Introduction to Artificial Intelligence Belief Propagation and Junction Trees

Andres Mendez-Vazquez

March 8, 2019

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Outline

Introduction What do we want?

Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Tr

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm
 - Junction Tree Algorithm

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm
- Junction Tree Algorithm

elief Propagation Algorithm

The algorithm was first proposed by Judea Pearl in 1982, who formulated this algorithm on trees, and was later extended to polytrees.

イロト イロト イヨト イヨト

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm
- Junction Tree Algorithm

Belief Propagation Algorithm

• The algorithm was first proposed by Judea Pearl in 1982, who formulated this algorithm on trees, and was later extended to polytrees.

Something Notable

• It has since been shown to be a useful approximate algorithm on general graphs.

Junction Tree Algorithm

 The junction tree algorithm (also known as 'Clique Tree') is a method used in machine learning to extract marginalization in general graphs.

イロン イロン イヨン イヨン

Something Notable

• It has since been shown to be a useful approximate algorithm on general graphs.

Junction Tree Algorithm

- The junction tree algorithm (also known as 'Clique Tree') is a method used in machine learning to extract marginalization in general graphs.
- it entails performing belief propagation on a modified graph called a junction tree by cycle elimination

Outline

Introduction What do we want?

Belief Propagation

- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Tr

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Example

To pass information from below and from above to a certain node V.

To pass information from below and from above to a certain node V.

Thus

We call those messages

To pass information from below and from above to a certain node $\boldsymbol{V}.$

Thus

We call those messages

• π from above.

イロト イロト イヨト イヨト

To pass information from below and from above to a certain node $\boldsymbol{V}.$

Thus

We call those messages

- π from above.
- λ from below.

イロト イロト イヨト イヨト

Outline

Introduction What do we want?

Inference on Trees

- The Messages
- The Implementation

3 Junction Tre

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Recall

A rooted tree is a DAG

Recall

A rooted tree is a DAG

Now

• Let (G, P) be a Bayesian network whose DAG is a tree.

イロト イヨト イヨト イヨト

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

Imagine that each node has two children.

The general case can be inferred from it.

< ロ > < 回 > < 回 > < 回 > < 回 >

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

For simplicity

• Imagine that each node has two children.

The general case can be inferred from it

< ロ > < 回 > < 回 > < 回 > < 回 >

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

For simplicity

- Imagine that each node has two children.
- The general case can be inferred from it.

$\bullet\,$ Containing all members that are in the subtree rooted at X

Including X if X

 $\bullet\,$ Containing all members that are in the subtree rooted at X

 $\bullet \ \ {\rm Including} \ X \ {\rm if} \ X \in A$

Containing all members of A that are non-descendant's of X. This set includes X if X ∈ A

- $\bullet\,$ Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

Let N_X be the subset

• Containing all members of A that are non-descendant's of X.

イロト イヨト イヨト イヨト

- $\bullet\,$ Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

Let N_X be the subset

- Containing all members of A that are non-descendant's of X.
- This set includes X if $X \in A$

Example

We have that $A = N_X \cup D_X$

Cinvestav

<ロト < 部 > < 注 > < 注 > 注 の Q (C 12/119

We have for each value of x

$P(x|A) = P(x|d_X, n_X)$

We have for each value of x

$$P(x|A) = P(x|d_X, n_X)$$

$$= \frac{P(d_X, n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X, n_X) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x) P(x)}{P(d_X, n_X)}$$
Here because d-speration if X (A)

We have for each value of x

$$P(x|A) = P(x|d_X, n_X)$$

$$= \frac{P(d_X, n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x, n_X) P(n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x, n_X) P(n_X|x) P(x)}{P(d_X, n_X)}$$
Here because dispersion if X = A

We have for each value of x

$$P(x|A) = P(x|d_X, n_X)$$

$$= \frac{P(d_X, n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x, n_X) P(n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x, n_X) P(n_X, x) P(x)}{P(x) P(d_X, n_X)}$$
Here because 4 percention 4 X

We have for each value of x

$$P(x|A) = P(x|d_X, n_X)$$

$$= \frac{P(d_X, n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x, n_X) P(n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x, n_X) P(n_X, x) P(x)}{P(x) P(d_X, n_X)}$$

$$= \frac{P(d_X|x) P(x|n_X) P(n_X)}{P(d_X, n_X)}$$
Here because *d*-speration if $X \notin A$

We have for each value of x

$$\begin{split} P\left(x|A\right) &= P\left(x|d_X, n_X\right) \\ &= \frac{P\left(d_X, n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X, x\right) P\left(x\right)}{P\left(x\right) P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X, n_X\right)} \text{ Here because d-speration if $X \notin A$} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X|n_X\right) P\left(n_X\right)} \\ \text{Note: You need to prove when $X \in A$} \end{split}$$

-2

We have for each value of x

$$\begin{split} P\left(x|A\right) &= P\left(x|d_X, n_X\right) \\ &= \frac{P\left(d_X, n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X, x\right) P\left(x\right)}{P\left(x\right) P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X|n_X\right) P\left(n_X\right)} \\ \\ &\text{Note: You need to prove when } X \in A \end{split}$$

-2

We have for each value of x

$$P(x|A) = \frac{P(d_X|x) P(x|n_X)}{P(d_X|n_X)}$$
$$= \beta P(d_X|x) P(x|n_X)$$

where β , the normalizing factor, is a constant not depending on x.

Outline

1 Introduction • What do we want?

3 Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Now, we develop the messages

Now, we develop the messages

We want

- $\lambda(x) \simeq P(d_X|x)$
- $\pi(x) \simeq P(x|n_X)$
 - Where \simeq means "proportional to"

$\pi(x)$ may not be equal to $P\left(x|n_X ight)$, but $\pi(x)=k imes P\left(x|n_X ight).$

We want

- $\lambda(x) \simeq P(d_X|x)$
- $\pi(x) \simeq P(x|n_X)$
 - Where \simeq means "proportional to"

$\pi(x)$ may not be equal to $P\left(x|n_X ight)$, but $\pi(x)=k imes P\left(x|n_X ight).$

Once, we have that

 $P\left(x|a\right) = \alpha\lambda\left(x\right)\pi\left(x\right)$

where lpha, the normalizing factor, is a constant not depending on x

Cinvestav ≣ ∽ ९ (~ 16 / 119

Meaning

 $\pi(x)$ may not be equal to $P(x|n_X)$, but $\pi(x) = k \times P(x|n_X)$.

$P\left(x|a\right) = \alpha\lambda\left(x ight)\pi\left(x ight)$

where lpha, the normalizing factor, is a constant not depending on x

We want • $\lambda(x) \simeq P(d_X|x)$ • $\pi(x) \simeq P(x|n_X)$ • Where \simeq means "proportional to" Meaning

$\pi(x)$ may not be equal to $P(x|n_X)$, but $\pi(x) = k \times P(x|n_X)$.

Once, we have that

$$P\left(x|a\right) = \alpha\lambda\left(x\right)\pi\left(x\right)$$

where lpha, the normalizing factor, is a constant not depending on x

(日) (日) (日) (日) (日)

We want • $\lambda(x) \simeq P(d_X|x)$ • $\pi(x) \simeq P(x|n_X)$ • Where \simeq means "proportional to" Meaning

 $\pi(x)$ may not be equal to $P(x|n_X)$, but $\pi(x) = k \times P(x|n_X)$.

Once, we have that

$$P\left(x|a\right) = \alpha\lambda\left(x\right)\pi\left(x\right)$$

where α , the normalizing factor, is a constant not depending on x.

Cinvestav シへへ 16/119

イロト 不得 トイヨト イヨト

We need

•
$$\lambda(x) \simeq P(d_X|x)$$

We need

• $\lambda(x) \simeq P(d_X|x)$

Case 1: $X \in A$ and $X \in D_X$

Given any $X=\hat{x},$ we have that for $P\left(d_{X}|x\right)=0$ for $x\neq\hat{x}$

イロン イ団 とく ヨン イヨン

We need

• $\lambda(x) \simeq P(d_X|x)$

Case 1: $X \in A$ and $X \in D_X$

Given any $X=\hat{x},$ we have that for $P\left(d_X|x\right)=0$ for $x\neq\hat{x}$

Thus, to achieve proportionality, we can set

•
$$\lambda(\hat{x}) \equiv 1$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

We need

• $\lambda(x) \simeq P(d_X|x)$

Case 1: $X \in A$ and $X \in D_X$

Given any $X=\hat{x},$ we have that for $P\left(d_X|x\right)=0$ for $x\neq\hat{x}$

Thus, to achieve proportionality, we can set

•
$$\lambda(\hat{x}) \equiv 1$$

•
$$\lambda(x) \equiv 0$$
 for $x \neq \hat{x}$

Case 2: $X \notin A$ and X is a leaf

Then, $d_X = \emptyset$ and

$P\left(d_X|x\right) = P\left(\emptyset|x\right) = 1$ for all values of x

Fnus, to achieve proportionality, we can set

 $\lambda\left(x
ight)\equiv1$ for all values of x

Case 2: $X \notin A$ and X is a leaf

Then, $d_X = \emptyset$ and

$$P(d_X|x) = P(\emptyset|x) = 1$$
 for all values of x

Thus, to achieve proportionality, we can set

$$\lambda\left(x
ight)\equiv1$$
 for all values of x

Case 3: $X \notin A$ and X is a non-leaf

Let Y be X's left child, W be X's right child.

$D_X = D_Y \cup D_W$

Finally

Case 3: $X \notin A$ and X is a non-leaf

Let Y be X's left child, W be X's right child.

