
Introduction to Artificial Intelligence
Belief Propagation and Junction Trees

Andres Mendez-Vazquez

March 8, 2019

1 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

2 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

3 / 119

Introduction

We will be looking at the following algorithms
Pearl’s Belief Propagation Algorithm
Junction Tree Algorithm

Belief Propagation Algorithm
The algorithm was first proposed by Judea Pearl in 1982, who
formulated this algorithm on trees, and was later extended to
polytrees.

4 / 119

Introduction

We will be looking at the following algorithms
Pearl’s Belief Propagation Algorithm
Junction Tree Algorithm

Belief Propagation Algorithm
The algorithm was first proposed by Judea Pearl in 1982, who
formulated this algorithm on trees, and was later extended to
polytrees.

4 / 119

Introduction
We will be looking at the following algorithms

Pearl’s Belief Propagation Algorithm
Junction Tree Algorithm

Belief Propagation Algorithm
The algorithm was first proposed by Judea Pearl in 1982, who
formulated this algorithm on trees, and was later extended to
polytrees.

A

C D

B

E

F G H

I

4 / 119

Introduction

Something Notable
It has since been shown to be a useful approximate algorithm on
general graphs.

Junction Tree Algorithm
The junction tree algorithm (also known as ’Clique Tree’) is a method
used in machine learning to extract marginalization in general graphs.
it entails performing belief propagation on a modified graph called a
junction tree by cycle elimination

5 / 119

Introduction

Something Notable
It has since been shown to be a useful approximate algorithm on
general graphs.

Junction Tree Algorithm
The junction tree algorithm (also known as ’Clique Tree’) is a method
used in machine learning to extract marginalization in general graphs.
it entails performing belief propagation on a modified graph called a
junction tree by cycle elimination

5 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

6 / 119

Example

The Message Passing Stuff

7 / 119

Thus

We can do the following
To pass information from below and from above to a certain node V .

Thus
We call those messages

π from above.
λ from below.

8 / 119

Thus

We can do the following
To pass information from below and from above to a certain node V .

Thus
We call those messages

π from above.
λ from below.

8 / 119

Thus

We can do the following
To pass information from below and from above to a certain node V .

Thus
We call those messages

π from above.
λ from below.

8 / 119

Thus

We can do the following
To pass information from below and from above to a certain node V .

Thus
We call those messages

π from above.
λ from below.

8 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

9 / 119

Inference on Trees

Recall
A rooted tree is a DAG

Now
Let (G,P) be a Bayesian network whose DAG is a tree.
Let a be a set of values of a subset A ⊂ V .

For simplicity
Imagine that each node has two children.
The general case can be inferred from it.

10 / 119

Inference on Trees

Recall
A rooted tree is a DAG

Now
Let (G,P) be a Bayesian network whose DAG is a tree.
Let a be a set of values of a subset A ⊂ V .

For simplicity
Imagine that each node has two children.
The general case can be inferred from it.

10 / 119

Inference on Trees

Recall
A rooted tree is a DAG

Now
Let (G,P) be a Bayesian network whose DAG is a tree.
Let a be a set of values of a subset A ⊂ V .

For simplicity
Imagine that each node has two children.
The general case can be inferred from it.

10 / 119

Inference on Trees

Recall
A rooted tree is a DAG

Now
Let (G,P) be a Bayesian network whose DAG is a tree.
Let a be a set of values of a subset A ⊂ V .

For simplicity
Imagine that each node has two children.
The general case can be inferred from it.

10 / 119

Inference on Trees

Recall
A rooted tree is a DAG

Now
Let (G,P) be a Bayesian network whose DAG is a tree.
Let a be a set of values of a subset A ⊂ V .

For simplicity
Imagine that each node has two children.
The general case can be inferred from it.

10 / 119

Then

Let DX be the subset of A
Containing all members that are in the subtree rooted at X
Including X if X ∈ A

Let NX be the subset
Containing all members of A that are non-descendant’s of X.
This set includes X if X ∈ A

11 / 119

Then

Let DX be the subset of A
Containing all members that are in the subtree rooted at X
Including X if X ∈ A

Let NX be the subset
Containing all members of A that are non-descendant’s of X.
This set includes X if X ∈ A

11 / 119

Then

Let DX be the subset of A
Containing all members that are in the subtree rooted at X
Including X if X ∈ A

Let NX be the subset
Containing all members of A that are non-descendant’s of X.
This set includes X if X ∈ A

11 / 119

Then

Let DX be the subset of A
Containing all members that are in the subtree rooted at X
Including X if X ∈ A

Let NX be the subset
Containing all members of A that are non-descendant’s of X.
This set includes X if X ∈ A

11 / 119

Example

We have that A = NX ∪DX

A

X

12 / 119

Thus
We have for each value of x

P (x|A) = P (x|dX , nX)

= P (dX , nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX , x)P (x)
P (x)P (dX , nX)

= P (dX |x)P (x|nX)P (nX)
P (dX , nX) Here because d-speration if X /∈ A

= P (dX |x)P (x|nX)P (nX)
P (dX |nX)P (nX)

Note: You need to prove when X ∈ A

13 / 119

Thus
We have for each value of x

P (x|A) = P (x|dX , nX)

= P (dX , nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX , x)P (x)
P (x)P (dX , nX)

= P (dX |x)P (x|nX)P (nX)
P (dX , nX) Here because d-speration if X /∈ A

= P (dX |x)P (x|nX)P (nX)
P (dX |nX)P (nX)

Note: You need to prove when X ∈ A

13 / 119

Thus
We have for each value of x

P (x|A) = P (x|dX , nX)

= P (dX , nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX , x)P (x)
P (x)P (dX , nX)

= P (dX |x)P (x|nX)P (nX)
P (dX , nX) Here because d-speration if X /∈ A

= P (dX |x)P (x|nX)P (nX)
P (dX |nX)P (nX)

Note: You need to prove when X ∈ A

13 / 119

Thus
We have for each value of x

P (x|A) = P (x|dX , nX)

= P (dX , nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX , x)P (x)
P (x)P (dX , nX)

= P (dX |x)P (x|nX)P (nX)
P (dX , nX) Here because d-speration if X /∈ A

= P (dX |x)P (x|nX)P (nX)
P (dX |nX)P (nX)

Note: You need to prove when X ∈ A

13 / 119

Thus
We have for each value of x

P (x|A) = P (x|dX , nX)

= P (dX , nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX , x)P (x)
P (x)P (dX , nX)

= P (dX |x)P (x|nX)P (nX)
P (dX , nX) Here because d-speration if X /∈ A

= P (dX |x)P (x|nX)P (nX)
P (dX |nX)P (nX)

Note: You need to prove when X ∈ A

13 / 119

Thus
We have for each value of x

P (x|A) = P (x|dX , nX)

= P (dX , nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX , x)P (x)
P (x)P (dX , nX)

= P (dX |x)P (x|nX)P (nX)
P (dX , nX) Here because d-speration if X /∈ A

= P (dX |x)P (x|nX)P (nX)
P (dX |nX)P (nX)

Note: You need to prove when X ∈ A

13 / 119

Thus
We have for each value of x

P (x|A) = P (x|dX , nX)

= P (dX , nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX |x)P (x)
P (dX , nX)

= P (dX |x, nX)P (nX , x)P (x)
P (x)P (dX , nX)

= P (dX |x)P (x|nX)P (nX)
P (dX , nX) Here because d-speration if X /∈ A

= P (dX |x)P (x|nX)P (nX)
P (dX |nX)P (nX)

Note: You need to prove when X ∈ A

13 / 119

Thus

We have for each value of x

P (x|A) = P (dX |x)P (x|nX)
P (dX |nX)

= βP (dX |x)P (x|nX)

where β, the normalizing factor, is a constant not depending on x.

14 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

15 / 119

Now, we develop the messages

We want
λ (x) ' P (dX |x)
π (x) ' P (x|nX)

I Where ' means “proportional to”

Meaning
π(x) may not be equal to P (x|nX), but π(x) = k × P (x|nX).

Once, we have that

P (x|a) = αλ (x)π (x)

where α, the normalizing factor, is a constant not depending on x.

16 / 119

Now, we develop the messages

We want
λ (x) ' P (dX |x)
π (x) ' P (x|nX)

I Where ' means “proportional to”

Meaning
π(x) may not be equal to P (x|nX), but π(x) = k × P (x|nX).

Once, we have that

P (x|a) = αλ (x)π (x)

where α, the normalizing factor, is a constant not depending on x.

16 / 119

Now, we develop the messages

We want
λ (x) ' P (dX |x)
π (x) ' P (x|nX)

I Where ' means “proportional to”

Meaning
π(x) may not be equal to P (x|nX), but π(x) = k × P (x|nX).

Once, we have that

P (x|a) = αλ (x)π (x)

where α, the normalizing factor, is a constant not depending on x.

16 / 119

Now, we develop the messages

We want
λ (x) ' P (dX |x)
π (x) ' P (x|nX)

I Where ' means “proportional to”

Meaning
π(x) may not be equal to P (x|nX), but π(x) = k × P (x|nX).

Once, we have that

P (x|a) = αλ (x)π (x)

where α, the normalizing factor, is a constant not depending on x.

16 / 119

Now, we develop the messages

We want
λ (x) ' P (dX |x)
π (x) ' P (x|nX)

I Where ' means “proportional to”

Meaning
π(x) may not be equal to P (x|nX), but π(x) = k × P (x|nX).

Once, we have that

P (x|a) = αλ (x)π (x)

where α, the normalizing factor, is a constant not depending on x.

16 / 119

Now, we develop the messages

We want
λ (x) ' P (dX |x)
π (x) ' P (x|nX)

I Where ' means “proportional to”

Meaning
π(x) may not be equal to P (x|nX), but π(x) = k × P (x|nX).

Once, we have that

P (x|a) = αλ (x)π (x)

where α, the normalizing factor, is a constant not depending on x.

16 / 119

Developing λ (x)

We need
λ (x) ' P (dX |x)

Case 1: X ∈ A and X ∈ DX

Given any X = x̂, we have that for P (dX |x) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
λ (x̂) ≡ 1
λ (x) ≡ 0 for x 6= x̂

17 / 119

Developing λ (x)

We need
λ (x) ' P (dX |x)

Case 1: X ∈ A and X ∈ DX

Given any X = x̂, we have that for P (dX |x) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
λ (x̂) ≡ 1
λ (x) ≡ 0 for x 6= x̂

17 / 119

Developing λ (x)

We need
λ (x) ' P (dX |x)

Case 1: X ∈ A and X ∈ DX

Given any X = x̂, we have that for P (dX |x) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
λ (x̂) ≡ 1
λ (x) ≡ 0 for x 6= x̂

17 / 119

Developing λ (x)

We need
λ (x) ' P (dX |x)

Case 1: X ∈ A and X ∈ DX

Given any X = x̂, we have that for P (dX |x) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
λ (x̂) ≡ 1
λ (x) ≡ 0 for x 6= x̂

17 / 119

Now

Case 2: X /∈ A and X is a leaf
Then, dX = ∅ and

P (dX |x) = P (∅|x) = 1 for all values of x

Thus, to achieve proportionality, we can set

λ (x) ≡ 1 for all values of x

18 / 119

Now

Case 2: X /∈ A and X is a leaf
Then, dX = ∅ and

P (dX |x) = P (∅|x) = 1 for all values of x

Thus, to achieve proportionality, we can set

λ (x) ≡ 1 for all values of x

18 / 119

Finally

Case 3: X /∈ A and X is a non-leaf
Let Y be X’s left child, W be X’s right child.

