{j}\right|>0$.

Step 3

This step can be implemented quickly in practice using a hash table Running Time: $O\left(|\mathcal{C}|^{2} D\right)=O\left(N^{2} D\right)$

Step 4

Compute a maximum-weight spanning tree on the weighted clique graph to obtain a junction tree
 You can us for this the Kruskal and Prim for Maximum Weight Graph

Step 4

Compute a maximum-weight spanning tree on the weighted clique graph to obtain a junction tree
 You can us for this the Kruskal and Prim for Maximum Weight Graph

We will give Kruskal's algorithm

For finding the maximum-weight spanning tree

Step 4

Maximal Kruskal's algorithm

Initialize an edgeless graph \mathcal{T} with nodes that are all the maximal cliques in our chordal graph.

Step 4

Maximal Kruskal's algorithm

Initialize an edgeless graph \mathcal{T} with nodes that are all the maximal cliques in our chordal graph.

Then

We will add edges to \mathcal{T} until it becomes a junction tree.

Step 4

Maximal Kruskal's algorithm

Initialize an edgeless graph \mathcal{T} with nodes that are all the maximal cliques in our chordal graph.

Then

We will add edges to \mathcal{T} until it becomes a junction tree.

Sort the m edges e_{i} in our clique graph from step 3 by weight w_{i}
We have for $e_{1}, e_{2}, \ldots, e_{m}$ with $w_{1} \geq w_{2} \geq \cdots \geq w_{1}$

Step 4

For $i=1,2, \ldots, m$

(1) Add edge e_{i} to \mathcal{T} if it does not introduce a cycle.
(2) If $|\mathcal{C}|-1$ edges have been added, quit.

Step 4

For $i=1,2, \ldots, m$

(1) Add edge e_{i} to \mathcal{T} if it does not introduce a cycle.
(2) If $|\mathcal{C}|-1$ edges have been added, quit.

Running Time given that $|E|=O\left(|\mathcal{C}|^{2}\right)$

$$
O\left(|\mathcal{C}|^{2} \log |\mathcal{C}|^{2}\right)=O\left(|\mathcal{C}|^{2} \log |\mathcal{C}|\right)=O\left(N^{2} \log N\right)
$$

Outline

（1）Introduction
－What do we want？
2）Belief Propagation
－The Intuition
－Inference on Trees
－The Messages
－The Implementation
（3）Junction Trees
－The Junction Tree Concept
－Chordal Graphs
－Maximal Clique
－Tree Graphs
－Junction Tree Formal Definition
－Algorithm For Building Junction Trees
－Example
－Moralize the DAG
－Triangulate
－Listing of Cliques
－Potential Function
－The Junction Tree Inference Algorithms
－Propagating Information in a Junction Tree
－Update
－Lemma of Propagation of Information
－Example
－Now，the Full Propagation
－Example of Propagation

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

How do you build a Junction Tree?

Given a General DAG

How do you build a Junction Tree?

Given a General DAG

Build a Chordal Graph

- Moral Graph - marry common parents and remove arrows.

Outline

（1）Introduction
－What do we want？
2）Belief Propagation
－The Intuition
－Inference on Trees
－The Messages
－The Implementation
（3）Junction Trees
－The Junction Tree Concept
－Chordal Graphs
－Maximal Clique
－Tree Graphs
－Junction Tree Formal Definition
－Algorithm For Building Junction Trees
－Example
－Moralize the DAG
－Triangulate
－Listing of Cliques
－Potential Function
－The Junction Tree Inference Algorithms
－Propagating Information in a Junction Tree
－Update
－Lemma of Propagation of Information
－Example
－Now，the Full Propagation
－Example of Propagation

How do you build a Junction Tree?

Triangulate the moral graph

- An undirected graph is triangulated if every cycle of length greater than 3 possesses a chord.