Since $X \notin A$

Cinvestav

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We have then

$P(d_X|x) = P(d_Y, d_W|x)$ $= P(d_Y|x)P(d_W|x)$ Because the d-separation at A $= \sum_{y} P(d_Y, y|x) \sum_{y} P(d_W|x)P(d_W|x)$ $= \sum_{y} P(y|x)\lambda(y) \sum_{y} P(w|x)\lambda(w)$

We have then

$P(d_X|x) = P(d_Y, d_W|x)$ = $P(d_Y|x) P(d_W|x)$ Because the d-separation at X

Thus, we can get proportionality by defining for all values of x• $\lambda_Y(x) = \sum_{w} P(y|x) \lambda(y)$ • $\lambda_W(x) = \sum_{w} P(w|x) \lambda(w)$ • $u \mapsto (w \mapsto (z) \to (z) \to (z)$ 20/119

We have then

$P(d_X|x) = P(d_Y, d_W|x)$ = $P(d_Y|x) P(d_W|x)$ Because the d-separation at X= $\sum_y P(d_Y, y|x) \sum_w P(d_W, w|x)$

We have then

$$P(d_X|x) = P(d_Y, d_W|x)$$

= $P(d_Y|x) P(d_W|x)$ Because the d-separation at X
= $\sum_y P(d_Y, y|x) \sum_w P(d_W, w|x)$
= $\sum_y P(y|x) P(d_Y|y) \sum_w P(w|x) P(d_W|w)$
= $\sum_y P(w|x) A(w) \sum_w P(w|x) P(d_W|w)$

۲

We have then

$$P(d_X|x) = P(d_Y, d_W|x)$$

= $P(d_Y|x) P(d_W|x)$ Because the d-separation at X
= $\sum_y P(d_Y, y|x) \sum_w P(d_W, w|x)$
= $\sum_y P(y|x) P(d_Y|y) \sum_w P(w|x) P(d_W|w)$
 $\simeq \sum_y P(y|x) \lambda(y) \sum_w P(w|x) \lambda(w)$

Thus, we can get proportionality by defining for all values of \boldsymbol{x}

2

イロト 不得 トイヨト イヨト

We have then

$$P(d_X|x) = P(d_Y, d_W|x)$$

= $P(d_Y|x) P(d_W|x)$ Because the d-separation at X
= $\sum_y P(d_Y, y|x) \sum_w P(d_W, w|x)$
= $\sum_y P(y|x) P(d_Y|y) \sum_w P(w|x) P(d_W|w)$
 $\simeq \sum_y P(y|x) \lambda(y) \sum_w P(w|x) \lambda(w)$

Thus, we can get proportionality by defining for all values of x• $\lambda_Y(x) = \sum_y P(y|x) \lambda(y)$

20/119

э

We have then

$$P(d_X|x) = P(d_Y, d_W|x)$$

= $P(d_Y|x) P(d_W|x)$ Because the d-separation at X
= $\sum_y P(d_Y, y|x) \sum_w P(d_W, w|x)$
= $\sum_y P(y|x) P(d_Y|y) \sum_w P(w|x) P(d_W|w)$
 $\simeq \sum_y P(y|x) \lambda(y) \sum_w P(w|x) \lambda(w)$

Thus, we can get proportionality by defining for all values of x

•
$$\lambda_Y(x) = \sum_y P(y|x) \lambda(y)$$

•
$$\lambda_W(x) = \sum_w P(w|x) \lambda(w)$$

We have then

$$\lambda\left(x
ight)=\lambda_{Y}\left(x
ight)\lambda_{W}\left(x
ight)$$
 for all values x

Developing $\pi\left(x\right)$

We need

•
$$\pi(x) \simeq P(x|n_X)$$

We need

•
$$\pi(x) \simeq P(x|n_X)$$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

•
$$P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$$

We need

•
$$\pi(x) \simeq P(x|n_X)$$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

•
$$P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$$

•
$$P(x|n_X) = P(x|\hat{x}) = 0$$
 for $x \neq \hat{x}$

hus, to achieve proportionality, we can set

•
$$\pi(\hat{x}) \equiv 1$$

• $\pi(x) \equiv 0$ for $x \neq \hat{x}$

We need

•
$$\pi(x) \simeq P(x|n_X)$$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

•
$$P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$$

•
$$P(x|n_X) = P(x|\hat{x}) = 0$$
 for $x \neq \hat{x}$

Thus, to achieve proportionality, we can set

•
$$\pi(\hat{x}) \equiv 1$$

э

We need

•
$$\pi(x) \simeq P(x|n_X)$$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

•
$$P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$$

•
$$P(x|n_X) = P(x|\hat{x}) = 0$$
 for $x \neq \hat{x}$

Thus, to achieve proportionality, we can set

•
$$\pi(\hat{x}) \equiv 1$$

•
$$\pi(x) \equiv 0$$
 for $x \neq \hat{x}$

We need

•
$$\pi(x) \simeq P(x|n_X)$$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

•
$$P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$$

•
$$P(x|n_X) = P(x|\hat{x}) = 0$$
 for $x \neq \hat{x}$

Thus, to achieve proportionality, we can set

•
$$\pi(\hat{x}) \equiv 1$$

•
$$\pi(x) \equiv 0$$
 for $x \neq \hat{x}$

Case 2: $X \notin A$ and X is the root

In this specific case $n_X = \emptyset$ or the empty set of random variables.

Fhen

$P\left(x|n_{X} ight)=P\left(x|\emptyset ight)=P\left(x ight)$ for all values of x

Enforcing the proportionality, we get

 $\pi\left(x
ight)\equiv P\left(x
ight)$ for all values of x

Case 2: $X \notin A$ and X is the root

In this specific case $n_X = \emptyset$ or the empty set of random variables.

Then

$$P(x|n_X) = P(x|\emptyset) = P(x)$$
 for all values of x

Enforcing the proportionality, we get

 $\pi\left(x
ight)\equiv P\left(x
ight)$ for all values of x

Now

Case 2: $X \notin A$ and X is the root

In this specific case $n_X = \emptyset$ or the empty set of random variables.

Then

$$P(x|n_X) = P(x|\emptyset) = P(x)$$
 for all values of x

Enforcing the proportionality, we get

 $\pi\left(x\right)\equiv P\left(x\right)$ for all values of x

Case 3: $X \notin A$ and X is not the root

Without loss of generality assume X is $Z{\rm 's}$ right child and T is the $Z{\rm 's}$ left child

Then, $N_X = N_Z \cup D_T$

Case 3: $X \notin A$ and X is not the root

Without loss of generality assume X is $Z{\rm 's}$ right child and T is the $Z{\rm 's}$ left child

Then, $N_X = N_Z \cup D_T$

We have

 $P(x|n_X) = \sum P(x|z) P(z|n_X)$

Cinvestav < ロ > < 合 > < き > < き > き つ へ へ 25 / 119

We have

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

= $\sum_{z} P(x|z) P(z|n_Z, d_T)$
= $\sum_{z} P(x|z) \frac{P(z|z) P(z|n_Z, d_T)}{P(n_Z, d_T)}$
= $\sum_{z} P(z|z) \frac{P(d_T|z|n_Z) P(n_Z)}{P(n_Z, d_T)}$
= $\sum_{z} P(z|z) \frac{P(d_T|z|) P(z|n_Z) P(n_Z)}{P(n_Z, d_T)}$ Again the d-separation for z

We have

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$

$$= \sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_z|z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_z|z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$
Again the d-separation for z

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 25 / 119

Cinvestav

We have

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$

$$= \sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T, z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T, z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$
Again the d-separation for z

Cinvestav

≣ • ় ৭ ়ে 25 / 119

We have

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$

$$= \sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T, z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T|z, n_Z) P(z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$
Again the discontinuo for a function of the di

25 / 119

Then

We have

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

= $\sum_{z} P(x|z) P(z|n_Z, d_T)$
= $\sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$
= $\sum_{z} P(x|z) \frac{P(d_T, z|n_Z) P(n_Z)}{P(n_Z, d_T)}$
= $\sum_{z} P(x|z) \frac{P(d_T|z, n_Z) P(z|n_Z) P(n_Z)}{P(n_Z, d_T)}$
= $\sum_{z} P(x|z) \frac{P(d_T|z) P(z|n_Z) P(n_Z)}{P(n_Z, d_T)}$ Again the d-separation for z

Cinvestav

Last Step

We have

$$P(x|n_X) = \sum_{z} P(x|z) \frac{P(z|n_Z) P(n_Z) P(d_T|z)}{P(n_Z, d_T)}$$
$$= \gamma \sum_{z} P(x|z) \pi(z) \lambda_T(z)$$

where
$$\gamma = \frac{P(n_Z)}{P(n_Z, d_T)}$$

hus, we can achieve proportionality by

 $\pi_{X}\left(z\right)\equiv\pi\left(z\right)\lambda_{T}\left(z\right)$

Then, setting

$$\pi\left(x
ight)\equiv\sum_{z}P\left(x|z
ight)\pi_{X}\left(z
ight)$$
 for all values of x

Last Step

We have

$$P(x|n_X) = \sum_{z} P(x|z) \frac{P(z|n_Z) P(n_Z) P(d_T|z)}{P(n_Z, d_T)}$$
$$= \gamma \sum_{z} P(x|z) \pi(z) \lambda_T(z)$$

where
$$\gamma = rac{P(n_Z)}{P(n_Z, d_T)}$$

Thus, we can achieve proportionality by

 $\pi_{X}(z) \equiv \pi(z) \lambda_{T}(z)$

Then, setting

 $\pi\left(x
ight)\equiv\sum{P\left(x|z
ight)\pi_{X}\left(z
ight)}$ for all values of x

Last Step

We have

$$P(x|n_X) = \sum_{z} P(x|z) \frac{P(z|n_Z) P(n_Z) P(d_T|z)}{P(n_Z, d_T)}$$
$$= \gamma \sum_{z} P(x|z) \pi(z) \lambda_T(z)$$

where
$$\gamma = rac{P(n_Z)}{P(n_Z, d_T)}$$

Thus, we can achieve proportionality by

$$\pi_{X}(z) \equiv \pi(z) \lambda_{T}(z)$$

Then, setting

$$\pi(x) \equiv \sum_{z} P(x|z) \pi_X(z)$$
 for all values of x

Outline

1 Introduction • What do we want?

3 Junction Ti

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

イロト イヨト イヨト

How do we implement this?

We require the following functions

- initial_tree
- update-tree

intial_tree has the following input and outputs

Input: ((G, P), A, a, P(x|a))

Output: After this call A and a are both empty making P(x|a) the prior probability of x.

Then each time a variable V is instantiated for \hat{v} the routine update-tree is called

Input: $((G, P), A, a, V, \hat{v}, P(x|a))$

Output: After this call V has been added to A, \hat{v} has been added to a and for every value of x, P(x|a) has been updated to be the conditional probability of x given the new a.

How do we implement this?

We require the following functions

- initial_tree
- update-tree

intial_tree has the following input and outputs

Input: ((G, P), A, a, P(x|a))

Output: After this call A and a are both empty making P(x|a) the prior probability of x.

Then each time a variable V is instantiated for \hat{v} the routine update-tree is called

Input: ((G,P), A, a, V, \hat{v} , P(x|a))

Output: After this call V has been added to A, \hat{v} has been added to a and for every value of x, P(x|a) has been updated to be the conditional probability of x given the new a.

How do we implement this?

We require the following functions

- initial_tree
- update-tree

intial_tree has the following input and outputs

Input: ((G, P), A, a, P(x|a))

Output: After this call A and a are both empty making P(x|a) the prior probability of x.

Then each time a variable V is instantiated for \hat{v} the routine update-tree is called

Input: $((G, P), A, a, V, \hat{v}, P(x|a))$

Output: After this call V has been added to A, \hat{v} has been added to a and for every value of x, P(x|a) has been updated to be the conditional probability of x given the new a.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Input

Bayesian network (G, P) whose DAG is a tree, where G = (V, E), and a set of values a of a subset A \subseteq V.