Since X /∈ A

DX = DY ∪DW

19 / 119

Finally

Case 3: X /∈ A and X is a non-leaf
Let Y be X’s left child, W be X’s right child.

Since X /∈ A

DX = DY ∪DW

X

Y W

19 / 119

Thus
We have then

P (dX |x) = P (dY , dW |x)
= P (dY |x)P (dW |x) Because the d-separation at X
=
∑
y

P (dY , y|x)
∑
w

P (dW , w|x)

=
∑
y

P (y|x)P (dY |y)
∑
w

P (w|x)P (dW |w)

'
∑
y

P (y|x)λ (y)
∑
w

P (w|x)λ (w)

Thus, we can get proportionality by defining for all values of x
λY (x) =

∑
y P (y|x)λ (y)

λW (x) =
∑
w P (w|x)λ (w)

20 / 119

Thus
We have then

P (dX |x) = P (dY , dW |x)
= P (dY |x)P (dW |x) Because the d-separation at X
=
∑
y

P (dY , y|x)
∑
w

P (dW , w|x)

=
∑
y

P (y|x)P (dY |y)
∑
w

P (w|x)P (dW |w)

'
∑
y

P (y|x)λ (y)
∑
w

P (w|x)λ (w)

Thus, we can get proportionality by defining for all values of x
λY (x) =

∑
y P (y|x)λ (y)

λW (x) =
∑
w P (w|x)λ (w)

20 / 119

Thus
We have then

P (dX |x) = P (dY , dW |x)
= P (dY |x)P (dW |x) Because the d-separation at X
=
∑
y

P (dY , y|x)
∑
w

P (dW , w|x)

=
∑
y

P (y|x)P (dY |y)
∑
w

P (w|x)P (dW |w)

'
∑
y

P (y|x)λ (y)
∑
w

P (w|x)λ (w)

Thus, we can get proportionality by defining for all values of x
λY (x) =

∑
y P (y|x)λ (y)

λW (x) =
∑
w P (w|x)λ (w)

20 / 119

Thus
We have then

P (dX |x) = P (dY , dW |x)
= P (dY |x)P (dW |x) Because the d-separation at X
=
∑
y

P (dY , y|x)
∑
w

P (dW , w|x)

=
∑
y

P (y|x)P (dY |y)
∑
w

P (w|x)P (dW |w)

'
∑
y

P (y|x)λ (y)
∑
w

P (w|x)λ (w)

Thus, we can get proportionality by defining for all values of x
λY (x) =

∑
y P (y|x)λ (y)

λW (x) =
∑
w P (w|x)λ (w)

20 / 119

Thus
We have then

P (dX |x) = P (dY , dW |x)
= P (dY |x)P (dW |x) Because the d-separation at X
=
∑
y

P (dY , y|x)
∑
w

P (dW , w|x)

=
∑
y

P (y|x)P (dY |y)
∑
w

P (w|x)P (dW |w)

'
∑
y

P (y|x)λ (y)
∑
w

P (w|x)λ (w)

Thus, we can get proportionality by defining for all values of x
λY (x) =

∑
y P (y|x)λ (y)

λW (x) =
∑
w P (w|x)λ (w)

20 / 119

Thus
We have then

P (dX |x) = P (dY , dW |x)
= P (dY |x)P (dW |x) Because the d-separation at X
=
∑
y

P (dY , y|x)
∑
w

P (dW , w|x)

=
∑
y

P (y|x)P (dY |y)
∑
w

P (w|x)P (dW |w)

'
∑
y

P (y|x)λ (y)
∑
w

P (w|x)λ (w)

Thus, we can get proportionality by defining for all values of x
λY (x) =

∑
y P (y|x)λ (y)

λW (x) =
∑
w P (w|x)λ (w)

20 / 119

Thus
We have then

P (dX |x) = P (dY , dW |x)
= P (dY |x)P (dW |x) Because the d-separation at X
=
∑
y

P (dY , y|x)
∑
w

P (dW , w|x)

=
∑
y

P (y|x)P (dY |y)
∑
w

P (w|x)P (dW |w)

'
∑
y

P (y|x)λ (y)
∑
w

P (w|x)λ (w)

Thus, we can get proportionality by defining for all values of x
λY (x) =

∑
y P (y|x)λ (y)

λW (x) =
∑
w P (w|x)λ (w)

20 / 119

Thus

We have then

λ (x) = λY (x)λW (x) for all values x

21 / 119

Developing π (x)

We need
π (x) ' P (x|nX)

Case 1: X ∈ A and X ∈ NX

Given any X = x̂, we have:
P (x̂|nX) = P (x̂|x̂) = 1
P (x|nX) = P (x|x̂) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
π (x̂) ≡ 1
π (x) ≡ 0 for x 6= x̂

22 / 119

Developing π (x)

We need
π (x) ' P (x|nX)

Case 1: X ∈ A and X ∈ NX

Given any X = x̂, we have:
P (x̂|nX) = P (x̂|x̂) = 1
P (x|nX) = P (x|x̂) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
π (x̂) ≡ 1
π (x) ≡ 0 for x 6= x̂

22 / 119

Developing π (x)

We need
π (x) ' P (x|nX)

Case 1: X ∈ A and X ∈ NX

Given any X = x̂, we have:
P (x̂|nX) = P (x̂|x̂) = 1
P (x|nX) = P (x|x̂) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
π (x̂) ≡ 1
π (x) ≡ 0 for x 6= x̂

22 / 119

Developing π (x)

We need
π (x) ' P (x|nX)

Case 1: X ∈ A and X ∈ NX

Given any X = x̂, we have:
P (x̂|nX) = P (x̂|x̂) = 1
P (x|nX) = P (x|x̂) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
π (x̂) ≡ 1
π (x) ≡ 0 for x 6= x̂

22 / 119

Developing π (x)

We need
π (x) ' P (x|nX)

Case 1: X ∈ A and X ∈ NX

Given any X = x̂, we have:
P (x̂|nX) = P (x̂|x̂) = 1
P (x|nX) = P (x|x̂) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
π (x̂) ≡ 1
π (x) ≡ 0 for x 6= x̂

22 / 119

Developing π (x)

We need
π (x) ' P (x|nX)

Case 1: X ∈ A and X ∈ NX

Given any X = x̂, we have:
P (x̂|nX) = P (x̂|x̂) = 1
P (x|nX) = P (x|x̂) = 0 for x 6= x̂

Thus, to achieve proportionality, we can set
π (x̂) ≡ 1
π (x) ≡ 0 for x 6= x̂

22 / 119

Now

Case 2: X /∈ A and X is the root
In this specific case nX = ∅ or the empty set of random variables.

Then

P (x|nX) = P (x|∅) = P (x) for all values of x

Enforcing the proportionality, we get

π (x) ≡ P (x) for all values of x

23 / 119

Now

Case 2: X /∈ A and X is the root
In this specific case nX = ∅ or the empty set of random variables.

Then

P (x|nX) = P (x|∅) = P (x) for all values of x

Enforcing the proportionality, we get

π (x) ≡ P (x) for all values of x

23 / 119

Now

Case 2: X /∈ A and X is the root
In this specific case nX = ∅ or the empty set of random variables.

Then

P (x|nX) = P (x|∅) = P (x) for all values of x

Enforcing the proportionality, we get

π (x) ≡ P (x) for all values of x

23 / 119

Then

Case 3: X /∈ A and X is not the root
Without loss of generality assume X is Z’s right child and T is the Z’s left
child

Then, NX = NZ ∪DT

24 / 119

Then
Case 3: X /∈ A and X is not the root
Without loss of generality assume X is Z’s right child and T is the Z’s left
child

Then, NX = NZ ∪DT

Z

T X

24 / 119

Then

We have

P (x|nX) =
∑

z

P (x|z) P (z|nX)

=
∑

z

P (x|z) P (z|nZ , dT)

=
∑

z

P (x|z) P (z, nZ , dT)
P (nZ , dT)

=
∑

z

P (x|z) P (dT , z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z, nZ) P (z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z) P (z|nZ) P (nZ)
P (nZ , dT) Again the d-separation for z

25 / 119

Then

We have

P (x|nX) =
∑

z

P (x|z) P (z|nX)

=
∑

z

P (x|z) P (z|nZ , dT)

=
∑

z

P (x|z) P (z, nZ , dT)
P (nZ , dT)

=
∑

z

P (x|z) P (dT , z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z, nZ) P (z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z) P (z|nZ) P (nZ)
P (nZ , dT) Again the d-separation for z

25 / 119

Then

We have

P (x|nX) =
∑

z

P (x|z) P (z|nX)

=
∑

z

P (x|z) P (z|nZ , dT)

=
∑

z

P (x|z) P (z, nZ , dT)
P (nZ , dT)

=
∑

z

P (x|z) P (dT , z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z, nZ) P (z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z) P (z|nZ) P (nZ)
P (nZ , dT) Again the d-separation for z

25 / 119

Then

We have

P (x|nX) =
∑

z

P (x|z) P (z|nX)

=
∑

z

P (x|z) P (z|nZ , dT)

=
∑

z

P (x|z) P (z, nZ , dT)
P (nZ , dT)

=
∑

z

P (x|z) P (dT , z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z, nZ) P (z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z) P (z|nZ) P (nZ)
P (nZ , dT) Again the d-separation for z

25 / 119

Then

We have

P (x|nX) =
∑

z

P (x|z) P (z|nX)

=
∑

z

P (x|z) P (z|nZ , dT)

=
∑

z

P (x|z) P (z, nZ , dT)
P (nZ , dT)

=
∑

z

P (x|z) P (dT , z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z, nZ) P (z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z) P (z|nZ) P (nZ)
P (nZ , dT) Again the d-separation for z

25 / 119

Then

We have

P (x|nX) =
∑

z

P (x|z) P (z|nX)

=
∑

z

P (x|z) P (z|nZ , dT)

=
∑

z

P (x|z) P (z, nZ , dT)
P (nZ , dT)

=
∑

z

P (x|z) P (dT , z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z, nZ) P (z|nZ) P (nZ)
P (nZ , dT)

=
∑

z

P (x|z) P (dT |z) P (z|nZ) P (nZ)
P (nZ , dT) Again the d-separation for z

25 / 119

Last Step
We have

P (x|nX) =
∑
z

P (x|z) P (z|nZ)P (nZ)P (dT |z)
P (nZ , dT)

= γ
∑
z

P (x|z)π (z)λT (z)

where γ = P (nZ)
P (nZ ,dT)

Thus, we can achieve proportionality by

πX (z) ≡ π (z)λT (z)

Then, setting

π (x) ≡
∑
z

P (x|z)πX (z) for all values of x

26 / 119

Last Step
We have

P (x|nX) =
∑
z

P (x|z) P (z|nZ)P (nZ)P (dT |z)
P (nZ , dT)

= γ
∑
z

P (x|z)π (z)λT (z)

where γ = P (nZ)
P (nZ ,dT)

Thus, we can achieve proportionality by

πX (z) ≡ π (z)λT (z)

Then, setting

π (x) ≡
∑
z

P (x|z)πX (z) for all values of x

26 / 119

Last Step
We have

P (x|nX) =
∑
z

P (x|z) P (z|nZ)P (nZ)P (dT |z)
P (nZ , dT)

= γ
∑
z

P (x|z)π (z)λT (z)

where γ = P (nZ)
P (nZ ,dT)

Thus, we can achieve proportionality by

πX (z) ≡ π (z)λT (z)

Then, setting

π (x) ≡
∑
z

P (x|z)πX (z) for all values of x

26 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

27 / 119

How do we implement this?
We require the following functions

initial_tree
update-tree

intial_tree has the following input and outputs
Input: ((G,P), A, a, P (x|a))

Output: After this call A and a are both empty making P (x|a) the
prior probability of x.

