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Causality

What do we naturally?

A way of structuring a situation for reasoning under uncertainty is to
construct a graph representing causal relations between events.
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Causality

What do we naturally?

A way of structuring a situation for reasoning under uncertainty is to
construct a graph representing causal relations between events.

Example of events with possible outputs

o Fuel? {Yes, No}
@ Clean Spark Plugs? {full,1/2, empty}
o Start? {Yes, No}
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Causality

We know that the state of Fuel? and the state of Clean Spark Plugs?
have a causal impact on the state of Start?.
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Causality

We know that the state of Fuel? and the state of Clean Spark Plugs?
have a causal impact on the state of Start?.

Thus we have something like

Clean Spark Plugs

T
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Causality

@ Definition of Causal Structure
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Causal Structure - Judea Perl (1988)

Definition

A causal structure of a set of variables V' is a directed acyclic graph (DAG)
in which each node corresponds to a distinct element of V, and each edge
represents direct functional relationship among the corresponding variables.
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Causal Structure - Judea Perl (1988)

Definition

A causal structure of a set of variables V' is a directed acyclic graph (DAG)
in which each node corresponds to a distinct element of V, and each edge
represents direct functional relationship among the corresponding variables.

Observation

Causal Structure = A precise specification of how each variable is
influenced by its parents in the DAG.

A
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Causal Model

A causal model is a pair M = (D, ©p) consisting of a causal structure D
and a set of parameters ©®p compatible with D.

8/113



Causal Model
Definition

A causal model is a pair M = (D, ©p) consisting of a causal structure D
and a set of parameters ©®p compatible with D.

The parameters O p assign a distribution

x; = fi (pa;, wi)

u; ~ p (u;)

\
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Causal Model

Definition

A causal model is a pair M = (D, ©p) consisting of a causal structure D
and a set of parameters ©®p compatible with D.

Thus

The parameters O p assign a distribution

| A\

x; = fi (pa;, wi)
u; ~ p(u;)

| A\

Where

@ x; is a variable in the model D.




Causal Model

Definition

A causal model is a pair M = (D, ©p) consisting of a causal structure D
and a set of parameters ©®p compatible with D.

Thus

The parameters O p assign a distribution

| A\

x; = fi (pa;, wi)
u; ~ p(u;)

| A\

Where
@ x; is a variable in the model D.

@ pa,; are the parents of z; in D.




Causal Model

Definition

A causal model is a pair M = (D, ©p) consisting of a causal structure D
and a set of parameters ©®p compatible with D.

Thus

The parameters O p assign a distribution

| A\

x; = fi (paj, u;)
ui ~ p (u;)

| A

Where

@ x; is a variable in the model D.

@ pa,; are the parents of z; in D.

@ u; is independent of any other u.




Example

From the point of view of Statistics
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Example

From the point of view of Statistics
Uz Ux Uy
9 ? ‘I?

O—@0—® ,

Formulation

z= fz(uz)
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Example

From the point of view of Statistics

Uy Ux Uy
o 9
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Example

From the point of view of Statistics

z= fz(uz)
x = fx (z,ux)
y = fy (z,uy)
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Now add an observation x

From the point of view of Statistics

Uy Ux Uy
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Now add an observation x

From the point of view of Statistics

Uy Ux Uy
0

° 9
!
1
1
1
1
1

Zq
Formulation after blocking information

z = fz(uz)
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Now add an observation x

From the point of view of Statistics
Uy Ux Uy
Q

° !
Zo i
Formulation after blocking information

z= fz(uz)
Tr = X0

&

Cinvestav

10/113



Now add an observation x

From the point of view of Statistics

Uy Ux Uy

9 ° 9
!
1
1
1
1
1

- Zg

® B

Formulation after blocking information

z= fz(uz)
Tr = X0
Y= fY (.Q?,Uy)
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Causality

@ Causal Networks
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Causal Networks

A causal network consists of a set of variables and a set of directed links
(also called edges) between variables.
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Causal Networks

A causal network consists of a set of variables and a set of directed links
(also called edges) between variables.

In order to analyze a causal network is necessary to analyze:

A

&)

Cinvestav

12/113



Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links
(also called edges) between variables.

Thus

In order to analyze a causal network is necessary to analyze:
o Causal Chains

| \
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Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links
(also called edges) between variables.

Thus

In order to analyze a causal network is necessary to analyze:
o Causal Chains

| \

@ Common Causes

&)

Cinvestav

12/113



Causal Networks

A causal network consists of a set of variables and a set of directed links
(also called edges) between variables.

In order to analyze a causal network is necessary to analyze:

@ Causal Chains

@ Common Causes

@ Common Effects )
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Causal Networks

Definition
A causal network consists of a set of variables and a set of directed links
(also called edges) between variables.

In order to analyze a causal network is necessary to analyze:

@ Causal Chains

@ Common Causes

@ Common Effects )
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Causality

@ Causal Networks
@ Causal Chains
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Causal Chains

This configuration is a “causal chain”

X : Low Pressure
Y : Rain
7 : Traffic
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Causal Chains

This configuration is a “causal chain”

X : Low Pressure
Y : Rain
7 : Traffic

4

What about the Joint Distribution?