Outline

（1）Introduction
－What do we want？
2）Belief Propagation
－The Intuition
－Inference on Trees
－The Messages
－The Implementation
（3）Junction Trees
－The Junction Tree Concept
－Chordal Graphs
－Maximal Clique
－Tree Graphs
－Junction Tree Formal Definition
－Algorithm For Building Junction Trees
－Example
－Moralize the DAG
－Triangulate
－Listing of Cliques
－Potential Function
－The Junction Tree Inference Algorithms
－Propagating Information in a Junction Tree
－Update
－Lemma of Propagation of Information
－Example
－Now，the Full Propagation
－Example of Propagation

Listing of Cliques

Identify the Cliques

- A clique is a subset of nodes which is complete (i.e. there is an edge between every pair of nodes) and maximal.

$$
\begin{gathered}
\{\mathrm{B}, \mathrm{~S}, \mathrm{~L}\} \\
\{\mathrm{B}, \mathrm{~L}, \mathrm{E}\} \\
\{\mathrm{B}, \mathrm{E}, \mathrm{~F}\} \\
\{\mathrm{L}, \mathrm{E}, \mathrm{~T}\} \\
\{\mathrm{A}, \mathrm{~T}\} \\
\{\mathrm{E}, \mathrm{X}\}
\end{gathered}
$$

Build the Clique Graph

Clique Graph

- Add an edge between C_{j} and C_{i} with weight $\left|C_{i} \cap C_{j}\right|>0$

Getting The Junction Tree

Run the Maximum Kruskal's Algorithm

Getting The Junction Tree

Finally

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees

The Junction Tree Concept

- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Potential as a product of probabilites

We can think on a clique as a place were the all the info is shared between variables

$$
x_{c_{1}}, \ldots, x_{c_{n}}
$$

Potential as a product of probabilites

We can think on a clique as a place were the all the info is shared between variables

$$
x_{c_{1}}, \ldots, x_{c_{n}}
$$

Thus, all they are independent between them

$$
P\left(x_{c_{1}}, \ldots, x_{c_{n}}\right)=\frac{1}{Z} \prod_{i=1}^{n} \varphi_{C}\left(x_{c_{i}}\right)
$$

Potential Representation for the Junction Tree

Then

- The joint probability distribution can now be represented in terms of potential functions, φ_{C}.
- This is defined in each clique and each separator

Potential Representation for the Junction Tree

Then

- The joint probability distribution can now be represented in terms of potential functions, φ_{C}.
- This is defined in each clique and each separator

The basic idea is to represent the joint probability distribution corresponding to any graph as a product of clique potentials

$$
P\left(x_{c_{1}}, \ldots, x_{c_{n}}\right)=\frac{1}{Z} \prod_{i=1}^{n} \varphi_{C}\left(x_{c_{i}}\right)=\frac{\prod_{i=1}^{n} \phi_{C}\left(x_{c_{i}}\right)}{\prod_{j=1}^{m} \psi_{S}\left(x_{s_{j}}\right)}
$$

where $\boldsymbol{x}=\left(x_{c_{1}}, \ldots, x_{c_{n}}\right)$ and each variable $x_{c_{i}}$ correspond to a clique and $x_{s_{j}}$ correspond to a separator.

Then

Main idea

- The idea is to transform one representation of the joint distribution to another in which for each clique, C, the potential function gives the marginal distribution for the variables in C, i.e.

$$
\phi_{C}\left(x_{c_{i}}\right)=P\left(x_{c_{i}}\right)
$$

- This will also apply for each separator, S.

We will have two potential functions

The ones for the Cliques

$$
\phi_{C}\left(x_{c_{i}}\right)
$$

We will have two potential functions

The ones for the Cliques

$$
\phi_{C}\left(x_{c_{i}}\right)
$$

The Other for the Separators

$$
\psi_{S}\left(x_{s_{i}}\right)
$$

This depends on local consistency

Local Consistency

- For each two adjacent cliques U, V and their separator $S=U \cap V$:

$$
\sum_{x_{U-S}} \phi_{U}\left(x_{s}, x_{U-S}\right)=\psi_{S}=\sum_{x_{V-S}} \phi_{V}\left(x_{s}, x_{V-S}\right)
$$