Then each time a variable V is instantiated for v̂ the routine
update-tree is called

Input: ((G,P), A, a, V , v̂, P (x|a))
Output: After this call V has been added to A, v̂ has been added to a

and for every value of x, P (x|a) has been updated to be the
conditional probability of x given the new a.

28 / 119

How do we implement this?
We require the following functions

initial_tree
update-tree

intial_tree has the following input and outputs
Input: ((G,P), A, a, P (x|a))

Output: After this call A and a are both empty making P (x|a) the
prior probability of x.

Then each time a variable V is instantiated for v̂ the routine
update-tree is called

Input: ((G,P), A, a, V , v̂, P (x|a))
Output: After this call V has been added to A, v̂ has been added to a

and for every value of x, P (x|a) has been updated to be the
conditional probability of x given the new a.

28 / 119

How do we implement this?
We require the following functions

initial_tree
update-tree

intial_tree has the following input and outputs
Input: ((G,P), A, a, P (x|a))

Output: After this call A and a are both empty making P (x|a) the
prior probability of x.

Then each time a variable V is instantiated for v̂ the routine
update-tree is called

Input: ((G,P), A, a, V , v̂, P (x|a))
Output: After this call V has been added to A, v̂ has been added to a

and for every value of x, P (x|a) has been updated to be the
conditional probability of x given the new a.

28 / 119

Algorithm: Inference-in-trees

Problem
Given a Bayesian network whose DAG is a tree, determine the probabilities
of the values of each node conditional on specified values of the nodes in
some subset.

Input
Bayesian network (G,P) whose DAG is a tree, where G = (V,E), and a
set of values a of a subset A ⊆ V.

Output
The Bayesian network (G,P) updated according to the values in a. The λ
and π values and messages and P (x|a) for each X∈V are considered part
of the network.

29 / 119

Algorithm: Inference-in-trees

Problem
Given a Bayesian network whose DAG is a tree, determine the probabilities
of the values of each node conditional on specified values of the nodes in
some subset.

Input
Bayesian network (G,P) whose DAG is a tree, where G = (V,E), and a
set of values a of a subset A ⊆ V.

Output
The Bayesian network (G,P) updated according to the values in a. The λ
and π values and messages and P (x|a) for each X∈V are considered part
of the network.

29 / 119

Algorithm: Inference-in-trees

Problem
Given a Bayesian network whose DAG is a tree, determine the probabilities
of the values of each node conditional on specified values of the nodes in
some subset.

Input
Bayesian network (G,P) whose DAG is a tree, where G = (V,E), and a
set of values a of a subset A ⊆ V.

Output
The Bayesian network (G,P) updated according to the values in a. The λ
and π values and messages and P (x|a) for each X∈V are considered part
of the network.

29 / 119

Initializing the tree
void initial_tree

input: (Bayesian-network& (G, P) where G = (V,E), set-of-variables& A,
set-of-variable-values& a)

1 A = ∅
2 a = ∅
3 for (each X∈V)
4 for (each value x of X)
5 λ (x) = 1 // Compute λ values.
6 for (the parent Z of X) // Does nothing if X is the a root.
7 for (each value z of Z)
8 λX (z) = 1 // Compute λ messages.
9 for (each value r of the root R)
10 P (r|a) = P (r) // Compute P (r|a).
11 π (r) = P (r) // Compute R’s π values.
12 for (each child X of R)
13 send_π_msg(R,X)

30 / 119

Initializing the tree
void initial_tree

input: (Bayesian-network& (G, P) where G = (V,E), set-of-variables& A,
set-of-variable-values& a)

1 A = ∅
2 a = ∅
3 for (each X∈V)
4 for (each value x of X)
5 λ (x) = 1 // Compute λ values.
6 for (the parent Z of X) // Does nothing if X is the a root.
7 for (each value z of Z)
8 λX (z) = 1 // Compute λ messages.
9 for (each value r of the root R)
10 P (r|a) = P (r) // Compute P (r|a).
11 π (r) = P (r) // Compute R’s π values.
12 for (each child X of R)
13 send_π_msg(R,X)

30 / 119

Initializing the tree
void initial_tree

input: (Bayesian-network& (G, P) where G = (V,E), set-of-variables& A,
set-of-variable-values& a)

1 A = ∅
2 a = ∅
3 for (each X∈V)
4 for (each value x of X)
5 λ (x) = 1 // Compute λ values.
6 for (the parent Z of X) // Does nothing if X is the a root.
7 for (each value z of Z)
8 λX (z) = 1 // Compute λ messages.
9 for (each value r of the root R)
10 P (r|a) = P (r) // Compute P (r|a).
11 π (r) = P (r) // Compute R’s π values.
12 for (each child X of R)
13 send_π_msg(R,X)

30 / 119

Initializing the tree
void initial_tree

input: (Bayesian-network& (G, P) where G = (V,E), set-of-variables& A,
set-of-variable-values& a)

1 A = ∅
2 a = ∅
3 for (each X∈V)
4 for (each value x of X)
5 λ (x) = 1 // Compute λ values.
6 for (the parent Z of X) // Does nothing if X is the a root.
7 for (each value z of Z)
8 λX (z) = 1 // Compute λ messages.
9 for (each value r of the root R)
10 P (r|a) = P (r) // Compute P (r|a).
11 π (r) = P (r) // Compute R’s π values.
12 for (each child X of R)
13 send_π_msg(R,X)

30 / 119

Initializing the tree
void initial_tree

input: (Bayesian-network& (G, P) where G = (V,E), set-of-variables& A,
set-of-variable-values& a)

1 A = ∅
2 a = ∅
3 for (each X∈V)
4 for (each value x of X)
5 λ (x) = 1 // Compute λ values.
6 for (the parent Z of X) // Does nothing if X is the a root.
7 for (each value z of Z)
8 λX (z) = 1 // Compute λ messages.
9 for (each value r of the root R)
10 P (r|a) = P (r) // Compute P (r|a).
11 π (r) = P (r) // Compute R’s π values.
12 for (each child X of R)
13 send_π_msg(R,X)

30 / 119

Initializing the tree
void initial_tree

input: (Bayesian-network& (G, P) where G = (V,E), set-of-variables& A,
set-of-variable-values& a)

1 A = ∅
2 a = ∅
3 for (each X∈V)
4 for (each value x of X)
5 λ (x) = 1 // Compute λ values.
6 for (the parent Z of X) // Does nothing if X is the a root.
7 for (each value z of Z)
8 λX (z) = 1 // Compute λ messages.
9 for (each value r of the root R)
10 P (r|a) = P (r) // Compute P (r|a).
11 π (r) = P (r) // Compute R’s π values.
12 for (each child X of R)
13 send_π_msg(R,X)

30 / 119

Updating the tree

void update_tree
Input: (Bayesian-network& (G, P) where G = (V, E), set-of-variables&

A, set-of-variable-values& a, variable V , variable-value v̂)

1 A = A∪{V }, a= a∪{v̂}, λ (v̂) = 1, π (v̂) = 1, P (v̂|a) = 1 // Add V
to A and instantiate V to v̂

2 a = ∅
3 for (each value of v 6= v̂)
4 λ (v) = 0, π (v) = 0, P (v|a) = 0
5 if (V is not the root && V ’s parent Z /∈A)
6 send_λ_msg(V,Z)
7 for (each child X of V such that X /∈A))
8 send_π_msg(V,X)

31 / 119

Updating the tree

void update_tree
Input: (Bayesian-network& (G, P) where G = (V, E), set-of-variables&

A, set-of-variable-values& a, variable V , variable-value v̂)

1 A = A∪{V }, a= a∪{v̂}, λ (v̂) = 1, π (v̂) = 1, P (v̂|a) = 1 // Add V
to A and instantiate V to v̂

2 a = ∅
3 for (each value of v 6= v̂)
4 λ (v) = 0, π (v) = 0, P (v|a) = 0
5 if (V is not the root && V ’s parent Z /∈A)
6 send_λ_msg(V,Z)
7 for (each child X of V such that X /∈A))
8 send_π_msg(V,X)

31 / 119

Updating the tree

void update_tree
Input: (Bayesian-network& (G, P) where G = (V, E), set-of-variables&

A, set-of-variable-values& a, variable V , variable-value v̂)

1 A = A∪{V }, a= a∪{v̂}, λ (v̂) = 1, π (v̂) = 1, P (v̂|a) = 1 // Add V
to A and instantiate V to v̂

2 a = ∅
3 for (each value of v 6= v̂)
4 λ (v) = 0, π (v) = 0, P (v|a) = 0
5 if (V is not the root && V ’s parent Z /∈A)
6 send_λ_msg(V,Z)
7 for (each child X of V such that X /∈A))
8 send_π_msg(V,X)

31 / 119

Updating the tree

void update_tree
Input: (Bayesian-network& (G, P) where G = (V, E), set-of-variables&

A, set-of-variable-values& a, variable V , variable-value v̂)

1 A = A∪{V }, a= a∪{v̂}, λ (v̂) = 1, π (v̂) = 1, P (v̂|a) = 1 // Add V
to A and instantiate V to v̂

2 a = ∅
3 for (each value of v 6= v̂)
4 λ (v) = 0, π (v) = 0, P (v|a) = 0
5 if (V is not the root && V ’s parent Z /∈A)
6 send_λ_msg(V,Z)
7 for (each child X of V such that X /∈A))
8 send_π_msg(V,X)

31 / 119

Updating the tree

void update_tree
Input: (Bayesian-network& (G, P) where G = (V, E), set-of-variables&

A, set-of-variable-values& a, variable V , variable-value v̂)

1 A = A∪{V }, a= a∪{v̂}, λ (v̂) = 1, π (v̂) = 1, P (v̂|a) = 1 // Add V
to A and instantiate V to v̂

2 a = ∅
3 for (each value of v 6= v̂)
4 λ (v) = 0, π (v) = 0, P (v|a) = 0
5 if (V is not the root && V ’s parent Z /∈A)
6 send_λ_msg(V,Z)
7 for (each child X of V such that X /∈A))
8 send_π_msg(V,X)

31 / 119

Updating the tree

void update_tree
Input: (Bayesian-network& (G, P) where G = (V, E), set-of-variables&

A, set-of-variable-values& a, variable V , variable-value v̂)

1 A = A∪{V }, a= a∪{v̂}, λ (v̂) = 1, π (v̂) = 1, P (v̂|a) = 1 // Add V
to A and instantiate V to v̂

2 a = ∅
3 for (each value of v 6= v̂)
4 λ (v) = 0, π (v) = 0, P (v|a) = 0
5 if (V is not the root && V ’s parent Z /∈A)
6 send_λ_msg(V,Z)
7 for (each child X of V such that X /∈A))
8 send_π_msg(V,X)

31 / 119

Sending the λ message

void send_λ_msg(node Y , node X)
Note: For simplicity (G, P) is not shown as input.

1 for (each value of x)
2 λY (x) =

∑
y P (y|x)λ (y) // Y sends X a λ message

3 λ (x) =
∏
U∈CHX

λU (x) // Compute X ′s λ values
4 P (x|a) = αλ (x)π (x) // Compute P (x|a)
5 normalize P (x|a)
6 if (X is not the root and X ′s parent Z /∈A)
7 send_λ_msg(X,Z)
8 for (each child W of X such that W 6= Y and W ∈A))
9 send_π_msg(X,W)

32 / 119

Sending the λ message

void send_λ_msg(node Y , node X)
Note: For simplicity (G, P) is not shown as input.