We have by the Chain Rule
P(X,Y,Z) = P(X) P (Y|X) P(Z]Y, X) (1)

4
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Propagation of Information

Given no information about Y
Information can propagate from X to Z.
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Propagation of Information

Given no information about Y
Information can propagate from X to Z.
The natural question is What does happen if Y = y for some value y? I
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Thus, we have that

Blocking Propagation of Information
Y.
X : Low Pressure

Y : Rain
Z : Traffic
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Using Our Probabilities

Then Z is independent of X givena Y =y

And making the assumption that once an event happens
P(Z|X,Y =y)=P(Z|Y =y) (2)

Cinvestav
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Using Our Probabilities

Then Z is independent of X givena Y =y

And making the assumption that once an event happens
P(Z|X,Y =y)=P(Z|Y =y) (2)

Evidence along the chain “blocks” the influence. I
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Thus

Something Notable

Knowing that X has occurred does not make any difference to our beliefs
about Z if we already know that Y has occurred.
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Thus

Something Notable

Knowing that X has occurred does not make any difference to our beliefs
about Z if we already know that Y has occurred.

v

Thus conditional independencies can be written

Ip (Z,X|Y =) (3)

v
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Therefore

The Joint Probability is equal to

P(X,Y =y, 2) = P(X) P(Y = y|X) P(Z]Y =) (4)

Cinvestav
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Thus

Is X independent of Z given Y = y?

P(X,Y =y,2)
P(X,Y =y)

P(Z|X,)Y =y) =

&)
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Thus

Is X independent of Z given Y = y?

P(X,Y =y,7)
P(X,Y =y)
_PX)PY =ylX)P(Z]Y =y)

P(Z|X,)Y =y) =

P(X)P(Y =y|X)
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Thus

Is X independent of Z given Y = y?

P(X,Y =y,7)
P(X,Y =y)
_PX)PY =ylX)P(Z]Y =y)

P(Z|X,)Y =y) =

P(X)P (Y = y|X)
— P(Z]Y =)
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Causality

@ Causal Networks

@ Common Causes
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Common Causes

Another basic configuration: two effects of the same cause

X : John Calls
Y : Alarm
Z : Mary Calls
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Common Causes

Another basic configuration: two effects of the same cause

X : John Calls
Y : Alarm
Z : Mary Calls

.

P(X,Y =y, Z) = P(X) P (Y =y|X) P(Z]X,Y =y)

P(Z|Y =y)

(5)
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Common Causes

What happened if X is independent of Z given Y = y?

P(X,Y =y,2)

PIXY =9)= Frry o
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Common Causes

What happened if X is independent of Z given Y = y?

P(X,Y =y,2)
P(X,Y =y)
_PX)PY =ylX)P(Z]Y =y)

P(Z|X,)Y =y) =

P(X)P(Y =y|X)
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Common Causes

What happened if X is independent of Z given Y = y?

P(X,Y =y,2)

P(X,Y =y)

_PX)PY =ylX)P(Z]Y =y)
P (X)P (Y =y|X)

=P (Z]Y =vy)

P(Z|X,)Y =y) =

v

Evidence on the top of the chain “blocks” the influence between X and Z. l
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Thus

It gives rise to the same conditional independent structure as chains

Ip (Z,X|Y =) (6)
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Thus

It gives rise to the same conditional independent structure as chains

Ip (Z,X|Y =) (6)

if we already know about Y, then an additional information about X will
not tell us anything new about Z.
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Causality
@ Causal Networks

@ Common Effect
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Common Effect

Last configuration: two causes of one effect (v-structures)

X : Raining
Y : Traffic
Z : Ballgame

&)

Cinvestav

26 /113



Common Effect

Last configuration: two causes of one effect (v-structures)

X : Raining
Y : Traffic
Z : Ballgame

Are X and Z independent if we do not have information about Y7
Yes!!! Because the ballgame and the rain can cause traffic, but they are

not correlated. )
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Proof

We have the following

P(X,Y,Z)
P(X,Y)

P(Z|X,Y) =
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Proof

We have the following

P(X,Y,Z)

P(X,Y)

_ P(X|Z,Y)P(Y|2)P(Z)
B P(X|Y)P(Y)

P(Z|X,Y) =

V.
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Proof

We have the following

P(X,Y,Z)

P(X,Y)
_ P(X|Z,Y)P(Y|2)P(Z)
B P(X|Y)P(Y)
_P(X)P(Y|2)P(2)
-~ P(X)P(Y|2)

P(Z|X,Y) =
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Proof

We have the following

P(X,Y,Z)

P(X,Y)
_ P(X|Z,Y)P(Y|2)P(Z)
B P(X|Y)P(Y)
_PX)P(Y|Z2) P (Z)
-~ P(X)P(Y|2)
= P(2)

P(Z|X,Y) =

Cinvestav
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Common Effects

Are X and Z independent given Y = y?

No!ll Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

€
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Common Effects

Are X and Z independent given Y = y?

No!ll Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

P(X,Z,Y =vy)
P(X,Z|Y =vy) =
(X,21Y =y) = =55

v

€
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Common Effects

Are X and Z independent given Y = y?

No!ll Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

P(X,Z]Y =y) = P(ing’z; y)
_PXIZY =y P(ZIY =y) P(Y =y)
PY =y)

v

€
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Common Effects

Are X and Z independent given Y = y?