This depends on local consistency

Local Consistency

- For each two adjacent cliques U, V and their separator $S=U \cap V$:

$$
\sum_{x_{U-S}} \phi_{U}\left(x_{s}, x_{U-S}\right)=\psi_{S}=\sum_{x_{V-S}} \phi_{V}\left(x_{s}, x_{V-S}\right)
$$

And it is possible to prove that

$$
\begin{aligned}
p\left(x_{C}\right) & \propto \phi_{C} \\
p\left(x_{S}\right) & \propto \psi_{S}
\end{aligned}
$$

Support for this idea

Theorem

- Let probability $p(x)$ be represented by the clique potentials ϕ_{C} and separator potential ψ_{S}.

Support for this idea

Theorem

- Let probability $p(x)$ be represented by the clique potentials ϕ_{C} and separator potential ψ_{S}.

Then if the local consistence holds for each edge in the junction tree,

- Then, clique and separator are proportional to local marginal probabilities:

$$
\begin{aligned}
p\left(x_{C}\right) & \propto \phi_{C} \\
p\left(x_{S}\right) & \propto \psi_{S}
\end{aligned}
$$

Outline

（1）Introduction
－What do we want？

2）Belief Propagation
－The Intuition
－Inference on Trees
－The Messages
－The Implementation
（3）Junction Trees
The Junction Tree Concept
－Chordal Graphs
－Maximal Clique
－Tree Graphs
－Junction Tree Formal Definition
－Algorithm For Building Junction TreesExample
－Moralize the DAG
－Triangulate
－Listing of Cliques
－The Junction Tree Inference Algorithms
－Propagating Information in a Junction Tree
－Update
－Lemma of Propagation of Information
－Example
－Now，the Full Propagation
－Example of Propagation

Now, Initialization

To initialize the potential functions (Three Steps)

(1) Set all potentials to unity

Now, Initialization

To initialize the potential functions (Three Steps)

(1) Set all potentials to unity
(2) For each variable, x_{i}, select one node in the junction tree (i.e. one clique) containing both that variable and its parents, $p a\left(x_{i}\right)$, in the original DAG.

Now, Initialization

To initialize the potential functions (Three Steps)

(1) Set all potentials to unity
(2) For each variable, x_{i}, select one node in the junction tree (i.e. one clique) containing both that variable and its parents, $p a\left(x_{i}\right)$, in the original DAG.
(3) Multiply the potential by $P\left(x_{i} \mid p a\left(x_{i}\right)\right)$

For example, we have at the beginning $\phi_{B S L}=\phi_{B F L}=\phi_{L X}=1$, then using the pa

After Initialization $\phi_{B S L}=P(b \mid s) P(l \mid s) P(s)$

$$
\begin{aligned}
\phi_{B F L} & =P(f \mid b, l) \\
\phi_{L X} & =P(x \mid l)
\end{aligned}
$$

We finish with the following initial updates

$$
\phi_{B S L}=1 \times P(b \mid s) P(l \mid s) P(s)
$$

We finish with the following initial updates
$\phi_{B S L}=1 \times P(b \mid s) P(l \mid s) P(s)$

$\phi_{B F L}=1 \times P(f \mid b, l)$

Clique

Finally

$\phi_{L X}=1 \times P(x \mid l)$

Clique

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees

The Junction Tree Concept

- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Now, we need to define the concept of propagation of information

For this, we need to pass information through the separators

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree - Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Update Information in a Junction Tree

Passing Information using the separators

- Passing information from one clique C_{1} to another C_{2} via the separator in between them, S, requires two steps

Update Information in a Junction Tree

Passing Information using the separators

- Passing information from one clique C_{1} to another C_{2} via the separator in between them, S, requires two steps

