Artificial Intelligence
 Causality in Bayesian Networks

Andres Mendez-Vazquez

February 11, 2020

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Outline
 1 Causality
 - Example

- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Causality

What do we naturally?
A way of structuring a situation for reasoning under uncertainty is to construct a graph representing causal relations between events.

Causality

What do we naturally?

A way of structuring a situation for reasoning under uncertainty is to construct a graph representing causal relations between events.

Example of events with possible outputs

- Fuel? \{Yes, No\}
- Clean Spark Plugs? \{full, $1 / 2$, empty $\}$
- Start? \{Yes, No\}

Causality

We know
We know that the state of Fuel? and the state of Clean Spark Plugs? have a causal impact on the state of Start?.

Causality

We know

We know that the state of Fuel? and the state of Clean Spark Plugs? have a causal impact on the state of Start?.

Thus we have something like

Outline

1 Causality
－Example
－Definition of Causal Structure
－Causal Networks
－Causal Chains
－Common Causes
－Common Effect
（2）Analyze the Graph
－Going Further
－D－Separation
－Paths
－Blocking
－Definition of D－Separation
（3）Algorithms to Find D－Separations
－Introduction
－Example of Reachability
－Reachability Algorithm
－Analysis
－D－Separation Finding Algorithm
－Analysis
－Example of D－Separation
－Application
（4）Final Remarks
－Encoding Causality

Causal Structure - Judea Perl (1988)

Definition

A causal structure of a set of variables V is a directed acyclic graph (DAG) in which each node corresponds to a distinct element of V, and each edge represents direct functional relationship among the corresponding variables.

Causal Structure - Judea Perl (1988)

Definition

A causal structure of a set of variables V is a directed acyclic graph (DAG) in which each node corresponds to a distinct element of V, and each edge represents direct functional relationship among the corresponding variables.

Observation

Causal Structure \cong A precise specification of how each variable is influenced by its parents in the DAG.

Causal Model

Definition

A causal model is a pair $M=\left\langle D, \Theta_{D}\right\rangle$ consisting of a causal structure D and a set of parameters Θ_{D} compatible with D.

Causal Model

Definition

A causal model is a pair $M=\left\langle D, \Theta_{D}\right\rangle$ consisting of a causal structure D and a set of parameters Θ_{D} compatible with D.

Thus

The parameters Θ_{D} assign a distribution

$$
\begin{aligned}
x_{i} & =f_{i}\left(\mathrm{pa}_{i}, u_{i}\right) \\
u_{i} & \sim p\left(u_{i}\right)
\end{aligned}
$$

Causal Model

Definition

A causal model is a pair $M=\left\langle D, \Theta_{D}\right\rangle$ consisting of a causal structure D and a set of parameters Θ_{D} compatible with D.

Thus

The parameters Θ_{D} assign a distribution

$$
\begin{aligned}
x_{i} & =f_{i}\left(\mathrm{pa}_{i}, u_{i}\right) \\
u_{i} & \sim p\left(u_{i}\right)
\end{aligned}
$$

Where

- x_{i} is a variable in the model D.

Causal Model

Definition

A causal model is a pair $M=\left\langle D, \Theta_{D}\right\rangle$ consisting of a causal structure D and a set of parameters Θ_{D} compatible with D.

Thus

The parameters Θ_{D} assign a distribution

$$
\begin{aligned}
x_{i} & =f_{i}\left(\mathrm{pa}_{i}, u_{i}\right) \\
u_{i} & \sim p\left(u_{i}\right)
\end{aligned}
$$

Where

- x_{i} is a variable in the model D.
- pa ${ }_{i}$ are the parents of x_{i} in D.

Causal Model

Definition

A causal model is a pair $M=\left\langle D, \Theta_{D}\right\rangle$ consisting of a causal structure D and a set of parameters Θ_{D} compatible with D.

Thus

The parameters Θ_{D} assign a distribution

$$
\begin{aligned}
x_{i} & =f_{i}\left(\mathrm{pa}_{i}, u_{i}\right) \\
u_{i} & \sim p\left(u_{i}\right)
\end{aligned}
$$

Where

- x_{i} is a variable in the model D.
- pa i_{i} are the parents of x_{i} in D.
- u_{i} is independent of any other u.

Example

From the point of view of Statistics

Example

From the point of view of Statistics

Formulation

$$
z=f_{Z}\left(u_{Z}\right)
$$

Example

From the point of view of Statistics

Formulation

$$
\begin{aligned}
& z=f_{Z}\left(u_{Z}\right) \\
& x=f_{X}\left(z, u_{X}\right)
\end{aligned}
$$

Example

From the point of view of Statistics

Formulation

$$
\begin{aligned}
z & =f_{Z}\left(u_{Z}\right) \\
x & =f_{X}\left(z, u_{X}\right) \\
y & =f_{Y}\left(x, u_{Y}\right)
\end{aligned}
$$

Now add an observation x_{0}

From the point of view of Statistics

Now add an observation x_{0}

From the point of view of Statistics

Formulation after blocking information

$$
z=f_{Z}\left(u_{Z}\right)
$$

Now add an observation x_{0}

From the point of view of Statistics

Formulation after blocking information

$$
\begin{aligned}
& z=f_{Z}\left(u_{Z}\right) \\
& x=x_{0}
\end{aligned}
$$

Now add an observation x_{0}

From the point of view of Statistics

Formulation after blocking information

$$
\begin{aligned}
& z=f_{Z}\left(u_{Z}\right) \\
& x=x_{0} \\
& y=f_{Y}\left(x, u_{Y}\right)
\end{aligned}
$$

Outline

1 Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links (also called edges) between variables.

Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links (also called edges) between variables.

Thus

In order to analyze a causal network is necessary to analyze:

Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links (also called edges) between variables.

Thus

In order to analyze a causal network is necessary to analyze:

- Causal Chains

Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links (also called edges) between variables.

Thus

In order to analyze a causal network is necessary to analyze:

- Causal Chains
- Common Causes

Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links (also called edges) between variables.

Thus

In order to analyze a causal network is necessary to analyze:

- Causal Chains
- Common Causes
- Common Effects

Causal Networks

Definition

A causal network consists of a set of variables and a set of directed links (also called edges) between variables.

Thus

In order to analyze a causal network is necessary to analyze:

- Causal Chains
- Common Causes
- Common Effects

Outline

1 Causality

- Example
- Definition of Causal Structure
- Causal Networks - Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Causal Chains

This configuration is a "causal chain"

X : Low Pressure
$Y:$ Rain
Z : Traffic

Causal Chains

This configuration is a "causal chain"

X : Low Pressure
Y : Rain
Z : Traffic
What about the Joint Distribution?
We have by the Chain Rule

$$
\begin{equation*}
P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid Y, X) \tag{1}
\end{equation*}
$$

Propagation of Information

Given no information about Y Information can propagate from X to Z.