1 for (each value of x)
2 λY (x) =

∑
y P (y|x)λ (y) // Y sends X a λ message

3 λ (x) =
∏
U∈CHX

λU (x) // Compute X ′s λ values
4 P (x|a) = αλ (x)π (x) // Compute P (x|a)
5 normalize P (x|a)
6 if (X is not the root and X ′s parent Z /∈A)
7 send_λ_msg(X,Z)
8 for (each child W of X such that W 6= Y and W ∈A))
9 send_π_msg(X,W)

32 / 119

Sending the λ message

void send_λ_msg(node Y , node X)
Note: For simplicity (G, P) is not shown as input.

1 for (each value of x)
2 λY (x) =

∑
y P (y|x)λ (y) // Y sends X a λ message

3 λ (x) =
∏
U∈CHX

λU (x) // Compute X ′s λ values
4 P (x|a) = αλ (x)π (x) // Compute P (x|a)
5 normalize P (x|a)
6 if (X is not the root and X ′s parent Z /∈A)
7 send_λ_msg(X,Z)
8 for (each child W of X such that W 6= Y and W ∈A))
9 send_π_msg(X,W)

32 / 119

Sending the λ message

void send_λ_msg(node Y , node X)
Note: For simplicity (G, P) is not shown as input.

1 for (each value of x)
2 λY (x) =

∑
y P (y|x)λ (y) // Y sends X a λ message

3 λ (x) =
∏
U∈CHX

λU (x) // Compute X ′s λ values
4 P (x|a) = αλ (x)π (x) // Compute P (x|a)
5 normalize P (x|a)
6 if (X is not the root and X ′s parent Z /∈A)
7 send_λ_msg(X,Z)
8 for (each child W of X such that W 6= Y and W ∈A))
9 send_π_msg(X,W)

32 / 119

Sending the π message

void send_π_msg(node Z , node X)
Note: For simplicity (G, P) is not shown as input.

1 for (each value of z)
2 πX (z) = π (z)

∏
Y ∈CHZ−{X} λY (z) // Z sends X a π

message
3 for (each value of x)
4 π (x) =

∑
z P (x|z)πX (z) // ComputeX ′s π values

5 P (x|a) = αλ (x)π (x) // Compute P (x|a)
6 normalize P (x|a)
7 for (each child Y of X such that Y /∈A))
8 send_π_msg(X,Y)

33 / 119

Sending the π message

void send_π_msg(node Z , node X)
Note: For simplicity (G, P) is not shown as input.

1 for (each value of z)
2 πX (z) = π (z)

∏
Y ∈CHZ−{X} λY (z) // Z sends X a π

message
3 for (each value of x)
4 π (x) =

∑
z P (x|z)πX (z) // ComputeX ′s π values

5 P (x|a) = αλ (x)π (x) // Compute P (x|a)
6 normalize P (x|a)
7 for (each child Y of X such that Y /∈A))
8 send_π_msg(X,Y)

33 / 119

Sending the π message

void send_π_msg(node Z , node X)
Note: For simplicity (G, P) is not shown as input.

1 for (each value of z)
2 πX (z) = π (z)

∏
Y ∈CHZ−{X} λY (z) // Z sends X a π

message
3 for (each value of x)
4 π (x) =

∑
z P (x|z)πX (z) // ComputeX ′s π values

5 P (x|a) = αλ (x)π (x) // Compute P (x|a)
6 normalize P (x|a)
7 for (each child Y of X such that Y /∈A))
8 send_π_msg(X,Y)

33 / 119

Example of Tree Initialization

We have then

34 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

We have then
A=∅, a=∅

Compute λ values
λ(h1) = 1;λ(h2) = 1;
λ(b1) = 1;λ(b2) = 1;
λ(l1) = 1;λ(l2) = 1;
λ(c1) = 1;λ(c2) = 1;

Compute λv messages
λB(h1) = 1;λB(h2) = 1;
λL(h1) = 1;λL(h2) = 1;
λC(l1) = 1;λC(l2) = 1;

35 / 119

Calling initial_tree((G, P), A, a)

Compute P (h|∅)
P (h1|∅) = P (h1) = 0.2
P (h2|∅) = P (h2) = 0.8

Compute H’s π values
π(h1) = P (h1) = 0.2
π(h2) = P (h2) = 0.8

Send messages
send_π_msg(H,B)
send_π_msg(H,L)

36 / 119

Calling initial_tree((G, P), A, a)

Compute P (h|∅)
P (h1|∅) = P (h1) = 0.2
P (h2|∅) = P (h2) = 0.8

Compute H’s π values
π(h1) = P (h1) = 0.2
π(h2) = P (h2) = 0.8

Send messages
send_π_msg(H,B)
send_π_msg(H,L)

36 / 119

Calling initial_tree((G, P), A, a)

Compute P (h|∅)
P (h1|∅) = P (h1) = 0.2
P (h2|∅) = P (h2) = 0.8

Compute H’s π values
π(h1) = P (h1) = 0.2
π(h2) = P (h2) = 0.8

Send messages
send_π_msg(H,B)
send_π_msg(H,L)

36 / 119

Calling initial_tree((G, P), A, a)

Compute P (h|∅)
P (h1|∅) = P (h1) = 0.2
P (h2|∅) = P (h2) = 0.8

Compute H’s π values
π(h1) = P (h1) = 0.2
π(h2) = P (h2) = 0.8

Send messages
send_π_msg(H,B)
send_π_msg(H,L)

36 / 119

Calling initial_tree((G, P), A, a)

Compute P (h|∅)
P (h1|∅) = P (h1) = 0.2
P (h2|∅) = P (h2) = 0.8

Compute H’s π values
π(h1) = P (h1) = 0.2
π(h2) = P (h2) = 0.8

Send messages
send_π_msg(H,B)
send_π_msg(H,L)

36 / 119

Calling initial_tree((G, P), A, a)

Compute P (h|∅)
P (h1|∅) = P (h1) = 0.2
P (h2|∅) = P (h2) = 0.8

Compute H’s π values
π(h1) = P (h1) = 0.2
π(h2) = P (h2) = 0.8

Send messages
send_π_msg(H,B)
send_π_msg(H,L)

36 / 119

The call send_π_msg(H,B)

H sends B a π message
πB(h1) = π(h1)λL(h1) = 0.2× 1 = 0.2
πB(h2) = π(h2)λL(h2) = 0.8× 1 = 0.8

Compute B’s π values

π (b1) = P (b1|h1)πB (h1) + P (b1|h2)πB (h2)
= (0.25) (0.2) + (0.05) (0.8) = 0.09

π (b2) = P (b2|h1)πB (h1) + P (b2|h2)πB (h2)
= (0.75) (0.2) + (0.95) (0.8) = 0.91

37 / 119

The call send_π_msg(H,B)

H sends B a π message
πB(h1) = π(h1)λL(h1) = 0.2× 1 = 0.2
πB(h2) = π(h2)λL(h2) = 0.8× 1 = 0.8

Compute B’s π values

π (b1) = P (b1|h1)πB (h1) + P (b1|h2)πB (h2)
= (0.25) (0.2) + (0.05) (0.8) = 0.09

π (b2) = P (b2|h1)πB (h1) + P (b2|h2)πB (h2)
= (0.75) (0.2) + (0.95) (0.8) = 0.91

37 / 119

The call send_π_msg(H,B)

H sends B a π message
πB(h1) = π(h1)λL(h1) = 0.2× 1 = 0.2
πB(h2) = π(h2)λL(h2) = 0.8× 1 = 0.8

Compute B’s π values

π (b1) = P (b1|h1)πB (h1) + P (b1|h2)πB (h2)
= (0.25) (0.2) + (0.05) (0.8) = 0.09

π (b2) = P (b2|h1)πB (h1) + P (b2|h2)πB (h2)
= (0.75) (0.2) + (0.95) (0.8) = 0.91

37 / 119

The call send_π_msg(H,B)

H sends B a π message
πB(h1) = π(h1)λL(h1) = 0.2× 1 = 0.2
πB(h2) = π(h2)λL(h2) = 0.8× 1 = 0.8

Compute B’s π values

π (b1) = P (b1|h1)πB (h1) + P (b1|h2)πB (h2)
= (0.25) (0.2) + (0.05) (0.8) = 0.09

π (b2) = P (b2|h1)πB (h1) + P (b2|h2)πB (h2)
= (0.75) (0.2) + (0.95) (0.8) = 0.91

37 / 119

The call send_π_msg(H,B)

H sends B a π message
πB(h1) = π(h1)λL(h1) = 0.2× 1 = 0.2
πB(h2) = π(h2)λL(h2) = 0.8× 1 = 0.8

Compute B’s π values

π (b1) = P (b1|h1)πB (h1) + P (b1|h2)πB (h2)
= (0.25) (0.2) + (0.05) (0.8) = 0.09

π (b2) = P (b2|h1)πB (h1) + P (b2|h2)πB (h2)
= (0.75) (0.2) + (0.95) (0.8) = 0.91

37 / 119

The call send_π_msg(H,B)

H sends B a π message
πB(h1) = π(h1)λL(h1) = 0.2× 1 = 0.2
πB(h2) = π(h2)λL(h2) = 0.8× 1 = 0.8

Compute B’s π values

π (b1) = P (b1|h1)πB (h1) + P (b1|h2)πB (h2)
= (0.25) (0.2) + (0.05) (0.8) = 0.09

π (b2) = P (b2|h1)πB (h1) + P (b2|h2)πB (h2)
= (0.75) (0.2) + (0.95) (0.8) = 0.91

37 / 119

The call send_π_msg(H,B)

Compute P (b|∅)
P (b1|∅) = αλ (b1)π (b1) = α (1) (0.09) = 0.09α
P (b2|∅) = αλ (b2)π (b2) = α (1) (0.91) = 0.91α

Then, normalize

P (b1|∅) = 0.09α
0.09α+ 0.91α = 0.09

P (b2|∅) = 0.91α
0.09α+ 0.91α = 0.91

38 / 119

The call send_π_msg(H,B)

Compute P (b|∅)
P (b1|∅) = αλ (b1)π (b1) = α (1) (0.09) = 0.09α
P (b2|∅) = αλ (b2)π (b2) = α (1) (0.91) = 0.91α

Then, normalize

P (b1|∅) = 0.09α
0.09α+ 0.91α = 0.09

P (b2|∅) = 0.91α
0.09α+ 0.91α = 0.91

38 / 119

The call send_π_msg(H,B)

Compute P (b|∅)
P (b1|∅) = αλ (b1)π (b1) = α (1) (0.09) = 0.09α
P (b2|∅) = αλ (b2)π (b2) = α (1) (0.91) = 0.91α

Then, normalize

P (b1|∅) = 0.09α
0.09α+ 0.91α = 0.09

P (b2|∅) = 0.91α
0.09α+ 0.91α = 0.91

38 / 119

The call send_π_msg(H,B)

Compute P (b|∅)
P (b1|∅) = αλ (b1)π (b1) = α (1) (0.09) = 0.09α
P (b2|∅) = αλ (b2)π (b2) = α (1) (0.91) = 0.91α

Then, normalize

P (b1|∅) = 0.09α
0.09α+ 0.91α = 0.09

P (b2|∅) = 0.91α
0.09α+ 0.91α = 0.91

38 / 119

Send the call send_π_msg(H,L)
H sends L a π message

πL (h1) = π (h1)λB (h1) = (0.2) (1) = 0.2
πL (h2) = π (h2)λB (h2) = (0.8) (1) = 0.8

Compute L′s π values

π (l1) = P (l1|h1)πL (h1) + P (l1|h2)πL (h2)
= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

