Introduction to Artificial Intelligence Introduction to Bayesian Networks

Andres Mendez-Vazquez

February 11, 2020

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition
 - Example
- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 - Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

イロト イヨト イヨト

Outline

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition
 - Example
- Using the Markov Condition
- Representing the Joint Distribution
 - Example
- Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

History

- '60s The first expert systems. IF-THEN rules.
- 1968 Attempts to use probabilities in expert systems (Gorry & Barnett).
- 1973 Gave up to heavy calculations! (Gorry).
- 1976 MYCIN: Medical predicate logic expert system with certainty factors (Shortliffe).
- 1976 PROSPECTOR: Predicts the likely location of mineral deposits. Uses Bayes' rule. (Duda et al.).

History

- '60s The first expert systems. IF-THEN rules.
- 1968 Attempts to use probabilities in expert systems (Gorry & Barnett).
- 1973 Gave up to heavy calculations! (Gorry).
- 1976 MYCIN: Medical predicate logic expert system with certainty factors (Shortliffe).
- 1976 PROSPECTOR: Predicts the likely location of mineral deposits. Uses Bayes' rule. (Duda et al.).

- "Pure logic will solve the AI problems!"
- "Probability theory is intractable to use and too complicated for complex models."

History

- '60s The first expert systems. IF-THEN rules.
- 1968 Attempts to use probabilities in expert systems (Gorry & Barnett).
- 1973 Gave up to heavy calculations! (Gorry).
- 1976 MYCIN: Medical predicate logic expert system with certainty factors (Shortliffe).
- 1976 PROSPECTOR: Predicts the likely location of mineral deposits. Uses Bayes' rule. (Duda et al.).

- "Pure logic will solve the AI problems!"
- "Probability theory is intractable to use and too complicated for complex models."

History

- '60s The first expert systems. IF-THEN rules.
- 1968 Attempts to use probabilities in expert systems (Gorry & Barnett).
- 1973 Gave up to heavy calculations! (Gorry).
- 1976 MYCIN: Medical predicate logic expert system with certainty factors (Shortliffe).

1976 PROSPECTOR: Predicts the likely location of mineral deposits. Uses Bayes' rule. (Duda et al.).

- "Pure logic will solve the AI problems!"
- "Probability theory is intractable to use and too complicated for complex models."

History

- '60s The first expert systems. IF-THEN rules.
- 1968 Attempts to use probabilities in expert systems (Gorry & Barnett).
- 1973 Gave up to heavy calculations! (Gorry).
- 1976 MYCIN: Medical predicate logic expert system with certainty factors (Shortliffe).
- 1976 PROSPECTOR: Predicts the likely location of mineral deposits. Uses Bayes' rule. (Duda et al.).

History

- '60s The first expert systems. IF-THEN rules.
- 1968 Attempts to use probabilities in expert systems (Gorry & Barnett).
- 1973 Gave up to heavy calculations! (Gorry).
- 1976 MYCIN: Medical predicate logic expert system with certainty factors (Shortliffe).
- 1976 PROSPECTOR: Predicts the likely location of mineral deposits. Uses Bayes' rule. (Duda et al.).

Summary until mid '80s

"Pure logic will solve the AI problems!"

"Probability theory is intractable to use and too complicated for complex models."

History

- '60s The first expert systems. IF-THEN rules.
- 1968 Attempts to use probabilities in expert systems (Gorry & Barnett).
- 1973 Gave up to heavy calculations! (Gorry).
- 1976 MYCIN: Medical predicate logic expert system with certainty factors (Shortliffe).
- 1976 PROSPECTOR: Predicts the likely location of mineral deposits. Uses Bayes' rule. (Duda et al.).

- "Pure logic will solve the AI problems!"
- "Probability theory is intractable to use and too complicated for complex models."

More History

- 1986 Bayesian networks were revived and reintroduced to expert systems (Pearl).
- 1988 Breakthrough for efficient calculation algorithms (Lauritzen & Spiegelhalter) tractable calculations on Bayesian Networkss.
- 1995 In Windows95[™] for printer-trouble shooting and Office assistance ("the paper clip").
- 1999 Bayesian Networks are getting more and more used. Ex. Gene expression analysis, Business strategy etc.
- 2000 Widely used A Bayesian Network tool will be shipped with every Windows[™] Commercial Server.

More History

- 1986 Bayesian networks were revived and reintroduced to expert systems (Pearl).
- 1988 Breakthrough for efficient calculation algorithms (Lauritzen & Spiegelhalter) tractable calculations on Bayesian Networkss.
- 1995 In Windows95[™] for printer-trouble shooting and Office assistance ("the paper clip").
- 1999 Bayesian Networks are getting more and more used. Ex. Gene expression analysis, Business strategy etc.
- 2000 Widely used A Bayesian Network tool will be shipped with every Windows[™] Commercial Server.

More History

- 1986 Bayesian networks were revived and reintroduced to expert systems (Pearl).
- 1988 Breakthrough for efficient calculation algorithms (Lauritzen & Spiegelhalter) tractable calculations on Bayesian Networkss.
- 1995 In Windows95[™] for printer-trouble shooting and Office assistance ("the paper clip").
- 1999 Bayesian Networks are getting more and more used. Ex. Gene expression analysis, Business strategy etc.
 - 2000 Widely used A Bayesian Network tool will be shipped with every Windows[™] Commercial Server.

More History

- 1986 Bayesian networks were revived and reintroduced to expert systems (Pearl).
- 1988 Breakthrough for efficient calculation algorithms (Lauritzen & Spiegelhalter) tractable calculations on Bayesian Networkss.
- 1995 In Windows95[™] for printer-trouble shooting and Office assistance ("the paper clip").
- 1999 Bayesian Networks are getting more and more used. Ex. Gene expression analysis, Business strategy etc.

I 2000 Widely used - A Bayesian Network tool will be shipped with every Windows[™] Commercial Server.