Propagation of Information

Given no information about Y
Information can propagate from X to Z.

Thus
The natural question is What does happen if $Y=y$ for some value y ?

Thus, we have that

Blocking Propagation of Information

Using Our Probabilities

Then Z is independent of X given a $Y=y$
And making the assumption that once an event happens

$$
\begin{equation*}
P(Z \mid X, Y=y)=P(Z \mid Y=y) \tag{2}
\end{equation*}
$$

Using Our Probabilities

Then Z is independent of X given a $Y=y$
And making the assumption that once an event happens

$$
\begin{equation*}
P(Z \mid X, Y=y)=P(Z \mid Y=y) \tag{2}
\end{equation*}
$$

YES!!!

Evidence along the chain "blocks" the influence.

Thus

Something Notable

Knowing that X has occurred does not make any difference to our beliefs about Z if we already know that Y has occurred.

Thus

Something Notable

Knowing that X has occurred does not make any difference to our beliefs about Z if we already know that Y has occurred.

Thus conditional independencies can be written

$$
\begin{equation*}
I_{P}(Z, X \mid Y=y) \tag{3}
\end{equation*}
$$

Therefore

The Joint Probability is equal to

$$
\begin{equation*}
P(X, Y=y, Z)=P(X) P(Y=y \mid X) P(Z \mid Y=y) \tag{4}
\end{equation*}
$$

Thus

Is X independent of Z given $Y=y$?

$$
P(Z \mid X, Y=y)=\frac{P(X, Y=y, Z)}{P(X, Y=y)}
$$

Thus

Is X independent of Z given $Y=y$?

$$
\begin{aligned}
P(Z \mid X, Y=y) & =\frac{P(X, Y=y, Z)}{P(X, Y=y)} \\
& =\frac{P(X) P(Y=y \mid X) P(Z \mid Y=y)}{P(X) P(Y=y \mid X)}
\end{aligned}
$$

Thus

Is X independent of Z given $Y=y$?

$$
\begin{aligned}
P(Z \mid X, Y=y) & =\frac{P(X, Y=y, Z)}{P(X, Y=y)} \\
& =\frac{P(X) P(Y=y \mid X) P(Z \mid Y=y)}{P(X) P(Y=y \mid X)} \\
& =P(Z \mid Y=y)
\end{aligned}
$$

Outline

1 Causality
－Example
－Definition of Causal Structure
－Causal Networks
－Causal Chains
－Common Causes
－Common Effect
（2）Analyze the Graph
－Going Further
－D－Separation
－Paths
－Blocking
－Definition of D－Separation
（3）Algorithms to Find D－Separations
－Introduction
－Example of Reachability
－Reachability Algorithm
－Analysis
－D－Separation Finding Algorithm
－Analysis
－Example of D－Separation
－Application
（4）Final Remarks
－Encoding Causality

Common Causes

Another basic configuration: two effects of the same cause

X : John Calls
 Y : Alarm
 Z : Mary Calls

Common Causes

Another basic configuration: two effects of the same cause

$$
\begin{aligned}
& X: \text { John Calls } \\
& Y: \text { Alarm } \\
& Z: \text { Mary Calls }
\end{aligned}
$$

Thus

$$
\begin{equation*}
P(X, Y=y, Z)=P(X) P(Y=y \mid X) \underbrace{P(Z \mid X, Y=y)}_{P(Z \mid Y=y)} \tag{5}
\end{equation*}
$$

Common Causes

What happened if X is independent of Z given $Y=y$?

$$
P(Z \mid X, Y=y)=\frac{P(X, Y=y, Z)}{P(X, Y=y)}
$$

Common Causes

What happened if X is independent of Z given $Y=y$?

$$
\begin{aligned}
P(Z \mid X, Y=y) & =\frac{P(X, Y=y, Z)}{P(X, Y=y)} \\
& =\frac{P(X) P(Y=y \mid X) P(Z \mid Y=y)}{P(X) P(Y=y \mid X)}
\end{aligned}
$$

Common Causes

What happened if X is independent of Z given $Y=y$?

$$
\begin{aligned}
P(Z \mid X, Y=y) & =\frac{P(X, Y=y, Z)}{P(X, Y=y)} \\
& =\frac{P(X) P(Y=y \mid X) P(Z \mid Y=y)}{P(X) P(Y=y \mid X)} \\
& =P(Z \mid Y=y)
\end{aligned}
$$

YES!!!

Evidence on the top of the chain "blocks" the influence between X and Z.

Thus

It gives rise to the same conditional independent structure as chains

$$
\begin{equation*}
I_{P}(Z, X \mid Y=y) \tag{6}
\end{equation*}
$$

Thus

It gives rise to the same conditional independent structure as chains

$$
\begin{equation*}
I_{P}(Z, X \mid Y=y) \tag{6}
\end{equation*}
$$

i.e.

if we already know about Y, then an additional information about X will not tell us anything new about Z.

Outline

1 Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality \qquad

Common Effect

Last configuration: two causes of one effect (v-structures)

X : Raining
 Y : Traffic
 Z : Ballgame

Common Effect

Last configuration: two causes of one effect (v-structures)

$$
\begin{aligned}
& X: \text { Raining } \\
& Y: \text { Traffic } \\
& Z: \text { Ballgame }
\end{aligned}
$$

Are X and Z independent if we do not have information about Y ?
Yes!!! Because the ballgame and the rain can cause traffic, but they are not correlated.

Proof

We have the following

$$
P(Z \mid X, Y)=\frac{P(X, Y, Z)}{P(X, Y)}
$$

Proof

We have the following

$$
\begin{aligned}
P(Z \mid X, Y) & =\frac{P(X, Y, Z)}{P(X, Y)} \\
& =\frac{P(X \mid Z, Y) P(Y \mid Z) P(Z)}{P(X \mid Y) P(Y)}
\end{aligned}
$$

Proof

We have the following

$$
\begin{aligned}
P(Z \mid X, Y) & =\frac{P(X, Y, Z)}{P(X, Y)} \\
& =\frac{P(X \mid Z, Y) P(Y \mid Z) P(Z)}{P(X \mid Y) P(Y)} \\
& =\frac{P(X) P(Y \mid Z) P(Z)}{P(X) P(Y \mid Z)}
\end{aligned}
$$

Proof

We have the following

$$
\begin{aligned}
P(Z \mid X, Y) & =\frac{P(X, Y, Z)}{P(X, Y)} \\
& =\frac{P(X \mid Z, Y) P(Y \mid Z) P(Z)}{P(X \mid Y) P(Y)} \\
& =\frac{P(X) P(Y \mid Z) P(Z)}{P(X) P(Y \mid Z)} \\
& =P(Z)
\end{aligned}
$$

Common Effects

Are X and Z independent given $Y=y$?