π (l2) = P (l2|h1)πB (h1) + P (l2|h2)πB (h2)
= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute P (l|∅)
P (l1|∅) = αλ (l1)π (l1) = α (1) (0.00064) = 0.00064α
P (l2|∅) = αλ (l2)π (l2) = α (1) (0.99936) = 0.99936α

39 / 119

Send the call send_π_msg(H,L)
H sends L a π message

πL (h1) = π (h1)λB (h1) = (0.2) (1) = 0.2
πL (h2) = π (h2)λB (h2) = (0.8) (1) = 0.8

Compute L′s π values

π (l1) = P (l1|h1)πL (h1) + P (l1|h2)πL (h2)
= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

π (l2) = P (l2|h1)πB (h1) + P (l2|h2)πB (h2)
= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute P (l|∅)
P (l1|∅) = αλ (l1)π (l1) = α (1) (0.00064) = 0.00064α
P (l2|∅) = αλ (l2)π (l2) = α (1) (0.99936) = 0.99936α

39 / 119

Send the call send_π_msg(H,L)
H sends L a π message

πL (h1) = π (h1)λB (h1) = (0.2) (1) = 0.2
πL (h2) = π (h2)λB (h2) = (0.8) (1) = 0.8

Compute L′s π values

π (l1) = P (l1|h1)πL (h1) + P (l1|h2)πL (h2)
= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

π (l2) = P (l2|h1)πB (h1) + P (l2|h2)πB (h2)
= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute P (l|∅)
P (l1|∅) = αλ (l1)π (l1) = α (1) (0.00064) = 0.00064α
P (l2|∅) = αλ (l2)π (l2) = α (1) (0.99936) = 0.99936α

39 / 119

Send the call send_π_msg(H,L)
H sends L a π message

πL (h1) = π (h1)λB (h1) = (0.2) (1) = 0.2
πL (h2) = π (h2)λB (h2) = (0.8) (1) = 0.8

Compute L′s π values

π (l1) = P (l1|h1)πL (h1) + P (l1|h2)πL (h2)
= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

π (l2) = P (l2|h1)πB (h1) + P (l2|h2)πB (h2)
= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute P (l|∅)
P (l1|∅) = αλ (l1)π (l1) = α (1) (0.00064) = 0.00064α
P (l2|∅) = αλ (l2)π (l2) = α (1) (0.99936) = 0.99936α

39 / 119

Send the call send_π_msg(H,L)
H sends L a π message

πL (h1) = π (h1)λB (h1) = (0.2) (1) = 0.2
πL (h2) = π (h2)λB (h2) = (0.8) (1) = 0.8

Compute L′s π values

π (l1) = P (l1|h1)πL (h1) + P (l1|h2)πL (h2)
= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

π (l2) = P (l2|h1)πB (h1) + P (l2|h2)πB (h2)
= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute P (l|∅)
P (l1|∅) = αλ (l1)π (l1) = α (1) (0.00064) = 0.00064α
P (l2|∅) = αλ (l2)π (l2) = α (1) (0.99936) = 0.99936α

39 / 119

Send the call send_π_msg(H,L)
H sends L a π message

πL (h1) = π (h1)λB (h1) = (0.2) (1) = 0.2
πL (h2) = π (h2)λB (h2) = (0.8) (1) = 0.8

Compute L′s π values

π (l1) = P (l1|h1)πL (h1) + P (l1|h2)πL (h2)
= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

π (l2) = P (l2|h1)πB (h1) + P (l2|h2)πB (h2)
= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute P (l|∅)
P (l1|∅) = αλ (l1)π (l1) = α (1) (0.00064) = 0.00064α
P (l2|∅) = αλ (l2)π (l2) = α (1) (0.99936) = 0.99936α

39 / 119

Send the call send_π_msg(H,L)

Then, normalize

P (l1|∅) = 0.00064α
0.00064α+ 0.99936α = 0.00064

P (l2|∅) = 0.99936α
0.00064α+ 0.99936α = 0.99936

40 / 119

Send the call send_π_msg(H,L)

Then, normalize

P (l1|∅) = 0.00064α
0.00064α+ 0.99936α = 0.00064

P (l2|∅) = 0.99936α
0.00064α+ 0.99936α = 0.99936

40 / 119

Send the call send_π_msg(L,C)

L sends C a π message
πC (l1) = π (l1) = 0.00064
πC (l2) = π (l2) = 0.99936

Compute C ′s π values

π (c1) = P (c1|l1)πC (l1) + P (c1|l2)πC (l2)
= (0.6) (0.00064) + (0.02) (0.99936) = 0.02037

π (c2) = P (c2|l1)πC (h1) + P (c2|l2)πC (l2)
= (0.4) (0.00064) + (0.98) (0.99936) = 0.97963

41 / 119

Send the call send_π_msg(L,C)

L sends C a π message
πC (l1) = π (l1) = 0.00064
πC (l2) = π (l2) = 0.99936

Compute C ′s π values

π (c1) = P (c1|l1)πC (l1) + P (c1|l2)πC (l2)
= (0.6) (0.00064) + (0.02) (0.99936) = 0.02037

π (c2) = P (c2|l1)πC (h1) + P (c2|l2)πC (l2)
= (0.4) (0.00064) + (0.98) (0.99936) = 0.97963

41 / 119

Send the call send_π_msg(L,C)

L sends C a π message
πC (l1) = π (l1) = 0.00064
πC (l2) = π (l2) = 0.99936

Compute C ′s π values

π (c1) = P (c1|l1)πC (l1) + P (c1|l2)πC (l2)
= (0.6) (0.00064) + (0.02) (0.99936) = 0.02037

π (c2) = P (c2|l1)πC (h1) + P (c2|l2)πC (l2)
= (0.4) (0.00064) + (0.98) (0.99936) = 0.97963

41 / 119

Send the call send_π_msg(L,C)

Compute P (c|∅)
P (c1|∅) = αλ (c1)π (c1) = α (1) (0.02037) = 0.02037α
P (c2|∅) = αλ (c2)π (c2) = α (1) (0.97963) = 0.97963α

Normalize

P (c1|∅) = 0.02037α
0.02037α+ 0.97963α = 0.02037

P (c2|∅) = 0.99936α
0.02037α+ 0.97963α = 0.97963

42 / 119

Send the call send_π_msg(L,C)

Compute P (c|∅)
P (c1|∅) = αλ (c1)π (c1) = α (1) (0.02037) = 0.02037α
P (c2|∅) = αλ (c2)π (c2) = α (1) (0.97963) = 0.97963α

Normalize

P (c1|∅) = 0.02037α
0.02037α+ 0.97963α = 0.02037

P (c2|∅) = 0.99936α
0.02037α+ 0.97963α = 0.97963

42 / 119

Send the call send_π_msg(L,C)

Compute P (c|∅)
P (c1|∅) = αλ (c1)π (c1) = α (1) (0.02037) = 0.02037α
P (c2|∅) = αλ (c2)π (c2) = α (1) (0.97963) = 0.97963α

Normalize

P (c1|∅) = 0.02037α
0.02037α+ 0.97963α = 0.02037

P (c2|∅) = 0.99936α
0.02037α+ 0.97963α = 0.97963

42 / 119

Final Graph

We have then

H

B L

C

43 / 119

For the Generalization Please look at...

Look at pages 123 - 156 at
Richard E. Neapolitan. 2003. Learning Bayesian Networks. Prentice-Hall,
Inc

44 / 119

History

Invented in 1988
Invented by Lauritzen and Spiegelhalter, 1988

Something Notable
The general idea is that the propagation of evidence through the network
can be carried out more efficiently by representing the joint probability
distribution on an undirected graph called the Junction tree (or Join tree).

45 / 119

History

Invented in 1988
Invented by Lauritzen and Spiegelhalter, 1988

Something Notable
The general idea is that the propagation of evidence through the network
can be carried out more efficiently by representing the joint probability
distribution on an undirected graph called the Junction tree (or Join tree).

45 / 119

More in the Intuition

High-level Intuition
Computing marginals is straightforward in a tree structure.

46 / 119

Junction Tree Characteristics

The junction tree has the following characteristics
It is an undirected tree
Its nodes are clusters of variables (i.e. from the original BN)
Given two clusters, C1 and C2, every node on the path between them
contains their intersection C1 ∩ C2

In addition
A Separator, S, is associated with each edge and contains the variables in
the intersection between neighboring nodes

47 / 119

Junction Tree Characteristics

The junction tree has the following characteristics
It is an undirected tree
Its nodes are clusters of variables (i.e. from the original BN)
Given two clusters, C1 and C2, every node on the path between them
contains their intersection C1 ∩ C2

In addition
A Separator, S, is associated with each edge and contains the variables in
the intersection between neighboring nodes

47 / 119

Junction Tree Characteristics

The junction tree has the following characteristics
It is an undirected tree
Its nodes are clusters of variables (i.e. from the original BN)
Given two clusters, C1 and C2, every node on the path between them
contains their intersection C1 ∩ C2

In addition
A Separator, S, is associated with each edge and contains the variables in
the intersection between neighboring nodes

47 / 119

Junction Tree Characteristics

The junction tree has the following characteristics
It is an undirected tree
Its nodes are clusters of variables (i.e. from the original BN)
Given two clusters, C1 and C2, every node on the path between them
contains their intersection C1 ∩ C2

In addition
A Separator, S, is associated with each edge and contains the variables in
the intersection between neighboring nodes

ABC BC BCD CD CDE

S

47 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

48 / 119

Simplicial Node

Simplicial Node
In a graph G, a vertex v is called simplicial if and only if the subgraph of
G induced by the vertex set {v} ∪N (v) is a clique.

N (v) is the neighbor of v in the Graph.

49 / 119

Example

Vertex 3 is simplicial, while 4 is not

1 2

3 4

50 / 119

Perfect Elimination Ordering

Definition
A graph G on n vertices is said to have a perfect elimination ordering if
and only if there is an ordering {v1, ..., vn} of G’s vertices, such that each
vi is simplicial in the subgraph induced by the vertices {v1, ..., vi}.

51 / 119

Clearly

This is a way to collapse seto of vertices
Into a single node... for graph simplification... using the cliques....

52 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

53 / 119

Chordal Graph

Definition
A Chordal Graph is one in which all cycles of four or more vertices have a
chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle.

Definition
For any two vertices x, y ∈ G such that (x, y) ∈ E, a x− y separator is a
set S ⊂ V such that the graph G− S has at least two disjoint connected
components, one of which contains x and another of which contains y.

54 / 119

Chordal Graph

Definition
A Chordal Graph is one in which all cycles of four or more vertices have a
chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle.

Definition
For any two vertices x, y ∈ G such that (x, y) ∈ E, a x− y separator is a
set S ⊂ V such that the graph G− S has at least two disjoint connected
components, one of which contains x and another of which contains y.

54 / 119

Chordal Graph

Theorem
For a graph G on n vertices, the following conditions are equivalent:

1 G has a perfect elimination ordering.
2 G is chordal.
3 If H is any induced subgraph of G and S is a vertex separator of H

of minimal size, S’s vertices induce a clique.

55 / 119

Chordal Graph

Theorem
For a graph G on n vertices, the following conditions are equivalent:

1 G has a perfect elimination ordering.
2 G is chordal.
3 If H is any induced subgraph of G and S is a vertex separator of H

of minimal size, S’s vertices induce a clique.

55 / 119

Chordal Graph

Theorem
For a graph G on n vertices, the following conditions are equivalent:

1 G has a perfect elimination ordering.
2 G is chordal.
3 If H is any induced subgraph of G and S is a vertex separator of H

of minimal size, S’s vertices induce a clique.