First Step

- Obtain a new potential for S by marginalizing out the variables in C_{1} that are not in S :

$$
\psi_{S}^{*}=\sum_{C_{1}-S} \phi_{C_{1}}
$$

Propagating Information in a Junction Tree

Passing Messages in the Junction Tree

Obtain a new potential for C_{2} :

$$
\phi_{C_{2}}^{*}=\phi_{C_{2}} \lambda_{S}
$$

Propagating Information in a Junction Tree

Passing Messages in the Junction Tree

Obtain a new potential for C_{2} :

$$
\phi_{C_{2}}^{*}=\phi_{C_{2}} \lambda_{S}
$$

Where

$$
\lambda_{S}=\frac{\psi_{S}^{*}}{\psi_{S}}
$$

Outline

（1）Introduction

－What do we want？

2）Belief Propagation
－The Intuition
－Inference on Trees
－The Messages
－The Implementation
（3）Junction Trees
－The Junction Tree Concept
－Chordal Graphs
－Maximal Clique
－Tree Graphs
－Junction Tree Formal Definition
－Algorithm For Building Junction TreesExample
－Moralize the DAG
－Triangulate
－Listing of Cliques
－Potential Function
－The Junction Tree Inference Algorithms
－Propagating Information in a Junction Tree
－Update
－Lemma of Propagation of Information
－Example
－Now，the Full Propagation
－Example of Propagation

We have the following Leamma

Lemma. The Update functions satisfies the following properties

(1) The joint probability remains the same

$$
\frac{\phi_{C_{1}} \phi_{C_{2}}}{\psi_{S}}=\frac{\phi_{C_{1}}^{*} \phi_{C_{2}}^{*}}{\psi_{S}^{*}}
$$

(2) $\sum_{C_{1}-S} \phi_{C_{1}}^{*}=\psi_{S}^{*}$
(3) If $\sum_{C_{2}-S} \phi_{C_{2}}=\psi_{S}$ then also $\sum_{C_{2}-S} \phi_{C_{2}}^{*}=\psi_{S}^{*}$

Not only that

Corolary

- After UPDATE $\left(C_{1}, C_{2}\right)$ and UPDATE $\left(C_{2}, C_{1}\right)$ the local consistency holds for C_{1} and C_{2}.

Outline

I Introduction

－What do we want？

2）Belief Propagation
－The Intuition
－Inference on Trees
－The Messages
－The Implementation
（3）Junction Trees
－The Junction Tree Concept
－Chordal Graphs
－Maximal Clique
－Tree Graphs
－Junction Tree Formal Definition
－Algorithm For Building Junction TreesExample
－Moralize the DAG
－Triangulate
－Listing of Cliques
－Potential Function
－The Junction Tree Inference Algorithms
－Propagating Information in a Junction Tree
－Update
－Lemma of Propagation of Information
－Example
Now，the Full Propagation
－Example of Propagation

An Example

Consider a flow from the clique $\{B, S, L\}$ to $\{B, L, F\}$

An Example

Initial representation

$\phi_{B S L}=P(B \mid S) P(L \mid S) P(S)$		
	l_{1}	l_{2}
s_{1}, b_{1}	0.00015	0.04985
s_{1}, b_{2}	0.00045	0.14955
s_{2}, b_{1}	0.000002	0.039998
s_{2}, b_{2}	0.000038	0.759962

$\phi_{B L}=1$		
	l_{1}	l_{2}
b_{1}	1	1
b_{2}	1	1

$\phi_{B L F}=P(F \mid B, L) P(B) P(L)=P(F \mid B, L)$		
	l_{1}	l_{2}
f_{1}, b_{1}	0.75	0.1
f_{1}, b_{2}	0.5	0.05
f_{2}, b_{1}	0.25	0.9
f_{2}, b_{2}	0.5	0.95

After Flow

$\phi_{B S L}=P(B \mid S) P(L \mid S) P(S)$		
	l_{1}	l_{2}
s_{1}, b_{1}	0.00015	0.04985
s_{1}, b_{2}	0.00045	0.14955
s_{2}, b_{1}	0.000002	0.039998
s_{2}, b_{2}	0.000038	0.759962

$\phi_{B L}=1$		
	l_{1}	l_{2}
b_{1}	0.000152	0.089848
b_{2}	0.000488	0.909512

$\phi_{B L F}=P(F \mid B, L)$		
	l_{1}	l_{2}
f_{1}, b_{1}	0.000114	0.0089848
f_{1}, b_{2}	0.000244	0.0454756
f_{2}, b_{1}	0.000038	0.0808632
f_{2}, b_{2}	0.000244	0.8640364

Now Introduce Evidence

We have

A flow from the clique $C_{1}=\{B, S, L\}$ to $C_{2}=\{B, L, F\}$, but this time we he information that Joe is a smoker, $E=S=s_{1}$.

