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Causality

What do we naturally?
A way of structuring a situation for reasoning under uncertainty is to
construct a graph representing causal relations between events.

Example of events with possible outputs
Fuel? {Yes, No}
Clean Spark Plugs? {full,1/2, empty}
Start? {Yes, No}
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Causality

We know
We know that the state of Fuel? and the state of Clean Spark Plugs?
have a causal impact on the state of Start?.

Thus we have something like
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Causal Structure - Judea Perl (1988)

Definition
A causal structure of a set of variables V is a directed acyclic graph (DAG)
in which each node corresponds to a distinct element of V , and each edge
represents direct functional relationship among the corresponding variables.

Observation
Causal Structure u A precise specification of how each variable is
influenced by its parents in the DAG.
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Causal Model
Definition
A causal model is a pair M = 〈D,ΘD〉 consisting of a causal structure D
and a set of parameters ΘD compatible with D.

Thus
The parameters ΘD assign a distribution

xi = fi (pai, ui)
ui ∼ p (ui)

Where
xi is a variable in the model D.
pai are the parents of xi in D.
ui is independent of any other u.
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Example

From the point of view of Statistics

Formulation
z = fZ (uZ)
x = fX (z, uX)
y = fY (x, uY )
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Now add an observation x0

From the point of view of Statistics

Formulation after blocking information
z = fZ (uZ)
x = x0

y = fY (x, uY )
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Causal Networks

Definition
A causal network consists of a set of variables and a set of directed links
(also called edges) between variables.

Thus
In order to analyze a causal network is necessary to analyze:

Causal Chains
Common Causes
Common Effects
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Causal Chains

This configuration is a “causal chain”

What about the Joint Distribution?
We have by the Chain Rule

P (X,Y, Z) = P (X)P (Y |X)P (Z|Y,X) (1)
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Propagation of Information

Given no information about Y
Information can propagate from X to Z.

Thus
The natural question is What does happen if Y = y for some value y?

15 / 113



Propagation of Information

Given no information about Y
Information can propagate from X to Z.

Thus
The natural question is What does happen if Y = y for some value y?

15 / 113



Thus, we have that

Blocking Propagation of Information
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Using Our Probabilities

Then Z is independent of X given a Y = y

And making the assumption that once an event happens
P (Z|X,Y = y) = P (Z|Y = y) (2)

YES!!!
Evidence along the chain “blocks” the influence.
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Thus

Something Notable
Knowing that X has occurred does not make any difference to our beliefs
about Z if we already know that Y has occurred.

Thus conditional independencies can be written

IP (Z,X|Y = y) (3)
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Therefore

The Joint Probability is equal to

P (X,Y = y, Z) = P (X)P (Y = y|X)P (Z|Y = y) (4)
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Thus

Is X independent of Z given Y = y?

P (Z|X,Y = y) = P (X,Y = y, Z)
P (X,Y = y)

= P (X)P (Y = y|X)P (Z|Y = y)
P (X)P (Y = y|X)

= P (Z|Y = y)
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Common Causes

Another basic configuration: two effects of the same cause

Thus

P (X,Y = y, Z) = P (X)P (Y = y|X)P (Z|X,Y = y)︸ ︷︷ ︸
P (Z|Y =y)

(5)
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Common Causes

What happened if X is independent of Z given Y = y?

P (Z|X,Y = y) = P (X,Y = y, Z)
P (X,Y = y)

= P (X)P (Y = y|X)P (Z|Y = y)
P (X)P (Y = y|X)

= P (Z|Y = y)

YES!!!
Evidence on the top of the chain “blocks” the influence between X and Z.
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Thus

It gives rise to the same conditional independent structure as chains

IP (Z,X|Y = y) (6)

i.e.
if we already know about Y , then an additional information about X will
not tell us anything new about Z.
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Common Effect

Last configuration: two causes of one effect (v-structures)

Are X and Z independent if we do not have information about Y ?
Yes!!! Because the ballgame and the rain can cause traffic, but they are
not correlated.
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Proof

We have the following

P (Z|X,Y ) = P (X,Y, Z)
P (X,Y )

= P (X|Z, Y )P (Y |Z)P (Z)
P (X|Y )P (Y )

= P (X)P (Y |Z)P (Z)
P (X)P (Y |Z)

= P (Z)
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Common Effects

Are X and Z independent given Y = y?
No!!! Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

Why?

