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History
History

‘60s The first expert systems. IF-THEN rules.
1968 Attempts to use probabilities in expert systems (Gorry &
Barnett).
1973 Gave up - to heavy calculations! (Gorry).
1976 MYCIN: Medical predicate logic expert system with certainty
factors (Shortliffe).
1976 PROSPECTOR: Predicts the likely location of mineral deposits.
Uses Bayes’ rule. (Duda et al.).

Summary until mid ’80s
“Pure logic will solve the AI problems!”
“Probability theory is intractable to use and too complicated for
complex models.”
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But...

More History
1986 Bayesian networks were revived and reintroduced to expert
systems (Pearl).
1988 Breakthrough for efficient calculation algorithms (Lauritzen &
Spiegelhalter) tractable calculations on Bayesian Networkss.
1995 In Windows95™ for printer-trouble shooting and Office
assistance (“the paper clip”).
1999 Bayesian Networks are getting more and more used. Ex. Gene
expression analysis, Business strategy etc.
2000 Widely used - A Bayesian Network tool will be shipped with
every Windows™ Commercial Server.
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Furtheron 2000-2015

Bayesian Networks are use in
Spam Detection.
Gene Discovery.
Signal Processing.
Ranking.
Forecasting.
etc.

Something Notable
We are interested more and more on building automatically Bayesian
Networks using data!!!
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Bayesian Network Advantages

Many of Them
1 Since in a Bayesian network encodes all variables, missing data entries

can be handled successfully.
2 When used for learning casual relationships, they help better

understand a problem domain as well as forecast consequences.
3 it is ideal to use a Bayesian network for representing prior data and

knowledge.
4 Over-fitting of data can be avoidable when using Bayesian networks

and Bayesian statistical methods.
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Bayes Theorem
One Version

P (A|B) = P (B|A)P (A)
P (B)

Where
P (A) is the prior probability or marginal probability of A. It is
"prior" in the sense that it does not take into account any information
about B.
P (A|B) is the conditional probability of A, given B. It is also called
the posterior probability because it is derived from or depends upon
the specified value of B.
P (B|A) is the conditional probability of B given A. It is also called
the likelihood.
P (B) is the prior or marginal probability of B, and acts as a
normalizing constant.
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A Simple Example

Consider two related variables:
1 Drug (D) with values y or n

2 Test (T ) with values +ve or –ve

Initial Probabilities
P (D = y) = 0.001
P (T = +ve|D = y) = 0.8
P (T = +ve|D = n) = 0.01
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A Simple Example

What is the probability that a person has taken the drug?

P (D = y|T = +ve) =
P (T = +ve|D = y) P (D=y)

P (T = +ve|D = y) P (D=y) + P (T = +ve|D = n) P (D=n)

Let me develop the equation
Using simply

P (A, B) = P (A|B) P (B) (Chain Rule) (1)
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A More Complex Case

Increase Complexity
Suppose now that there is a similar link between Lung Cancer (L) and
a chest X-ray (X) and that we also have the following relationships:

I History of smoking (S) has a direct influence on bronchitis (B) and
lung cancer (L);

I L and B have a direct influence on fatigue (F ).

Question
What is the probability that someone has bronchitis given that they
smoke, have fatigue and have received a positive X-ray result?
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A More Complex Case

Short Hand

P (b1|s1, f1, x1) =
P (b1, s1, f1, x1)

P (s1, f1, x1)
=

∑
l
P (b1, s1, f1, x1, l)∑

b,l
P (b, s1, f1, x1, l)
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Values for the Complex Case

Table
Feature Value When the Feature Takes this Value

H h1 There is a history of smoking
h2 There is no history of smoking

B b1 Bronchitis is present
b2 Bronchitis is absent

L l1 Lung cancer is present
l2 Lung cancer is absent

F f1 Fatigue is present
f2 Fatigue is absent

C c1 Chest X-ray is positive
c2 Chest X-ray is negative

16 / 99



Problem with Large Instances

The joint probability distribution P (H, B, L, F, C)
For five binary variables there are 25 = 32 values in the joint
distribution (for 100 variables there are over 2100 values)
How are these values to be obtained?