55 / 119

Chordal Graph

Theorem
For a graph G on n vertices, the following conditions are equivalent:

1 G has a perfect elimination ordering.
2 G is chordal.
3 If H is any induced subgraph of G and S is a vertex separator of H

of minimal size, S’s vertices induce a clique.

55 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

56 / 119

Maximal Clique

Definition
A maximal clique is a clique that cannot be extended by including one
more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims
1 A chordal graph with N vertices can have no more than N maximal

cliques.
2 Given a chordal graph with G = (V,E), where |V | = N , there exists

an algorithm to find all the maximal cliques of G which takes no more
than O

(
N4) time.

57 / 119

Maximal Clique

Definition
A maximal clique is a clique that cannot be extended by including one
more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims
1 A chordal graph with N vertices can have no more than N maximal

cliques.
2 Given a chordal graph with G = (V,E), where |V | = N , there exists

an algorithm to find all the maximal cliques of G which takes no more
than O

(
N4) time.

57 / 119

Maximal Clique

Definition
A maximal clique is a clique that cannot be extended by including one
more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims
1 A chordal graph with N vertices can have no more than N maximal

cliques.
2 Given a chordal graph with G = (V,E), where |V | = N , there exists

an algorithm to find all the maximal cliques of G which takes no more
than O

(
N4) time.

57 / 119

Elimination Clique

Definition (Elimination Clique)
Given a chordal graph G, and an elimination ordering for G which does
not add any edges.

Suppose node i (Assuming a Labeling) is eliminated in some step of
the elimination algorithm, then the clique consisting of the node i
along with its neighbors during the elimination step (which must be
fully connected since elimination does not add edges) is called an
elimination clique.

Formally
Suppose node i is eliminated in the kth step of the algorithm, and let G(k)

be the graph just before the kth elimination step. Then, the clique
Ci = {i} ∪N (k) (i) where N (k) (i) is the neighbor of i in the Graph G(k).

58 / 119

Elimination Clique

Definition (Elimination Clique)
Given a chordal graph G, and an elimination ordering for G which does
not add any edges.

Suppose node i (Assuming a Labeling) is eliminated in some step of
the elimination algorithm, then the clique consisting of the node i
along with its neighbors during the elimination step (which must be
fully connected since elimination does not add edges) is called an
elimination clique.

Formally
Suppose node i is eliminated in the kth step of the algorithm, and let G(k)

be the graph just before the kth elimination step. Then, the clique
Ci = {i} ∪N (k) (i) where N (k) (i) is the neighbor of i in the Graph G(k).

58 / 119

From this, we have
Theorem
Given a chordal graph and an elimination ordering which does not add any
edges. Let C be the set of maximal cliques in the chordal graph, and let
Ce = (∪i∈V Ci) be the set of elimination cliques obtained from this
elimination ordering. Then, C ⊆ Ce. In other words, every maximal clique
is also an elimination clique for this particular ordering.

Something Notable
The theorem proves the 2nd claims given earlier. Firstly, it shows that a
chordal graph cannot have more than N maximal cliques, since we have
only N elimination cliques.

It is more
It gives us an efficient algorithm for finding these N maximal cliques.

Simply go over each elimination clique and check whether it is
maximal.

59 / 119

From this, we have
Theorem
Given a chordal graph and an elimination ordering which does not add any
edges. Let C be the set of maximal cliques in the chordal graph, and let
Ce = (∪i∈V Ci) be the set of elimination cliques obtained from this
elimination ordering. Then, C ⊆ Ce. In other words, every maximal clique
is also an elimination clique for this particular ordering.

Something Notable
The theorem proves the 2nd claims given earlier. Firstly, it shows that a
chordal graph cannot have more than N maximal cliques, since we have
only N elimination cliques.

It is more
It gives us an efficient algorithm for finding these N maximal cliques.

Simply go over each elimination clique and check whether it is
maximal.

59 / 119

From this, we have
Theorem
Given a chordal graph and an elimination ordering which does not add any
edges. Let C be the set of maximal cliques in the chordal graph, and let
Ce = (∪i∈V Ci) be the set of elimination cliques obtained from this
elimination ordering. Then, C ⊆ Ce. In other words, every maximal clique
is also an elimination clique for this particular ordering.

Something Notable
The theorem proves the 2nd claims given earlier. Firstly, it shows that a
chordal graph cannot have more than N maximal cliques, since we have
only N elimination cliques.

It is more
It gives us an efficient algorithm for finding these N maximal cliques.

Simply go over each elimination clique and check whether it is
maximal.

59 / 119

Therefore

Even with a brute force approach
It will not take more than |Ce|2 ×D = O

(
N3) with D = maxC∈C |C|.

Because
Since both clique size and number of elimination cliques is bounded by N

Observation
The maximum clique problem, which is NP-hard on general graphs, is easy
on chordal graphs.

60 / 119

Therefore

Even with a brute force approach
It will not take more than |Ce|2 ×D = O

(
N3) with D = maxC∈C |C|.

Because
Since both clique size and number of elimination cliques is bounded by N

Observation
The maximum clique problem, which is NP-hard on general graphs, is easy
on chordal graphs.

60 / 119

Therefore

Even with a brute force approach
It will not take more than |Ce|2 ×D = O

(
N3) with D = maxC∈C |C|.

Because
Since both clique size and number of elimination cliques is bounded by N

Observation
The maximum clique problem, which is NP-hard on general graphs, is easy
on chordal graphs.

60 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

61 / 119

We have the following definitions

Definition
The following are equivalent to the statement “G is a tree”

1 G is a connected, acyclic graph over N nodes.
2 G is a connected graph over N nodes with N − 1 edges.
3 G is a minimal connected graph over N nodes.
4 (Important) G is a graph over N nodes, such that for any 2 nodes i

and j in G , with i 6= j, there is a unique path from i to j in G.

Theorem
For any graph G = (V,E), the following statements are equivalent:

1 G has a junction tree.
2 G is chordal.

62 / 119

We have the following definitions

Definition
The following are equivalent to the statement “G is a tree”

1 G is a connected, acyclic graph over N nodes.
2 G is a connected graph over N nodes with N − 1 edges.
3 G is a minimal connected graph over N nodes.
4 (Important) G is a graph over N nodes, such that for any 2 nodes i

and j in G , with i 6= j, there is a unique path from i to j in G.

Theorem
For any graph G = (V,E), the following statements are equivalent:

1 G has a junction tree.
2 G is chordal.

62 / 119

We have the following definitions

Definition
The following are equivalent to the statement “G is a tree”

1 G is a connected, acyclic graph over N nodes.
2 G is a connected graph over N nodes with N − 1 edges.
3 G is a minimal connected graph over N nodes.
4 (Important) G is a graph over N nodes, such that for any 2 nodes i

and j in G , with i 6= j, there is a unique path from i to j in G.

Theorem
For any graph G = (V,E), the following statements are equivalent:

1 G has a junction tree.
2 G is chordal.

62 / 119

We have the following definitions

Definition
The following are equivalent to the statement “G is a tree”

1 G is a connected, acyclic graph over N nodes.
2 G is a connected graph over N nodes with N − 1 edges.
3 G is a minimal connected graph over N nodes.
4 (Important) G is a graph over N nodes, such that for any 2 nodes i

and j in G , with i 6= j, there is a unique path from i to j in G.

Theorem
For any graph G = (V,E), the following statements are equivalent:

1 G has a junction tree.
2 G is chordal.

62 / 119

We have the following definitions

Definition
The following are equivalent to the statement “G is a tree”

1 G is a connected, acyclic graph over N nodes.
2 G is a connected graph over N nodes with N − 1 edges.
3 G is a minimal connected graph over N nodes.
4 (Important) G is a graph over N nodes, such that for any 2 nodes i

and j in G , with i 6= j, there is a unique path from i to j in G.

Theorem
For any graph G = (V,E), the following statements are equivalent:

1 G has a junction tree.
2 G is chordal.

62 / 119

We have the following definitions

Definition
The following are equivalent to the statement “G is a tree”

1 G is a connected, acyclic graph over N nodes.
2 G is a connected graph over N nodes with N − 1 edges.
3 G is a minimal connected graph over N nodes.
4 (Important) G is a graph over N nodes, such that for any 2 nodes i

and j in G , with i 6= j, there is a unique path from i to j in G.

Theorem
For any graph G = (V,E), the following statements are equivalent:

1 G has a junction tree.
2 G is chordal.

62 / 119

We have the following definitions

Definition
The following are equivalent to the statement “G is a tree”

1 G is a connected, acyclic graph over N nodes.
2 G is a connected graph over N nodes with N − 1 edges.
3 G is a minimal connected graph over N nodes.
4 (Important) G is a graph over N nodes, such that for any 2 nodes i

and j in G , with i 6= j, there is a unique path from i to j in G.

Theorem
For any graph G = (V,E), the following statements are equivalent:

1 G has a junction tree.
2 G is chordal.

62 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

63 / 119

Definition

Junction Tree
Given a graph G = (V,E), a graph G′ = (V ′, E′) is said to be a Junction
Tree for G, iff:

1 The nodes of G′ are the maximal cliques of G (i.e. G′ is a clique
graph of G.)

2 G′ is a tree.
3 Running Intersection Property / Junction Tree Property:

1 For each v ∈ V , define G′
v to be the induced subgraph of G′

consisting of exactly those nodes which correspond to maximal cliques
of G that contain v. Then G′

v must be a connected graph.

64 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

65 / 119

Step 1

Given a DAG G = (V,E) and |V | = N

Chordalize the graph using the elimination algorithm with an arbitrary
elimination ordering, if required.

For this, you can use the following greedy algorithm
Given a list of nodes:

1 Is the vertex simplicial? If it is not, make it simplicial.
2 If not remove it from the list.

66 / 119

Step 1

Given a DAG G = (V,E) and |V | = N

Chordalize the graph using the elimination algorithm with an arbitrary
elimination ordering, if required.

For this, you can use the following greedy algorithm
Given a list of nodes:

1 Is the vertex simplicial? If it is not, make it simplicial.
2 If not remove it from the list.

66 / 119

Step 1

Given a DAG G = (V,E) and |V | = N

Chordalize the graph using the elimination algorithm with an arbitrary
elimination ordering, if required.

For this, you can use the following greedy algorithm
Given a list of nodes:

1 Is the vertex simplicial? If it is not, make it simplicial.
2 If not remove it from the list.

66 / 119

Step 1

Given a DAG G = (V,E) and |V | = N

Chordalize the graph using the elimination algorithm with an arbitrary
elimination ordering, if required.

For this, you can use the following greedy algorithm
Given a list of nodes:

1 Is the vertex simplicial? If it is not, make it simplicial.
2 If not remove it from the list.

66 / 119

Step 1

Another way
1 By the Moralization Procedure.
2 Triangulate the moral graph.

Moralization Procedure
1 Add edges between all pairs of nodes that have a common child.
2 Make all edges in the graph undirected.

Triangulate the moral graph
An undirected graph is triangulated if every cycle of length greater than 3
possesses a chord.

67 / 119

Step 1

Another way
1 By the Moralization Procedure.
2 Triangulate the moral graph.

Moralization Procedure
1 Add edges between all pairs of nodes that have a common child.
2 Make all edges in the graph undirected.

Triangulate the moral graph
An undirected graph is triangulated if every cycle of length greater than 3
possesses a chord.

67 / 119

Step 1

Another way
1 By the Moralization Procedure.
2 Triangulate the moral graph.

Moralization Procedure
1 Add edges between all pairs of nodes that have a common child.
2 Make all edges in the graph undirected.

Triangulate the moral graph
An undirected graph is triangulated if every cycle of length greater than 3
possesses a chord.