Output

The Bayesian network (G, P) updated according to the values in a. The λ and π values and messages and P(x|a) for each X V are considered part of the network.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Input

Bayesian network (G, P) whose DAG is a tree, where G = (V, E), and a set of values a of a subset A \subseteq V.

Output

The Bayesian network (G, P) updated according to the values in a. The λ and π values and messages and P(x|a) for each X V are considered part of the network.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Input

Bayesian network (G, P) whose DAG is a tree, where G = (V, E), and a set of values a of a subset A \subseteq V.

Output

The Bayesian network (G, P) updated according to the values in a. The λ and π values and messages and P(x|a) for each X \in V are considered part of the network.

イロト イロト イヨト イヨト

void initial_tree

input: (Bayesian-network& (\mathbb{G},P) where $\mathbb{G}=(V,E),$ set-of-variables& A, set-of-variable-values& a)

 $\bullet = \emptyset$ (2) a = \emptyset

void initial_tree

input: (Bayesian-network& (\mathbb{G},P) where $\mathbb{G}=(V,E),$ set-of-variables& A, set-of-variable-values& a)

```
\bullet = \emptyset
2 a = ∅
(a) for (each X \in V)
          for (each value x of X)
```

void initial_tree

input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a) $\bullet = \emptyset$ 2 a = ∅ **(a)** for (each $X \in V$) 4 for (each value x of X) 6 $\lambda(x) = 1$ // Compute λ values.

void initial_tree

input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a) $\bullet = \emptyset$ (2) a = \emptyset **Solution** for (each $X \in V$) 4 for (each value x of X) 6 $\lambda(x) = 1$ // Compute λ values. 6 for (the parent Z of X) // Does nothing if X is the a root. 0 for (each value z of Z) 8 $\lambda_X(z) = 1$ // Compute λ messages.

void initial_tree

input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a) $\bullet = \emptyset$ 2 a = ∅ **Ifor (each X∈V)** 4 for (each value x of X) 6 $\lambda(x) = 1$ // Compute λ values. 6 for (the parent Z of X) // Does nothing if X is the a root. 0 for (each value z of Z) 8 $\lambda_X(z) = 1$ // Compute λ messages. 9 for (each value r of the root R) 10 $P(r|\mathbf{a}) = P(r)$ // Compute P(r|a). $\pi(r) = P(r)$ • // Compute R's π values.

void initial_tree

input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a) A = Ø 2 a = ∅ **Ifor (each X∈V)** 4 for (each value x of X) 6 $\lambda(x) = 1$ // Compute λ values. 6 for (the parent Z of X) // Does nothing if X is the a root. 0 for (each value z of Z) 8 $\lambda_X(z) = 1$ // Compute λ messages. 9 for (each value r of the root R) 10 $P(r|\mathbf{a}) = P(r)$ // Compute P(r|a). $\pi(r) = P(r)$ // Compute R's π values. 12 for (each child X of R) ß send π msg(R, X)

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

• A = A \cup {V}, a= a \cup { \hat{v} }, λ (\hat{v}) = 1, π (\hat{v}) = 1, $P(\hat{v}|a) = 1$ // Add V to A and instantiate V to \hat{v}

- ⓐ a = ∅
- for (each value of $v \neq \hat{v}$)
- $\bigcirc \qquad \lambda\left(v\right)=0, \ \pi\left(v\right)=0, \ P(v|\mathbf{a})=0$
- if (V is not the root && V 's parent $Z \notin A$)
- send_ λ _msg(V, Z)
- for (each child X of V such that $X \notin A$)

 $\mathsf{send}_\pi_\mathsf{msg}(V,X)$

Cinvestav < ロ > < 回 > < 臣 > < 臣 > < 臣 > 三 つ へ (* 31 / 119

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

- A = A \cup {V}, a= a \cup { \hat{v} }, λ (\hat{v}) = 1, π (\hat{v}) = 1, $P(\hat{v}|a) = 1$ // Add V to A and instantiate V to \hat{v}
- $\mathbf{2} \ \mathbf{a} = \emptyset$
- I for (each value of $v
 eq \hat{v}$)
- **a** $\lambda(v) = 0, \ \pi(v) = 0, \ P(v|\mathbf{a}) = 0$
- if (V is not the root && V 's parent $Z \notin A$)
- send_ λ _msg(V, Z)
- for (each child X of V such that $X \notin A$)

 $\mathsf{send}_\pi_\mathsf{msg}(V,X)$

(日)

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

• A = A \cup {V}, a= a \cup { \hat{v} }, λ (\hat{v}) = 1, π (\hat{v}) = 1, $P(\hat{v}|a) = 1$ // Add V to A and instantiate V to \hat{v}

• for (each value of
$$v \neq \hat{v}$$
)

If (V is not the root && V 's parent $Z \notin A$)

 $\mathsf{send}_\lambda_\mathsf{msg}(V,Z)$

• for (each child X of V such that $X \notin A$)

 $\mathsf{send}_\pi_\mathsf{msg}(V,X)$

・ロン ・四 と ・ 回 と ・

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

Cinvestav

31/119

イロト 不得 トイヨト イヨト

- A = A \cup {V}, a= a \cup { \hat{v} }, λ (\hat{v}) = 1, π (\hat{v}) = 1, $P(\hat{v}|a) = 1$ // Add V to A and instantiate V to \hat{v}
- 2 $a = \emptyset$
- for (each value of $v \neq \hat{v}$)

3
$$\lambda(v) = 0, \pi(v) = 0, P(v|\mathbf{a}) = 0$$

- if (V is not the root && V 's parent $Z \notin A$)
- send λ msg(V, Z)

• for (each child X of V such that $X \notin A$)

 $_\pi_\mathsf{msg}(V,X)$

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

Cinvestav

イロト 不得 トイヨト イヨト

• A = A \cup {V}, a= a \cup { \hat{v} }, λ (\hat{v}) = 1, π (\hat{v}) = 1, $P(\hat{v}|a) = 1$ // Add V to A and instantiate V to \hat{v}

2 a
$$= \emptyset$$

8

• for (each value of $v \neq \hat{v}$)

3
$$\lambda(v) = 0, \ \pi(v) = 0, \ P(v|\mathbf{a}) = 0$$

● if (V is not the root && V 's parent $Z \notin A$)

• for (each child X of V such that $X \notin A$))

 $\mathsf{send}_\pi_\mathsf{msg}(V,X)$

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

Cinvestav

イロト 不得 トイヨト イヨト

• A = A \cup {V}, a= a \cup { \hat{v} }, λ (\hat{v}) = 1, π (\hat{v}) = 1, $P(\hat{v}|a) = 1$ // Add V to A and instantiate V to \hat{v}

2 a
$$= \emptyset$$

8

• for (each value of $v \neq \hat{v}$)

3
$$\lambda(v) = 0, \ \pi(v) = 0, \ P(v|\mathbf{a}) = 0$$

● if (V is not the root && V 's parent $Z \notin A$)

• for (each child X of V such that $X \notin A$))

 $\mathsf{send}_\pi_\mathsf{msg}(V,X)$

void send_ λ _msg(node Y , node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.

• for (each value of x)

// Y sends X a λ message // Compute X's λ values // Compute P(x|a)

```
• normalize P(x|a)
```

```
• if (X \text{ is not the root and } X's \text{ parent } Z \notin A)
```

 ${\@$ for (each child W of X such that $W \neq Y$ and $W \in \mathsf{A})$)

 $send_{\pi}msg(X, W)$

void send_ λ _msg(node Y , node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.

• for (each value of x)

3
$$\lambda(x) = \prod_{U \in CH_X} \lambda_U(x)$$

$$P(x|\mathbf{a}) = \alpha \lambda(x) \pi(x)$$

 $\textbf{ o normalize } P(x|\mathbf{a})$

// Y sends X a λ message // Compute X's λ values // Compute P(x|a)

イロト 不得 とくき とくきとう

32/119

• if $(X \text{ is not the root and } X's \text{ parent } Z \notin A)$ • send_ λ _msg(X, Z)• for (each child W of X such that $W \neq Y$ and $W \in A$)) • send_ π _msg(X, W)

void send_ λ _msg(node Y , node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.

• for (each value of x)

2
$$\lambda_{Y}(x) = \sum_{y} P(y|x) \lambda(y)$$

3
$$\lambda(x) = \prod_{U \in CH_X} \lambda_U(x)$$

•
$$P(x|\mathbf{a}) = \alpha \lambda(x) \pi(x)$$

- normalize P(x|a)
- if (X is not the root and X's parent $Z \notin A$)
 - $\mathsf{send}_\lambda_\mathsf{msg}(X,Z)$

) for (each child W of X such that W
eq Y and $W \in \mathsf{A}$)

 $\mathsf{nd}_\pi \mathsf{msg}(X,W)$

// Y sends X a λ message // Compute X's λ values

イロト 不得 とくき とくきとう

32/119

// Compute P(x|a)

void send_ λ _msg(node Y , node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.

// Y sends X a λ message // Compute X's λ values

イロト イボト イヨト イヨト

32/119

• for (each value of x)

3
$$\lambda(x) = \prod_{U \in CH_X} \lambda_U(x)$$

$$P(x|\mathbf{a}) = \alpha \lambda \left(x \right) \pi \left(x \right) \qquad // \text{ Compute } P(x|\mathbf{a})$$

• normalize P(x|a)

1

9

• if (X is not the root and X's parent $Z \notin A$)

$$\mathsf{send}_\lambda_\mathsf{msg}(X,Z)$$

() for (each child W of X such that $W \neq Y$ and $W \in \mathsf{A})$)

 $send_\pi_msg(X, W)$

Sending the π message

void send_ π _msg(node Z , node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.

- **1** for (each value of z)
- for (each value of x)
- $\pi(x) = \sum_{z} P(x|z) \pi_X(z)$ // Compute X's π values • $P(x|a) = \alpha \lambda(x) \pi(x)$ // Compute P(x|a)
- **()** normalize P(x|a)
- for (each child Y of X such that $Y \notin A$)
 - $\mathsf{send}_\pi_\mathsf{msg}(X,Y)$

Sending the π message

void send_ π _msg(node Z , node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.

• for (each value of z) $\pi_X(z) = \pi(z) \prod_{Y \in CH_Z - \{X\}} \lambda_Y(z)$ // Z sends X a π 2 message \bigcirc for (each value of x) // Compute X's π values $\pi(x) = \sum_{z} P(x|z) \pi_X(z)$ $P(x|a) = \alpha \lambda(x) \pi(x)$ // Compute P(x|a)6

・ロト ・四ト ・ヨト ・ヨト

Sending the π message

void send_ π _msg(node Z , node X)

Note: For simplicity (\mathbb{G}, P) is not shown as input.