We can try to do inference
To obtain posterior distributions once some evidence is available
requires summation over an exponential number of terms!!!

Ok!!!
We need something BETTER!!!
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Bayesian Networks

Definition
A Bayesian network consists of

A Graph
I Nodes represent the random variables.
I Directed edges (arrows) between pairs of nodes.
I it must be a Directed Acyclic Graph (DAG) – no directed cycles.
I The graph represents independence relationships between variables.

This allows to define
Conditional Probability Specifications:

I The conditional probability of each variable given its parents in the
DAG.
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Example

DAG for the previous Lung Cancer Problem
H

B L

F C
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Markov Condition

Definition
Suppose we have a joint probability distribution P of the random
variables in some set V and a DAG G = (V, E).

I We say that (G, P ) satisfies the Markov condition if for each variable
X ∈ V , {X} is conditionally independent of the set of all its
non-descendents given the set of all its parents.

Notation
PAX= set of parents of X.
NDX= set of non-descendants of X.

We use the following the notation

IP ({X} , NDX |PAX)
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Example

We have that
H

B L

F C

Given the previous DAG we have
Node PA Conditional Independence

C {L} IP ({C} , {H, B, F} | {L})
B {H} IP ({B} , {L, C} | {H})
F {B, L} IP ({F} , {H, C} | {B, L})
L {H} IP ({L} , {B} | {H})
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Using the Markov Condition

First Decompose a Joint Distribution using the Chain Rule
P (c, f, l, b, h) = P (c|b, s, l, f) P (f |b, h, l) P (l|b, h) P (b|h) P (h) (2)

Using the Markov condition in the following DAG

We have the following equivalences
P (c|b, h, l, f) = P (c|l)
P (f |b, h, l) = P (f |b, l)
P (l|b, h) = P (l|h)

26 / 99
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Using the Markov Condition

Finally
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Representing the Joint Distribution

Theorem (Product of Conditional Probabilities of the Parents)
If (G, P ) satisfies the Markov condition, then P is equal to the product of
its conditional distributions of all nodes given values of their parents,
whenever these conditional distributions exist.

General Representation
In general, for a network with nodes X1, X2, ..., Xn ⇒

P (x1, x2, ..., xn) =
n∏

i=1
P (xi|PA (xi))
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Proof

We prove the case where P is discrete
Order the nodes so that if Y is a descendant of Z, then Y follows Z in the
ordering.

Topological Sorting.

This is called
Ancestral ordering.
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Proof

For example

The ancestral ordering are

[H, L, B, C, F ] and [H, B, L, F, C] (4)
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Proof

Now
Let X1, X2, ..., Xn be the resultant ordering.

For a given set of values of x1, x2, ..., xn

Let pai be the subsets of these values containing the values of X ′is parents

Thus, we need to prove that whenever P (pai) 6= 0 for 1 ≤ i ≤ n

P (xn, xn−1, ..., x1) = P (xn|pan) P
(
xn−1|pan−1

)
...P (x1|pa1) (5)
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Proof
Something Notable
We show this using induction on the number of variables in the network.

Assume then P (pai) 6= 0 for 1 ≤ i ≤ n for a combination of x′is
values.