No!!! Because seeing traffic puts the rain and the ballgame in competition as explanation!!!

Common Effects

Are X and Z independent given $Y=y$?

No!!! Because seeing traffic puts the rain and the ballgame in competition as explanation!!!

Why?

$$
P(X, Z \mid Y=y)=\frac{P(X, Z, Y=y)}{P(Y=y)}
$$

Common Effects

Are X and Z independent given $Y=y$?

No!!! Because seeing traffic puts the rain and the ballgame in competition as explanation!!!

Why?

$$
\begin{aligned}
P(X, Z \mid Y=y) & =\frac{P(X, Z, Y=y)}{P(Y=y)} \\
& =\frac{P(X \mid Z, Y=y) P(Z \mid Y=y) P(Y=y)}{P(Y=y)}
\end{aligned}
$$

Common Effects

Are X and Z independent given $Y=y$?

No!!! Because seeing traffic puts the rain and the ballgame in competition as explanation!!!

Why?

$$
\begin{aligned}
P(X, Z \mid Y=y) & =\frac{P(X, Z, Y=y)}{P(Y=y)} \\
& =\frac{P(X \mid Z, Y=y) P(Z \mid Y=y) P(Y=y)}{P(Y=y)} \\
& =P(X \mid Z, Y=y) P(Z \mid Y=y)
\end{aligned}
$$

The General Case

Backwards from the other cases

- Observing an effect activates influence between possible causes.

The General Case

Backwards from the other cases

- Observing an effect activates influence between possible causes.

Fact

Any complex example can be analyzed using these three canonical cases

The General Case

Backwards from the other cases

- Observing an effect activates influence between possible causes.

Fact

Any complex example can be analyzed using these three canonical cases

Question

In a given Bayesian Network, Are two variables independent (given evidence)?

The General Case

Backwards from the other cases

- Observing an effect activates influence between possible causes.

Fact

Any complex example can be analyzed using these three canonical cases

Question

In a given Bayesian Network, Are two variables independent (given evidence)?

Solution

- Analyze Graph Deeply!!!

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Analyze the Graph

Definition 2.1

- Let $G=(V, E)$ be a DAG, where V is a set of random variables. We say that, based on the Markov condition, G entails conditional independence:

Analyze the Graph

Definition 2.1

- Let $G=(V, E)$ be a DAG, where V is a set of random variables. We say that, based on the Markov condition, G entails conditional independence:
- $I_{P}(A, B \mid C)$ for $A, B, C \subseteq V$ if $I_{P}(A, B \mid C)$ holds for every $P \in P_{G}$,

Analyze the Graph

Definition 2.1

- Let $G=(V, E)$ be a DAG, where V is a set of random variables. We say that, based on the Markov condition, G entails conditional independence:
- $I_{P}(A, B \mid C)$ for $A, B, C \subseteq V$ if $I_{P}(A, B \mid C)$ holds for every $P \in P_{G}$, where P_{G} is the set of all probability distributions P such that (G, P) satisfies the Markov condition.

Thus

We also say the Markov condition entails the conditional independence for G and that the conditional independence is in G.

Analyze the Graph

Question

In a given Bayesian Network, Are two variables independent (Given evidence)?

Analyze the Graph

Question

In a given Bayesian Network, Are two variables independent (Given evidence)?

Solution

Analyze Graph Deeply!!!

Outline

Causality
－Example
－Definition of Causal Structure
－Causal Networks
－Causal Chains
－Common Causes
－Common Effect
（2）Analyze the Graph
－Going Further
－D－Separation
－Paths
－Blocking
－Definition of D－Separation
（3）Algorithms to Find D－Separations
－Introduction
－Example of Reachability
－Reachability Algorithm
－Analysis
－D－Separation Finding Algorithm
－Analysis
－Example of D－Separation
－Application
（4）Final Remarks
－Encoding Causality

Examples of Entailed Conditional independence

Example
G: Graduate Program Quality.
F: First Job Quality.
B: Number of Publications.
C: Number of Citations.

Examples of Entailed Conditional independence

Example

G: Graduate Program Quality.
F: First Job Quality.
B: Number of Publications.
C: Number of Citations.

F is given some evidence!!!

Using Markov Condition

If the graph satisfies the Markov Condition

Using Markov Condition

If the graph satisfies the Markov Condition

Thus

$$
P(C \mid G, F=f)=\sum_{b} P(C \mid B=b, G, F=f) P(B=b \mid G, F=f)
$$

Using Markov Condition

If the graph satisfies the Markov Condition

Thus

$$
\begin{aligned}
P(C \mid G, F=f) & =\sum_{b} P(C \mid B=b, G, F=f) P(B=b \mid G, F=f) \\
& =\sum_{b} P(C \mid B=b, F=f) P(B=b \mid F=f)
\end{aligned}
$$

Using Markov Condition

If the graph satisfies the Markov Condition

Thus

$$
\begin{aligned}
P(C \mid G, F=f) & =\sum_{b} P(C \mid B=b, G, F=f) P(B=b \mid G, F=f) \\
& =\sum_{b} P(C \mid B=b, F=f) P(B=b \mid F=f) \\
& =P(C \mid F=f)
\end{aligned}
$$

Finally

We have

$$
\begin{equation*}
I_{p}(C, G \mid F) \tag{7}
\end{equation*}
$$

D-Separation \approx Conditional independence

F and G are given as evidence
Example C and G are d-separated by A, F in the DAG in

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Basic Definitions

Definition (Undirected Paths)

A path between two sets of nodes X and Y is any sequence of nodes between a member of X and a member of Y such that every adjacent pair of nodes is connected by an edge (regardless of direction) and no node appears in the sequence twice.

Example

An example

Example

Another one

Thus

Given a path in $G=(V, E)$

There are the edges connecting $\left[X_{1}, X_{2}, \ldots, X_{k}\right]$.

Thus

Given a path in $G=(V, E)$

There are the edges connecting $\left[X_{1}, X_{2}, \ldots, X_{k}\right]$.

Thus

Given a path in $G=(V, E)$

There are the edges connecting $\left[X_{1}, X_{2}, \ldots, X_{k}\right]$.
Therefore
Given the directed edge $X \rightarrow Y$, we say the tail of the edge is at X and the head of the edge is Y.

Basic Classifications of Meetings

Head-to-Tail

A path $X \rightarrow Y \rightarrow Z$ is a head-to-tail meeting, the edges meet head-to-tail at Y, and Y is a head-to-tail node on the path.