Now Introduce Evidence

We have

A flow from the clique $C_{1}=\{B, S, L\}$ to $C_{2}=\{B, L, F\}$, but this time we he information that Joe is a smoker, $E=S=s_{1}$.

For this, we can think on $H=V-E$

- If we assume \bar{x}_{E} is fixed (evidence):

$$
\tilde{\phi}_{C \cap H}\left(x_{C \cap H}\right)=\phi_{C}(\underbrace{x_{C \cap H}, \bar{x}_{C \cap E}}_{x_{C}})
$$

Slicing the Probabilities

This corresponds to taking a slice of the local function

$$
\phi_{X, Y}=\left[\begin{array}{ll}
0.12 & 0.08 \\
0.24 & 0.56
\end{array}\right]
$$

Slicing the Probabilities

This corresponds to taking a slice of the local function

$$
\phi_{X, Y}=\left[\begin{array}{ll}
0.12 & 0.08 \\
0.24 & 0.56
\end{array}\right]
$$

If $E=\{Y\}$ and $\bar{y}=1$, we get

Slicing the Probabilities

This corresponds to taking a slice of the local function

$$
\phi_{X, Y}=\left[\begin{array}{ll}
0.12 & 0.08 \\
0.24 & 0.56
\end{array}\right]
$$

If $E=\{Y\}$ and $\bar{y}=1$, we get

Properties

$$
\widetilde{\phi}_{Y}=\left[\begin{array}{l}
0.08 \\
0.56
\end{array}\right]
$$

Then

We have that

$$
p\left(x_{H} \mid \bar{x}_{E}\right)=\frac{p\left(x_{H}, \bar{x}_{E}\right)}{p\left(\bar{x}_{E}\right)}
$$

Then

We have that

$$
\begin{aligned}
p\left(x_{H} \mid \bar{x}_{E}\right) & =\frac{p\left(x_{H}, \bar{x}_{E}\right)}{p\left(\bar{x}_{E}\right)} \\
& =\frac{\frac{1}{z} \Pi_{C} \phi_{C}\left(x_{C \cap H}, \bar{x}_{C \cap E}\right)}{\sum_{H} \frac{1}{z} \Pi_{C} \phi_{C}\left(x_{C \cap H}, \bar{x}_{C \cap E}\right)}
\end{aligned}
$$

Then

We have that

$$
\begin{aligned}
p\left(x_{H} \mid \bar{x}_{E}\right) & =\frac{p\left(x_{H}, \bar{x}_{E}\right)}{p\left(\bar{x}_{E}\right)} \\
& =\frac{\frac{1}{z} \prod_{C} \phi_{C}\left(x_{C \cap H}, \bar{x}_{C \cap E}\right)}{\sum_{H} \frac{1}{z} \prod_{C} \phi_{C}\left(x_{C \cap H}, \bar{x}_{C \cap E}\right)} \\
& =\frac{\prod_{C} \widetilde{\phi}_{C \cap H}\left(x_{C \cap H}\right)}{\sum_{H} \prod_{C} \widetilde{\phi}_{C \cap H}\left(x_{C \cap H}\right)}
\end{aligned}
$$