P (X,Z|Y = y) = P (X,Z, Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)P (Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)

28 / 113



Common Effects

Are X and Z independent given Y = y?
No!!! Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

Why?

P (X,Z|Y = y) = P (X,Z, Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)P (Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)

28 / 113



Common Effects

Are X and Z independent given Y = y?
No!!! Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

Why?

P (X,Z|Y = y) = P (X,Z, Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)P (Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)

28 / 113



Common Effects

Are X and Z independent given Y = y?
No!!! Because seeing traffic puts the rain and the ballgame in competition
as explanation!!!

Why?

P (X,Z|Y = y) = P (X,Z, Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)P (Y = y)
P (Y = y)

= P (X|Z, Y = y)P (Z|Y = y)

28 / 113



The General Case

Backwards from the other cases
Observing an effect activates influence between possible causes.

Fact
Any complex example can be analyzed using these three canonical cases

Question
In a given Bayesian Network, Are two variables independent (given
evidence)?

Solution
Analyze Graph Deeply!!!
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Analyze the Graph

Definition 2.1
Let G = (V,E) be a DAG, where V is a set of random variables. We
say that, based on the Markov condition, G entails conditional
independence:

I IP (A,B|C) for A,B,C ⊆ V if IP (A,B|C) holds for every P ∈ PG ,

where PG is the set of all probability distributions P such that (G,P )
satisfies the Markov condition.

Thus
We also say the Markov condition entails the conditional independence for
G and that the conditional independence is in G.
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Analyze the Graph

Question
In a given Bayesian Network, Are two variables independent (Given
evidence)?

Solution
Analyze Graph Deeply!!!
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Examples of Entailed Conditional independence

Example
G: Graduate Program Quality.
F: First Job Quality.
B: Number of Publications.
C: Number of Citations.

F is given some evidence!!!

G F B C
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Using Markov Condition

If the graph satisfies the Markov Condition

G F B C

Thus

P (C|G,F = f) =
∑

b

P (C|B = b,G, F = f)P (B = b|G,F = f)

=
∑

b

P (C|B = b, F = f)P (B = b|F = f)

= P (C|F = f)
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Finally

We have

Ip (C,G|F ) (7)
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D-Separation ≈ Conditional independence

F and G are given as evidence
Example C and G are d-separated by A, F in the DAG in

G

A

F B C
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Basic Definitions

Definition (Undirected Paths)
A path between two sets of nodes X and Y is any sequence of nodes
between a member of X and a member of Y such that every adjacent pair
of nodes is connected by an edge (regardless of direction) and no node
appears in the sequence twice.
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Example
An example

40 / 113



Example
Another one
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Thus

Given a path in G = (V,E)
There are the edges connecting [X1, X2, ..., Xk].

Therefore
Given the directed edge X → Y , we say the tail of the edge is at X and
the head of the edge is Y .
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Basic Classifications of Meetings

Head-to-Tail
A path X → Y → Z is a head-to-tail meeting, the edges meet head-
to-tail at Y , and Y is a head-to-tail node on the path.

Tail-to-Tail
A path X ← Y → Z is a tail-to-tail meeting, the edges meet tail-to-tail
at Z, and Z is a tail-to-tail node on the path.

Head-to-Head
A path X → Y ← Z is a head-to-head meeting, the edges meet
head-to-head at Y , and Y is a head-to-head node on the path.
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Examples

Head-to-Tail
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Examples

Tail-to-Tail
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Examples

Head-to-Head
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Basic Classifications of Meetings

Finally
A path (undirected) X − Z − Y , such that X and Y are not
adjacent, is an uncoupled meeting.
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Blocking Information ≈ Conditional Independence

Definition 2.2
Definition 2.2 LetG = (V,E) be a DAG, A ⊆ V , X and Y be distinct
nodes in V −A, and ρ be a path between X and Y .
Then ρ is blocked by A if one of the following holds:

1 There is a node Z ∈ A on the path ρ, and the edges incident to Z on
ρ meet head-to-tail at Z.

2 There is a node Z ∈ A on the path ρ, and the edges incident to Z on
ρ, meet tail-to-tail at Z.

3 There is a node Z, such that Z and all of Z’s descendent’s are not in
A, on the chain ρ, and the edges incident to Z on ρ meet
head-to-head at Z.
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Example

We have that the path [Y,X,Z, S] is blocked by {X} and {Z}
Because the edges on the chain incident to X meet tail-to-tail at X.