More History

- 1986 Bayesian networks were revived and reintroduced to expert systems (Pearl).
- 1988 Breakthrough for efficient calculation algorithms (Lauritzen & Spiegelhalter) tractable calculations on Bayesian Networkss.
- 1995 In Windows95[™] for printer-trouble shooting and Office assistance ("the paper clip").
- 1999 Bayesian Networks are getting more and more used. Ex. Gene expression analysis, Business strategy etc.
- 2000 Widely used A Bayesian Network tool will be shipped with every Windows[™] Commercial Server.

イロト イヨト イヨト

Furtheron 2000-2015

Bayesian Networks are use in

- Spam Detection.
- Gene Discovery.
- Signal Processing.
- Ranking.
- Forecasting.
- etc.

Something Notable

We are interested more and more on building automatically Bayesian Networks using data!!!

Furtheron 2000-2015

Bayesian Networks are use in

- Spam Detection.
- Gene Discovery.
- Signal Processing.
- Ranking.
- Forecasting.
- etc.

Something Notable

We are interested more and more on building automatically Bayesian Networks using data!!!

Many of Them

- Since in a Bayesian network encodes all variables, missing data entries can be handled successfully.
- When used for learning casual relationships, they help better understand a problem domain as well as forecast consequences
- it is ideal to use a Bayesian network for representing prior data and knowledge.
- Over-fitting of data can be avoidable when using Bayesian networks and Bayesian statistical methods.

Many of Them

- Since in a Bayesian network encodes all variables, missing data entries can be handled successfully.
- When used for learning casual relationships, they help better understand a problem domain as well as forecast consequences.
 - it is ideal to use a Bayesian network for representing prior data and knowledge.
- Over-fitting of data can be avoidable when using Bayesian networks and Bayesian statistical methods.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Many of Them

- Since in a Bayesian network encodes all variables, missing data entries can be handled successfully.
- When used for learning casual relationships, they help better understand a problem domain as well as forecast consequences.
- it is ideal to use a Bayesian network for representing prior data and knowledge.
 - Over-fitting of data can be avoidable when using Bayesian networks and Bayesian statistical methods.

Many of Them

- Since in a Bayesian network encodes all variables, missing data entries can be handled successfully.
- When used for learning casual relationships, they help better understand a problem domain as well as forecast consequences.
- it is ideal to use a Bayesian network for representing prior data and knowledge.
- Over-fitting of data can be avoidable when using Bayesian networks and Bayesian statistical methods.

イロト イヨト イヨト

Outline

The History of Bayesian Applications

Bayes Theorem

- Éverything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition
 - Example
- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

Introduction

The History of Bayesian Applications

- Bayes Theorem
 - Everything Starts at Someplace
 - Why Bayesian Networks?

- Definition
- Markov Condition
 - Example
- Using the Markov Condition
- Representing the Joint Distribution
 - Example
- Observations
- Markov Condition and DAG's Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(A) is the **prior probability** or marginal probability of A. It is "prior" in the sense that it does not take into account any information about B.
- P(A|B) is the conditional probability of A, given B. It is also called the posterior probability because it is derived from or depends upon the specified value of B.
- P(B|A) is the conditional probability of B given A. It is also called the likelihood.
- *P*(*B*) is the **prior or marginal probability** of B, and acts as a normalizing constant.

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(A) is the **prior probability** or marginal probability of A. It is "prior" in the sense that it does not take into account any information about B.
- P(A|B) is the **conditional probability** of A, given B. It is also called the posterior probability because it is derived from or depends upon the specified value of B.
- P(B|A) is the conditional probability of B given A. It is also called the likelihood.
- P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(A) is the **prior probability** or marginal probability of A. It is "prior" in the sense that it does not take into account any information about B.
- P(A|B) is the **conditional probability** of A, given B. It is also called the posterior probability because it is derived from or depends upon the specified value of B.
- P(B|A) is the **conditional probability** of B given A. It is also called the likelihood.
 - P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(A) is the **prior probability** or marginal probability of A. It is "prior" in the sense that it does not take into account any information about B.
- P(A|B) is the **conditional probability** of A, given B. It is also called the posterior probability because it is derived from or depends upon the specified value of B.
- P(B|A) is the **conditional probability** of B given A. It is also called the likelihood.
- P(B) is the **prior or marginal probability** of B, and acts as a normalizing constant.

Consider two related variables:

• Drug (D) with values y or n

Consider two related variables:

- Drug (D) with values y or n
- 2 Test (T) with values +ve or -ve

nitial Probabilities ● P(D = y) = 0.001 ● P(T = +ve|D = y) =

• P(T = +ve|D = n) = 0.01

Consider two related variables:

- Drug (D) with values y or n
- 2 Test (T) with values +ve or -ve

Initial Probabilities

•
$$P(D = y) = 0.001$$

Consider two related variables:

- Drug (D) with values y or n
- 2 Test (T) with values +ve or -ve

Initial Probabilities

•
$$P(D = y) = 0.001$$

•
$$P(T = +ve|D = y) = 0.8$$

イロト イヨト イヨト

Consider two related variables:

- Drug (D) with values y or n
- 2 Test (T) with values +ve or -ve

Initial Probabilities

•
$$P(D = y) = 0.001$$

•
$$P(T = +ve|D = y) = 0.8$$

•
$$P(T = +ve|D = n) = 0.01$$

イロト イヨト イヨト

What is the probability that a person has taken the drug?

$$P\left(D = y | T = +ve\right) = \frac{P\left(T = +ve | D = y\right) P\left(D = y\right)}{P\left(T = +ve | D = y\right) P\left(D = y\right) + P\left(T = +ve | D = n\right) P\left(D = n\right)}$$

Let me develop the equation

Using simply

P(A,B) = P(A|B) P(B) (Chain Rule)

イロト イロト イヨト イヨト

What is the probability that a person has taken the drug?

$$P\left(D=y|T=+ve\right) = \frac{P\left(T=+ve|D=y\right)P\left(D=\mathsf{y}\right)}{P\left(T=+ve|D=y\right)P\left(D=\mathsf{y}\right) + P\left(T=+ve|D=n\right)P\left(D=\mathsf{n}\right)}$$

Let me develop the equation

Using simply

$$P(A,B) = P(A|B) P(B)$$
 (Chain Rule)

イロト イボト イヨト イヨト

(1)

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

Everything Starts at Someplace

Why Bayesian Networks?