Then

We have that

$$
\begin{aligned}
p\left(x_{H} \mid \bar{x}_{E}\right) & =\frac{p\left(x_{H}, \bar{x}_{E}\right)}{p\left(\bar{x}_{E}\right)} \\
& =\frac{\frac{1}{z} \prod_{C} \phi_{C}\left(x_{C \cap H}, \bar{x}_{C \cap E}\right)}{\sum_{H} \frac{1}{z} \prod_{C} \phi_{C}\left(x_{C \cap H}, \bar{x}_{C \cap E}\right)} \\
& =\frac{\prod_{C} \widetilde{\phi}_{C \cap H}\left(x_{C \cap H}\right)}{\sum_{H} \prod_{C} \widetilde{\phi}_{C \cap H}\left(x_{C \cap H}\right)} \\
& =\frac{1}{Z^{\prime}} \prod_{C} \widetilde{\phi}_{C \cap H}\left(x_{C \cap H}\right)
\end{aligned}
$$

Example

Example

Incorporation of Evidence

$\phi_{B S L}=P(B \mid S) P(L \mid S) P(S)$			$\phi_{B L}=1$			$\phi_{B L F}=P(F \mid B, L)$		
	l_{1}	l_{2}					l_{1}	l_{2}
s_{1}, b_{1}	0.00015	0.04985		l_{1}	l_{2}	f_{1}, b_{1}	0.75	0.1
s_{1}, b_{2}	0.00045	0.14955	b_{1}	1	1	f_{1}, b_{2}	0.5	0.05
s_{2}, b_{1}	0	0	b_{2}	1	1	f_{2}, b_{1}	0.25	0.9
s_{2}, b_{2}	0	0				f_{2}, b_{2}	0.5	0.95

An Example

After Flow

$\phi_{B S L}=P(B \mid S) P(L \mid S) P(S)$		
	l_{1}	l_{2}
s_{1}, b_{1}	0.00015	0.04985
s_{1}, b_{2}	0.00045	0.14955
s_{2}, b_{1}	0	0
s_{2}, b_{2}	0	0

$\phi_{B L}=1$		
	l_{1}	l_{2}
b_{1}	0.00015	0.04985
b_{2}	0.00045	0.14955

$\phi_{B L F}=P(F \mid B, L)$		
	l_{1}	l_{2}
f_{1}, b_{1}	0.0001125	0.004985
f_{1}, b_{2}	0.000245	0.0074775
f_{2}, b_{1}	0.0000375	0.044865
f_{2}, b_{2}	0.000255	0.1420725

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

The Full Propagation

Two phase propagation (Jensen et al, 1990)

(1) Select an arbitrary clique, C_{0}

The Full Propagation

Two phase propagation (Jensen et al, 1990)
(1) Select an arbitrary clique, C_{0}
(2) Collection Phase - flows passed from periphery to C_{0}

The Full Propagation

Two phase propagation (Jensen et al, 1990)
(1) Select an arbitrary clique, C_{0}
(2) Collection Phase - flows passed from periphery to C_{0}
(3) Distribution Phase - flows passed from C_{0} to periphery

Outline

(1) Introduction

- What do we want?

2) Belief Propagation

- The Intuition
- Inference on Trees
- The Messages
- The Implementation
(3) Junction Trees
- The Junction Tree Concept
- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction TreesExample
- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
- Example of Propagation

Example

Distribution

Example

Collection

The Full Propagation

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.

The Full Propagation

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

The Full Propagation

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

Now, some evidence E can be included before propagation

- By selecting a clique for each variable for which evidence is available.

The Full Propagation

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

Now, some evidence E can be included before propagation

- By selecting a clique for each variable for which evidence is available.
- The potential for the clique is then set to 0 for any configuration which differs from the evidence.

The Full Propagation

After propagation the result will be

$$
P(x, E)=\frac{\prod_{c \in C} \phi_{c}\left(x_{c}, E\right)}{\prod_{s \in S} \psi_{s}\left(x_{s}, E\right)}
$$

The Full Propagation

After propagation the result will be

$$
P(x, E)=\frac{\prod_{c \in C} \phi_{c}\left(x_{c}, E\right)}{\prod_{s \in S} \psi_{s}\left(x_{s}, E\right)}
$$

After normalization

$$
P(x \mid E)=\frac{\prod_{c \in C} \phi_{c}\left(x_{c} \mid E\right)}{\prod_{s \in S} \psi_{s}\left(x_{s} \mid E\right)}
$$