50 / 113



Example
We have that the path [W,Y,R, Z, S] is blocked by ∅

Because R /∈ ∅ and T /∈ ∅ and the edges on the chain incident to R
meet head-to-head at R .
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Definition of D-Separation

Definition 2.3
Let G = (V,E) be a DAG, A ⊆ V , and X and Y be distinct nodes in
V −A. We say X and Y are D-Separated by A in G if every path
between X and Y is blocked by A.

Definition 2.4
Let G = (V,E) be a DAG, and A, B, and C be mutually disjoint subsets
of V . We say A and B are d-separated by C in G if for every X ∈ A and
Y ∈ B, X and Y are D-Separated by C.

We write

IG(A,B|C) or A ⊥⊥ B|C (8)

If C = ∅, we write only IG(A,B) or A ⊥⊥ B.
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Example

X and T are D-Separated by {Y, Z}
Because the chain [X,Y,R, T ] is blocked at Y .
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Example

X and T are D-Separated by {Y, Z} - It is the set that block all paths
Because the chain [X,Z, S,R, T ] is blocked at Z, S.
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D-Separation ⇒ Independence

D-Separation Theorem
Let P be a probability distribution of the variables in V and G = (V,E)
be a DAG. Then (G,P ) satisfies the Markov condition if and only if

for every three mutually disjoint subsets A,B,C ⊆ V , whenever A
and B are D-Separated by C, A and B are conditionally independent
in P given C.

That is, (G,P ) satisfies the Markov condition if and only if

IG (A,B|C)⇒ IP (A,B|C) (9)
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Proof

The proof that, if (G,P ) satisfies the Markov condition
Then, each D-Separation implies the corresponding conditional
independence is quite lengthy and can be found in [Verma and Pearl,
1990] and in [Neapolitan, 1990].

Then, we will only prove the other direction
Suppose each D-Separation implies a conditional independence.

Thus, the following implication holds

IG (A,B|C)⇒ IP (A,B|C) (10)
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Proof

Something Notable
It is not hard to see that a node’s parents D-Separate the node from all its
non-descendent’s that are not its parents.

This is
If we denote the sets of parents and non-descendent’s of X by PAX and
NDX respectively, we have

IG ({X} ,NDX − PAX |PAX) (11)

Thus

IP ({X} ,NDX − PAX |PAX) (12)
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Proof

This states the same than

IP ({X} ,NDX |PAX) (13)

Meaning
The Markov condition is satisfied.
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Every Entailed Conditional Independence is Identified by
D-Separation

Lemma 2.2
Any conditional independence entailed by a DAG, based on the Markov
condition, is equivalent to a conditional independence among disjoint sets
of random variables.

Theorem 2.1
Based on the Markov condition, a DAG G entails all and only those
conditional independences that are identified by D-Separations in G.
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Now

We would like to find the D-Separations
Since d-separations entail conditional independencies.

We want an efficient algorithm
For determining whether two sets are D-Separated by another set.

For This, we need to build an algorithm
One that can find all D-Separated nodes from one set of nodes by another.
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How?

To accomplish this
We will first find every node X such that there is at least one active path
given A between X and a node in D.

Something like
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We solve the following problem

Suppose we have a directed graph
We say that certain edges cannot appear consecutively in our paths of
interest.

Thus, we identify certain pair of edges (u→ v, v → w)
As legal and the rest as illegal!!

Legal?
We call a path legal if it does not contain any illegal ordered pairs of
edges.
We say Y is reachable from x if there is a legal path from x to y .

64 / 113



We solve the following problem

Suppose we have a directed graph
We say that certain edges cannot appear consecutively in our paths of
interest.

Thus, we identify certain pair of edges (u→ v, v → w)
As legal and the rest as illegal!!

Legal?
We call a path legal if it does not contain any illegal ordered pairs of
edges.
We say Y is reachable from x if there is a legal path from x to y .

64 / 113



We solve the following problem

Suppose we have a directed graph
We say that certain edges cannot appear consecutively in our paths of
interest.

Thus, we identify certain pair of edges (u→ v, v → w)
As legal and the rest as illegal!!

Legal?
We call a path legal if it does not contain any illegal ordered pairs of
edges.
We say Y is reachable from x if there is a legal path from x to y .

64 / 113



We solve the following problem

Suppose we have a directed graph
We say that certain edges cannot appear consecutively in our paths of
interest.