- **1** for (each value of z)
- **③** for (each value of x)
- $\pi(x) = \sum_{z} P(x|z) \pi_X(z)$ // Compute X's π values

・ロト ・日本・ ・ ヨト ・ ヨト

- 0 normalize P(x|a)

8

- for (each child Y of X such that $Y \notin A$))
 - $\mathsf{send}_\pi_\mathsf{msg}(X,Y)$

Example of Tree Initialization

We have then

unvesta D.P.C. B. K.B. K.B. K.B.		
		sta
	- ・ロト・日本・モート モー のの	20

We have then

Compute λ values

•
$$\lambda(h1) = 1; \lambda(h2) = 1;$$

We have then

Compute λ values

•
$$\lambda(h1) = 1; \lambda(h2) = 1;$$

•
$$\lambda(b1) = 1; \lambda(b2) = 1;$$

Compute λ_v messages

• $\lambda_B(h1) = 1; \lambda_B(h2) = 1;$

- $\lambda_L(h1) = 1; \lambda_L(h2) = 1;$
- $\lambda_C(l1) = 1; \lambda_C(l2) = 1;$

Cinvestav イロト イヨト イヨト オヨト ヨークへで 35/119

We have then

$\mathsf{Compute}\ \lambda \ \mathsf{values}$

•
$$\lambda(h1) = 1; \lambda(h2) = 1;$$

•
$$\lambda(b1) = 1; \lambda(b2) = 1;$$

•
$$\lambda(l1) = 1; \lambda(l2) = 1;$$

Lompute λ_v messages

- $\lambda_B(h1) = 1; \lambda_B(h2) = 1;$
- $\lambda_L(h1) = 1; \lambda_L(h2) = 1;$
- $\lambda_C(l1) = 1; \lambda_C(l2) = 1;$

We have then

$\mathsf{Compute}\ \lambda \ \mathsf{values}$

•
$$\lambda(h1) = 1; \lambda(h2) = 1;$$

•
$$\lambda(b1) = 1; \lambda(b2) = 1;$$

•
$$\lambda(l1) = 1; \lambda(l2) = 1;$$

•
$$\lambda(c1) = 1; \lambda(c2) = 1;$$

• $\lambda_B(h1) = 1; \lambda_B(h2) =$

• $\lambda_C(l1) = 1; \lambda_C(l2) = 1;$

Cinvestav イロト イヨト イヨト オヨト ヨークへで 35/119

We have then

Compute λ values

•
$$\lambda(h1) = 1; \lambda(h2) = 1;$$

•
$$\lambda(b1) = 1; \lambda(b2) = 1;$$

•
$$\lambda(l1) = 1; \lambda(l2) = 1;$$

•
$$\lambda(c1) = 1; \lambda(c2) = 1;$$

Compute λ_v messages

•
$$\lambda_B(h1) = 1; \lambda_B(h2) = 1;$$

Cinvestav イロト イヨト イヨト イヨト ヨークへで 35/119

We have then

Compute λ values

•
$$\lambda(h1) = 1; \lambda(h2) = 1;$$

•
$$\lambda(b1) = 1; \lambda(b2) = 1;$$

•
$$\lambda(l1) = 1; \lambda(l2) = 1;$$

•
$$\lambda(c1) = 1; \lambda(c2) = 1;$$

Compute λ_v messages

•
$$\lambda_B(h1) = 1; \lambda_B(h2) = 1;$$

•
$$\lambda_L(h1) = 1; \lambda_L(h2) = 1;$$

э

イロト 不得 トイヨト イヨト

We have then

Compute λ values

•
$$\lambda(h1) = 1; \lambda(h2) = 1;$$

•
$$\lambda(b1) = 1; \lambda(b2) = 1;$$

•
$$\lambda(l1) = 1; \lambda(l2) = 1;$$

•
$$\lambda(c1) = 1; \lambda(c2) = 1;$$

Compute λ_v messages

•
$$\lambda_B(h1) = 1; \lambda_B(h2) = 1$$

•
$$\lambda_L(h1) = 1; \lambda_L(h2) = 1;$$

•
$$\lambda_C(l1) = 1; \lambda_C(l2) = 1;$$

Compute $P\left(h|\emptyset\right)$

- $P(h1|\emptyset) = P(h1) = 0.2$
- $P(h2|\emptyset) = P(h2) = 0.8$

Compute $P(h|\emptyset)$

- $P(h1|\emptyset) = P(h1) = 0.2$
- $P(h2|\emptyset) = P(h2) = 0.8$

Compute $P(h|\emptyset)$

•
$$P(h1|\emptyset) = P(h1) = 0.2$$

•
$$P(h2|\emptyset) = P(h2) = 0.8$$

Compute H's π values

•
$$\pi(h1) = P(h1) = 0.2$$

bend messages

```
• send_\pi_msg(H, B)
```

• send_
$$\pi$$
_msg (H, L)

イロト イヨト イヨト イヨト

Compute $P(h|\emptyset)$

•
$$P(h1|\emptyset) = P(h1) = 0.2$$

•
$$P(h2|\emptyset) = P(h2) = 0.8$$

Compute H's π values

•
$$\pi(h1) = P(h1) = 0.2$$

•
$$\pi(h2) = P(h2) = 0.8$$

end messages

• send_ $\pi_msg(H, B)$

• send_
$$\pi$$
_msg (H, L)

Compute $P(h|\emptyset)$

•
$$P(h1|\emptyset) = P(h1) = 0.2$$

•
$$P(h2|\emptyset) = P(h2) = 0.8$$

Compute H's π values

•
$$\pi(h1) = P(h1) = 0.2$$

•
$$\pi(h2) = P(h2) = 0.8$$

Send messages

• send π msg(H, B)

э

イロト 不得 トイヨト イヨト

Compute $P(h|\emptyset)$

•
$$P(h1|\emptyset) = P(h1) = 0.2$$

•
$$P(h2|\emptyset) = P(h2) = 0.8$$

Compute H's π values

•
$$\pi(h1) = P(h1) = 0.2$$

•
$$\pi(h2) = P(h2) = 0.8$$

Send messages

• send π msg(H, B)

• send_
$$\pi$$
_msg (H, L)

・ロト ・四ト ・ヨト ・ヨト

H sends B a π message

•
$$\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$$

• $\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$

H sends B a π message

- $\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$
- $\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$

$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$ = (0.25) (0.2) + (0.05) (0.8) = 0.09 $\pi (b2) = P (b2|h1) \pi_B (h1) + P (b2|h2) \pi_B (h2)$ = (0.75) (0.2) + (0.95) (0.8) = 0.91

イロン イロン イヨン イヨン

H sends B a π message

•
$$\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$$

•
$$\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$$

Compute B's π values

$$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$$

 $T(b2) = P(b2|h1) \pi_B(h1) + P(b2|h2) \pi_B(h2)$

イロン 不通 とうせい イロン

H sends B a π message

•
$$\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$$

•
$$\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$$

Compute B's π values

$$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$$

= (0.25) (0.2) + (0.05) (0.8) = 0.09

イロト イボト イヨト イヨト

H sends B a π message

•
$$\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$$

•
$$\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$$

Compute B's π values

$$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$$

= (0.25) (0.2) + (0.05) (0.8) = 0.09
$$\pi (b2) = P (b2|h1) \pi_B (h1) + P (b2|h2) \pi_B (h2)$$

イロト イロト イヨト イヨト

H sends B a π message

•
$$\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$$

•
$$\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$$

Compute B's π values

$$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$$

= (0.25) (0.2) + (0.05) (0.8) = 0.09
$$\pi (b2) = P (b2|h1) \pi_B (h1) + P (b2|h2) \pi_B (h2)$$

= (0.75) (0.2) + (0.95) (0.8) = 0.91

イロト イヨト イヨト イヨト

Compute $P\left(b|\emptyset\right)$

•
$$P(b1|\emptyset) = \alpha \lambda(b1) \pi(b1) = \alpha(1)(0.09) = 0.09\alpha$$

Compute $P(b|\emptyset)$

- $P(b1|\emptyset) = \alpha \lambda(b1) \pi(b1) = \alpha(1)(0.09) = 0.09\alpha$
- $P\left(b2|\emptyset\right) = \alpha\lambda\left(b2\right)\pi\left(b2\right) = \alpha\left(1\right)\left(0.91\right) = 0.91\alpha$

イロト イロト イヨト イヨト

Compute $P(b|\emptyset)$

- $P(b1|\emptyset) = \alpha\lambda(b1)\pi(b1) = \alpha(1)(0.09) = 0.09\alpha$
- $P\left(b2|\emptyset\right) = \alpha\lambda\left(b2\right)\pi\left(b2\right) = \alpha\left(1\right)\left(0.91\right) = 0.91\alpha$

Then, normalize

$$P(b1|\emptyset) = \frac{0.09\alpha}{0.09\alpha + 0.91\alpha} = 0.09$$

イロト 不得 トイヨト イヨト

Compute $P(b|\emptyset)$

- $P(b1|\emptyset) = \alpha \lambda(b1) \pi(b1) = \alpha(1)(0.09) = 0.09\alpha$
- $P\left(b2|\emptyset\right) = \alpha\lambda\left(b2\right)\pi\left(b2\right) = \alpha\left(1\right)\left(0.91\right) = 0.91\alpha$

Then, normalize

$$P(b1|\emptyset) = \frac{0.09\alpha}{0.09\alpha + 0.91\alpha} = 0.09$$
$$P(b2|\emptyset) = \frac{0.91\alpha}{0.09\alpha + 0.91\alpha} = 0.91$$

イロト 不得 トイヨト イヨト

H sends L a π message

•
$$\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$$

H sends L a π message

•
$$\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$$

•
$$\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$$

$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$ = (0.003) (0.2) + (0.00005) (0.8) = 0.00064 $\pi (l2) = P (l2|h1) \pi_B (h1) + P (l2|h2) \pi_B (h2)$ = (0.997) (0.2) + (0.99995) (0.8) = 0.99936

H sends L a π message

•
$$\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$$

•
$$\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$$

Compute $L's \pi$ values

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

= (0.997)(0.2) + (0.99995)(0.8) = 0.99936

• $P(l1|\emptyset) = \alpha \lambda(l1) \pi(l1) = \alpha(1)(0.00064) = 0.00064\alpha$ • $P(l2|\emptyset) = \alpha(l2) \pi(l2) = \alpha(1)(0.00036) = 0.00036\alpha$

H sends L a π message

•
$$\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$$

•
$$\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$$

Compute $L's \pi$ values

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

= (0.003) (0.2) + (0.00005) (0.8) = 0.00064
$$\pi (l2) = P (l2|h1) \pi_B (h1) + P (l2|h2) \pi_B (h2)$$

= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute $P(l|\emptyset)$

• $P(l1|\emptyset) = \alpha\lambda(l1)\pi(l1) = \alpha(1)(0.00064) = 0.00064\alpha$ • $P(l2|\emptyset) = \alpha\lambda(l2)\pi(l2) = \alpha(1)(0.99936) = 0.99936\alpha$

H sends L a π message

•
$$\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$$

•
$$\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$$

Compute $L's \pi$ values

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

= (0.003) (0.2) + (0.00005) (0.8) = 0.00064
$$\pi (l2) = P (l2|h1) \pi_B (h1) + P (l2|h2) \pi_B (h2)$$

= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute $P(l|\emptyset)$

• $P(l1|\emptyset) = \alpha \lambda(l1) \pi(l1) = \alpha(1)(0.00064) = 0.00064\alpha$

• $P(l2|\emptyset) = \alpha\lambda(l2)\pi(l2) = \alpha(1)(0.99936) = 0.99936c$

H sends L a π message

•
$$\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$$

•
$$\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$$

Compute $L's \pi$ values

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

= (0.003) (0.2) + (0.00005) (0.8) = 0.00064
$$\pi (l2) = P (l2|h1) \pi_B (h1) + P (l2|h2) \pi_B (h2)$$

= (0.997) (0.2) + (0.99995) (0.8) = 0.99936

Compute $P(l|\emptyset)$

• $P(l1|\emptyset) = \alpha \lambda(l1) \pi(l1) = \alpha(1)(0.00064) = 0.00064\alpha$

•
$$P(l2|\emptyset) = \alpha \lambda(l2) \pi(l2) = \alpha(1)(0.99936) = 0.99936\alpha$$

Fhen, normalize

 $P(l1|\emptyset) = \frac{0.00064\alpha}{0.00064\alpha + 0.99936\alpha} = 0.00064$ $P(l2|\emptyset) = \frac{0.99936\alpha}{0.00064\alpha + 0.99936\alpha} = 0.99936$

イロン イロン イヨン イヨン

Then, normalize

$$P(l1|\emptyset) = \frac{0.00064\alpha}{0.00064\alpha + 0.99936\alpha} = 0.00064$$
$$P(l2|\emptyset) = \frac{0.99936\alpha}{0.00064\alpha + 0.99936\alpha} = 0.99936$$

Send the call send $\underline{\pi}_\mathrm{msg}(L,C)$

L sends C a π message

- $\pi_C(l1) = \pi(l1) = 0.00064$
- $\pi_C(l2) = \pi(l2) = 0.99936$

L sends C a π message

- $\pi_C(l1) = \pi(l1) = 0.00064$
- $\pi_C(l2) = \pi(l2) = 0.99936$

$\pi (c1) = P (c1|l1) \pi_C (l1) + P (c1|l2) \pi_C (l2)$ = (0.6) (0.00064) + (0.02) (0.99936) = 0.02037 $\pi (c2) = P (c2|l1) \pi_C (h1) + P (c2|l2) \pi_C (l2)$ = (0.4) (0.00064) + (0.98) (0.99936) = 0.97963

イロン イロン イヨン イヨン

L sends C a π message

- $\pi_C(l1) = \pi(l1) = 0.00064$
- $\pi_C(l_2) = \pi(l_2) = 0.99936$

Compute $C's \pi$ values

$$\pi (c1) = P (c1|l1) \pi_C (l1) + P (c1|l2) \pi_C (l2)$$

= (0.6) (0.00064) + (0.02) (0.99936) = 0.02037
$$\pi (c2) = P (c2|l1) \pi_C (h1) + P (c2|l2) \pi_C (l2)$$

= (0.4) (0.00064) + (0.98) (0.99936) = 0.97963

イロト イボト イヨト イヨト

Send the call send $\underline{\pi}_\mathrm{msg}(L,C)$

Compute $P(c|\emptyset)$

• $P(c1|\emptyset) = \alpha \lambda(c1) \pi(c1) = \alpha(1)(0.02037) = 0.02037 \alpha$

Compute $P(c|\emptyset)$

- $P\left(c1|\emptyset\right) = \alpha\lambda\left(c1\right)\pi\left(c1\right) = \alpha\left(1\right)\left(0.02037\right) = 0.02037\alpha$
- $P(c2|\emptyset) = \alpha \lambda(c2) \pi(c2) = \alpha(1)(0.97963) = 0.97963 \alpha$

Compute $P(c|\emptyset)$

- $P\left(c1|\emptyset\right) = \alpha\lambda\left(c1\right)\pi\left(c1\right) = \alpha\left(1\right)\left(0.02037\right) = 0.02037\alpha$
- $P(c2|\emptyset) = \alpha \lambda(c2) \pi(c2) = \alpha(1)(0.97963) = 0.97963 \alpha$

Normalize

$$P(c1|\emptyset) = \frac{0.02037\alpha}{0.02037\alpha + 0.97963\alpha} = 0.02037$$
$$P(c2|\emptyset) = \frac{0.99936\alpha}{0.02037\alpha + 0.97963\alpha} = 0.97963$$

イロト イヨト イヨト

Final Graph

We have then

43/119

For the Generalization Please look at...

Look at pages 123 - 156 at

Richard E. Neapolitan. 2003. Learning Bayesian Networks. Prentice-Hall, Inc

Invented in 1988

Invented by Lauritzen and Spiegelhalter, 1988

Something Notable

The general idea is that the propagation of evidence through the network can be carried out more efficiently by representing the joint probability distribution on an undirected graph called the Junction tree (or Join tree).

History

Invented in 1988

Invented by Lauritzen and Spiegelhalter, 1988

Something Notable

The general idea is that the propagation of evidence through the network can be carried out more efficiently by representing the joint probability distribution on an undirected graph called the Junction tree (or Join tree).

イロト イヨト イヨト イヨト

More in the Intuition

High-level Intuition

Computing marginals is straightforward in a tree structure.

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- Given two clusters, C_1 and C_2 , every node on the path between them contains their intersection $C_1 \cap C_2$

< ロ > < 回 > < 回 > < 回 > < 回 >

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- Given two clusters, C_1 and C_2 , every node on the path between them contains their intersection $C_1 \cap C_2$

In addition

A Separator, S, is associated with each edge and contains the variables in the intersection between neighboring nodes

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- \bullet Given two clusters, C_1 and $C_2,$ every node on the path between them contains their intersection $C_1\cap C_2$

A Separator, $S_{ m c}$ is associated with each edge and contains the variables in the intersection between neighboring nodes

< ロ > < 同 > < 回 > < 回 >

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- \bullet Given two clusters, C_1 and $C_2,$ every node on the path between them contains their intersection $C_1\cap C_2$

In addition

A Separator, $S_{\rm r}$ is associated with each edge and contains the variables in the intersection between neighboring nodes

47/119

Outline

Introduction What do we want?

Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Trees

The Junction Tree Concept

- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

イロト イヨト イヨト

Simplicial Node

Simplicial Node

In a graph G, a vertex v is called **simplicial** if and only if the subgraph of G induced by the vertex set $\{v\} \cup N\left(v\right)$ is a clique.

• N(v) is the neighbor of v in the Graph.

Vertex 3 is simplicial, while 4 is not

イロト イヨト イヨト イヨト

Perfect Elimination Ordering

Definition

A graph G on n vertices is said to have a **perfect elimination ordering** if and only if there is an ordering $\{v_1, ..., v_n\}$ of G's vertices, such that each v_i is simplicial in the subgraph induced by the vertices $\{v_1, ..., v_i\}$.

This is a way to collapse seto of vertices

• Into a single node... for graph simplification... using the cliques....

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Trees

The Junction Tree Concept

- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

イロト イヨト イヨト

Definition

A Chordal Graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

Definition

For any two vertices $x, y \in G$ such that $(x, y) \in E$, a x - y separator is a set $S \subset V$ such that the graph G - S has at least two disjoint connected components, one of which contains x and another of which contains y.

Definition

A Chordal Graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

Definition

For any two vertices $x, y \in G$ such that $(x, y) \in E$, a x - y separator is a set $S \subset V$ such that the graph G - S has at least two disjoint connected components, one of which contains x and another of which contains y.

< ロ > < 同 > < 回 > < 回)

Theorem

For a graph ${\cal G}$ on n vertices, the following conditions are equivalent:

- G has a perfect elimination ordering.
- \bigcirc G is chordal.
- If H is any induced subgraph of G and S is a vertex separator of H of minimal size, S's vertices induce a clique.

< ロ > < 同 > < 回 > < 回 >

Theorem

For a graph ${\cal G}$ on n vertices, the following conditions are equivalent:

- O G has a perfect elimination ordering.
 - G is chordal
 - If H is any induced subgraph of G and S is a vertex separator of H of minimal size, S's vertices induce a clique.

ヘロト 人間ト 人目下 人目下

Theorem

For a graph ${\cal G}$ on n vertices, the following conditions are equivalent:

- O G has a perfect elimination ordering.
- \bigcirc G is chordal.

If H is any induced subgraph of G and S is a vertex separator of H of minimal size, S's vertices induce a clique.

< ロ > < 同 > < 回 > < 回 >

Theorem

For a graph ${\cal G}$ on n vertices, the following conditions are equivalent:

- O G has a perfect elimination ordering.
- $\ \ O$ is chordal.
- If H is any induced subgraph of G and S is a vertex separator of H of minimal size, S's vertices induce a clique.

< ロ > < 同 > < 回 > < 回 >

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Trees

The Junction Tree Concept

Chordal Graphs

Maximal Clique

- Tree Graphs
- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

イロト イヨト イヨト

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims

Given a chordal graph with G = (V, E), where |V| = N, there exists an algorithm to find all the maximal cliques of G which takes no more than $O(N^4)$ time.

< ロ > < 同 > < 回 > < 回 >

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims

- ② Given a chordal graph with G = (V, E), where |V| = N, there exists an algorithm to find all the maximal cliques of G which takes no more than $O(N^4)$ time.

イロト イヨト イヨト

Elimination Clique

Definition (Elimination Clique)

Given a chordal graph G, and an elimination ordering for G which does not add any edges.

• Suppose node *i* (Assuming a Labeling) is eliminated in some step of the elimination algorithm, then the clique consisting of the node *i* along with its neighbors during the elimination step (which must be fully connected since elimination does not add edges) is called an elimination clique.

Formally

Suppose node *i* is eliminated in the k^{th} step of the algorithm, and let $G^{(k)}$ be the graph just before the k^{th} elimination step. Then, the clique $C_i = \{i\} \cup N^{(k)}(i)$ where $N^{(k)}(i)$ is the neighbor of *i* in the Graph $G^{(k)}$.