Base Case of Induction
Since pa1 is empty, then

P (x1) = P (x1|pa1) (6)

Inductive Hypothesis
Suppose for this combination of values of the xi’s that

P (xi, xi−1, ..., x1) = P (xi|pai) P
(
xi−1|pai−1

)
...P (x1|pa1) (7)
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Proof

Inductive Step
We need show for this combination of values of the xi’s that

P (xi+1, xi, ..., x1) = P
(
xi+1|pai+1

)
P (xi|pai) ...P (x1|pa1) (8)

Case 1
For this combination of values:

P (xi, xi−1, ..., x1) = 0 (9)

By Conditional Probability, we have

P (xi+1, xi, ..., x1) = P (xi+1|xi, ..., x1) P (xi, ..., x1) = 0 (10)

34 / 99



Proof

Inductive Step
We need show for this combination of values of the xi’s that

P (xi+1, xi, ..., x1) = P
(
xi+1|pai+1

)
P (xi|pai) ...P (x1|pa1) (8)

Case 1
For this combination of values:

P (xi, xi−1, ..., x1) = 0 (9)

By Conditional Probability, we have

P (xi+1, xi, ..., x1) = P (xi+1|xi, ..., x1) P (xi, ..., x1) = 0 (10)

34 / 99



Proof

Inductive Step
We need show for this combination of values of the xi’s that

P (xi+1, xi, ..., x1) = P
(
xi+1|pai+1

)
P (xi|pai) ...P (x1|pa1) (8)

Case 1
For this combination of values:

P (xi, xi−1, ..., x1) = 0 (9)

By Conditional Probability, we have

P (xi+1, xi, ..., x1) = P (xi+1|xi, ..., x1) P (xi, ..., x1) = 0 (10)

34 / 99



Proof

Due to the previous equalities and the inductive hypothesis
There is some k, 1 ≤ k ≤ i such that P (xk|pak) = 0 because after all

P (xi|pai) P
(
xi−1|pai−1

)
...P (x1|pa1) = 0 (11)

Thus, the equality holds
Now for the Case 2

Case 2
For this combination of values P (xi, xi−1, ..., x1) 6= 0
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Proof

Thus by the Rule of Conditional Probability

P (xi+1, xi, ..., x1) = P (xi+1|xi, ..., x1) P (xi, ..., x1)

Definition Markov Condition (Remember!!!)
Suppose we have a joint probability distribution P of the random
variables in some set V and a DAG G = (V, E).

I We say that (G, P ) satisfies the Markov condition if for each variable
X ∈ V , {X} is conditionally independent of the set of all its
non-descendents given the set of all its parents.
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Proof

Given this Markov Condition and the fact that X1, ..., Xi are all
non-descendants of Xi+1

We have that

P (xi+1, xi, ..., x1) = P
(
xi+1|pai+1

)
P (xi, ..., x1)

= P
(
xi+1|pai+1

)
P (xi|pai) · · ·P (x1|pa1) (IH)

Q.E.D.
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Example

Imagine the following Random Variables
Variable Value Outcome

V v1 All objects containing a ’1’
v2 All objects containing a ’2’

S s1 All square objects
s2 All round objects

C c1 All black objects
c2 All white objects
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Example

Using the following graph

Using the chain rule

P (v, s, c) = P (v|s, c) P (s|c) P (c)
= P (v|c) P (s|c) P (c)
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Then, using the following probabilities
We have

c s v P (v|s, c) P (v|c)

c1 s1 v1 1/3 1/3
c1 s1 v2 2/3 2/3
c1 s2 v1 1/3 1/3
c1 s2 v2 2/3 2/3
c2 s1 v1 1/2 1/2
c2 s1 v2 1/2 1/2
c2 s2 v1 1/2 1/2
c2 s2 v2 1/2 1/2
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Therefore

We have the following probabilities

P (c1, s1, v1) = 2
13

With the following using the Markov Condition

P (v1|c1) P (s1|c1) P (c1) = P (One|Black) P (Square|Black) P (Black)

= 1
3 ×

2
3 ×

9
13 = 2

13
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Now

OBSERVATIONS
There are good savings in the Number of Values

Brute Force Approach
on n binary variables requires mn, if m = max {|vi| |V }ni=1.

For a Bayesian Network with n binary variables and each node has at
most k parents

Then, less than mkn values are required!!!
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It is more!!!