Basic Classifications of Meetings

Head-to-Tail

A path $X \rightarrow Y \rightarrow Z$ is a head-to-tail meeting, the edges meet head-to-tail at Y, and Y is a head-to-tail node on the path.

Tail-to-Tail

A path $X \leftarrow Y \rightarrow Z$ is a tail-to-tail meeting, the edges meet tail-to-tail at Z, and Z is a tail-to-tail node on the path.

Basic Classifications of Meetings

Head-to-Tail

A path $X \rightarrow Y \rightarrow Z$ is a head-to-tail meeting, the edges meet head-to-tail at Y, and Y is a head-to-tail node on the path.

Tail-to-Tail

A path $X \leftarrow Y \rightarrow Z$ is a tail-to-tail meeting, the edges meet tail-to-tail at Z, and Z is a tail-to-tail node on the path.

Head-to-Head

A path $X \rightarrow Y \leftarrow Z$ is a head-to-head meeting, the edges meet head-to-head at Y, and Y is a head-to-head node on the path.

Examples

Head-to-Tail

$$
\begin{aligned}
& X \longrightarrow Z \\
& X: \text { Low Pressure } \\
& Y: \text { Rain } \\
& Z: \text { Traffic }
\end{aligned}
$$

Examples

Tail-to-Tail

X : John Calls
 Y : Alarm
 Z : Mary Calls

Examples

Head-to-Head

X : Raining
 Y : Traffic
 Z : Ballgame

Basic Classifications of Meetings

Finally

- A path (undirected) $X-Z-Y$, such that X and Y are not adjacent, is an uncoupled meeting.

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Blocking Information \approx Conditional Independence

Definition 2.2

Definition 2.2 Let $G=(V, E)$ be a DAG, $A \subseteq V, X$ and Y be distinct nodes in $V-A$, and ρ be a path between X and Y.

Blocking Information \approx Conditional Independence

Definition 2.2

Definition 2.2 Let $G=(V, E)$ be a DAG, $A \subseteq V, X$ and Y be distinct nodes in $V-A$, and ρ be a path between X and Y. Then ρ is blocked by A if one of the following holds:

Blocking Information \approx Conditional Independence

Definition 2.2

Definition 2.2 Let $G=(V, E)$ be a DAG, $A \subseteq V, X$ and Y be distinct nodes in $V-A$, and ρ be a path between X and Y.
Then ρ is blocked by A if one of the following holds:
(1) There is a node $Z \in A$ on the path ρ, and the edges incident to Z on ρ meet head-to-tail at Z.

Blocking Information \approx Conditional Independence

Definition 2.2

Definition 2.2 Let $G=(V, E)$ be a DAG, $A \subseteq V, X$ and Y be distinct nodes in $V-A$, and ρ be a path between X and Y.
Then ρ is blocked by A if one of the following holds:
(1) There is a node $Z \in A$ on the path ρ, and the edges incident to Z on ρ meet head-to-tail at Z.
(2) There is a node $Z \in A$ on the path ρ, and the edges incident to Z on ρ, meet tail-to-tail at Z.

Blocking Information \approx Conditional Independence

Definition 2.2

Definition 2.2 Let $G=(V, E)$ be a DAG, $A \subseteq V, X$ and Y be distinct nodes in $V-A$, and ρ be a path between X and Y.
Then ρ is blocked by A if one of the following holds:
(1) There is a node $Z \in A$ on the path ρ, and the edges incident to Z on ρ meet head-to-tail at Z.
(2) There is a node $Z \in A$ on the path ρ, and the edges incident to Z on ρ, meet tail-to-tail at Z.
(3) There is a node Z, such that Z and all of Z 's descendent's are not in A, on the chain ρ, and the edges incident to Z on ρ meet head-to-head at Z.

Example

We have that the path $[Y, X, Z, S]$ is blocked by $\{X\}$ and $\{Z\}$

- Because the edges on the chain incident to X meet tail-to-tail at X.

Example

We have that the path $[W, Y, R, Z, S]$ is blocked by \emptyset

- Because $R \notin \emptyset$ and $T \notin \emptyset$ and the edges on the chain incident to R meet head-to-head at R.

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Definition of D-Separation

Definition 2.3

Let $G=(V, E)$ be a DAG, $A \subseteq V$, and X and Y be distinct nodes in $V-A$. We say X and Y are \mathbf{D}-Separated by A in G if every path between X and Y is blocked by A.

Definition of D-Separation

Definition 2.3

Let $G=(V, E)$ be a DAG, $A \subseteq V$, and X and Y be distinct nodes in $V-A$. We say X and Y are D-Separated by A in G if every path between X and Y is blocked by A.

Definition 2.4

Let $G=(V, E)$ be a DAG, and A, B, and C be mutually disjoint subsets of V. We say A and B are d-separated by C in G if for every $X \in A$ and $Y \in B, X$ and Y are D-Separated by C.

Definition of D－Separation

Definition 2.3

Let $G=(V, E)$ be a DAG，$A \subseteq V$ ，and X and Y be distinct nodes in $V-A$ ．We say X and Y are D－Separated by A in G if every path between X and Y is blocked by A ．

Definition 2.4

Let $G=(V, E)$ be a DAG，and A, B ，and C be mutually disjoint subsets of V ．We say A and B are d－separated by C in G if for every $X \in A$ and $Y \in B, X$ and Y are D－Separated by C ．

We write

$$
\begin{equation*}
I_{G}(A, B \mid C) \text { or } A \Perp B \mid C \tag{8}
\end{equation*}
$$

If $C=\emptyset$ ，we write only $I_{G}(A, B)$ or $A \Perp B$ ．

Example

X and T are D-Separated by $\{Y, Z\}$

- Because the chain $[X, Y, R, T]$ is blocked at Y.

Example

X and T are D-Separated by $\{Y, Z\}$ - It is the set that block all paths

- Because the chain $[X, Z, S, R, T]$ is blocked at Z, S.

D-Separation \Rightarrow Independence

D-Separation Theorem

Let P be a probability distribution of the variables in V and $G=(V, E)$ be a DAG. Then (G, P) satisfies the Markov condition if and only if

D-Separation \Rightarrow Independence

D-Separation Theorem

Let P be a probability distribution of the variables in V and $G=(V, E)$ be a DAG. Then (G, P) satisfies the Markov condition if and only if

- for every three mutually disjoint subsets $A, B, C \subseteq V$, whenever A and B are D-Separated by C, A and B are conditionally independent in P given C.

D-Separation \Rightarrow Independence

D-Separation Theorem

Let P be a probability distribution of the variables in V and $G=(V, E)$ be a DAG. Then (G, P) satisfies the Markov condition if and only if

- for every three mutually disjoint subsets $A, B, C \subseteq V$, whenever A and B are D-Separated by C, A and B are conditionally independent in P given C.