58/119

Elimination Clique

Definition (Elimination Clique)

Given a chordal graph G, and an elimination ordering for G which does not add any edges.

• Suppose node *i* (Assuming a Labeling) is eliminated in some step of the elimination algorithm, then the clique consisting of the node *i* along with its neighbors during the elimination step (which must be fully connected since elimination does not add edges) is called an elimination clique.

Formally

Suppose node *i* is eliminated in the k^{th} step of the algorithm, and let $G^{(k)}$ be the graph just before the k^{th} elimination step. Then, the clique $C_i = \{i\} \cup N^{(k)}(i)$ where $N^{(k)}(i)$ is the neighbor of *i* in the Graph $G^{(k)}$.

From this, we have

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let \mathcal{C} be the set of maximal cliques in the chordal graph, and let $\mathcal{C}_e = (\cup_{i \in V} C_i)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal{C} \subseteq \mathcal{C}_e$. In other words, every maximal clique is also an elimination clique for this particular ordering.

Something Notable

The theorem proves the 2^{nd} claims given earlier. Firstly, it shows that a chordal graph cannot have more than N maximal cliques, since we have only N elimination cliques.

It is more

It gives us an efficient algorithm for finding these N maximal cliques.

 Simply go over each elimination clique and check whether it is maximal.

From this, we have

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let \mathcal{C} be the set of maximal cliques in the chordal graph, and let $\mathcal{C}_e = (\cup_{i \in V} C_i)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal{C} \subseteq \mathcal{C}_e$. In other words, every maximal clique is also an elimination clique for this particular ordering.

Something Notable

The theorem proves the 2^{nd} claims given earlier. Firstly, it shows that a chordal graph cannot have more than N maximal cliques, since we have only N elimination cliques.

lt is more

It gives us an efficient algorithm for finding these N maximal cliques.

 Simply go over each elimination clique and check whether it is maximal.

From this, we have

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let \mathcal{C} be the set of maximal cliques in the chordal graph, and let $\mathcal{C}_e = (\cup_{i \in V} C_i)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal{C} \subseteq \mathcal{C}_e$. In other words, every maximal clique is also an elimination clique for this particular ordering.

Something Notable

The theorem proves the 2^{nd} claims given earlier. Firstly, it shows that a chordal graph cannot have more than N maximal cliques, since we have only N elimination cliques.

It is more

It gives us an efficient algorithm for finding these ${\cal N}$ maximal cliques.

• Simply go over each elimination clique and check whether it is maximal.

Therefore

Even with a brute force approach

It will not take more than $|\mathcal{C}_e|^2 \times D = O(N^3)$ with $D = \max_{C \in \mathcal{C}} |C|$.

Because

Since both clique size and number of elimination cliques is bounded by N

Observation

The maximum clique problem, which is NP-hard on general graphs, is easy on chordal graphs.

Therefore

Even with a brute force approach

It will not take more than $|\mathcal{C}_e|^2 \times D = O(N^3)$ with $D = \max_{C \in \mathcal{C}} |C|$.

Because

Since both clique size and number of elimination cliques is bounded by ${\it N}$

Observation .

The maximum clique problem, which is NP-hard on general graphs, is easy on chordal graphs.

Therefore

Even with a brute force approach

It will not take more than $|\mathcal{C}_e|^2 \times D = O(N^3)$ with $D = \max_{C \in \mathcal{C}} |C|$.

Because

Since both clique size and number of elimination cliques is bounded by ${\it N}$

Observation

The maximum clique problem, which is NP-hard on general graphs, is easy on chordal graphs.

イロン イロン イヨン イヨン

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Trees

The Junction Tree Concept

- Chordal Graphs
- Maximal Clique

Tree Graphs

- Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

イロト イヨト イヨト

Definition

The following are equivalent to the statement "G is a tree"

- \bullet G is a connected, acyclic graph over N nodes.
- G is a connected graph over N nodes with N-1 edges.
- \bigcirc G is a minimal connected graph over N nodes.
- (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Definition The following are equivalent to the statement "G is a tree" G is a connected, acyclic graph over N nodes.

• (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Fheorem

For any graph G=(V,E), the following statements are equivalent:

- G has a junction tree.
- \bigcirc G is chordal

Definition

The following are equivalent to the statement "G is a tree"

- $\label{eq:G} \textbf{ G is a connected, acyclic graph over } N \text{ nodes.}$
- $\ensuremath{\textcircled{O}}$ G is a connected graph over N nodes with N-1 edges.

G is a minimal connected graph over N nodes.

• (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Theorem

For any graph G=(V,E), the following statements are equivalent:

- G has a junction tree.
- \bigcirc G is chordal

Definition

The following are equivalent to the statement "G is a tree"

- $\label{eq:G} {\bf 0} \ G \ {\rm is \ a \ connected, \ acyclic \ graph \ over \ N \ nodes. }$
- 2 G is a connected graph over N nodes with N-1 edges.
- O G is a minimal connected graph over N nodes.

• (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

For any graph G=(V,E), the following statements are equivalent:

- G has a junction tree.
- \bigcirc G is chordal

Definition

The following are equivalent to the statement "G is a tree"

- $\label{eq:G} {\bf 0} \ G \ {\rm is \ a \ connected, \ acyclic \ graph \ over \ N \ nodes. }$
- 2 G is a connected graph over N nodes with N-1 edges.
- O G is a minimal connected graph over N nodes.
- (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

For any graph G = (V, E), the following statements are equivalent: $\bigcirc G$ has a junction tree. $\bigcirc C$ is chordal

We have the following definitions

Definition

The following are equivalent to the statement "G is a tree"

- \bullet G is a connected, acyclic graph over N nodes.
- **②** G is a connected graph over N nodes with N-1 edges.
- $\label{eq:G}$ G is a minimal connected graph over N nodes.
- (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Theorem

For any graph G = (V, E), the following statements are equivalent:

We have the following definitions

Definition

The following are equivalent to the statement "G is a tree"

- $\bullet G \text{ is a connected, acyclic graph over } N \text{ nodes.}$
- **2** G is a connected graph over N nodes with N-1 edges.
- $\label{eq:G}$ G is a minimal connected graph over N nodes.
- (Important) G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

イロト イヨト イヨト

Theorem

For any graph G = (V, E), the following statements are equivalent:

- **0**G has a junction tree.
- *G* is chordal.

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Trees

The Junction Tree Concept

- Chordal Graphs
- Maximal Clique
- Tree Graphs

Junction Tree Formal Definition

- Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Definition

Junction Tree

Given a graph G = (V, E), a graph G' = (V', E') is said to be a Junction Tree for G, iff:

- The nodes of G' are the maximal cliques of G (i.e. G' is a clique graph of G.)
- $\ \ \, {\cal O} \ \ \, G' \ \ {\rm is \ a \ tree}.$
- Solution Running Intersection Property / Junction Tree Property:
 - For each $v \in V$, define G'_v to be the induced subgraph of G' consisting of exactly those nodes which correspond to maximal cliques of G that contain v. Then G'_v must be a connected graph.

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Junction Trees

The Junction Tree Concept

- Chordal Graphs
- Maximal Clique
- Tree Graphs
- Junction Tree Formal Definition

Algorithm For Building Junction Trees

- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Given a DAG $G=(V\!,E)$ and |V|=N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

Given a DAG G = (V, E) and |V| = N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm

Given a list of nodes:

Is the vertex simplicial? If it is not, make it simplicial.

If not remove it from the list.

Given a DAG G = (V, E) and |V| = N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm

Given a list of nodes:

1 Is the vertex simplicial? If it is not, make it simplicial.

Given a DAG G = (V, E) and |V| = N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm

Given a list of nodes:

- **1** Is the vertex simplicial? If it is not, make it simplicial.
- If not remove it from the list.

Another way

- By the Moralization Procedure.
- Triangulate the moral graph.

Moralization Procedure

O Add edges between all pairs of nodes that have a common child.

Another way

- By the Moralization Procedure.
- Triangulate the moral graph.

Moralization Procedure

- Add edges between all pairs of nodes that have a common child.
- Ø Make all edges in the graph undirected.

Another way

- By the Moralization Procedure.
- Triangulate the moral graph.

Moralization Procedure

- **0** Add edges between all pairs of nodes that have a common child.
- Ø Make all edges in the graph undirected.

Triangulate the moral graph

An undirected graph is triangulated if every cycle of length greater than 3 possesses a chord.

< ロ > < 同 > < 回 > < 回 >

Find the maximal cliques in the chordal graph

List the $N\ {\rm Cliques}$

•
$$(\{v_N\} \cup N(v_N)) \cap \{v_1, ..., v_N\}$$

•
$$(\{v_{N-1}\} \cup N(v_{N-1})) \cap \{v_1, ..., v_{N-1}\}$$

• $\{v_1\}$

Note: If the graph is Chordal this is not necessary because all the cliques are maximal.

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques (C_i, C_j) in the graph

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques (C_i, C_j) in the graph

• We check whether they posses any common variables.

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques (C_i, C_j) in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

hen, we compute these separators trees

We build a clique graph:

- Nodes are the Cliques.
- Edges (C_i,C_j) are added with weight $|C_i\cap C_j|$ if $|C_i\cap C_j|$

Cinvestav ≧ ∽ ९ (~ 69 / 119

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques (C_i, C_j) in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Then, we compute these separators trees

```
We build a clique graph:
```

Nodes are the Cliques.

Edges (C_i, C_j) are added with weight $|C_i \cap C_j|$ if $|C_i \cap C_j| > 1$

イロン イロン イヨン イヨン

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques (C_i, C_j) in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Then, we compute these separators trees

We build a clique graph:

• Nodes are the Cliques.

Edges (C_i, C_j) are added with weight $|C_i \cap C_j|$ if $|C_i \cap C_j|$

Cinvestav ≧ ∽ ۹ (~ 69 / 119

イロン イロン イヨン イヨン

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques (C_i, C_j) in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Then, we compute these separators trees

We build a clique graph:

- Nodes are the Cliques.
- Edges (C_i, C_j) are added with weight $|C_i \cap C_j|$ if $|C_i \cap C_j| > 0$.

Cinvestav ≧ ∽ ९ ↔ 69 / 119

A D > A D > A D > A D >

This step can be implemented quickly in practice using a hash table

Running Time:
$$O\left(|\mathcal{C}|^2 D\right) = O\left(N^2 D\right)$$

Compute a maximum-weight spanning tree on the weighted clique graph to obtain a junction tree

You can us for this the Kruskal and Prim for Maximum Weight Graph

We will give Kruskal's algorithm

For finding the maximum-weight spanning tree

Compute a maximum-weight spanning tree on the weighted clique graph to obtain a junction tree

You can us for this the Kruskal and Prim for Maximum Weight Graph

We will give Kruskal's algorithm

For finding the maximum-weight spanning tree

Maximal Kruskal's algorithm

Initialize an edgeless graph ${\mathcal T}$ with nodes that are all the maximal cliques in our chordal graph.