Theorem (Markov Condition on a DAG)
Let a DAG G be given in which each node is a random variable, and
let a discrete conditional probability distribution of each node given
values of its parents in G be specified.
Then, the product of these conditional distributions yields a joint
probability distribution P of the variables, and (G, P ) satisfies the
Markov condition.

Note
Notice that the theorem requires that specified conditional
distributions be discrete.
Often in the case of continuous distributions it still holds.
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Example

We have the following DAG and probabilities

X Y Z
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Then

We have the according to a Markov Condition on a DAG

P (x, y, z) = P (z|y) P (y|x) P (x)

Which, we have that
It satisfies the Markov Condition.

49 / 99



Then

We have the according to a Markov Condition on a DAG

P (x, y, z) = P (z|y) P (y|x) P (x)

Which, we have that
It satisfies the Markov Condition.

49 / 99



Outline

1 Introduction
The History of Bayesian Applications
Bayes Theorem
Everything Starts at Someplace
Why Bayesian Networks?

2 Bayesian Networks
Definition
Markov Condition
Example

Using the Markov Condition
Representing the Joint Distribution
Example
Observations

Markov Condition and DAG’s
Example

Causality and Bayesian Networks
Precautionary Tale

Causal DAG
The Causal Markov Condition
Inference in Bayesian Networks
Example
General Strategy of Inference
Inference - An Overview

50 / 99



Causality in Bayesian Networks

Definition of a Cause
The one, such as a person, an event, or a condition, that is responsible for
an action or a result.

However
Although useful, this simple definition is certainly not the last word on
the concept of causation.

I Actually Philosophers are still wrangling the issue!!!
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Causality in Bayesian Networks

Nevertheless, It sheds light in the issue
If the action of making variable X take some value sometimes
changes the value taken by a variable Y .

Causality

Here, we assume X is responsible for sometimes changing Y ’s value
Thus, we conclude X is a cause of Y.

52 / 99



Causality in Bayesian Networks

Nevertheless, It sheds light in the issue
If the action of making variable X take some value sometimes
changes the value taken by a variable Y .

Causality

Here, we assume X is responsible for sometimes changing Y ’s value
Thus, we conclude X is a cause of Y.

52 / 99



Furthermore

Formally
We say we manipulate X when we force X to take some value.

We say X causes Y if there is some manipulation of X that leads to
a change in the probability distribution of Y .

Thus
We assume causes and their effects are statistically correlated.

However
Variables can be correlated without one causing the other.
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Precautionary Tale: Causality and Bayesian Networks

Important
Not every Bayesian Networks describes causal relationships between the
variables.

Consider
Consider the dependence between Lung Cancer, L, and the X-ray
test, X.
By focusing on just these variables we might be tempted to represent
them by the following Bayesian Networks.
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Precautionary Tale: Causality and Bayesian Networks

Important
Not every Bayesian Networks describes causal relationships between the
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Consider the dependence between Lung Cancer, L, and the X-ray
test, X.
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Precautionary Tale: Causality and Bayesian Networks

However, we can try the same

L X
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Remark

Be Careful
It is tempting to think that Bayesian Networks can be created by
creating a DAG where the edges represent direct causal relationships
between the variables.
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However

Causal DAG
Given a set of variables V , if for every X, Y ∈ V we draw an edge
from X to Y ⇐⇒ X is a direct cause of Y relative to V , we call the
resultant DAG a causal DAG.

We want
If we create a causal DAG G = (V, E) and assume the probability
distribution of the variables in V satisfies the Markov condition with
G:

I we say we are making the causal Markov assumption.

In General
The Markov condition holds for a causal DAG.
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However, we still want to know if the Markov Condition
Holds

Remark
There are several thing that the DAG needs to have in order to have the
Markov Condition.

Examples of those
Common Causes
Common Effects
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How to have a Markov Assumption : Common Causes

Consider

Smoking

Bronchitis Lung Cancer

Markov condition

Ip ({B} , {L} | {S})⇒ P (B|L, S) = P (B|S) (12)
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How to have a Markov Assumption : Common Causes

If we know the causal relationships

S → B and S → L (13)

Now!!!
If we know that you smoke...
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How to have a Markov Assumption : Common Causes

Then, because of the blocking of information from smoking
Finding out that Bronchitis will not give us any more information
about the probability of having Lung Cancer.