- Definition
- Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Increase Complexity

- Suppose now that there is a similar link between Lung Cancer (L) and a chest X-ray (X) and that we also have the following relationships:
 - History of smoking (S) has a direct influence on bronchitis (B) and lung cancer (L);
 - L and B have a direct influence on fatigue (F)

イロト イヨト イヨト

Increase Complexity

- Suppose now that there is a similar link between Lung Cancer (L) and a chest X-ray (X) and that we also have the following relationships:
 - ► History of smoking (S) has a direct influence on bronchitis (B) and lung cancer (L);
 - L and B have a direct influence on fatigue (F)

• What is the probability that someone has bronchitis given that they smoke, have fatigue and have received a positive X-ray result?

Increase Complexity

- Suppose now that there is a similar link between Lung Cancer (L) and a chest X-ray (X) and that we also have the following relationships:
 - ► History of smoking (S) has a direct influence on bronchitis (B) and lung cancer (L);
 - L and B have a direct influence on fatigue (F).

What is the probability that someone has bronchitis given that they smoke, have fatigue and have received a positive X-ray result?

Increase Complexity

- Suppose now that there is a similar link between Lung Cancer (L) and a chest X-ray (X) and that we also have the following relationships:
 - ► History of smoking (S) has a direct influence on bronchitis (B) and lung cancer (L);
 - L and B have a direct influence on fatigue (F).

Question

• What is the probability that someone has bronchitis given that they smoke, have fatigue and have received a positive X-ray result?

イロト イヨト イヨト

Short Hand

$$P(b_1|s_1, f_1, x_1) = \frac{P(b_1, s_1, f_1, x_1)}{P(s_1, f_1, x_1)} = \frac{\sum_l P(b_1, s_1, f_1, x_1, l)}{\sum_{b,l} P(b, s_1, f_1, x_1, l)}$$

Values for the Complex Case

Table

Feature	Value	When the Feature Takes this Value
Н	h_1	There is a history of smoking
	h_2	There is no history of smoking
В	b_1	Bronchitis is present
	b_2	Bronchitis is absent
L	l_1	Lung cancer is present
	l_2	Lung cancer is absent
F	f_1	Fatigue is present
	f_2	Fatigue is absent
С	c_1	Chest X-ray is positive
	c_2	Chest X-ray is negative

イロト イロト イヨト イヨト

The joint probability distribution P(H, B, L, F, C)

• For five binary variables there are $2^5 = 32$ values in the joint distribution (for 100 variables there are over 2^{100} values)

• How are these values to be obtained

A D > A D > A D > A D >

The joint probability distribution P(H, B, L, F, C)

- For five binary variables there are $2^5 = 32$ values in the joint distribution (for 100 variables there are over 2^{100} values)
- How are these values to be obtained?

To obtain posterior distributions once some evidence is available requires summation over an exponential number of terms!!!

The joint probability distribution P(H, B, L, F, C)

- For five binary variables there are $2^5 = 32$ values in the joint distribution (for 100 variables there are over 2^{100} values)
- How are these values to be obtained?

We can try to do inference

• To obtain posterior distributions once some evidence is available requires summation over an exponential number of terms!!!

イロト イヨト イヨト

The joint probability distribution P(H, B, L, F, C)

- For five binary variables there are $2^5 = 32$ values in the joint distribution (for 100 variables there are over 2^{100} values)
- How are these values to be obtained?

We can try to do inference

• To obtain posterior distributions once some evidence is available requires summation over an exponential number of terms!!!

Ok!!!

• We need something BETTER!!!

イロト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale

Causal DAG

- The Causal Markov Condition
- Inference in Bayesian Networks

Example

- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

A Bayesian network consists of

- A Graph
 - Nodes represent the random variables.
 - Directed edges (arrows) between pairs of nodes
 - it must be a Directed Acyclic Graph (DAG) no directed cycles
 - The graph represents independence relationships between variables

イロト イヨト イヨト

Definition

A Bayesian network consists of

- A Graph
 - Nodes represent the random variables.
 - Directed edges (arrows) between pairs of nodes.
 - it must be a Directed Acyclic Graph (DAG) no directed cycles.
 - The graph represents independence relationships between variables

his allows to define

- Conditional Probability Specifications:
 - The conditional probability of each variable given its parents in the DAG.

Definition

- A Bayesian network consists of
 - A Graph
 - Nodes represent the random variables.
 - Directed edges (arrows) between pairs of nodes.
 - it must be a Directed Acyclic Graph (DAG) no directed cycles.
 - The graph represents independence relationships between variables.

his allows to define

- Conditional Probability Specifications:
 - The conditional probability of each variable given its parents in the DAG.

Definition

- A Bayesian network consists of
 - A Graph
 - Nodes represent the random variables.
 - Directed edges (arrows) between pairs of nodes.

The graph represents independence relationships between variable

This allows to define

- Conditional Probability Specifications:
 - The conditional probability of each variable given its parents in the DAG.

Definition

A Bayesian network consists of

- A Graph
 - Nodes represent the random variables.
 - Directed edges (arrows) between pairs of nodes.
 - ▶ it must be a Directed Acyclic Graph (DAG) no directed cycles.

This allows to define

Conditional Probability Specifications:

The conditional probability of each variable given its parents in the DAG.

イロト イロト イヨト イヨト

Definition

A Bayesian network consists of

- A Graph
 - Nodes represent the random variables.
 - Directed edges (arrows) between pairs of nodes.
 - ▶ it must be a Directed Acyclic Graph (DAG) no directed cycles.
 - The graph represents independence relationships between variables.