Then

We will add edges to ${\mathcal T}$ until it becomes a junction tree.

Sort the m edges e_i in our clique graph from step 3 by weight w

We have for $e_1, e_2, ..., e_m$ with $w_1 \geq w_2 \geq \cdots \geq w_1$

Maximal Kruskal's algorithm

Initialize an edgeless graph ${\mathcal T}$ with nodes that are all the maximal cliques in our chordal graph.

Then

We will add edges to $\ensuremath{\mathcal{T}}$ until it becomes a junction tree.

Sort the m edges e_i in our clique graph from step 3 by weight w_i

We have for $e_1, e_2, ..., e_m$ with $w_1 \geq w_2 \geq \cdots \geq w_1$

イロン イロン イヨン イヨン

Maximal Kruskal's algorithm

Initialize an edgeless graph ${\mathcal T}$ with nodes that are all the maximal cliques in our chordal graph.

Then

We will add edges to \mathcal{T} until it becomes a junction tree.

Sort the m edges e_i in our clique graph from step 3 by weight w_i

We have for $e_1, e_2, ..., e_m$ with $w_1 \ge w_2 \ge \cdots \ge w_1$

A D > A D > A D > A D >

For i = 1, 2, ..., m

- 2 If $|\mathcal{C}| 1$ edges have been added, quit.

Running Time given that $|E| = O\left(|\mathcal{C}|\right)$

$O\left(|\mathcal{C}|^2 \log |\mathcal{C}|^2\right) = O\left(|\mathcal{C}|^2 \log |\mathcal{C}|\right) = O\left(N^2 \log N\right)$

For i = 1, 2, ..., m

Running Time given that $|E| = O\left(|\mathcal{C}|^2\right)$

$$O\left(|\mathcal{C}|^2 \log |\mathcal{C}|^2\right) = O\left(|\mathcal{C}|^2 \log |\mathcal{C}|\right) = O\left(N^2 \log N\right)$$

Outline

Introduction What do we want?

Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees

Example

- Moralize the DAG
- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Outline

Introduction What do we want?

2 Belief Propagatio

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees

Example

Moralize the DAG

- Triangulate
- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

How do you build a Junction Tree?

Given a General DAG

Build a Chordal Graph

Moral Graph – marry common parents and remove arrows.

How do you build a Junction Tree?

Build a Chordal Graph

• Moral Graph – marry common parents and remove arrows.

Outline

Introduction What do we want?

Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees

Example

Moralize the DAG

Triangulate

- Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

How do you build a Junction Tree?

Triangulate the moral graph

• An undirected graph is triangulated if every cycle of length greater than 3 possesses a chord.

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees

Example

- Moralize the DAG
- Triangulate

Listing of Cliques

- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Listing of Cliques

Identify the Cliques

• A clique is a subset of nodes which is **complete** (i.e. there is an edge between every pair of nodes) and **maximal**.

Build the Clique Graph

Clique Graph

• Add an edge between C_j and C_i with weight $|C_i \cap C_j| > 0$

Getting The Junction Tree

82/119

Getting The Junction Tree

Finally

83/119

Outline

Introduction What do we want?

Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques

Potential Function

- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Potential as a product of probabilites

We can think on a clique as a place were the all the info is shared between variables

 x_{c_1}, \ldots, x_{c_n}

Thus, all they are independent between them

 $P\left(x_{c_{1}},...,x_{c_{n}}\right) = \frac{1}{Z}\prod_{i=1}^{n}\varphi_{C}\left(x_{c_{i}}\right)$

イロン イロン イヨン イヨン

Potential as a product of probabilites

We can think on a clique as a place were the all the info is shared between variables

 $x_{c_1}, ..., x_{c_n}$

Thus, all they are independent between them

$$P(x_{c_1}, ..., x_{c_n}) = \frac{1}{Z} \prod_{i=1}^{n} \varphi_C(x_{c_i})$$

Potential Representation for the Junction Tree

Then

• The joint probability distribution can now be represented in terms of potential functions, φ_C .

This is defined in each clique and each separator

The basic idea is to represent the joint probability distribution corresponding to any graph as a product of clique potentials

$$P(x_{c_{1}},...,x_{c_{n}}) = \frac{1}{Z} \prod_{i=1}^{n} \varphi_{C}(x_{c_{i}}) = \frac{\prod_{i=1}^{n} \phi_{C}(x_{c_{i}})}{\prod_{j=1}^{m} \psi_{S}(x_{s_{j}})}$$

where $x=(x_{c_1},...,x_{c_n})$ and each variable x_{c_i} correspond to a clique and x_{s_i} correspond to a separator.

Potential Representation for the Junction Tree

Then

• The joint probability distribution can now be represented in terms of potential functions, φ_C .

This is defined in each clique and each separator

The basic idea is to represent the joint probability distribution corresponding to any graph as a product of clique potentials

$$P(x_{c_1}, ..., x_{c_n}) = \frac{1}{Z} \prod_{i=1}^n \varphi_C(x_{c_i}) = \frac{\prod_{i=1}^n \phi_C(x_{c_i})}{\prod_{j=1}^m \psi_S(x_{s_j})}$$

where $\boldsymbol{x} = (x_{c_1}, ..., x_{c_n})$ and each variable x_{c_i} correspond to a clique and x_{s_i} correspond to a separator.

イロン イロン イヨン イヨン

Then

Main idea

• The idea is to transform one representation of the joint distribution to another in which for each clique, *C*, the potential function gives the marginal distribution for the variables in *C*, i.e.

$$\phi_C\left(x_{c_i}\right) = P\left(x_{c_i}\right)$$

• This will also apply for each separator, S.

We will have two potential functions

The ones for the Cliques $\phi_C\left(x_{c_i} ight)$

イロト イヨト イヨト イヨト

We will have two potential functions

The ones for the Cliques $\phi_{C}\left(x_{c_{i}} ight)$

The Other for the Separators

$$\psi_S(x_{s_i})$$

< ロ > < 回 > < 回 > < 回 > < 回 >

This depends on local consistency

Local Consistency

• For each two adjacent cliques U, V and their separator $S = U \cap V$:

$$\sum_{x_{U-S}} \phi_U(x_s, x_{U-S}) = \psi_S = \sum_{x_{V-S}} \phi_V(x_s, x_{V-S})$$

And it is possible to prove that

 $p(x_C) \propto \phi_C$ $p(x_S) \propto \psi_S$

This depends on local consistency

Local Consistency

• For each two adjacent cliques U, V and their separator $S = U \cap V$:

$$\sum_{x_{U-S}} \phi_U(x_s, x_{U-S}) = \psi_S = \sum_{x_{V-S}} \phi_V(x_s, x_{V-S})$$

And it is possible to prove that

 $p(x_C) \propto \phi_C$ $p(x_S) \propto \psi_S$

Support for this idea

Theorem

• Let probability p(x) be represented by the clique potentials ϕ_C and separator potential $\psi_S.$

Then if the local consistence holds for each edge in the junction tree
 Then, clique and separator are proportional to local marginal probabilities:

 $p(x_C) \propto \phi_C$ $p(x_S) \propto \psi_S$

イロト イロト イヨト イヨト

Support for this idea

Theorem

• Let probability p(x) be represented by the clique potentials ϕ_C and separator potential $\psi_S.$

Then if the local consistence holds for each edge in the junction tree,

 Then, clique and separator are proportional to local marginal probabilities:

$$p(x_C) \propto \phi_C$$
$$p(x_S) \propto \psi_S$$

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function

The Junction Tree Inference Algorithms

- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

To initialize the potential functions (Three Steps)

- Set all potentials to unity
- For each variable, x_i, select one node in the junction tree (i.e. one clique) containing both that variable and its parents, pa(x_i), in the original DAG.
- Multiply the potential by $P\left(x_i | pa\left(x_i\right)\right)$

< ロ > < 同 > < 回 > < 回 >

To initialize the potential functions (Three Steps)

- Set all potentials to unity
- For each variable, x_i, select one node in the junction tree (i.e. one clique) containing both that variable and its parents, pa(x_i), in the original DAG.

Multiply the potential by $P\left(x_{i} | pa\left(x_{i}\right)\right)$

To initialize the potential functions (Three Steps)

- Set all potentials to unity
- For each variable, x_i, select one node in the junction tree (i.e. one clique) containing both that variable and its parents, pa(x_i), in the original DAG.
- $\textbf{ S Multiply the potential by } P\left(x_i | pa\left(x_i\right)\right)$

Then

For example, we have at the beginning $\phi_{BSL} = \phi_{BFL} = \phi_{LX} = 1$,then using the pa

イロト イボト イヨト イヨト

We finish with the following initial updates

We finish with the following initial updates

94/119

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms

Propagating Information in a Junction Tree

- Update
- Lemma of Propagation of Information
- Example
- Now, the Full Propagation
 - Example of Propagation

Now, we need to define the concept of propagation of information

For this, we need to pass information through the separators

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

Update Information in a Junction Tree

Passing Information using the separators

• Passing information from one clique C_1 to another C_2 via the separator in between them, S, requires two steps

First Step

 Obtain a new potential for S by marginalizing out the variables in C₁ that are not in S:

$$\psi^*_S = \sum_{C_1 - S} \phi_{C_1}$$

< ロ > < 同 > < 回 > < 回)

Update Information in a Junction Tree

Passing Information using the separators

• Passing information from one clique C_1 to another C_2 via the separator in between them, S, requires two steps

First Step

• Obtain a new potential for S by marginalizing out the variables in C₁ that are not in S:

$$\psi_S^* = \sum_{C_1 - S} \phi_{C_1}$$

< ロ > < 同 > < 三 > < 三)

Propagating Information in a Junction Tree

Passing Messages in the Junction Tree

Obtain a new potential for C_2 :

$$\phi_{C_2}^* = \phi_{C_2} \lambda_S$$

Propagating Information in a Junction Tree

Passing Messages in the Junction Tree

Obtain a new potential for C_2 :

$$\phi_{C_2}^* = \phi_{C_2} \lambda_S$$

Where

$$\lambda_S = \frac{\psi_S^*}{\psi_S}$$

イロト イボト イヨト イヨト

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
- Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

We have the following Leamma

Lemma. The Update functions satisfies the following properties

The joint probability remains the same

$$\frac{\phi_{C_1}\phi_{C_2}}{\psi_S} = \frac{\phi_{C_1}^*\phi_{C_2}^*}{\psi_S^*}$$

2
$$\sum_{C_1-S} \phi^*_{C_1} = \psi^*_S$$

3 If $\sum_{C_2-S} \phi_{C_2} = \psi_S$ then also $\sum_{C_2-S} \phi^*_{C_2} = \psi^*_S$

Not only that

Corolary

• After UPDATE (C_1, C_2) and UPDATE (C_2, C_1) the local consistency holds for C_1 and C_2 .