Thus, we identify certain pair of edges (u→ v, v → w)
As legal and the rest as illegal!!

Legal?
We call a path legal if it does not contain any illegal ordered pairs of
edges.
We say Y is reachable from x if there is a legal path from x to y .

64 / 113



Thus

We can find the set R of all nodes reachable from x as follows
Any node V such that the edge x→ v exists is reachable.

Then
We label such edge with 1.

Next for each such v
We check all unlabeled edges v → w and see if (x→ v, v → w) is a legal
pair.
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Then

We label each such edge with a 2
And keep going!!!

Similar to a Breadth-First Graph
Here, we are visiting links rather than nodes.
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What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V,E).

For this
We need to find the set R such that

y ∈ R⇐⇒ Either
I y ∈ B.
I There is at least one active chain given A between y and a node in B.

67 / 113



What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V,E).

For this
We need to find the set R such that

y ∈ R⇐⇒ Either
I y ∈ B.
I There is at least one active chain given A between y and a node in B.

67 / 113



What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V,E).

For this
We need to find the set R such that

y ∈ R⇐⇒ Either
I y ∈ B.
I There is at least one active chain given A between y and a node in B.

67 / 113



What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V,E).

For this
We need to find the set R such that

y ∈ R⇐⇒ Either
I y ∈ B.
I There is at least one active chain given A between y and a node in B.

67 / 113



What do we want?

Identifying the set of nodes D that are
The one that are D-Separated from B by A in a DAG G = (V,E).

For this
We need to find the set R such that

y ∈ R⇐⇒ Either
I y ∈ B.
I There is at least one active chain given A between y and a node in B.

67 / 113



Then

If there is an active path ρ between node X and some other node
Then every 3-node sub-path u− v − w (u 6= w) of ρ has the following
property.

Either
u− v − w is not head-to-head at v and v is not in A.

Or
u− v − w is a head-to-head at v and v is a or has a descendant in A.
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The Final Legal Rule

The algorithm find-reachable-nodes uses the RULE
Find if (u→ v, v → w) is legal in G′.

The pair (u→ v, v → w) is legal if and only if

u 6= w (14)

And one of the following holds
1 (u− v − w) is not head-to-head in G and inA [v] is false.
2 (u− v − w) is head-to-head in G and descendent [v] is true.
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Example

Reachable nodes from X when A = ∅, thus
inA [v] is false and descendent [v] is false for all v ∈ V

Therefore
Only the rule 1 is applicable.
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Example

Labeling edges to 1 and shaded nodes are in R
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Example

Labeling edges to 2 and shaded nodes are in R
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Example

Labeling edges to 3 and shaded nodes are in R
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Example

Labeling edges to 4 and shaded nodes are in R
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Example

Labeling edges to 5 and shaded nodes are in R
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Algorithm to Finding Reachability

find-reachable-nodes(G, set of nodes B, set of nodes &R)
Input:G = (V,E), subset B ⊂ V and a RULE to find if two consecutive edges are legal
Output: R ⊂ V of all nodes reachable from B
1. for each x ∈ B
2. add x to R

3. for (each v such that x→ v ∈ E)
5. add v to R

6. label x→ v with 1
7. i = 1

8. found =true
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Continuation

The following steps
9. while (found)

10. found =false
11. for (each v such that u→ v labeled i)
12. for (each unlabeled edge v → w

13. such (u→ v, v → w) is legal)
14. add w to R
15. label v → w with i + 1

16. found =true
17. i = i + 1
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Complexity of find-reachable-nodes

We have that
Let n be the number of nodes and m be the number of edges.

Something Notable
In the worst case, each of the nodes can be reached from n entry points.

Thus
Each time a node is reached, an edge emanating from it may need to be
re-examined.
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Complexity of find-reachable-nodes

Then
Then, in the worst case each edge may be examined n times

Thus, the complexity

W (m,n) = Θ (mn) (15)
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Algorithm for D-separation
Find-D-
Separations(DAG G = (V,E) , set of nodes A,B, set of nodes D)
Input: G = (V,E)and two disjoint subsets
A,B ⊂ V
Output: D ⊂ V containing all nodes D-
Separated from every node in B by A. That
is IG (B,D|A) holds and no superset D has
this property.
1. for each v ∈ V
2. if (v ∈ A)

3. inA [v] = true

4. else

5. inA [v] = false

6. if (v is or has a descendent in A)

7. descendent [v] = true

8. else

9. descendent [v] = false

10. E′ = E ∪ {u→ v|v → u ∈ E}

11. G′ = (V,E’)
12. Run the algorithm:

find-reachable-nodes(G′,B,R)
. Note B ⊆ R

13. return D=V− (A ∪ R)
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Observation about descendent [v]

We can implement the construction of descendent [v] as follow
Initially set descendent [v] = true for all nodes in A.