This allows to define

Conditional Probability Specifications:

The conditional probability of each variable given its parents in the DAG.

Definition

A Bayesian network consists of

- A Graph
 - Nodes represent the random variables.
 - Directed edges (arrows) between pairs of nodes.
 - ▶ it must be a Directed Acyclic Graph (DAG) no directed cycles.
 - The graph represents independence relationships between variables.

This allows to define

- Conditional Probability Specifications:
 - The conditional probability of each variable given its parents in the DAG.

イロト イヨト イヨト

Example

DAG for the previous Lung Cancer Problem

Cinvestav

20 / 99

э

イロト 不得 トイヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

• Suppose we have a joint probability distribution P of the random variables in some set V and a DAG G = (V, E).

We say that (G, P) satisfies the Markov condition if for each variable X ∈ V, {X} is conditionally independent of the set of all its non-descendents given the set of all its parents.

Definition

- Suppose we have a joint probability distribution P of the random variables in some set V and a DAG G = (V, E).
 - ► We say that (G, P) satisfies the Markov condition if for each variable X ∈ V, {X} is conditionally independent of the set of all its non-descendents given the set of all its parents.

PA_X = set of parents of X.
 ND_X = set of non-descendants of X.

Definition

- Suppose we have a joint probability distribution P of the random variables in some set V and a DAG G = (V, E).
 - ► We say that (G, P) satisfies the Markov condition if for each variable X ∈ V, {X} is conditionally independent of the set of all its non-descendents given the set of all its parents.

Notation

• $PA_X = set of parents of X$.

• $ND_X =$ set of non-descendants of X

We use the following the notation

 $I_P\left(\left\{X\right\}, ND_X | PA_X\right)$

22 / 99

イロト 不得 トイヨト イヨト

Definition

- Suppose we have a joint probability distribution P of the random variables in some set V and a DAG G = (V, E).
 - ► We say that (G, P) satisfies the Markov condition if for each variable X ∈ V, {X} is conditionally independent of the set of all its non-descendents given the set of all its parents.

Notation

- $PA_X = set of parents of X$.
- $ND_X =$ set of non-descendants of X.

We use the following the notation $I_P(\{X\}, ND_X|PA_X)$

イロト 不得 トイヨト イヨト

22 / 99

Definition

- Suppose we have a joint probability distribution P of the random variables in some set V and a DAG G = (V, E).
 - ► We say that (G, P) satisfies the Markov condition if for each variable X ∈ V, {X} is conditionally independent of the set of all its non-descendents given the set of all its parents.

Notation

- $PA_X = set of parents of X$.
- $ND_X = set of non-descendants of X$.

We use the following the notation

 $I_P\left(\left\{X\right\}, ND_X | PA_X\right)$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

22 / 99

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Example

We have that

----dV

24 / 99

Example

We have that

B

Given the previous DAG we have

Node	PA	Conditional Independence
C	$\{L\}$	$I_P(\{C\},\{H,B,F\} \{L\})$
B	$\{H\}$	$I_{P}(\{B\},\{L,C\} \{H\})$
F	$\{B,L\}$	$I_{P}(\{F\},\{H,C\} \{B,L\})$
L	$\{H\}$	$I_{P}(\{L\},\{B\} \{H\})$

L

c

----dV

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

Using the Markov Condition

- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 - Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

First Decompose a Joint Distribution using the Chain Rule

P(c, f, l, b, h) = P(c|b, s, l, f) P(f|b, h, l) P(l|b, h) P(b|h) P(h)(2)

Using the Markov condition in the following DAG

We have the following equivalences

•
$$P(c|b,h,l,f) = P(c|l)$$

•
$$P(f|b,h,l) = P(f|b,l)$$

•
$$P(l|b,h) = P(l|h)$$

First Decompose a Joint Distribution using the Chain Rule

P(c, f, l, b, h) = P(c|b, s, l, f) P(f|b, h, l) P(l|b, h) P(b|h) P(h)(2)

Using the Markov condition in the following DAG

We have the following equivalences

- P(c|b,h,l,f) = P(c|l)
- $P\left(f|b,h,l\right) = P\left(f|b,l\right)$
- P(l|b,h) = P(l|h)

First Decompose a Joint Distribution using the Chain Rule

P(c, f, l, b, h) = P(c|b, s, l, f) P(f|b, h, l) P(l|b, h) P(b|h) P(h)(2)

Using the Markov condition in the following DAG

We have the following equivalences

- $P\left(c|b,h,l,f
 ight)=P\left(c|l
 ight)$
- $P\left(f|b,h,l\right) = P\left(f|b,l\right)$

•
$$P(l|b,h) = P(l|h)$$

Finally

$$P(c, f, l, b, h) = P(c|l) P(f|b, l) P(l|h) P(b|h) P(h)$$

(3)

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition

Example

Using the Markov Condition

Representing the Joint Distribution

Example

Observations

Markov Condition and DAG's

Example

- Causality and Bayesian Networks
 - Precautionary Tale

Causal DAG

- The Causal Markov Condition
- Inference in Bayesian Networks

Example

- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Representing the Joint Distribution

Theorem (Product of Conditional Probabilities of the Parents)

If (G, P) satisfies the Markov condition, then P is equal to the product of its conditional distributions of all nodes given values of their parents, whenever these conditional distributions exist.

General Representation

• In general, for a network with nodes $X_1, X_2, ..., X_n \Rightarrow$

$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^{n} P(x_i | PA(x_i))$$

Representing the Joint Distribution

Theorem (Product of Conditional Probabilities of the Parents)

If (G, P) satisfies the Markov condition, then P is equal to the product of its conditional distributions of all nodes given values of their parents, whenever these conditional distributions exist.