No!ll Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

mxzwzwngéz;”
_PXIZY =y P(ZIY =y) P(Y =y)
PY =y)

=P (X|2,Y =y)P(Z|Y =y)

v

€

Cinvestav
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The General Case

Backwards from the other cases
@ Observing an effect activates influence between possible causes.
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The General Case

Backwards from the other cases
@ Observing an effect activates influence between possible causes.
Any complex example can be analyzed using these three canonical cases I
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The General Case

Backwards from the other cases
@ Observing an effect activates influence between possible causes.
Any complex example can be analyzed using these three canonical cases l

In a given Bayesian Network, Are two variables independent (given
evidence)?
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The General Case

Backwards from the other cases

@ Observing an effect activates influence between possible causes. \

Any complex example can be analyzed using these three canonical cases

In a given Bayesian Network, Are two variables independent (given
evidence)?

@ Analyze Graph Deeply!!! \
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Outline

9 Analyze the Graph
@ Going Further
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Analyze the Graph

Definition 2.1
o Let G = (V, E) be a DAG, where V is a set of random variables. We
say that, based on the Markov condition, G entails conditional

independence:
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Analyze the Graph

Definition 2.1
o Let G = (V, E) be a DAG, where V is a set of random variables. We
say that, based on the Markov condition, G entails conditional

independence:
» Ip(A,B|C) for A,B,C C V if Ip(A, B|C) holds for every P € P ,
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Analyze the Graph

Definition 2.1

o Let G = (V, E) be a DAG, where V is a set of random variables. We

say that, based on the Markov condition, G entails conditional
independence:

» Ip(A,B|C) for A,B,C C V if Ip(A, B|C) holds for every P € P ,

where Pg is the set of all probability distributions P such that (G, P)
satisfies the Markov condition.

V.

We also say the Markov condition entails the conditional independence for

G and that the conditional independence is in G.
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Analyze the Graph

In a given Bayesian Network, Are two variables independent (Given
evidence)?
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Analyze the Graph

In a given Bayesian Network, Are two variables independent (Given
evidence)?

Analyze Graph Deeply!!! I
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Outline

9 Analyze the Graph

@ D-Separation
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Examples of Entailed Conditional independence

G: Graduate Program Quality.
F: First Job Quality.
B: Number of Publications.
C: Number of Citations.
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Examples of Entailed Conditional independence

G: Graduate Program Quality.
F: First Job Quality.
B: Number of Publications.
C: Number of Citations.

F is given some evidence!!!

Cinvestav
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Using Markov Condition

If the graph satisfies the Markov Condition
@—©
G » » B > C
O—@—)
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Using Markov Condition

If the graph satisfies the Markov Condition
@—©
G » » B > C
O—@—)

P(C|G,F=f) = > P(C|B=bG,F=f)P(B=blG,F=f)
b

A

v
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Using Markov Condition

If the graph satisfies the Markov Condition
@—©
G » » B > C
O—@—)

P(CIG,F=f) = S.P(CIB=bG,F=f)P(B=bGF=f)
b
— S P(CIB=bF=f)P(B=bF=f)
b

A

v
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Using Markov Condition

If the graph satisfies the Markov Condition
@—©
G » » B > C
O—@—) 1

P(C|G,F=f) = > P(C|B=bG,F=f)P(B=blG,F=f)
b

= Y P(C|B=bF=f)P(B=bF =)
b

= P(CIF=1)

v
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Finally

I, (C,G|F)
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D-Separation ~ Conditional independence

F and G are given as evidence

Example C and G are d-separated by A, F in the DAG in

«
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Outline

e Analyze the Graph

@ D-Separation
@ Paths
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Basic Definitions

Definition (Undirected Paths)

A path between two sets of nodes X and Y is any sequence of nodes
between a member of X and a member of Y such that every adjacent pair
of nodes is connected by an edge (regardless of direction) and no node
appears in the sequence twice.

&)
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Example

An example

Q Nodes in X

Nodes in
the Path
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Example

Q Nodes in X

Nodes in
the Path
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Thus

Given a path in G = (V, E)

There are the edges connecting [X1, X, ..., Xi].
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Thus

Given a path in G = (V, E)

There are the edges connecting [X1, X, ..., Xi].
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Thus

Given a path in G = (V, E)

There are the edges connecting [X1, X, ..., Xi].

Therefore

Given the directed edge X — Y , we say the tail of the edge is at X and
the head of the edge is Y.
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Basic Classifications of Meetings

Head-to-Tail

A path X — Y — Z is a head-to-tail meeting, the edges meet head-
to-tail at Y, and Y is a head-to-tail node on the path.
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Basic Classifications of Meetings

Head-to-Tail

A path X — Y — Z is a head-to-tail meeting, the edges meet head-
to-tail at Y, and Y is a head-to-tail node on the path.

Tail-to-Tail

A path X < Y — Z is a tail-to-tail meeting, the edges meet tail-to-tail
at Z, and Z is a tail-to-tail node on the path.

| A\

N
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Basic Classifications of Meetings

Head-to-Tail

A path X — Y — Z is a head-to-tail meeting, the edges meet head-
to-tail at Y, and Y is a head-to-tail node on the path.