That is, (G, P) satisfies the Markov condition if and only if

$$
\begin{equation*}
I_{G}(A, B \mid C) \Rightarrow I_{P}(A, B \mid C) \tag{9}
\end{equation*}
$$

Proof

The proof that, if (G, P) satisfies the Markov condition

Then, each D-Separation implies the corresponding conditional independence is quite lengthy and can be found in [Verma and Pearl, 1990] and in [Neapolitan, 1990].

Proof

The proof that, if (G, P) satisfies the Markov condition

Then, each D-Separation implies the corresponding conditional independence is quite lengthy and can be found in [Verma and Pearl, 1990] and in [Neapolitan, 1990].

Then, we will only prove the other direction
Suppose each D-Separation implies a conditional independence.

Proof

The proof that, if (G, P) satisfies the Markov condition

Then, each D-Separation implies the corresponding conditional independence is quite lengthy and can be found in [Verma and Pearl, 1990] and in [Neapolitan, 1990].

Then, we will only prove the other direction
Suppose each D-Separation implies a conditional independence.

Thus, the following implication holds

$$
\begin{equation*}
I_{G}(A, B \mid C) \Rightarrow I_{P}(A, B \mid C) \tag{10}
\end{equation*}
$$

Proof

Something Notable

It is not hard to see that a node's parents D-Separate the node from all its non-descendent's that are not its parents.

Proof

Something Notable

It is not hard to see that a node's parents D-Separate the node from all its non-descendent's that are not its parents.

This is
If we denote the sets of parents and non-descendent's of X by PA_{X} and ND_{X} respectively, we have

$$
\begin{equation*}
I_{G}\left(\{X\}, \mathrm{ND}_{X}-\mathrm{PA}_{X} \mid \mathrm{PA}_{X}\right) \tag{11}
\end{equation*}
$$

Proof

Something Notable

It is not hard to see that a node's parents D-Separate the node from all its non-descendent's that are not its parents.

This is

If we denote the sets of parents and non-descendent's of X by PA_{X} and ND_{X} respectively, we have

$$
\begin{equation*}
I_{G}\left(\{X\}, \mathrm{ND}_{X}-\mathrm{PA}_{X} \mid \mathrm{PA}_{X}\right) \tag{11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
I_{P}\left(\{X\}, \mathrm{ND}_{X}-\mathrm{PA}_{X} \mid \mathrm{PA}_{X}\right) \tag{12}
\end{equation*}
$$

Proof

This states the same than

$$
I_{P}\left(\{X\}, \mathrm{ND}_{X} \mid \mathrm{PA}_{X}\right)
$$

Proof

This states the same than

$$
I_{P}\left(\{X\}, \mathrm{ND}_{X} \mid \mathrm{PA}_{X}\right)
$$

Meaning

The Markov condition is satisfied.

Every Entailed Conditional Independence is Identified by D-Separation

Lemma 2.2

Any conditional independence entailed by a DAG, based on the Markov condition, is equivalent to a conditional independence among disjoint sets of random variables.

Every Entailed Conditional Independence is Identified by D-Separation

Lemma 2.2

Any conditional independence entailed by a DAG, based on the Markov condition, is equivalent to a conditional independence among disjoint sets of random variables.

Theorem 2.1

Based on the Markov condition, a DAG G entails all and only those conditional independences that are identified by D-Separations in G.

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Now

We would like to find the D-Separations
Since d-separations entail conditional independencies.

Now

We would like to find the D-Separations

Since d-separations entail conditional independencies.

We want an efficient algorithm

For determining whether two sets are D-Separated by another set.

Now

We would like to find the D-Separations

Since d-separations entail conditional independencies.

We want an efficient algorithm

For determining whether two sets are D-Separated by another set.

For This, we need to build an algorithm
One that can find all D-Separated nodes from one set of nodes by another.

How?

To accomplish this
We will first find every node X such that there is at least one active path given A between X and a node in D.

How?

To accomplish this

We will first find every node X such that there is at least one active path given A between X and a node in D.

Something like

A Set

We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of interest.

We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of interest.

Thus, we identify certain pair of edges $(u \rightarrow v, v \rightarrow w)$
As legal and the rest as illegal!!

We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of interest.

Thus, we identify certain pair of edges $(u \rightarrow v, v \rightarrow w)$
As legal and the rest as illegal!!

Legal?

- We call a path legal if it does not contain any illegal ordered pairs of edges.

We solve the following problem

Suppose we have a directed graph

We say that certain edges cannot appear consecutively in our paths of interest.

Thus, we identify certain pair of edges $(u \rightarrow v, v \rightarrow w)$
As legal and the rest as illegal!!

Legal?

- We call a path legal if it does not contain any illegal ordered pairs of edges.
- We say Y is reachable from x if there is a legal path from x to y.

Thus

We can find the set R of all nodes reachable from x as follows
Any node V such that the edge $x \rightarrow v$ exists is reachable.

Thus

We can find the set R of all nodes reachable from x as follows
Any node V such that the edge $x \rightarrow v$ exists is reachable.

Then

We label such edge with 1.

Thus

We can find the set R of all nodes reachable from x as follows
Any node V such that the edge $x \rightarrow v$ exists is reachable.

Then

We label such edge with 1.

Next for each such v
We check all unlabeled edges $v \rightarrow w$ and see if $(x \rightarrow v, v \rightarrow w)$ is a legal pair.

Then

We label each such edge with a 2
And keep going!!!

Then

We label each such edge with a 2
 And keep going!!!

Similar to a Breadth-First Graph

Here, we are visiting links rather than nodes.

What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG $G=(V, E)$.

What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG $G=(V, E)$.

For this

We need to find the set R such that

What do we want?

Identifying the set of nodes D that are

The one that are D-Separated from B by A in a DAG $G=(V, E)$.

For this

We need to find the set R such that

- $y \in R \Longleftrightarrow$ Either

What do we want?

Identifying the set of nodes D that are

The one that are D-Separated from B by A in a DAG $G=(V, E)$.

For this

We need to find the set R such that

- $y \in R \Longleftrightarrow$ Either
- $y \in B$.

What do we want?

Identifying the set of nodes D that are

The one that are D-Separated from B by A in a DAG $G=(V, E)$.

For this

We need to find the set R such that

- $y \in R \Longleftrightarrow$ Either
- $y \in B$.
- There is at least one active chain given A between y and a node in B.

Then

If there is an active path ρ between node X and some other node Then every 3 -node sub-path $u-v-w(u \neq w)$ of ρ has the following property.

Then

If there is an active path ρ between node X and some other node Then every 3 -node sub-path $u-v-w(u \neq w)$ of ρ has the following property.