Markov condition
It is satisfied!!!
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How to have a Markov Assumption : Common Effects

Consider

Alarm

Burglary Earthquake

Markov Condition

lp (B, W )⇒ P (B|E) = P (B) (14)

Thus
We would expect Raining and Ballgame to be independent of each other
which is in agreement with the Markov condition.
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How to have a Markov Assumption : Common Effects

However
We would, however expect them to be conditionally dependent given
Alarm.

Thus
If the alarm has gone off, news that there had been an earthquake would
‘explain away’ the idea that a burglary had taken place.

Then
Again in agreement with the Markov condition.
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The Causal Markov Condition

What do we want?
The basic idea is that the Markov condition holds for a causal DAG.
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Rules to construct A Causal Graph

Conditions
1 There must be no hidden common causes.
2 There must not be selection bias.
3 There must be no feedback loops.

Observations
Even with these there is a lot of controversy as to its validity.
It seems to be false in quantum mechanical.
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Hidden Common Causes?
Consider the following DAG

H

X Y

Z

Something Notable
If a DAG is created on the basis of causal relationships between the
variables under consideration,

I Then X and Y would be marginally independent according to the
Markov condition.

I If Information is given to H = hi
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Hidden Common Causes?

Consider the following DAG

H

X Y

Z

However
If H is hidden, they will normally be dependent.
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Inference in Bayesian Networks

What do we want from Bayesian Networks?
The main point of Bayesian Networkss is to enable probabilistic inference
to be performed.

Two different types of inferences
1 Belief Updating.
2 Abduction Inference.
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Inference in Bayesian Networks

Belief updating
It is used to obtain the posterior probability of one or more variables given
evidence concerning the values of other variables.

Abductive inference
It finds the most probable configuration of a set of variables (hypothesis)
given certain evidence.
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Using the Structure I

Consider the following Bayesian Networks
Burgalary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

0.001

P(E)

0.002

P(B)

0.001

P(E)

0.002

B E P(A|B,E)

T T 0.95

T F 0.94

F T 0.29

F F 0.001

P(B)

0.001

A P(JC|A)

T 0.9

F 0.05

A P(MC|A)

T 0.7

F 0.01

Consider answering a query in a Bayesian Network
Q= set of query variables
e= evidence (set of instantiated variable-value pairs)
Inference = computation of conditional distribution P (Q|e)
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Using the Structure II

Examples
P (burglary|alarm)
P (earthquake|JCalls, MCalls)
P (JCalls, MCalls|burglary, earthquake)

So
Can we use the structure of the Bayesian Network to answer such queries
efficiently?

Answer
YES

Note: Generally speaking, complexity is inversely proportional to
sparsity of graph
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Example

DAG
D

B E

CA F G

We have the following model
p (a, b, c, d, e, f, g) is modeled by

p (a, b, c, d, e, f, g) = p (a|b) p (c|b) p (f |e) p (g|e) p (b|d) p (e|d) p (d)
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Example

Given values in C = c and G = g

D

B E

CA F G

We want to calculate the following

p (a|c, g)
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Example
Then, if you have brute force approach

D

B E

CA F G

However, a direct calculation leads to use a demarginalization

p (a|c, g) =
∑

b,d,e,f

p (a, b, d, e, f |c, g)

This will require that if we fix the value of a, c and g to have a
complexity of O

(
m4) with m = max {|B| , |D| , |E| , |F |}
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Example

We get some information about (a = ai, c = ci, g = gi)

D

B E

CA F G
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Thus, we have by the Markov Condition