Tail-to-Tail

A path X < Y — Z is a tail-to-tail meeting, the edges meet tail-to-tail
at Z, and Z is a tail-to-tail node on the path.

| A

Head-to-Head

A path X — Y < Z is a head-to-head meeting, the edges meet
head-to-head at Y, and Y is a head-to-head node on the path.

| \

v

&)

Cinvestav

43 /113



Examples

Head-to-Tail

O——@

X : Low Pressure
Y : Rain
Z : Traffic
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Examples

Tail-to-Tail

X : John Calls
Y : Alarm
Z : Mary Calls

Cinvestav
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Examples

Head-to-Head

X : Raining
Y : Traffic
Z : Ballgame
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Basic Classifications of Meetings

o A path (undirected) X — Z — Y, such that X and Y are not
adjacent, is an uncoupled meeting.
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Outline

e Analyze the Graph
@ D-Separation

@ Blocking
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Blocking Information ~ Conditional Independence

Definition 2.2

Definition 2.2 LetG = (V, E) be a DAG, A CV, X and Y be distinct
nodes in V — A, and p be a path between X and Y .

v
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Blocking Information ~ Conditional Independence

Definition 2.2

Definition 2.2 LetG = (V, E) be a DAG, A CV, X and Y be distinct
nodes in V — A, and p be a path between X and Y .

Then p is blocked by A if one of the following holds:

v
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Blocking Information ~ Conditional Independence

Definition 2.2

Definition 2.2 LetG = (V, E) be a DAG, A CV, X and Y be distinct
nodes in V — A, and p be a path between X and Y .
Then p is blocked by A if one of the following holds:
@ There is a node Z € A on the path p, and the edges incident to Z on
p meet head-to-tail at Z.

v
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Blocking Information ~ Conditional Independence

Definition 2.2

Definition 2.2 LetG = (V, E) be a DAG, A CV, X and Y be distinct
nodes in V — A, and p be a path between X and Y .
Then p is blocked by A if one of the following holds:
@ There is a node Z € A on the path p, and the edges incident to Z on
p meet head-to-tail at Z.
@ There is a node Z € A on the path p, and the edges incident to Z on
p, meet tail-to-tail at Z.

v
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Blocking Information ~ Conditional Independence

Definition 2.2

Definition 2.2 LetG = (V, E) be a DAG, A CV, X and Y be distinct
nodes in V — A, and p be a path between X and Y .
Then p is blocked by A if one of the following holds:

@ There is a node Z € A on the path p, and the edges incident to Z on
p meet head-to-tail at Z.

@ There is a node Z € A on the path p, and the edges incident to Z on
p, meet tail-to-tail at Z.

© There is a node Z, such that Z and all of Z's descendent’s are not in

A, on the chain p, and the edges incident to Z on p meet
head-to-head at Z.

v
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Example

We have that the path [Y, X, Z, 5] is blocked by {X} and {Z}

@ Because the edges on the chain incident to X meet tail-to-tail at X.

-<— Blocking Nodes

v
Cinvestav
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Example

We have that the path [W,Y, R, Z, S] is blocked by ()

@ Because R ¢ () and T ¢ () and the edges on the chain incident to R
meet head-to-head at R .
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Outline

9 Analyze the Graph

@ D-Separation

@ Definition of D-Separation
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Definition of D-Separation

Definition 2.3

Let G = (V,E) be a DAG, ACV, and X and Y be distinct nodes in

V — A. We say X and Y are D-Separated by A in G if every path
between X and Y is blocked by A.
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Definition of D-Separation

Definition 2.3

Let G = (V,E) be a DAG, ACV, and X and Y be distinct nodes in
V — A. We say X and Y are D-Separated by A in G if every path
between X and Y is blocked by A.

Definition 2.4

| A

Let G = (V, E) be a DAG, and A4, B, and C be mutually disjoint subsets
of V. We say A and B are d-separated by C' in G if for every X € A and

Y € B, X and Y are D-Separated by C.
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Definition of D-Separation

Definition 2.3

Let G = (V,FE) be a DAG, ACV, and X and Y be distinct nodes in
V — A. We say X and Y are D-Separated by A in G if every path
between X and Y is blocked by A.

Definition 2.4

Let G = (V, E) be a DAG, and A4, B, and C be mutually disjoint subsets
of V. We say A and B are d-separated by C' in G if for every X € A and
Y € B, X and Y are D-Separated by C.

| A\

We write

| \

I¢(A,B|C) or A L B|C (8)
If C'= (), we write only I(A,B) or A L B.

v
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Example

X and T are D-Separated by {Y, 7}

@ Because the chain [X,Y, R, T] is blocked at Y.

v
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Example

X and T are D-Separated by {Y, Z} - It is the set that block all paths
@ Because the chain [X, Z, S, R, T] is blocked at Z, S.

Blocking Nodes

v
uinvestav

55/113



D-Separation = Independence

D-Separation Theorem

Let P be a probability distribution of the variables in V' and G = (V, E)
be a DAG. Then (G, P) satisfies the Markov condition if and only if
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D-Separation = Independence

D-Separation Theorem

Let P be a probability distribution of the variables in V' and G = (V, E)
be a DAG. Then (G, P) satisfies the Markov condition if and only if

o for every three mutually disjoint subsets A, B,C' C V, whenever A

and B are D-Separated by C, A and B are conditionally independent
in P given C.
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D-Separation = Independence

D-Separation Theorem

Let P be a probability distribution of the variables in V' and G = (V, E)
be a DAG. Then (G, P) satisfies the Markov condition if and only if

o for every three mutually disjoint subsets A, B,C' C V, whenever A

and B are D-Separated by C, A and B are conditionally independent
in P given C.