Either

$u-v-w$ is not head-to-head at v and v is not in A.

Then

If there is an active path ρ between node X and some other node Then every 3 -node sub-path $u-v-w(u \neq w)$ of ρ has the following property.

Either

$u-v-w$ is not head-to-head at v and v is not in A.

Or

$u-v-w$ is a head-to-head at v and v is a or has a descendant in A.

The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if $(u \rightarrow v, v \rightarrow w)$ is legal in G^{\prime}.

The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if $(u \rightarrow v, v \rightarrow w)$ is legal in G^{\prime}.

The pair $(u \rightarrow v, v \rightarrow w)$ is legal if and only if

$$
\begin{equation*}
u \neq w \tag{14}
\end{equation*}
$$

The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if $(u \rightarrow v, v \rightarrow w)$ is legal in G^{\prime}.

The pair $(u \rightarrow v, v \rightarrow w)$ is legal if and only if

$$
\begin{equation*}
u \neq w \tag{14}
\end{equation*}
$$

And one of the following holds

(1) ($u-v-w)$ is not head-to-head in G and $i n_{A}[v]$ is false.

The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if $(u \rightarrow v, v \rightarrow w)$ is legal in G^{\prime}.

The pair $(u \rightarrow v, v \rightarrow w)$ is legal if and only if

$$
\begin{equation*}
u \neq w \tag{14}
\end{equation*}
$$

And one of the following holds

(1) $(u-v-w)$ is not head-to-head in G and $i n_{A}[v]$ is false.
(2) $(u-v-w)$ is head-to-head in G and descendent $[v]$ is true.

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect

(2) Analyze the Graph

- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality \qquad

Example

Reachable nodes from X when $A=\emptyset$, thus

$i n_{A}[v]$ is false and descendent $[v]$ is false for all $v \in V$

Example

Reachable nodes from X when $A=\emptyset$, thus

$i n_{A}[v]$ is false and descendent $[v]$ is false for all $v \in V$

Therefore
 Only the rule 1 is applicable.

Example

Labeling edges to 1 and shaded nodes are in R

Example

Labeling edges to 1 and shaded nodes are in R

Example

Labeling edges to 2 and shaded nodes are in R

Example

Labeling edges to 3 and shaded nodes are in R

Example

Labeling edges to 4 and shaded nodes are in R

Example

Labeling edges to 5 and shaded nodes are in R

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application

4. Final Remarks

- Encoding Causality \qquad

Algorithm to Finding Reachability

find-reachable-nodes (G, set of nodes B, set of nodes $\& R$)

Input: $G=(\mathrm{V}, \mathrm{E})$, subset $\mathrm{B} \subset \mathrm{V}$ and a RULE to find if two consecutive edges are legal Output: $\mathrm{R} \subset \mathrm{V}$ of all nodes reachable from B

1. for each $x \in \mathrm{~B}$
2. add x to R
3. \quad for (each v such that $x \rightarrow v \in \mathrm{E}$)

Algorithm to Finding Reachability

find-reachable-nodes (G, set of nodes B, set of nodes $\& R$)

Input: $G=(\mathrm{V}, \mathrm{E})$, subset $\mathrm{B} \subset \mathrm{V}$ and a RULE to find if two consecutive edges are legal Output: $\mathrm{R} \subset \mathrm{V}$ of all nodes reachable from B

```
    1. for each \(x \in \mathrm{~B}\)
    2. add \(x\) to R
    3. \(\quad\) for (each \(v\) such that \(x \rightarrow v \in \mathrm{E}\) )
    5. add \(v\) to R
    6. label \(x \rightarrow v\) with 1
```


Algorithm to Finding Reachability

find-reachable-nodes (G, set of nodes B, set of nodes $\& R$)

Input: $G=(\mathrm{V}, \mathrm{E})$, subset $\mathrm{B} \subset \mathrm{V}$ and a RULE to find if two consecutive edges are legal Output: $\mathrm{R} \subset \mathrm{V}$ of all nodes reachable from B

```
    1. for each }x\in\textrm{B
    2. add }x\mathrm{ to R
    3. for (each v such that }x->v\in\textrm{E}
    5. add v}\mathrm{ to R
    6. label }x->v\mathrm{ with 1
    7. i=1
    8. found=true
```


Algorithm to Finding Reachability

find-reachable-nodes (G, set of nodes B, set of nodes $\& R$)

Input: $G=(\mathrm{V}, \mathrm{E})$, subset $\mathrm{B} \subset \mathrm{V}$ and a RULE to find if two consecutive edges are legal Output: $\mathrm{R} \subset \mathrm{V}$ of all nodes reachable from B

```
    1. for each }x\in\textrm{B
    2. add }x\mathrm{ to R
    3. for (each v such that }x->v\in\textrm{E}
    5. add v}\mathrm{ to R
    6. label }x->v\mathrm{ with 1
    7. i=1
    8. found=true
```


Continuation

The following steps

9. while (found)
10. \quad found $=$ false

Continuation

```
The following steps
    9. while (found)
10. found =false
11. for (each v such that }u->v\mathrm{ labeled i)
12. for (each unlabeled edge v}->
13. such (u->v,v->w) is legal)
14. add w to R
15. label v}->w\mathrm{ with }i+
16. found =true
```


Continuation

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Complexity of find-reachable-nodes

We have that
Let n be the number of nodes and m be the number of edges.

Complexity of find-reachable-nodes

We have that

Let n be the number of nodes and m be the number of edges.

Something Notable

In the worst case, each of the nodes can be reached from n entry points.

Complexity of find-reachable-nodes

We have that

Let n be the number of nodes and m be the number of edges.

Something Notable

In the worst case, each of the nodes can be reached from n entry points.

Thus

Each time a node is reached, an edge emanating from it may need to be re-examined.