Outline

Introduction What do we want?

2 Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms

Propagating Information in a Junction Tree

- Update
- Lemma of Propagation of Information

Example

- Now, the Full Propagation
 - Example of Propagation

An Example

An Example

Initial representation

$\phi_{BSL} = P\left(B S\right) P\left(L S\right) P\left(S\right)$		
	l_1	l_2
s_1, b_1	0.00015	0.04985
s_1, b_2	0.00045	0.14955
s_2, b_1	0.000002	0.039998
s_2, b_2	0.000038	0.759962

$\phi_{BL} = 1$		
	l_1	l_2
b_1	1	1
b_2	1	1

$\phi_{BLF} = P(F B,L) P(B) P(L) = P(F B,L)$		
	l_1	l_2
f_1, b_1	0.75	0.1
f_1, b_2	0.5	0.05
f_2, b_1	0.25	0.9
f_2, b_2	0.5	0.95

cinvestav

<□>

106 / 119

Then

After Flow

$\phi_{BSL} = P\left(B S\right) P\left(L S\right) P\left(S\right)$		
	l_1	l_2
s_1, b_1	0.00015	0.04985
s_1, b_2	0.00045	0.14955
s_2, b_1	0.000002	0.039998
s_2, b_2	0.000038	0.759962

$\phi_{BL} = 1$		
	l_1	l_2
b_1	0.000152	0.089848
b_2	0.000488	0.909512

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

$\phi_{BLF} = P\left(F B,L\right)$		
	l_1	l_2
f_1, b_1	0.000114	0.0089848
f_1, b_2	0.000244	0.0454756
f_2, b_1	0.000038	0.0808632
f_2, b_2	0.000244	0.8640364

Now Introduce Evidence

We have

A flow from the clique $C_1 = \{B, S, L\}$ to $C_2 = \{B, L, F\}$, but this time we he information that Joe is a smoker, $E = S = s_1$.

For this, we can think on H=V-

• If we assume \overline{x}_E is fixed (evidence):

$\widetilde{\phi}_{C\cap H}\left(x_{C\cap H}\right) = \phi_C \left(\underbrace{x_{C\cap H}, \overline{x}_{C\cap E}}_{x_{C\cap H}, \overline{x}_{C\cap E}}\right)$

イロト イヨト イヨト

Now Introduce Evidence

We have

A flow from the clique $C_1 = \{B, S, L\}$ to $C_2 = \{B, L, F\}$, but this time we he information that Joe is a smoker, $E = S = s_1$.

For this, we can think on H = V - E

• If we assume \overline{x}_E is fixed (evidence):

$$\widetilde{\phi}_{C\cap H}\left(x_{C\cap H}\right) = \phi_C\left(\underbrace{x_{C\cap H}, \overline{x}_{C\cap E}}_{x_C}\right)$$

イロト イヨト イヨト

Slicing the Probabilities

This corresponds to taking a slice of the local function

$$\phi_{X,Y} = \left[\begin{array}{cc} 0.12 & 0.08\\ 0.24 & 0.56 \end{array} \right]$$

If $E = \{Y\}$ and $\overline{y} = 1$, we get

Properties

$$\widetilde{\phi}_Y = \left[egin{array}{c} 0.08 \\ 0.56 \end{array}
ight]$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Slicing the Probabilities

This corresponds to taking a slice of the local function

$$\phi_{X,Y} = \left[\begin{array}{cc} 0.12 & 0.08\\ 0.24 & 0.56 \end{array} \right]$$

If
$$E = \{Y\}$$
 and $\overline{y} = 1$, we get

Properties

$$\widetilde{\phi}_Y = \left[\begin{array}{c} 0.08\\ 0.56 \end{array} \right]$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Slicing the Probabilities

This corresponds to taking a slice of the local function

$$\phi_{X,Y} = \left[\begin{array}{cc} 0.12 & 0.08\\ 0.24 & 0.56 \end{array} \right]$$

If
$$E = \{Y\}$$
 and $\overline{y} = 1$, we get

Properties

$$\widetilde{\phi}_Y = \left[\begin{array}{c} 0.08\\ 0.56 \end{array} \right]$$

イロト イヨト イヨト イヨト

We have that

$$p\left(x_{H}|\overline{x}_{E}\right) = \frac{p\left(x_{H}, \overline{x}_{E}\right)}{p\left(\overline{x}_{E}\right)}$$

$$= \frac{1}{2} \prod_{i=1}^{n} p\left(\overline{x}_{E}\right)$$

We have that

$$p(x_H | \overline{x}_E) = \frac{p(x_H, \overline{x}_E)}{p(\overline{x}_E)}$$
$$= \frac{\frac{1}{z} \prod_C \phi_C (x_{C \cap H}, \overline{x}_{C \cap E})}{\sum_H \frac{1}{z} \prod_C \phi_C (x_{C \cap H}, \overline{x}_{C \cap E})}$$

We have that

$$p(x_H | \overline{x}_E) = \frac{p(x_H, \overline{x}_E)}{p(\overline{x}_E)}$$
$$= \frac{\frac{1}{z} \prod_C \phi_C(x_{C \cap H}, \overline{x}_{C \cap E})}{\sum_H \frac{1}{z} \prod_C \phi_C(x_{C \cap H}, \overline{x}_{C \cap E})}$$
$$= \frac{\prod_C \widetilde{\phi}_{C \cap H}(x_{C \cap H})}{\sum_H \prod_C \widetilde{\phi}_{C \cap H}(x_{C \cap H})}$$

We have that

$$p(x_H | \overline{x}_E) = \frac{p(x_H, \overline{x}_E)}{p(\overline{x}_E)}$$
$$= \frac{\frac{1}{z} \prod_C \phi_C(x_{C \cap H}, \overline{x}_{C \cap E})}{\sum_H \frac{1}{z} \prod_C \phi_C(x_{C \cap H}, \overline{x}_{C \cap E})}$$
$$= \frac{\prod_C \widetilde{\phi}_{C \cap H}(x_{C \cap H})}{\sum_H \prod_C \widetilde{\phi}_{C \cap H}(x_{C \cap H})}$$
$$= \frac{1}{Z'} \prod_C \widetilde{\phi}_{C \cap H}(x_{C \cap H})$$

・ロン ・回 と ・ ヨン ・ ヨン

Example

Incorporation of Evidence

Example

Incorporation of Evidence

$\phi_{BSL} = P(B S) P(L S) P(S)$						$\phi_{BLF} = P\left(F B,L\right)$		
	l_1	l_2	$\phi_{BL} = 1$			l_1	l_2	
s_1, b_1	0.00015	0.04985		l_1	l_2	f_1, b_1	0.75	0.1
s_1, b_2	0.00045	0.14955	b_1	1	1	f_1, b_2	0.5	0.05
s_2, b_1	0	0	b_2	1	1	f_2, b_1	0.25	0.9
s_2, b_2	0	0				f_2, b_2	0.5	0.95

An Example

After Flow

$\phi_{BSL} = P\left(B S\right) P\left(L S\right) P\left(S\right)$					
	l_1	l_2			
s_1, b_1	0.00015	0.04985			
s_1, b_2	0.00045	0.14955			
s_2, b_1	0	0			
s_2, b_2	0	0			

$\phi_{BL} = 1$					
	l_1	l_2			
b_1	0.00015	0.04985			
b_2	0.00045	0.14955			

$\phi_{BLF} = P\left(F B,L\right)$					
	l_1	l_2			
f_1, b_1	0.0001125	0.004985			
f_1, b_2	0.000245	0.0074775			
f_2, b_1	0.0000375	0.044865			
f_2, b_2	0.000255	0.1420725			

cinvestav

Outline

Introduction What do we want?

Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example

Now, the Full Propagation

Example of Propagation

イロト イヨト イヨト

Two phase propagation (Jensen et al, 1990)

 $\bullet \quad \text{Select an arbitrary clique, } C_0$

• Collection Phase – flows passed from periphery to C_0

Distribution Phase – flows passed from C_0 to periphery

Two phase propagation (Jensen et al, 1990)

- **①** Select an arbitrary clique, C_0
- **②** Collection Phase flows passed from periphery to C_0
 - Distribution Phase flows passed from C_0 to periphery

Two phase propagation (Jensen et al, 1990)

- $\bullet \quad \text{Select an arbitrary clique, } C_0$
- ② Collection Phase flows passed from periphery to C_0
- **③** Distribution Phase flows passed from C_0 to periphery

Outline

Introduction What do we want?

Belief Propagation

- The Intuition
- Inference on Trees
 - The Messages
 - The Implementation

3 Ju

Junction Trees

- The Junction Tree Concept
 - Chordal Graphs
 - Maximal Clique
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
- Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
- Potential Function
- The Junction Tree Inference Algorithms
- Propagating Information in a Junction Tree
 - Update
 - Lemma of Propagation of Information
 - Example
- Now, the Full Propagation
 - Example of Propagation

イロト イヨト イヨト

Example

Distribution

Example

Collection

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
 - Marginal probabilities for individual variables can then be obtained from the cliques.

< ロ > < 同 > < 回 > < 回 >

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

ow, some evidence E can be included before propagation

- By selecting a clique for each variable for which evidence is available
- The potential for the clique is then set to 0 for any configuration which differs from the evidence.

< ロ > < 同 > < 回 > < 回 >

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

Now, some evidence E can be included before propagation

• By selecting a clique for each variable for which evidence is available.

< ロト < 同ト < ヨト < ヨ)

118 / 119

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

Now, some evidence E can be included before propagation

- By selecting a clique for each variable for which evidence is available.
- The potential for the clique is then set to 0 for any configuration which differs from the evidence.

< ロ > < 同 > < 回 > < 回 >

After propagation the result will be

$$P(x, E) = \frac{\prod_{c \in C} \phi_c(x_c, E)}{\prod_{s \in S} \psi_s(x_s, E)}$$

After normalization

$$P\left(x|E\right) = \frac{\prod_{c \in C} \phi_c\left(x_c|E\right)}{\prod_{s \in S} \psi_s\left(x_s|E\right)}$$

After propagation the result will be

$$P(x, E) = \frac{\prod_{c \in C} \phi_c(x_c, E)}{\prod_{s \in S} \psi_s(x_s, E)}$$

After normalization

$$P(x|E) = \frac{\prod_{c \in C} \phi_c(x_c|E)}{\prod_{s \in S} \psi_s(x_s|E)}$$