That is, (G, P) satisfies the Markov condition if and only if
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Proof

The proof that, if (G, P) satisfies the Markov condition

Then, each D-Separation implies the corresponding conditional

independence is quite lengthy and can be found in [Verma and Pearl,
1990] and in [Neapolitan, 1990].
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Proof

The proof that, if (G, P) satisfies the Markov condition

Then, each D-Separation implies the corresponding conditional
independence is quite lengthy and can be found in [Verma and Pearl,
1990] and in [Neapolitan, 1990].

Then, we will only prove the other direction

Suppose each D-Separation implies a conditional independence.
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Proof

The proof that, if (G, P) satisfies the Markov condition

Then, each D-Separation implies the corresponding conditional
independence is quite lengthy and can be found in [Verma and Pearl,
1990] and in [Neapolitan, 1990].

Then, we will only prove the other direction

Suppose each D-Separation implies a conditional independence.

Thus, the following implication holds

I (A, B|C) = Ip (4, B|C) (10)
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Proof

Something Notable

It is not hard to see that a node’s parents D-Separate the node from all its
non-descendent’s that are not its parents.

&
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Proof

Something Notable

It is not hard to see that a node’s parents D-Separate the node from all its
non-descendent’s that are not its parents.

If we denote the sets of parents and non-descendent’s of X by PAx and
NDx respectively, we have

I¢ ({X},NDx — PAx|PAx) (11)
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Proof

Something Notable

It is not hard to see that a node’s parents D-Separate the node from all its
non-descendent’s that are not its parents.

This is
If we denote the sets of parents and non-descendent’s of X by PAx and
NDx respectively, we have

I¢ ({X},NDx — PAx|PAx) (11)

4

Ip ({X},NDx — PAx|PAx)

(12)
&5
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Proof

This states the same than

Ip ({X},NDx|PAx)
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Proof

This states the same than

Ip ({X},NDx|PAx) (13)

Meaning
The Markov condition is satisfied.
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Every Entailed Conditional Independence is ldentified by
D-Separation

Any conditional independence entailed by a DAG, based on the Markov
condition, is equivalent to a conditional independence among disjoint sets
of random variables.
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Every Entailed Conditional Independence is ldentified by
D-Separation

Any conditional independence entailed by a DAG, based on the Markov

condition, is equivalent to a conditional independence among disjoint sets
of random variables.

Based on the Markov condition, a DAG G entails all and only those
conditional independences that are identified by D-Separations in G.
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Outline

e Algorithms to Find D-Separations
@ Introduction
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Now

We would like to find the D-Separations

Since d-separations entail conditional independencies.

&)

Cinvestav

62 /113



Now

We would like to find the D-Separations

Since d-separations entail conditional independencies.

We want an efficient algorithm
For determining whether two sets are D-Separated by another set.
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Now

We would like to find the D-Separations

Since d-separations entail conditional independencies.

We want an efficient algorithm

For determining whether two sets are D-Separated by another set.

For This, we need to build an algorithm

One that can find all D-Separated nodes from one set of nodes by another.
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How?

To accomplish this

We will first find every node X such that there is at least one active path
given A between X and a node in D.
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How?

To accomplish this

We will first find every node X such that there is at least one active path
given A between X and a node in D.

Something like

@ D Set
O A Set
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We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of
interest.

e
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We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of
interest.

As legal and the rest as illegal!!

Thus, we identify certain pair of edges (v — v,v — w) J
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We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of
interest.

Thus, we identify certain pair of edges (v — v,v — w)

As legal and the rest as illegal!!

Legal?

@ We call a path legal if it does not contain any illegal ordered pairs of
edges.

e
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We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of
interest.

Thus, we identify certain pair of edges (v — v,v — w)

As legal and the rest as illegal!!

@ We call a path legal if it does not contain any illegal ordered pairs of
edges.

o We say Y is reachable from x if there is a legal path from x to y .

e
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Thus

We can find the set R of all nodes reachable from z as follows

Any node V such that the edge © — v exists is reachable.
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Thus

We can find the set R of all nodes reachable from z as follows

Any node V such that the edge © — v exists is reachable.

We label such edge with 1. I
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Thus

We can find the set R of all nodes reachable from z as follows
Any node V such that the edge © — v exists is reachable.

We label such edge with 1. \

Next for each such v

We check all unlabeled edges v — w and see if (z — v,v — w) is a legal
pair.
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Then

We label each such edge with a 2
And keep going!!!
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Then

We label each such edge with a 2

And keep going!!!

Similar to a Breadth-First Graph

Here, we are visiting links rather than nodes.
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What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V, E). J
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What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V, E).

We need to find the set R such that
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What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V, E).

We need to find the set R such that

@ y € R < Either
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What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V, E).

We need to find the set R such that

@ y € R < Either
» y € B.
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What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V, E).

We need to find the set R such that

@ y € R < Either

» y € B.
» There is at least one active chain given A between y and a node in B.

&)
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Then

If there is an active path p between node X and some other node

Then every 3-node sub-path u — v — w (u # w) of p has the following
property.
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Then

If there is an active path p between node X and some other node

Then every 3-node sub-path u — v — w (u # w) of p has the following
property.

u — v — w is not head-to-head at v and v is not in A. I
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Then

If there is an active path p between node X and some other node

Then every 3-node sub-path u — v — w (u # w) of p has the following
property.

u — v — w is not head-to-head at v and v is not in A.

u — v — w is a head-to-head at v and v is a or has a descendant in A.
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The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if (u — v,v — w) is legal in G'. J
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The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if (u — v,v — w) is legal in G'.