First, we use the chain representation

p (a = ai, b, d, e, f |c = ci, g = gi) =p (a = ai|b, d, e, f, c = ci, g = gi)× · · ·
...p (b|d, e, f, c = ci, g = gi)× · · ·
...p (d|e, f, c = ci, g = gi)× · · ·
... (e|f, c = ci, g = gi)× · · ·
...p (f |c = ci, g = gi)× · · ·
...p (c = ci|g = gi)× p (g = gi)
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Then, we have that

Using the DAG structure

p (a = ai, b, d, e, f |c = ci, g = gi) =p (a = ai|b) p (b|d, c = ci)× · · ·
...p (d|e) p (e, f |g = gi)

Then given the original sum at the de-margenalization

p (a = ai, b, d, e, f |c = ci, g = gi) =
∑

b

p (a = ai|b)
∑

d

p (b|d, c = ci)× · · ·

...
∑

e

p (d|e)
∑

f

p (e, f |g = gi)
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Now, we can concentrate ∑f p (e, f |g = gi)
Now, using the relation with respect to E

D

B E

CA F G

Using this information, we can reduce one of the sums by
marginalization ∑

f

p (e, f |g = gi) = p (e|g = gi)
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How?

Remember that

∑
f

p (e, f |g = gi) =
∑

f

p (e|f, g = gi) p (f |g = gi)

=
∑

f

pp (e|f, g = gi)

=p (e|g = gi)
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Then, we have that

DAG

D

B E

CA F G

Thus, we can reduce the size of our sum∑
b

p (a = ai|b)
∑

d

p (b|d, c = ci)
∑

e

p (d|e) p (e|g = gi)
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Then, we can use the realtion with respect to D

Given the following DAG

D

B E

CA F G

Now, we can calculate the probability of D by using the chain rule

p (d|e) p (e|g = gi) = p (d|e, g = gi) p (e|g = gi) = p (d, e|g = gi)
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Example

DAG

D

B E

CA F G

Now, we sum over all possible values of E∑
e

p (d, e|g = gi) = p (d|g = gi)

88 / 99



Example

DAG

D

B E

CA F G

Now, we sum over all possible values of E∑
e

p (d, e|g = gi) = p (d|g = gi)

88 / 99



Example

DAG

D

B E

CA F G

We get the following∑
b

p (a = ai|b)
∑

d

p (b|d, c = ci) p (d|g = gi)

89 / 99



Example

DAG

D

B E

CA F G

We get the following∑
b

p (a = ai|b)
∑

d

p (b|d, c = ci) p (d|g = gi)

89 / 99



Example
DAG

D

B E

CA F G

Again the chain rule for D
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Example

DAG

D

B E

CA F G

Now, we use the chain rule for reducing again
p (a = ai|b) p (b|c = ci, g = gi) = p (a = ai, b|c = ci, g = gi)
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Complexity

Because this can be computed using a sequence of four for loops
The complexity simply becomes O (m) when compared with O

(
m4)
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General Strategy for Inference

Query
Want to compute P (q|e)!!!

Step 1
P (q|e) = P (q,e)

P (e) = aP (q, e), since a = P (e) is constant wrt Q.

Step 2
P (q, e) =

∑
a..z P (q, e, a, b, . . . .z), by the law of total probability.
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General Strategy for inference

Step 3∑
a..z P (q, e, a, b, . . . .z) =

∑
a..z

∏
P (variable i | parents i) (using

Bayesian network factoring)

Step 4
Distribute summations across product terms for efficient computation.
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Inference – An Overview
Case 1

Trees and singly connected networks – only one path between any two
nodes:

I Message passing (Pearl, 1988)

Case 2
Multiply connected networks:

I A range of algorithms including cut-set conditioning (Pearl, 1988),
junction tree propagation (Lauritzen and Spiegelhalter, 1988), bucket
elimination (Dechter, 1996) to mention a few.

I A range of algorithms for approximate inference.

Notes
Both exact and approximate inference are NP-hard in the worst case.
Here the focus will be on message passing and junction tree
propagation for discrete variables.
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