Complexity of find-reachable-nodes

Then

Then, in the worst case each edge may be examined n times

Complexity of find-reachable-nodes

Then
Then, in the worst case each edge may be examined n times

Thus, the complexity

$$
\begin{equation*}
W(m, n)=\Theta(m n) \tag{15}
\end{equation*}
$$

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Algorithm for D-separation

Find-D-
 Separations($D A G G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets $\mathrm{A}, \mathrm{B} \subset \mathrm{V}$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true

Algorithm for D-separation

Find-D-
 Separations($D A G G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets $\mathrm{A}, \mathrm{B} \subset \mathrm{V}$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true
4. else
5. $\quad i n_{A}[v]=$ false

Algorithm for D-separation

Find-D-
 Separations(DAG $G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets
$\mathrm{A}, \mathrm{B} \subset \mathrm{V}$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true
4. else
5. $\quad i n_{A}[v]=$ false
6. if (v is or has a descendent in A)
7. descendent $[v]=$ true

Algorithm for D-separation

Find-D-
 Separations(DAG $G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets
$\mathrm{A}, \mathrm{B} \subset \mathrm{V}$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true
4. else
5. $\quad i n_{A}[v]=$ false
6. if (v is or has a descendent in A)
7. descendent $[v]=$ true
8. else
9. \quad descendent $[v]=$ false

Algorithm for D-separation

Find-D-
 Separations(DAG $G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets $\mathrm{A}, \mathrm{B} \subset \mathrm{V}$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true
4. else
5. $\quad i n_{A}[v]=$ false
6. if (v is or has a descendent in A)
7. \quad descendent $[v]=$ true
8. else
9. \quad descendent $[v]=$ false
10. $\mathrm{E}^{\prime}=\mathrm{E} \cup\{u \rightarrow v \mid v \rightarrow u \in \mathrm{E}\}$

Algorithm for D-separation

Find-D-
 Separations(DAG $G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets $\mathrm{A}, \mathrm{B} \subset \mathrm{V}$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true
4. else
5. $\quad i n_{A}[v]=$ false
6. if (v is or has a descendent in A)
7. \quad descendent $[v]=$ true
8. else
9. \quad descendent $[v]=$ false
10. $\mathrm{E}^{\prime}=\mathrm{E} \cup\{u \rightarrow v \mid v \rightarrow u \in \mathrm{E}\}$
11. $G^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$

Algorithm for D-separation

Find-D-
 Separations(DAG $G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets $A, B \subset V$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true
4. else
5. $\quad i n_{A}[v]=$ false
6. if (v is or has a descendent in A)
7. \quad descendent $[v]=$ true
8. else
9. \quad descendent $[v]=$ false
10. $\mathrm{E}^{\prime}=\mathrm{E} \cup\{u \rightarrow v \mid v \rightarrow u \in \mathrm{E}\}$
11. $G^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$
12. Run the algorithm: find-reachable-nodes $\left(G^{\prime}, \mathrm{B}, \mathrm{R}\right)$

Algorithm for D-separation

Find-D-
 Separations(DAG $G=(\mathrm{V}, \mathrm{E})$, set of nodes A, B, set of nodes D$)$

Input: $G=(\mathrm{V}, \mathrm{E})$ and two disjoint subsets $A, B \subset V$
Output: $\mathrm{D} \subset \mathrm{V}$ containing all nodes D Separated from every node in B by A. That is $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ holds and no superset D has this property.

1. for each $v \in \mathrm{~V}$
2. \quad if $(v \in \mathrm{~A})$
3. $\quad i n_{A}[v]=$ true
4. else
5. $\quad i n_{A}[v]=$ false
6. if (v is or has a descendent in A)
7. \quad descendent $[v]=$ true
8. else
9. \quad descendent $[v]=$ false
10. $\mathrm{E}^{\prime}=\mathrm{E} \cup\{u \rightarrow v \mid v \rightarrow u \in \mathrm{E}\}$
11. $G^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$
12. Run the algorithm:
find-reachable-nodes $\left(G^{\prime}, \mathrm{B}, \mathrm{R}\right)$
\triangleright Note $B \subseteq R$
13. return $\mathrm{D}=\mathrm{V}-(\mathrm{A} \cup \mathrm{R})$

Observation about descendent $[v]$

We can implement the construction of descendent $[v]$ as follow
Initially set descendent $[v]=$ true for all nodes in A.

Observation about descendent $[v]$

We can implement the construction of descendent $[v]$ as follow

Initially set descendent $[v]=$ true for all nodes in A.

Then

Then follow the incoming edges in A to their parents, their parents' parents, and so on.

Observation about descendent $[v]$

We can implement the construction of descendent $[v]$ as follow

Initially set descendent $[v]=$ true for all nodes in A.

Then

Then follow the incoming edges in A to their parents, their parents' parents, and so on.

Thus

We set descendent $[v]=$ true for each node found along the way.

Observation about E'

The RULE about legal and E'

The E' is necessary because using only the RULE on E will no get us all the active paths.

Observation about E'

The RULE about legal and E'

The E^{\prime} is necessary because using only the RULE on E will no get us all the active paths.

For example

Thus

Something Notable

Given A is the only node in A and $X \rightarrow T$ is the only edge in B , the edges in that DAG are numbered according to the method.

Thus

Something Notable

Given A is the only node in A and $X \rightarrow T$ is the only edge in B , the edges in that DAG are numbered according to the method.

Then

The active chain $X \rightarrow A \leftarrow Z \leftarrow T \leftarrow Y$ is missed because the edge $T \rightarrow Z$ is already numbered by the time the chain $A \leftarrow Z \leftarrow T$ is investigated.

Thus

Something Notable

Given A is the only node in A and $X \rightarrow T$ is the only edge in B , the edges in that DAG are numbered according to the method.

Then

The active chain $X \rightarrow A \leftarrow Z \leftarrow T \leftarrow Y$ is missed because the edge $T \rightarrow Z$ is already numbered by the time the chain $A \leftarrow Z \leftarrow T$ is investigated.

But

If we use the set of edges E^{\prime}.

Thus

Once，we add the extra edges，we get

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect

(2) Analyze the Graph

- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application

4. Final Remarks

- Encoding Causality

Complexity

Please take a look at page 81 at
"Learning Bayesian Networks" by Richard E. Neapolitan.

Complexity

Please take a look at page 81 at

"Learning Bayesian Networks" by Richard E. Neapolitan.

For the analysis of the algorithm for m edges and n nodes

$$
\begin{equation*}
\Theta(m) \text { with } m \geq n . \tag{16}
\end{equation*}
$$

The D-Separation Algorithm works

Theorem 2.2

The set D contains all and only nodes D-Separated from every node in B by A.

- That is, we have $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ and no superset of D has this property.

The D-Separation Algorithm works

Theorem 2.2

The set D contains all and only nodes D-Separated from every node in B by A .

- That is, we have $I_{G}(\mathrm{~B}, \mathrm{D} \mid \mathrm{A})$ and no superset of D has this property.

Proof

- The set R determined by the algorithm contains
- All nodes in B.
- All nodes reachable from B via a legal path in G^{\prime}.

Proof

For any two nodes $x \in \mathrm{~B}$ and $y \notin \mathrm{~A} \cup \mathrm{~B}$

The path $x-\ldots-y$ is active in G if and only if the path $x \rightarrow \ldots \rightarrow y$ is legal in G^{\prime}.

Proof

For any two nodes $x \in \mathrm{~B}$ and $y \notin \mathrm{~A} \cup \mathrm{~B}$
The path $x-\ldots-y$ is active in G if and only if the path $x \rightarrow \ldots \rightarrow y$ is legal in G^{\prime}.