General Representation

• In general, for a network with nodes $X_1, X_2, ..., X_n \Rightarrow$

$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^{n} P(x_i | PA(x_i))$$

We prove the case where \boldsymbol{P} is discrete

Order the nodes so that if \boldsymbol{Y} is a descendant of $\boldsymbol{Z},$ then \boldsymbol{Y} follows \boldsymbol{Z} in the ordering.

Topological Sorting.

We prove the case where P is discrete

Order the nodes so that if \boldsymbol{Y} is a descendant of $\boldsymbol{Z},$ then \boldsymbol{Y} follows \boldsymbol{Z} in the ordering.

• Topological Sorting.

nis is called

Ancestral ordering.

We prove the case where P is discrete

Order the nodes so that if \boldsymbol{Y} is a descendant of $\boldsymbol{Z},$ then \boldsymbol{Y} follows \boldsymbol{Z} in the ordering.

Topological Sorting.

This is called

Ancestral ordering.

For example

The ancestral ordering are

 $\left[H,L,B,C,F
ight]$ and $\left[H,B,L,F,C
ight]$

For example

The ancestral ordering are

 $\left[H,L,B,C,F\right]$ and $\left[H,B,L,F,C\right]$

(4)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Now

Let $X_1, X_2, ..., X_n$ be the resultant ordering.

For a given set of values of $x_1, x_2, ..., x_n$

Let pa_i be the subsets of these values containing the values of $X_i's$ parents

Thus, we need to prove that whenever $P\left(\mathsf{pa}_{i} ight) eq 0$ for $1\leq i\leq n$

 $P\left(x_{n}, x_{n-1}, \dots, x_{1}\right) = P\left(x_{n} | \mathsf{pa}_{n}\right) P\left(x_{n-1} | \mathsf{pa}_{n-1}\right) \dots P\left(x_{1} | \mathsf{pa}_{1}\right) \qquad (5)$

イロト イロト イヨト イヨト

Now

Let $X_1, X_2, ..., X_n$ be the resultant ordering.

For a given set of values of $x_1, x_2, ..., x_n$

Let pa_i be the subsets of these values containing the values of $X'_i s$ parents

Thus, we need to prove that whenever $P\left(\mathsf{pa}_{i} ight) eq 0$ for $1\leq i\leq i$

 $P(x_n, x_{n-1}, ..., x_1) = P(x_n | pa_n) P(x_{n-1} | pa_{n-1}) ... P(x_1 | pa_1)$ (5)

< ロ > < 回 > < 回 > < 回 > < 回 >

Now

Let $X_1, X_2, ..., X_n$ be the resultant ordering.

For a given set of values of $x_1, x_2, ..., x_n$

Let pa_i be the subsets of these values containing the values of $X'_i s$ parents

Thus, we need to prove that whenever $P(pa_i) \neq 0$ for $1 \leq i \leq n$

$$P(x_n, x_{n-1}, ..., x_1) = P(x_n | \mathsf{pa}_n) P(x_{n-1} | \mathsf{pa}_{n-1}) ... P(x_1 | \mathsf{pa}_1)$$
(5)

Something Notable

We show this using induction on the number of variables in the network.

Assume then $P\left(\mathrm{pa}_{i}\right)\neq0$ for $1\leq i\leq n$ for a combination of x_{i}' values.

Something Notable

We show this using induction on the number of variables in the network.

• Assume then $P\left(\mathsf{pa}_{i}\right)\neq0$ for $1\leq i\leq n$ for a combination of $x_{i}'s$ values.

Base Case of Induction

Since pa_1 is empty, then

$P\left(x_{1} ight)=P\left(x_{1}|\mathsf{pa}_{1} ight)$

Something Notable

We show this using induction on the number of variables in the network.

• Assume then $P\left(\mathsf{pa}_{i}\right)\neq0$ for $1\leq i\leq n$ for a combination of $x_{i}'s$ values.

Base Case of Induction

Since pa_1 is empty, then

Suppose for this combination of values of the x_i 's

 $P\left(x_{i},x_{i+1},...,x_{1}
ight)=P\left(x_{i}|\mathsf{pa}_{i}
ight)P\left(x_{i+1}|\mathsf{pa}_{i+1}
ight)...P\left(x_{1}|\mathsf{pa}_{i}
ight)$

Something Notable

We show this using induction on the number of variables in the network.

• Assume then $P\left(\mathsf{pa}_{i}\right)\neq0$ for $1\leq i\leq n$ for a combination of $x_{i}'s$ values.

Base Case of Induction

Since pa_1 is empty, then

$$P\left(x_{1}\right) = P\left(x_{1}|\mathsf{pa}_{1}\right)$$

(6)

Suppose for this combination of values of the $x_i {}^{\prime}s$ that

 $P\left(x_{i},x_{i+1},...,x_{1}
ight)=P\left(x_{i}|\mathsf{pa}_{i}
ight)P\left(x_{i+1}|\mathsf{pa}_{i+1}
ight)...P\left(x_{1}|\mathsf{pa}_{1}
ight)$

Something Notable

We show this using induction on the number of variables in the network.

• Assume then $P\left(\mathsf{pa}_{i}\right)\neq0$ for $1\leq i\leq n$ for a combination of $x_{i}'s$ values.

Base Case of Induction

Since pa_1 is empty, then

$$P\left(x_{1}\right) = P\left(x_{1}|\mathsf{pa}_{1}\right)$$

Inductive Hypothesis

Suppose for this combination of values of the x_i 's that

(6)

Something Notable

We show this using induction on the number of variables in the network.

• Assume then $P\left(\mathsf{pa}_{i}\right)\neq0$ for $1\leq i\leq n$ for a combination of $x_{i}'s$ values.