67 / 119

Step 2

Find the maximal cliques in the chordal graph
List the N Cliques

({vN} ∪N (vN)) ∩ {v1, ..., vN}
({vN−1} ∪N (vN−1)) ∩ {v1, ..., vN−1}
· · ·
{v1}

Note: If the graph is Chordal this is not necessary because all the
cliques are maximal.

68 / 119

Step 3

Compute the separator sets for each pair of maximal cliques and
construct a weighted clique graph
For each pair of maximal cliques (Ci, Cj) in the graph

We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as Sij = Ci ∩ Cj .

Then, we compute these separators trees
We build a clique graph:

Nodes are the Cliques.
Edges (Ci, Cj) are added with weight |Ci ∩ Cj | if |Ci ∩ Cj | > 0.

69 / 119

Step 3

Compute the separator sets for each pair of maximal cliques and
construct a weighted clique graph
For each pair of maximal cliques (Ci, Cj) in the graph

We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as Sij = Ci ∩ Cj .

Then, we compute these separators trees
We build a clique graph:

Nodes are the Cliques.
Edges (Ci, Cj) are added with weight |Ci ∩ Cj | if |Ci ∩ Cj | > 0.

69 / 119

Step 3

Compute the separator sets for each pair of maximal cliques and
construct a weighted clique graph
For each pair of maximal cliques (Ci, Cj) in the graph

We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as Sij = Ci ∩ Cj .

Then, we compute these separators trees
We build a clique graph:

Nodes are the Cliques.
Edges (Ci, Cj) are added with weight |Ci ∩ Cj | if |Ci ∩ Cj | > 0.

69 / 119

Step 3

Compute the separator sets for each pair of maximal cliques and
construct a weighted clique graph
For each pair of maximal cliques (Ci, Cj) in the graph

We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as Sij = Ci ∩ Cj .

Then, we compute these separators trees
We build a clique graph:

Nodes are the Cliques.
Edges (Ci, Cj) are added with weight |Ci ∩ Cj | if |Ci ∩ Cj | > 0.

69 / 119

Step 3

Compute the separator sets for each pair of maximal cliques and
construct a weighted clique graph
For each pair of maximal cliques (Ci, Cj) in the graph

We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as Sij = Ci ∩ Cj .

Then, we compute these separators trees
We build a clique graph:

Nodes are the Cliques.
Edges (Ci, Cj) are added with weight |Ci ∩ Cj | if |Ci ∩ Cj | > 0.

69 / 119

Step 3

Compute the separator sets for each pair of maximal cliques and
construct a weighted clique graph
For each pair of maximal cliques (Ci, Cj) in the graph

We check whether they posses any common variables.

If yes, we designate a separator set
Between these 2 cliques as Sij = Ci ∩ Cj .

Then, we compute these separators trees
We build a clique graph:

Nodes are the Cliques.
Edges (Ci, Cj) are added with weight |Ci ∩ Cj | if |Ci ∩ Cj | > 0.

69 / 119

Step 3

This step can be implemented quickly in practice using a hash table
Running Time: O

(
|C|2D

)
= O

(
N2D

)

70 / 119

Step 4

Compute a maximum-weight spanning tree on the weighted clique
graph to obtain a junction tree
You can us for this the Kruskal and Prim for Maximum Weight Graph

We will give Kruskal’s algorithm
For finding the maximum-weight spanning tree

71 / 119

Step 4

Compute a maximum-weight spanning tree on the weighted clique
graph to obtain a junction tree
You can us for this the Kruskal and Prim for Maximum Weight Graph

We will give Kruskal’s algorithm
For finding the maximum-weight spanning tree

71 / 119

Step 4

Maximal Kruskal’s algorithm
Initialize an edgeless graph T with nodes that are all the maximal cliques
in our chordal graph.

Then
We will add edges to T until it becomes a junction tree.

Sort the m edges ei in our clique graph from step 3 by weight wi
We have for e1, e2, ..., em with w1 ≥ w2 ≥ · · · ≥ w1

72 / 119

Step 4

Maximal Kruskal’s algorithm
Initialize an edgeless graph T with nodes that are all the maximal cliques
in our chordal graph.

Then
We will add edges to T until it becomes a junction tree.

Sort the m edges ei in our clique graph from step 3 by weight wi
We have for e1, e2, ..., em with w1 ≥ w2 ≥ · · · ≥ w1

72 / 119

Step 4

Maximal Kruskal’s algorithm
Initialize an edgeless graph T with nodes that are all the maximal cliques
in our chordal graph.

Then
We will add edges to T until it becomes a junction tree.

Sort the m edges ei in our clique graph from step 3 by weight wi
We have for e1, e2, ..., em with w1 ≥ w2 ≥ · · · ≥ w1

72 / 119

Step 4

For i = 1, 2, ...,m
1 Add edge ei to T if it does not introduce a cycle.
2 If |C| − 1 edges have been added, quit.

Running Time given that |E| = O
(
|C|2

)
O
(
|C|2 log |C|2

)
= O

(
|C|2 log |C|

)
= O

(
N2 logN

)

73 / 119

Step 4

For i = 1, 2, ...,m
1 Add edge ei to T if it does not introduce a cycle.
2 If |C| − 1 edges have been added, quit.

Running Time given that |E| = O
(
|C|2

)
O
(
|C|2 log |C|2

)
= O

(
|C|2 log |C|

)
= O

(
N2 logN

)

73 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

74 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

75 / 119

How do you build a Junction Tree?

Given a General DAG
S

B L

F
E

T

X

A

Build a Chordal Graph
Moral Graph – marry common parents and remove arrows.

76 / 119

How do you build a Junction Tree?
Given a General DAG

S

B L

F
E

T

X

A

Build a Chordal Graph
Moral Graph – marry common parents and remove arrows.

S

B L

F
E

T

X

A

76 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

77 / 119

How do you build a Junction Tree?

Triangulate the moral graph
An undirected graph is triangulated if every cycle of length greater
than 3 possesses a chord.

S

B L

F
E

T

X

A

78 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

79 / 119

Listing of Cliques

Identify the Cliques
A clique is a subset of nodes which is complete (i.e. there is an edge
between every pair of nodes) and maximal.

S

B L

F
E

T

X

A {B,S,L}
{B,L,E}

{B,E,F}
{L,E,T}

{A,T}

{E,X}

80 / 119

Build the Clique Graph
Clique Graph

Add an edge between Cj and Ci with weight |Ci ∩ Cj | > 0

BSL

LET

BLE

EX

BEF

AT

1 1

1

2

2

2

1

1

1

81 / 119

Getting The Junction Tree

Run the Maximum Kruskal’s Algorithm

BSL

LET

BLE

EX

BEF

AT

1 1

1

2

2

2

1

1

1

82 / 119

Getting The Junction Tree

Finally

BSL

LET

BLE

EX

BEF

AT

83 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

84 / 119

Potential as a product of probabilites

We can think on a clique as a place were the all the info is shared
between variables

xc1 , ..., xcn

Thus, all they are independent between them

P (xc1 , ..., xcn) = 1
Z

n∏
i=1

ϕC (xci)

85 / 119

Potential as a product of probabilites

We can think on a clique as a place were the all the info is shared
between variables

xc1 , ..., xcn

Thus, all they are independent between them

P (xc1 , ..., xcn) = 1
Z

n∏
i=1

ϕC (xci)

85 / 119

Potential Representation for the Junction Tree

Then
The joint probability distribution can now be represented in terms of
potential functions, ϕC .

I This is defined in each clique and each separator

The basic idea is to represent the joint probability distribution
corresponding to any graph as a product of clique potentials

P (xc1 , ..., xcn) = 1
Z

n∏
i=1

ϕC (xci) =
∏n
i=1 φC (xci)∏m
j=1 ψS

(
xsj

)
where x = (xc1 , ..., xcn) and each variable xci correspond to a clique and
xsj correspond to a separator.

86 / 119

Potential Representation for the Junction Tree

Then
The joint probability distribution can now be represented in terms of
potential functions, ϕC .

I This is defined in each clique and each separator

The basic idea is to represent the joint probability distribution
corresponding to any graph as a product of clique potentials

P (xc1 , ..., xcn) = 1
Z

n∏
i=1

ϕC (xci) =
∏n
i=1 φC (xci)∏m
j=1 ψS

(
xsj

)
where x = (xc1 , ..., xcn) and each variable xci correspond to a clique and
xsj correspond to a separator.

86 / 119

Then

Main idea
The idea is to transform one representation of the joint distribution to
another in which for each clique, C, the potential function gives the
marginal distribution for the variables in C, i.e.

φC (xci) = P (xci)

This will also apply for each separator, S.

87 / 119

We will have two potential functions

The ones for the Cliques

φC (xci)

The Other for the Separators

ψS (xsi)

88 / 119

We will have two potential functions

The ones for the Cliques

φC (xci)

The Other for the Separators

ψS (xsi)

88 / 119

This depends on local consistency

Local Consistency
For each two adjacent cliques U, V and their separator S = U ∩ V :∑

xU−S

φU (xs, xU−S) = ψS =
∑
xV −S

φV (xs, xV−S)

And it is possible to prove that

p (xC) ∝ φC
p (xS) ∝ ψS

89 / 119

This depends on local consistency

Local Consistency
For each two adjacent cliques U, V and their separator S = U ∩ V :∑

xU−S

φU (xs, xU−S) = ψS =
∑
xV −S

φV (xs, xV−S)

And it is possible to prove that

p (xC) ∝ φC
p (xS) ∝ ψS

89 / 119

Support for this idea

Theorem
Let probability p(x) be represented by the clique potentials φC and
separator potential ψS .

Then if the local consistence holds for each edge in the junction tree,
Then, clique and separator are proportional to local marginal
probabilities:

p (xC) ∝ φC
p (xS) ∝ ψS

90 / 119

Support for this idea

Theorem
Let probability p(x) be represented by the clique potentials φC and
separator potential ψS .

Then if the local consistence holds for each edge in the junction tree,
Then, clique and separator are proportional to local marginal
probabilities:

p (xC) ∝ φC
p (xS) ∝ ψS

90 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

91 / 119

Now, Initialization

To initialize the potential functions (Three Steps)
1 Set all potentials to unity
2 For each variable, xi, select one node in the junction tree (i.e. one

clique) containing both that variable and its parents, pa(xi), in the
original DAG.

3 Multiply the potential by P (xi|pa (xi))

92 / 119

Now, Initialization

To initialize the potential functions (Three Steps)
1 Set all potentials to unity
2 For each variable, xi, select one node in the junction tree (i.e. one

clique) containing both that variable and its parents, pa(xi), in the
original DAG.

3 Multiply the potential by P (xi|pa (xi))

92 / 119

Now, Initialization

To initialize the potential functions (Three Steps)
1 Set all potentials to unity
2 For each variable, xi, select one node in the junction tree (i.e. one

clique) containing both that variable and its parents, pa(xi), in the
original DAG.