The pair (v — v,v — w) is legal if and only if
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The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE

Find if (u — v,v — w) is legal in G'.

The pair (v — v,v — w) is legal if and only if

uF#w (14)

v

And one of the following holds

@ (u— v —w) is not head-to-head in G and iny4 [v] is false.

v
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The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if (u — v,v — w) is legal in G'.

The pair (v — v,v — w) is legal if and only if

And one of the following holds

| \

@ (u— v —w) is not head-to-head in G and iny4 [v] is false.

@ (u— v —w) is head-to-head in G and descendent [v] is true.

o
Cinvestav
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Outline

e Algorithms to Find D-Separations
@ Introduction
@ Example of Reachability
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Example

Reachable nodes from X when A = (), thus

iny [v] is false and descendent [v] is false for all v € V
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Example

Reachable nodes from X when A = (), thus

iny [v] is false and descendent [v] is false for all v € V

Therefore
Only the rule 1 is applicable.
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Example

Labeling edges to 1 and shaded nodes are in R
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Example

Labeling edges to 1 and shaded nodes are in R
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Example

Labeling edges to 2 and shaded nodes are in R

vvvvvvvvv



Example

Labeling edges to 3 and shaded nodes are in R
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Example

Labeling edges to 4 and shaded nodes are in R
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Example

Labeling edges to 5 and shaded nodes are in R

vvvvvvvvv



Outline

e Algorithms to Find D-Separations

@ Reachability Algorithm

&)

Cinvestav

78 /113



Algorithm to Finding Reachability

find-reachable-nodes(G, set of nodes B, set of nodes &R)

Input:G = (V,E), subset B C V and a RULE to find if two consecutive edges are legal
Output: R C V of all nodes reachable from B

1. foreachz €B
2. add z to R

3.

for (each v such that z — v € E)

v
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Algorithm to Finding Reachability

find-reachable-nodes(G, set of nodes B, set of nodes &R)

Input:G = (V,E), subset B C V and a RULE to find if two consecutive edges are legal
Output: R C V of all nodes reachable from B

1. foreachz €B

2. add = to R

3. for (each v such that z — v € E)
5, add v to R

6. label  — v with 1

v
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Algorithm to Finding Reachability

find-reachable-nodes(G, set of nodes B, set of nodes &R)

Input:G = (V,E), subset B C V and a RULE to find if two consecutive edges are legal
Output: R C V of all nodes reachable from B

1. foreachz €B
add z to R

2

3. for (each v such that z — v € E)
5, add v to R

6 label © — v with 1

7. i=1

8

. found =true

v
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Algorithm to Finding Reachability

find-reachable-nodes(G, set of nodes B, set of nodes &R)

Input:G = (V,E), subset B C V and a RULE to find if two consecutive edges are legal
Output: R C V of all nodes reachable from B

1. foreachz €B
add z to R

2

3. for (each v such that z — v € E)
5, add v to R

6 label © — v with 1

7. i=1

8

. found =true

v
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Continuation

The following steps

9. while (found)

10. found =false
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Continuation

The following steps

9. while (found)
10. found =false
11. for (each v such that u — v labeled )
12. for (each unlabeled edge v — w
13. such (u — v,v = w) is legal)
14. add w to R
15. label v — w with i + 1
16. found =true

&)
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Continuation

The following steps

9. while (found)

10.
11.
12.
13.
14.
15.

16.
17.

found =false
for (each v such that u — v labeled )
for (each unlabeled edge v — w
such (u — v,v — w) is legal)
add w to R
label v — w with ¢ + 1

found =true
i=1+4+1
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Outline

e Algorithms to Find D-Separations

@ Analysis
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Complexity of find-reachable-nodes

We have that
Let n be the number of nodes and m be the number of edges.
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Complexity of find-reachable-nodes

We have that

Let n be the number of nodes and m be the number of edges.

Something Notable

In the worst case, each of the nodes can be reached from n entry points.
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Complexity of find-reachable-nodes

We have that

Let n be the number of nodes and m be the number of edges.

Something Notable

In the worst case, each of the nodes can be reached from n entry points.

Each time a node is reached, an edge emanating from it may need to be
re-examined.

&)
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Complexity of find-reachable-nodes

Then, in the worst case each edge may be examined n times I
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Complexity of find-reachable-nodes

Then, in the worst case each edge may be examined n times I

Thus, the complexity

W (m,n) =0 (mn) (15)
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Outline

e Algorithms to Find D-Separations

@ D-Separation Finding Algorithm
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Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets
ABcCV
Output: D C V containing all nodes D-
Separated from every node in B by A. That
is I (B,D|A) holds and no superset D has
this property.

1. for each v €V

2. if (v € A)

3. ina [v] = true

v
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Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets
ABcCV

Output: D C V containing all nodes D-
Separated from every node in B by A. That
is I (B,D|A) holds and no superset D has
this property.

1. for each v € V

2. if (v € A)

3. ina [v] = true
4. else

5 ina [v] = false

v
85 /113



Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets
ABcCV

Output: D C V containing all nodes D-
Separated from every node in B by A. That
is I (B,D|A) holds and no superset D has
this property.