Base Case of Induction

Since pa_1 is empty, then

$$P(x_1) = P(x_1 | \mathsf{pa}_1) \tag{6}$$

Inductive Hypothesis

Suppose for this combination of values of the x_i 's that

$$P(x_{i}, x_{i-1}, ..., x_{1}) = P(x_{i} | \mathsf{pa}_{i}) P(x_{i-1} | \mathsf{pa}_{i-1}) ... P(x_{1} | \mathsf{pa}_{1})$$
(7)

Inductive Step

We need show for this combination of values of the x_i 's that

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1} | \mathsf{pa}_{i+1}) P(x_i | \mathsf{pa}_i) ... P(x_1 | \mathsf{pa}_1)$$
(8)

Case

For this combination of values:

$$P(x_i, x_{i-1}, ..., x_1) = 0$$

By Conditional Probability, we have

 $P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1} | x_i, ..., x_1) P(x_i, ..., x_1) = 0$ (10)

Inductive Step

We need show for this combination of values of the x_i 's that

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1} | \mathsf{pa}_{i+1}) P(x_i | \mathsf{pa}_i) ... P(x_1 | \mathsf{pa}_1)$$
(8)

Case 1

For this combination of values:

$$P(x_i, x_{i-1}, ..., x_1) = 0$$
(9)

By Conditional Probability, we have

 $P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1} | x_i, ..., x_1) P(x_i, ..., x_1) = 0$ (10)

Inductive Step

We need show for this combination of values of the x_i 's that

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1} | \mathsf{pa}_{i+1}) P(x_i | \mathsf{pa}_i) ... P(x_1 | \mathsf{pa}_1)$$
(8)

Case 1

For this combination of values:

$$P(x_i, x_{i-1}, ..., x_1) = 0$$
(9)

By Conditional Probability, we have

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1}|x_i, ..., x_1) P(x_i, ..., x_1) = 0$$
 (10)

Due to the previous equalities and the inductive hypothesis

There is some k, $1 \le k \le i$ such that $P(x_k | \mathsf{pa}_k) = 0$ because after all

$$P(x_i|pa_i) P(x_{i-1}|pa_{i-1}) \dots P(x_1|pa_1) = 0$$
(11)

Thus, the equality holds

Now for the Case 2

Case 2

For this combination of values $P\left(x_{i}, x_{i-1}, ..., x_{1}
ight)
eq 0$

A D > A D > A D > A D >

Due to the previous equalities and the inductive hypothesis

There is some k, $1 \le k \le i$ such that $P(x_k | \mathsf{pa}_k) = 0$ because after all

$$P(x_i|pa_i) P(x_{i-1}|pa_{i-1}) \dots P(x_1|pa_1) = 0$$
(11)

Thus, the equality holds

Now for the Case 2

For this combination of values $P\left(x_{i}, x_{i-1}, ..., x_{1}
ight)
eq 0$

A D > A D > A D > A D >

Due to the previous equalities and the inductive hypothesis

There is some k, $1 \le k \le i$ such that $P(x_k | pa_k) = 0$ because after all

$$P(x_i|pa_i) P(x_{i-1}|pa_{i-1}) \dots P(x_1|pa_1) = 0$$
(11)

Thus, the equality holds

Now for the Case 2

Case 2

For this combination of values $P(x_i, x_{i-1}, ..., x_1) \neq 0$

Thus by the Rule of Conditional Probability

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1}|x_i, ..., x_1) P(x_i, ..., x_1)$$

Thus by the Rule of Conditional Probability

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1}|x_i, ..., x_1) P(x_i, ..., x_1)$$

Definition Markov Condition (Remember!!!)

• Suppose we have a joint probability distribution P of the random variables in some set V and a DAG G = (V, E).

< ロ > < 同 > < 回 > < 回 >

Thus by the Rule of Conditional Probability

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1}|x_i, ..., x_1) P(x_i, ..., x_1)$$

Definition Markov Condition (Remember!!!)

- Suppose we have a joint probability distribution P of the random variables in some set V and a DAG G = (V, E).
 - We say that (G, P) satisfies the Markov condition if for each variable X ∈ V, {X} is conditionally independent of the set of all its non-descendents given the set of all its parents.

イロト イヨト イヨト

Given this Markov Condition and the fact that $X_1,...,X_i$ are all non-descendants of X_{i+1}

We have that

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1} | \mathsf{pa}_{i+1}) P(x_i, ..., x_1)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Given this Markov Condition and the fact that $X_1,...,X_i$ are all non-descendants of X_{i+1}

We have that

$$P(x_{i+1}, x_i, ..., x_1) = P(x_{i+1} | \mathsf{pa}_{i+1}) P(x_i, ..., x_1)$$

= $P(x_{i+1} | \mathsf{pa}_{i+1}) P(x_i | \mathsf{pa}_i) \cdots P(x_1 | \mathsf{pa}_1)$ (IH)

Q.E.D.

イロト イロト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

Using the Markov Condition

Representing the Joint Distribution Example

Observations

- Markov Condition and DAG's
 - Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Example

Imagine the following Random Variables

Variable	Value	Outcome	
V	v_1	All objects containing a '1'	
	v_2	All objects containing a '2'	
S	s_1	All square objects	
	s_2	All round objects	
C	c_1	All black objects	
	c_2	All white objects	

Example

Using the following graph

Using the chain rule

$$\begin{split} P\left(v,s,c\right) &= P\left(v|s,c\right) P\left(s|c\right) P\left(c\right) \\ &= P\left(v|c\right) P\left(s|c\right) P\left(c\right) \end{split}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Example

Using the following graph

Using the chain rule

$$P(v, s, c) = P(v|s, c) P(s|c) P(c)$$
$$= P(v|c) P(s|c) P(c)$$

Then, using the following probabilities

c	s	v	$P\left(v s,c ight)$	$P\left(v c\right)$
c_1	s_1	v_1	1/3	1/3
c_1	s_1	v_2	2/3	2/3
c_1	s_2	v_1	1/3	1/3
c_1	s_2	v_2	2/3	2/3
c_2	s_1	v_1	1/2	1/2
c_2	s_1	v_2	1/2	1/2
c_2	s_2	v_1	1/2	1/2
c_2	s_2	v_2	1/2	1/2