Thus

Thus R contains the nodes in B plus all and only those nodes that have active paths between them and a node in B.

Proof

For any two nodes $x \in \mathrm{~B}$ and $y \notin \mathrm{~A} \cup \mathrm{~B}$
The path $x-\ldots-y$ is active in G if and only if the path $x \rightarrow \ldots \rightarrow y$ is legal in G^{\prime}.

Thus

Thus R contains the nodes in B plus all and only those nodes that have active paths between them and a node in B.

By the definition of D-Separation

A node is D-Separated from every node in B in A if the node is not in $A \cup B$ and there is not active path between the node and a node in B.

Proof

Thus
$\mathrm{D}=\mathrm{V}-(A \cup R)$ is the set of all nodes D -Separated from every node in B by A.

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect

Analyze the Graph

- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Example

$B=\{x\}$ and $A=\{s, v\}$ - Original Graph!!!

Example

$B=\{x\}$ and $A=\{s, v\}$ - Moralized and with the tracking of descendants

Example

$B=\{x\}$ and $A=\{s, v\}$ and the first part of the reachability algorithm

Cinvestav

Example

Remember that Legality is in G

Example

Now, we have that

Example

$D-\{A \cup R\}=\{q\}$

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application
(4) Final Remarks
- Encoding Causality

Application

Something Notable

In general, the inference problem in Bayesian networks is to determine $P(B \mid A)$, where A and B are two sets of variables.

Application

Something Notable

In general, the inference problem in Bayesian networks is to determine $P(B \mid A)$, where A and B are two sets of variables.

Thus

We can use the D-Separation for that.

Example

Given the following the DAG G

Example

We generate G^{\prime}

Where

The extra nodes represent
The probabilities in the interval $[0,1]$ and representing $P(X=x)$

Where

The extra nodes represent

The probabilities in the interval $[0,1]$ and representing $P(X=x)$

Creating a set of P be the set of auxiliary parent nodes

Thus, if we want to determine $P(\mathrm{~B} \mid \mathrm{A})$ in G, we can use the algorithm for D-Separation to find D .

Where

The extra nodes represent

The probabilities in the interval $[0,1]$ and representing $P(X=x)$

Creating a set of P be the set of auxiliary parent nodes

Thus, if we want to determine $P(\mathrm{~B} \mid \mathrm{A})$ in G, we can use the algorithm for D-Separation to find D.

Such that

$$
\begin{equation*}
I_{G^{\prime}}(\mathrm{B}, \mathrm{D} \mid \mathrm{A}) \tag{17}
\end{equation*}
$$

And no superset of D has this property, then take $D \cap P$.

For example

We want $P(f)$

To determine it we need that all and only the values of P_{H}, P_{B}, P_{L}, and P_{F}

For example

We want $P(f)$

To determine it we need that all and only the values of P_{H}, P_{B}, P_{L}, and P_{F}

Because

$$
I_{G^{\prime}}\left(\{F\},\left\{P_{X}\right\} \mid \emptyset\right)
$$

For example

We want $P(f)$

To determine it we need that all and only the values of P_{H}, P_{B}, P_{L}, and P_{F}

Because

$$
\begin{equation*}
I_{G^{\prime}}\left(\{F\},\left\{P_{X}\right\} \mid \emptyset\right) \tag{18}
\end{equation*}
$$

Thus

P_{X} is the only auxiliary parent variable D-Separated from $\{F\}$ by the empty set.

For example

We want $P(f \mid b)$
To determine it we need that all and only the values of P_{H}, P_{L}, and P_{F} when separation set is $\{B\}$

For example

We want $P(f \mid b)$

To determine it we need that all and only the values of P_{H}, P_{L}, and P_{F} when separation set is $\{B\}$

Then

$$
\begin{equation*}
I_{G^{\prime}}\left(\{F\},\left\{P_{X}, P_{B}\right\} \mid\{B\}\right) \tag{19}
\end{equation*}
$$

For example

We want $P(f \mid b)$

To determine it we need that all and only the values of P_{H}, P_{L}, and P_{F} when separation set is $\{B\}$

Then

$$
\begin{equation*}
I_{G^{\prime}}\left(\{F\},\left\{P_{X}, P_{B}\right\} \mid\{B\}\right) \tag{19}
\end{equation*}
$$

Thus

P_{X} is the only auxiliary parent variable D-Separated from $\{F\}$ by the empty set.

Outline

Causality

- Example
- Definition of Causal Structure
- Causal Networks
- Causal Chains
- Common Causes
- Common Effect
(2) Analyze the Graph
- Going Further
- D-Separation
- Paths
- Blocking
- Definition of D-Separation
(3) Algorithms to Find D-Separations
- Introduction
- Example of Reachability
- Reachability Algorithm
- Analysis
- D-Separation Finding Algorithm
- Analysis
- Example of D-Separation
- Application

4) Final Remarks

- Encoding Causality

Remarks

Bayes Networks can reflect the true causal patterns

- Often simpler (nodes have fewer parents).

Remarks

Bayes Networks can reflect the true causal patterns

- Often simpler (nodes have fewer parents).
- Often easier to think about.

Remarks

Bayes Networks can reflect the true causal patterns

- Often simpler (nodes have fewer parents).
- Often easier to think about.
- Often easier to elicit from experts.

Remarks

Bayes Networks can reflect the true causal patterns

- Often simpler (nodes have fewer parents).
- Often easier to think about.
- Often easier to elicit from experts.

Something Notable

- Sometimes no causal net exists over the domain.

Remarks

Bayes Networks can reflect the true causal patterns

- Often simpler (nodes have fewer parents).
- Often easier to think about.
- Often easier to elicit from experts.

Something Notable

- Sometimes no causal net exists over the domain.
- For example, consider the variables Traffic and Drips.

Remarks

Bayes Networks can reflect the true causal patterns

- Often simpler (nodes have fewer parents).
- Often easier to think about.
- Often easier to elicit from experts.

Something Notable

- Sometimes no causal net exists over the domain.
- For example, consider the variables Traffic and Drips.
- Arrows reflect correlation not causation.

Remarks

What do the arrows really mean?

- Topologies may happen to encode causal structure.

Remarks

What do the arrows really mean?

- Topologies may happen to encode causal structure.
- Topologies are only guaranteed to encode conditional independence!

Example

Example

Example

Example

Add more stuff

- Given that some information is not being encoded into the network:
- We have to add more edges to the graph.

Example

Thus

- Adding edges allows to make different conditional independence assumptions.

Example

Thus

- Adding edges allows to make different conditional independence assumptions.

New Network