1. for each v € V

2. if (v € A)

3. ina [v] = true

4. else

5 ina [v] = false

6. if (v is or has a descendent in A)
1. descendent [v] = true

v
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Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets
ABcCV

Output: D C V containing all nodes D-
Separated from every node in B by A. That
is I (B,D|A) holds and no superset D has
this property.

1. for each v € V

2. if (v € A)

3. ina [v] = true

4. else

5 ina [v] = false

6. if (v is or has a descendent in A)
1. descendent [v] = true

8. else

9. descendent [v] = false
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Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets ,
ABCV 10. ' =EU{u — v|v — u € E}

Output: D C V containing all nodes D-
Separated from every node in B by A. That
is I (B,D|A) holds and no superset D has
this property.

1. for each v € V

2. if (v € A)

3. ina [v] = true

4. else

5 ina [v] = false

6. if (v is or has a descendent in A)
1. descendent [v] = true

8. else

9. descendent [v] = false

v
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Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets ,
ABCV 10. ' =EU{u — v|v — u € E}

Output: D C V containing all nodes D- 11. ¢’ = (V,E)
Separated from every node in B by A. That

is I (B,D|A) holds and no superset D has

this property.

1. for each v € V

2. if (v € A)

3. ina [v] = true

4. else

5 ina [v] = false

6. if (v is or has a descendent in A)
1. descendent [v] = true

8. else

9. descendent [v] = false
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Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets ,
ABCV 10. E =EU{u = v|v — u € E}

Output: D C V containing all nodes D- 11. ¢' = (V.E)
Separated from every node in B by A. That 12

. Run the algorithm:
is I (B,D|A) holds and no superset D has

this property. find-reachable-nodes(G’, B,R)
1. foreachwv eV
2. if (v EA)
3. ina [v] = true
4. else
5 ina [v] = false
6. if (v is or has a descendent in A)
1. descendent [v] = true
8. else
9. descendent [v] = false

v
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Algorithm for D-separation
Find-D-

Separations(DAG G = (V,E), set of nodes A,B, set of nodes D)

Input: G = (V,E)and two disjoint subsets ,
ABCV 10. E =EU{u = v|v — u € E}

Output: D C V containing all nodes D- 11. ¢' = (V.E)
Separated from every node in B by A. That 12

. Run the algorithm:
is I (B,D|A) holds and no superset D has

this property. find-reachable-nodes(G’, B,R)
(-
1. for each v €V 3 > Note B C R
2. if (veA) . return D=V — (AUR)

ina [v] = true
else
ina [v] = false
if (v is or has a descendent in A)

descendent [v] = true

else

© R @@l > e

descendent [v] = false

v
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Observation about descendent [v]

We can implement the construction of descendent [v] as follow

Initially set descendent [v] = true for all nodes in A.

&)
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Observation about descendent [v]

We can implement the construction of descendent [v] as follow

Initially set descendent [v] = true for all nodes in A.

Then follow the incoming edges in A to their parents, their parents’
parents, and so on.
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Observation about descendent [v]

We can implement the construction of descendent [v] as follow

Initially set descendent [v] = true for all nodes in A.

Then follow the incoming edges in A to their parents, their parents’
parents, and so on.

We set descendent [v] = true for each node found along the way.

&)
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Observation about E’

The RULE about legal and E’

The E’ is necessary because using only the RULE on E will no get us all
the active paths.

&)

Cinvestav

87 /113



Observation about E’

The RULE about legal and E’

The E' is necessary because using only the RULE on E will no get us all
the active paths.

”
For example

Ow (2)

N

4
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Thus

Something Notable

Given A is the only node in A and X — T is the only edge in B, the edges
in that DAG are numbered according to the method.
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Thus

Something Notable

Given A is the only node in A and X — T is the only edge in B, the edges
in that DAG are numbered according to the method.

Then

The active chain X — A <+ Z + T + Y is missed because the edge
T — Z is already numbered by the time the chain A+ Z < T'is
investigated.

| A\
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Thus

Something Notable

Given A is the only node in A and X — T is the only edge in B, the edges
in that DAG are numbered according to the method.

Then

The active chain X — A+ Z + T < Y is missed because the edge
T — Z is already numbered by the time the chain A+ Z < T'is
investigated.

| A\

If we use the set of edges E'.
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Thus

Once, we add the extra edges, we get
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Outline

e Algorithms to Find D-Separations

@ D-Separation Finding Algorithm
@ Analysis
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Complexity

Please take a look at page 81 at

“Learning Bayesian Networks" by Richard E. Neapolitan.
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Complexity

Please take a look at page 81 at

“Learning Bayesian Networks" by Richard E. Neapolitan.

For the analysis of the algorithm for m edges and n nodes

© (m) with m > n. (16)
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The D-Separation Algorithm works

The set D contains all and only nodes D-Separated from every node in B
by A.
@ That is, we have I; (B,D|A) and no superset of D has this property.
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The D-Separation Algorithm works

Theorem 2.2

The set D contains all and only nodes D-Separated from every node in B
by A.

@ That is, we have I; (B,D|A) and no superset of D has this property.

@ The set R determined by the algorithm contains

» All nodes in B.
» All nodes reachable from B via a legal path in G.

A\
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Cinvestav

92 /113



Proof

For any two nodes x € Band y ¢ AUB

The path x — ... — y is active in G if and only if the path x — ... = y is
legal in G’.

&)
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Proof

For any two nodes x € Band y ¢ AUB

The path x — ... — y is active in G if and only if the path x — ... = y is
legal in G’.