Therefore

We have the following probabilities

$$P(c_1, s_1, v_1) = \frac{2}{13}$$

With the following using the Markov Conditio

$P(v_1|c_1) P(s_1|c_1) P(c_1) = P(One|Black) P(Square|Black) P(Black)$ $= \frac{1}{3} \times \frac{2}{3} \times \frac{9}{13} = \frac{2}{13}$

イロト イヨト イヨト

Therefore

We have the following probabilities

$$P(c_1, s_1, v_1) = \frac{2}{13}$$

With the following using the Markov Condition

$$P(v_1|c_1) P(s_1|c_1) P(c_1) = P(One|Black) P(Square|Black) P(Black)$$
$$= \frac{1}{3} \times \frac{2}{3} \times \frac{9}{13} = \frac{2}{13}$$

イロト イロト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 Example

Observations

- Markov Condition and DAG's
 - Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

OBSERVATIONS

• There are good savings in the Number of Values

Brute Force Approach

• on n binary variables requires m^n , if $m = \max \{|v_i| | V\}_{i=1}^n$.

For a Bayesian Network with n binary variables and each node has attended most k parents

• Then, less than $m^k n$ values are required!!!

Now

OBSERVATIONS

• There are good savings in the Number of Values

Brute Force Approach

• on n binary variables requires m^n , if $m = \max \{ |v_i| | V \}_{i=1}^n$.

a Bayesian Network with n binary variables and each node has at

• Then, less than $m^k n$ values are required!!!

Now

OBSERVATIONS

• There are good savings in the Number of Values

Brute Force Approach

• on n binary variables requires m^n , if $m = \max \{ |v_i| | V \}_{i=1}^n$.

For a Bayesian Network with \boldsymbol{n} binary variables and each node has at most \boldsymbol{k} parents

• Then, less than $m^k n$ values are required!!!

イロト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations

Markov Condition and DAG's

Example

- Causality and Bayesian Networks
 - Precautionary Tale

Causal DAG

- The Causal Markov Condition
- Inference in Bayesian Networks

Example

- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Theorem (Markov Condition on a DAG)

- Let a DAG G be given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified.
- Then, the product of these conditional distributions yields a joint probability distribution P of the variables, and (G, P) satisfies the Markov condition.

< ロ > < 同 > < 回 > < 回 >

Theorem (Markov Condition on a DAG)

- Let a DAG G be given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified.
- Then, the product of these conditional distributions yields a joint probability distribution P of the variables, and (G, P) satisfies the Markov condition.

 Notice that the theorem requires that specified conditional distributions be discrete.

Often in the case of continuous distributions it still holds.

< ロ > < 同 > < 回 > < 回 >

Theorem (Markov Condition on a DAG)

- Let a DAG G be given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified.
- Then, the product of these conditional distributions yields a joint probability distribution P of the variables, and (G, P) satisfies the Markov condition.

Note

 Notice that the theorem requires that specified conditional distributions be discrete.

イロト イヨト イヨト

Theorem (Markov Condition on a DAG)

- Let a DAG G be given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified.
- Then, the product of these conditional distributions yields a joint probability distribution P of the variables, and (G, P) satisfies the Markov condition.

Note

- Notice that the theorem requires that specified conditional distributions be discrete.
- Often in the case of continuous distributions it still holds.

イロト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations

Markov Condition and DAG's Example

- Causality and Bayesian Networks
 Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Example

We have the following DAG and probabilities

イロト イボト イヨト イヨト

We have the according to a Markov Condition on a DAG

$P\left(x,y,z\right) = P\left(z|y\right)P\left(y|x\right)P\left(x\right)$

Which, we have that

• It satisfies the Markov Condition.

We have the according to a Markov Condition on a DAG

$$P(x, y, z) = P(z|y) P(y|x) P(x)$$

Which, we have that

• It satisfies the Markov Condition.

イロト イロト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

Definition

Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example

Causality and Bayesian Networks

- Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition of a Cause

The one, such as a person, an event, or a condition, that is responsible for an action or a result.

Definition of a Cause

The one, such as a person, an event, or a condition, that is responsible for an action or a result.

However

• Although useful, this simple definition is certainly not the last word on the concept of causation.

Cinvestav ≥ ∽ ۹ ↔ 51 / 99

Definition of a Cause

The one, such as a person, an event, or a condition, that is responsible for an action or a result.

However

- Although useful, this simple definition is certainly not the last word on the concept of causation.
 - Actually Philosophers are still wrangling the issue!!!

Nevertheless, It sheds light in the issue

• If the action of making variable X take some value sometimes changes the value taken by a variable Y.

$$(X) \xrightarrow{\text{Causality}} Y$$

イロト イヨト イヨト

Nevertheless, It sheds light in the issue

• If the action of making variable X take some value sometimes changes the value taken by a variable Y.

$$(X) \xrightarrow{\text{Causality}} Y$$

Here, we assume \boldsymbol{X} is responsible for sometimes changing \boldsymbol{Y} 's value

• Thus, we conclude X is a cause of Y.

Formally

We say we **manipulate** X when we force X to take some value.

• We say X causes Y if there is some manipulation of X that leads to a change in the probability distribution of Y.

< ロ > < 回 > < 回 > < 回 > < 回 >

Formally

We say we **manipulate** X when we force X to take some value.

• We say X causes Y if there is some manipulation of X that leads to a change in the probability distribution of Y.

We assume causes and their effects are statistically correlated.

Formally

We say we **manipulate** X when we force X to take some value.

• We say X causes Y if there is some manipulation of X that leads to a change in the probability distribution of Y.

Thus

We assume causes and their effects are statistically correlated.

/ariables can be correlated without one causing the other

イロト イロト イヨト イヨト

Formally

We say we **manipulate** X when we force X to take some value.

• We say X causes Y if there is some manipulation of X that leads to a change in the probability distribution of Y.

Thus

We assume causes and their effects are statistically correlated.

However

Variables can be correlated without one causing the other.

イロン イロン イヨン イヨン

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition
- Example
- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Important

Not every Bayesian Networks describes causal relationships between the variables.