Then
Then follow the incoming edges in A to their parents, their parents’
parents, and so on.

Thus
We set descendent [v] = true for each node found along the way.
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Observation about E’

The RULE about legal and E’
The E’ is necessary because using only the RULE on E will no get us all
the active paths.

For example
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Thus

Something Notable
Given A is the only node in A and X → T is the only edge in B, the edges
in that DAG are numbered according to the method.

Then
The active chain X → A← Z ← T ← Y is missed because the edge
T → Z is already numbered by the time the chain A← Z ← T is
investigated.

But
If we use the set of edges E’.
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Thus

Once, we add the extra edges, we get

1

1 2

2

3

4
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Complexity

Please take a look at page 81 at
“Learning Bayesian Networks” by Richard E. Neapolitan.

For the analysis of the algorithm for m edges and n nodes

Θ (m) with m ≥ n. (16)
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The D-Separation Algorithm works

Theorem 2.2
The set D contains all and only nodes D-Separated from every node in B
by A.

That is, we have IG (B,D|A) and no superset of D has this property.

Proof
The set R determined by the algorithm contains

I All nodes in B.
I All nodes reachable from B via a legal path in G′.
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Proof

For any two nodes x ∈ B and y /∈ A ∪ B
The path x− ...− y is active in G if and only if the path x→ ...→ y is
legal in G′.

Thus
Thus R contains the nodes in B plus all and only those nodes that have
active paths between them and a node in B.

By the definition of D-Separation
A node is D-Separated from every node in B in A if the node is not in
A ∪ B and there is not active path between the node and a node in B.
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Proof

Thus
D=V-(A ∪R) is the set of all nodes D-Separated from every node in B by
A.
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Example

B = {x} and A = {s, v}- Original Graph!!!
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Example

B = {x} and A = {s, v}- Moralized and with the tracking of
descendants
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Example

B = {x} and A = {s, v} and the first part of the reachability
algorithm

1

1

1

1
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Example

Remember that Legality is in G
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Example

Now, we have that
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Example

D − {A ∪R} = {q}
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Application

Something Notable
In general, the inference problem in Bayesian networks is to determine
P (B|A), where A and B are two sets of variables.

Thus
We can use the D-Separation for that.
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Example

Given the following the DAG G
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Example

We generate G′
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Where

The extra nodes represent
The probabilities in the interval [0, 1] and representing P (X = x)

Creating a set of P be the set of auxiliary parent nodes
Thus, if we want to determine P (B|A) in G, we can use the algorithm for
D-Separation to find D.

Such that

IG′ (B,D|A) (17)

And no superset of D has this property, then take D∩P.
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For example

We want P (f)
To determine it we need that all and only the values of PH , PB , PL ,
and PF

Because

IG′ ({F} , {PX} |∅) (18)

Thus
PX is the only auxiliary parent variable D-Separated from {F} by the
empty set.
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For example

We want P (f |b)
To determine it we need that all and only the values of PH , PL , and PF

when separation set is {B}

Then

IG′ ({F} , {PX , PB} | {B}) (19)

Thus
PX is the only auxiliary parent variable D-Separated from {F} by the
empty set.
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Remarks

Bayes Networks can reflect the true causal patterns
Often simpler (nodes have fewer parents).
Often easier to think about.
Often easier to elicit from experts.

Something Notable
Sometimes no causal net exists over the domain.
For example, consider the variables Traffic and Drips.

I Arrows reflect correlation not causation.
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Remarks

What do the arrows really mean?
Topologies may happen to encode causal structure.
Topologies are only guaranteed to encode conditional independence!

111 / 113



Remarks

What do the arrows really mean?
Topologies may happen to encode causal structure.
Topologies are only guaranteed to encode conditional independence!

111 / 113



Example

Example

Burgalary Earthquake

Alarm

John Calls Mary Calls

Add more stuff
Given that some information is not being encoded into the network:

I We have to add more edges to the graph.
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Example

Thus
Adding edges allows to make different conditional independence
assumptions.

New Network
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