Thus R contains the nodes in B plus all and only those nodes that have
active paths between them and a node in B.
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Proof

For any two nodes x € Band y ¢ AUB

The path x — ... — y is active in G if and only if the path x — ... = y is
legal in G’.

Thus

Thus R contains the nodes in B plus all and only those nodes that have
active paths between them and a node in B.

| A\

A\

By the definition of D-Separation

A node is D-Separated from every node in B in A if the node is not in
A U B and there is not active path between the node and a node in B.
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Proof

D=V-(A U R) is the set of all nodes D-Separated from every node in B by
A.
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Outline

e Algorithms to Find D-Separations

@ D-Separation Finding Algorithm

@ Example of D-Separation g
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Example

B = {z} and A = {s,v}- Original Graph!!!




Example

B = {z} and A = {s,v}- Moralized and with the tracking of
descendants

------- ") @hA

. descendant true
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Example

B ={x} and A = {s,v} and the first part of the reachability

algorithm

.InA

. descendant true

v

&8
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Example

Remember that Legality is in G

.InA

. descendant true
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Example

Now, we have that

.InA

. descendant true
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Example

D — {AU R} = {q}

‘InA

. descendant true
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Outline

e Algorithms to Find D-Separations

@ Application @
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Application

Something Notable

In general, the inference problem in Bayesian networks is to determine
P (B|A), where A and B are two sets of variables.
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Application

Something Notable

In general, the inference problem in Bayesian networks is to determine
P (B|A), where A and B are two sets of variables.

We can use the D-Separation for that. I
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Example

Given the following the DAG G
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Example

We generate G’
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Where

The extra nodes represent

The probabilities in the interval [0, 1] and representing P (X = x)

&

Cinvestav

106 /113



Where

The extra nodes represent

The probabilities in the interval [0, 1] and representing P (X = x)

Creating a set of P be the set of auxiliary parent nodes

Thus, if we want to determine P (B|A) in G, we can use the algorithm for
D-Separation to find D.
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Where

The extra nodes represent

The probabilities in the interval [0, 1] and representing P (X = x)

Creating a set of P be the set of auxiliary parent nodes

Thus, if we want to determine P (B|A) in G, we can use the algorithm for
D-Separation to find D.

Ie: (B.DIA) (17)

And no superset of D has this property, then take DNP. )
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For example

To determine it we need that all and only the values of Py , Pg , Pr, ,
and Prp
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For example

We want P (f)

To determine it we need that all and only the values of Py , Pg , Pr, ,
and Prp

Io ({F}, {Px}|0) (18)

4
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For example

We want P (f)

To determine it we need that all and only the values of Py , Pg , Pr, ,
and Pr

Because

| A

Lo ({F},{Px}0) (18)

4

Thus

Px is the only auxiliary parent variable D-Separated from {F'} by the
empty set.

\
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For example

We want P (f|b)

To determine it we need that all and only the values of Py , Pr , and Pr
when separation set is { B}
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For example

We want P (f|b)

To determine it we need that all and only the values of Py , Pr , and Pr
when separation set is { B}

Then

| A\

I ({F} {Px, Pp}[{B}) (19)
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For example

We want P (f|b)

To determine it we need that all and only the values of Py , Pr , and Pr
when separation set is { B}

Then

| \

Ig ({F'},{Px, P} |{B})

Thus

Px is the only auxiliary parent variable D-Separated from {F'} by the
empty set.

| A

v
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Outline

&)

o Final Remarks Cinvestav

@ Encoding Causality
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Remarks

Bayes Networks can reflect the true causal patterns

o Often simpler (nodes have fewer parents).
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Remarks

Bayes Networks can reflect the true causal patterns
o Often simpler (nodes have fewer parents).
@ Often easier to think about.
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Remarks

Bayes Networks can reflect the true causal patterns

o Often simpler (nodes have fewer parents).

@ Often easier to think about.

@ Often easier to elicit from experts.
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Remarks

Bayes Networks can reflect the true causal patterns

o Often simpler (nodes have fewer parents).
@ Often easier to think about.
@ Often easier to elicit from experts.

Something Notable

@ Sometimes no causal net exists over the domain.
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Remarks

Bayes Networks can reflect the true causal patterns

o Often simpler (nodes have fewer parents).
o Often easier to think about.

@ Often easier to elicit from experts.

Something Notable

@ Sometimes no causal net exists over the domain.

@ For example, consider the variables Traffic and Drips.
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Remarks

Bayes Networks can reflect the true causal patterns

o Often simpler (nodes have fewer parents).
o Often easier to think about.

@ Often easier to elicit from experts.

Something Notable

@ Sometimes no causal net exists over the domain.

@ For example, consider the variables Traffic and Drips.

» Arrows reflect correlation not causation.
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Remarks

What do the arrows really mean?
@ Topologies may happen to encode causal structure.
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Remarks

What do the arrows really mean?

@ Topologies may happen to encode causal structure.

@ Topologies are only guaranteed to encode conditional independence!
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Example

Burgalary Earthquake
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Example

Example

Burgalary Earthquake

| A\

Add more stuff

@ Given that some information is not being encoded into the network:

» We have to add more edges to the graph.

4
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Example

o Adding edges allows to make different conditional independence
assumptions.
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Example

Thus

@ Adding edges allows to make different conditional independence
assumptions.

New Network

Burgalary Earthquake

y
-~ v
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