3 Multiply the potential by P (xi|pa (xi))

92 / 119

Then

For example, we have at the beginning
φBSL = φBFL = φLX = 1,then using the pa

S

B L

F X

BSL BLF LX

After Initialization

93 / 119

We finish with the following initial updates

φBSL = 1× P (b|s)P (l|s)P (s)
S

B L

S

B L

Causality

Clique

φBFL = 1× P (f |b, l)

94 / 119

We finish with the following initial updates

φBSL = 1× P (b|s)P (l|s)P (s)
S

B L

S

B L

Causality

Clique

φBFL = 1× P (f |b, l)

F

B L

F

B L

Causality

Clique

94 / 119

Finally

φLX = 1× P (x|l)
L XL X Causality

Clique

95 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

96 / 119

Now, we need to define the concept of propagation of
information

For this, we need to pass information through the separators

BSL BL BLF L LX

97 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

98 / 119

Update Information in a Junction Tree

Passing Information using the separators
Passing information from one clique C1 to another C2 via the
separator in between them, S, requires two steps

First Step
Obtain a new potential for S by marginalizing out the variables in C1
that are not in S:

ψ∗S =
∑
C1−S

φC1

99 / 119

Update Information in a Junction Tree

Passing Information using the separators
Passing information from one clique C1 to another C2 via the
separator in between them, S, requires two steps

First Step
Obtain a new potential for S by marginalizing out the variables in C1
that are not in S:

ψ∗S =
∑
C1−S

φC1

99 / 119

Propagating Information in a Junction Tree

Passing Messages in the Junction Tree
Obtain a new potential for C2:

φ∗C2 = φC2λS

Where

λS = ψ∗S
ψS

100 / 119

Propagating Information in a Junction Tree

Passing Messages in the Junction Tree
Obtain a new potential for C2:

φ∗C2 = φC2λS

Where

λS = ψ∗S
ψS

100 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

101 / 119

We have the following Leamma

Lemma.The Update functions satisfies the following properties
1 The joint probability remains the same

φC1φC2

ψS
=
φ∗C1

φ∗C2

ψ∗S

2
∑
C1−S φ

∗
C1

= ψ∗S
3 If

∑
C2−S φC2 = ψS then also

∑
C2−S φ

∗
C2

= ψ∗S

102 / 119

Not only that

Corolary
After UPDATE (C1, C2) and UPDATE (C2, C1) the local consistency
holds for C1 and C2.

103 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

104 / 119

An Example

Consider a flow from the clique {B,S,L} to {B,L,F}

BSL BL BLF L LX

105 / 119

An Example

Initial representation
φBSL = P (B|S)P (L|S)P (S)

l1 l2
s1, b1 0.00015 0.04985
s1, b2 0.00045 0.14955
s2, b1 0.000002 0.039998
s2, b2 0.000038 0.759962

φBL = 1
l1 l2

b1 1 1
b2 1 1

φBLF = P (F |B,L)P (B)P (L) = P (F |B,L)
l1 l2

f1, b1 0.75 0.1
f1, b2 0.5 0.05
f2, b1 0.25 0.9
f2, b2 0.5 0.95

106 / 119

Then

After Flow
φBSL = P (B|S)P (L|S)P (S)

l1 l2
s1, b1 0.00015 0.04985
s1, b2 0.00045 0.14955
s2, b1 0.000002 0.039998
s2, b2 0.000038 0.759962

φBL = 1
l1 l2

b1 0.000152 0.089848
b2 0.000488 0.909512

φBLF = P (F |B,L)
l1 l2

f1, b1 0.000114 0.0089848
f1, b2 0.000244 0.0454756
f2, b1 0.000038 0.0808632
f2, b2 0.000244 0.8640364

107 / 119

Now Introduce Evidence

We have
A flow from the clique C1 = {B,S, L} to C2 = {B,L, F}, but this time
we he information that Joe is a smoker, E = S = s1.

For this, we can think on H = V − E
If we assume xE is fixed (evidence):

φ̃C∩H (xC∩H) = φC

xC∩H , xC∩E︸ ︷︷ ︸
xC

108 / 119

Now Introduce Evidence

We have
A flow from the clique C1 = {B,S, L} to C2 = {B,L, F}, but this time
we he information that Joe is a smoker, E = S = s1.

For this, we can think on H = V − E
If we assume xE is fixed (evidence):

φ̃C∩H (xC∩H) = φC

xC∩H , xC∩E︸ ︷︷ ︸
xC

108 / 119

Slicing the Probabilities

This corresponds to taking a slice of the local function

φX,Y =
[

0.12 0.08
0.24 0.56

]

If E = {Y } and y = 1, we get

Properties

φ̃Y =
[

0.08
0.56

]

109 / 119

Slicing the Probabilities

This corresponds to taking a slice of the local function

φX,Y =
[

0.12 0.08
0.24 0.56

]

If E = {Y } and y = 1, we get

Properties

φ̃Y =
[

0.08
0.56

]

109 / 119

Slicing the Probabilities

This corresponds to taking a slice of the local function

φX,Y =
[

0.12 0.08
0.24 0.56

]

If E = {Y } and y = 1, we get

Properties

φ̃Y =
[

0.08
0.56

]

109 / 119

Then

We have that

p (xH |xE) = p (xH , xE)
p (xE)

=
1
z

∏
C φC (xC∩H , xC∩E)∑

H
1
z

∏
C φC (xC∩H , xC∩E)

=
∏
C φ̃C∩H (xC∩H)∑

H

∏
C φ̃C∩H (xC∩H)

= 1
Z ′

∏
C

φ̃C∩H (xC∩H)

110 / 119

Then

We have that

p (xH |xE) = p (xH , xE)
p (xE)

=
1
z

∏
C φC (xC∩H , xC∩E)∑

H
1
z

∏
C φC (xC∩H , xC∩E)

=
∏
C φ̃C∩H (xC∩H)∑

H

∏
C φ̃C∩H (xC∩H)

= 1
Z ′

∏
C

φ̃C∩H (xC∩H)

110 / 119

Then

We have that

p (xH |xE) = p (xH , xE)
p (xE)

=
1
z

∏
C φC (xC∩H , xC∩E)∑

H
1
z

∏
C φC (xC∩H , xC∩E)

=
∏
C φ̃C∩H (xC∩H)∑

H

∏
C φ̃C∩H (xC∩H)

= 1
Z ′

∏
C

φ̃C∩H (xC∩H)

110 / 119

Then

We have that

p (xH |xE) = p (xH , xE)
p (xE)

=
1
z

∏
C φC (xC∩H , xC∩E)∑

H
1
z

∏
C φC (xC∩H , xC∩E)

=
∏
C φ̃C∩H (xC∩H)∑

H

∏
C φ̃C∩H (xC∩H)

= 1
Z ′

∏
C

φ̃C∩H (xC∩H)

110 / 119

Example

Incorporation of Evidence
φBSL = P (B|S)P (L|S)P (S)

l1 l2

s1, b1 0.00015 0.04985

s1, b2 0.00045 0.14955

s2, b1 0 0

s2, b2 0 0

φBL = 1

l1 l2

b1 1 1

b2 1 1

φBLF = P (F |B,L)

l1 l2

f1, b1 0.75 0.1

f1, b2 0.5 0.05

f2, b1 0.25 0.9

f2, b2 0.5 0.95

111 / 119

Example

Incorporation of Evidence
φBSL = P (B|S)P (L|S)P (S)

l1 l2

s1, b1 0.00015 0.04985

s1, b2 0.00045 0.14955

s2, b1 0 0

s2, b2 0 0

φBL = 1

l1 l2

b1 1 1

b2 1 1

φBLF = P (F |B,L)

l1 l2

f1, b1 0.75 0.1

f1, b2 0.5 0.05

f2, b1 0.25 0.9

f2, b2 0.5 0.95

111 / 119

An Example

After Flow
φBSL = P (B|S)P (L|S)P (S)

l1 l2
s1, b1 0.00015 0.04985
s1, b2 0.00045 0.14955
s2, b1 0 0
s2, b2 0 0

φBL = 1
l1 l2

b1 0.00015 0.04985
b2 0.00045 0.14955

φBLF = P (F |B,L)
l1 l2

f1, b1 0.0001125 0.004985
f1, b2 0.000245 0.0074775
f2, b1 0.0000375 0.044865
f2, b2 0.000255 0.1420725

112 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

113 / 119

The Full Propagation

Two phase propagation (Jensen et al, 1990)
1 Select an arbitrary clique, C0
2 Collection Phase – flows passed from periphery to C0
3 Distribution Phase – flows passed from C0 to periphery

114 / 119

The Full Propagation

Two phase propagation (Jensen et al, 1990)
1 Select an arbitrary clique, C0
2 Collection Phase – flows passed from periphery to C0
3 Distribution Phase – flows passed from C0 to periphery

114 / 119

The Full Propagation

Two phase propagation (Jensen et al, 1990)
1 Select an arbitrary clique, C0
2 Collection Phase – flows passed from periphery to C0
3 Distribution Phase – flows passed from C0 to periphery

114 / 119

Outline
1 Introduction

What do we want?

2 Belief Propagation
The Intuition
Inference on Trees
The Messages
The Implementation

3 Junction Trees
The Junction Tree Concept
Chordal Graphs
Maximal Clique
Tree Graphs
Junction Tree Formal Definition
Algorithm For Building Junction Trees

Example
Moralize the DAG
Triangulate
Listing of Cliques

Potential Function
The Junction Tree Inference Algorithms
Propagating Information in a Junction Tree
Update
Lemma of Propagation of Information
Example

Now, the Full Propagation
Example of Propagation

115 / 119

Example

Distribution
BSL

LET

BLE

EX

BEF

AT

116 / 119

Example

Collection
BSL

LET

BLE

EX

BEF

AT

117 / 119

The Full Propagation

After the two propagation phases have been carried out
The Junction tree will be in equilibrium with each clique containing
the joint probability distribution for the variables it contains.
Marginal probabilities for individual variables can then be obtained
from the cliques.

Now, some evidence E can be included before propagation
By selecting a clique for each variable for which evidence is available.
The potential for the clique is then set to 0 for any configuration
which differs from the evidence.

118 / 119

The Full Propagation

After the two propagation phases have been carried out
The Junction tree will be in equilibrium with each clique containing
the joint probability distribution for the variables it contains.
Marginal probabilities for individual variables can then be obtained
from the cliques.

Now, some evidence E can be included before propagation
By selecting a clique for each variable for which evidence is available.
The potential for the clique is then set to 0 for any configuration
which differs from the evidence.

118 / 119

The Full Propagation

After the two propagation phases have been carried out
The Junction tree will be in equilibrium with each clique containing
the joint probability distribution for the variables it contains.
Marginal probabilities for individual variables can then be obtained
from the cliques.

Now, some evidence E can be included before propagation
By selecting a clique for each variable for which evidence is available.
The potential for the clique is then set to 0 for any configuration
which differs from the evidence.

118 / 119

The Full Propagation

After the two propagation phases have been carried out
The Junction tree will be in equilibrium with each clique containing
the joint probability distribution for the variables it contains.
Marginal probabilities for individual variables can then be obtained
from the cliques.

Now, some evidence E can be included before propagation
By selecting a clique for each variable for which evidence is available.
The potential for the clique is then set to 0 for any configuration
which differs from the evidence.

118 / 119

The Full Propagation

After propagation the result will be

P (x,E) =
∏
c∈C φc (xc, E)∏
s∈S ψs (xs, E)

After normalization

P (x|E) =
∏
c∈C φc (xc|E)∏
s∈S ψs (xs|E)

119 / 119

The Full Propagation

After propagation the result will be

P (x,E) =
∏
c∈C φc (xc, E)∏
s∈S ψs (xs, E)

After normalization

P (x|E) =
∏
c∈C φc (xc|E)∏
s∈S ψs (xs|E)

119 / 119

	Introduction
	What do we want?

	Belief Propagation
	The Intuition
	Inference on Trees
	The Messages
	The Implementation

	Junction Trees
	The Junction Tree Concept
	Chordal Graphs
	Maximal Clique
	Tree Graphs
	Junction Tree Formal Definition
	Algorithm For Building Junction Trees

	Example
	Moralize the DAG
	Triangulate
	Listing of Cliques

	Potential Function
	The Junction Tree Inference Algorithms
	Propagating Information in a Junction Tree
	Update
	Lemma of Propagation of Information
	Example

	Now, the Full Propagation
	Example of Propagation