Important

Not every Bayesian Networks describes causal relationships between the variables.

Consider

• Consider the dependence between Lung Cancer, L, and the X-ray test, X.

By focusing on just these variables we might be tempted to represent them by the following Bayesian Networks.

< ロ > < 同 > < 回 > < 回 >

Important

Not every Bayesian Networks describes causal relationships between the variables.

Consider

- Consider the dependence between Lung Cancer, *L*, and the X-ray test, *X*.
- By focusing on just these variables we might be tempted to represent them by the following Bayesian Networks.

イロト イヨト イヨト

Important

Not every Bayesian Networks describes causal relationships between the variables.

Consider

- \bullet Consider the dependence between Lung Cancer, L, and the X-ray test, X.
- By focusing on just these variables we might be tempted to represent them by the following Bayesian Networks.

$$P(l_1) = 0.001$$

 $P(x_1|l_1) = 0.6$
 $P(x_1|l_2) = 0.02$

イロト イヨト イヨト

イロト イヨト イヨト イヨト

Remark

Be Careful

• It is tempting to think that Bayesian Networks can be created by creating a DAG where the edges represent direct causal relationships between the variables.

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 Precautionary Tale

Causal DAG

- The Causal Markov Condition
- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Causal DAG

• Given a set of variables V, if for every $X, Y \in V$ we draw an edge from X to $Y \iff X$ is a direct cause of Y relative to V, we call the resultant DAG a **causal DAG**.

Causal DAG

• Given a set of variables V, if for every $X, Y \in V$ we draw an edge from X to $Y \iff X$ is a direct cause of Y relative to V, we call the resultant DAG a **causal DAG**.

We want

• If we create a causal DAG G = (V, E) and assume the probability distribution of the variables in V satisfies the Markov condition with G:

(investav くロト く 団 ト く ミト く ミト ミ ラ へ (や 59 / 99

Causal DAG

• Given a set of variables V, if for every $X, Y \in V$ we draw an edge from X to $Y \iff X$ is a direct cause of Y relative to V, we call the resultant DAG a **causal DAG**.

We want

- If we create a causal DAG G = (V, E) and assume the probability distribution of the variables in V satisfies the Markov condition with G:
 - we say we are making the causal **Markov assumption**.

イロト イヨト イヨト

Causal DAG

• Given a set of variables V, if for every $X, Y \in V$ we draw an edge from X to $Y \iff X$ is a direct cause of Y relative to V, we call the resultant DAG a **causal DAG**.

We want

- If we create a causal DAG G = (V, E) and assume the probability distribution of the variables in V satisfies the Markov condition with G:
 - we say we are making the causal **Markov assumption**.

In General

• The Markov condition holds for a causal DAG.

However, we still want to know if the Markov Condition Holds

Remark

There are several thing that the DAG needs to have in order to have the Markov Condition.

However, we still want to know if the Markov Condition Holds

Remark

There are several thing that the DAG needs to have in order to have the Markov Condition.

Examples of those

Common Causes

However, we still want to know if the Markov Condition Holds

Remark

There are several thing that the DAG needs to have in order to have the Markov Condition.

Examples of those

- Common Causes
- Common Effects

How to have a Markov Assumption : Common Causes

Markov condition

$I_p(\{B\}, \{L\} | \{S\}) \Rightarrow P(B|L, S) = P(B|S)$

イロト イロト イヨト イヨト

How to have a Markov Assumption : Common Causes

Markov condition

$$I_p(\{B\}, \{L\} | \{S\}) \Rightarrow P(B|L, S) = P(B|S)$$
 (12)

61/99

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If we know the causal relationships

$S \to B$ and $S \to L$

(13)

Now!!!

If we know that you smoke...

If we know the causal relationships

$$S \to B \text{ and } S \to L$$

(13)

Now!!!

• If we know that you smoke...

イロト イヨト イヨト

Then, because of the blocking of information from smoking

• Finding out that Bronchitis will not give us any more information about the probability of having Lung Cancer.

Then, because of the blocking of information from smoking

• Finding out that Bronchitis will not give us any more information about the probability of having Lung Cancer.

Markov condition

It is satisfied!!!

イロト イヨト イヨト

Markov Condition

 $l_p(B, W) \Rightarrow P(B|E) = P(B)$

(14)

64 / 99

イロト イヨト イヨト

Thus

We would expect Raining and Ballgame to be independent of each other which is in agreement with the Markov condition.

Markov Condition

$$l_p(B,W) \Rightarrow P(B|E) = P(B)$$
(14)

イロト イヨト イヨト

64 / 99

Thus

We would expect Raining and Ballgame to be independent of each other which is in agreement with the Markov condition.

Markov Condition

$$l_p(B,W) \Rightarrow P(B|E) = P(B)$$
(14)

Thus

We would expect Raining and Ballgame to be independent of each other which is in agreement with the Markov condition.

However

We would, however expect them to be conditionally dependent given Alarm.

Thus

If the alarm has gone off, news that there had been an earthquake would 'explain away' the idea that a burglary had taken place.

Then

Again in agreement with the Markov condition.

However

We would, however expect them to be conditionally dependent given Alarm.

Thus

If the alarm has gone off, news that there had been an earthquake would 'explain away' the idea that a burglary had taken place.

Again in agreement with the Markov condition.

However

We would, however expect them to be conditionally dependent given Alarm.

Thus

If the alarm has gone off, news that there had been an earthquake would 'explain away' the idea that a burglary had taken place.

Then

Again in agreement with the Markov condition.

イロト 不得 トイヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 Precautionary Tale
- Causal DAG

The Causal Markov Condition

- Inference in Bayesian Networks
- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

The Causal Markov Condition

What do we want?

The basic idea is that the Markov condition holds for a causal DAG.

Conditions

- There must be no hidden common causes.
 - There must not be selection bias.
 - There must be no feedback loops.

Conditions

- There must be no hidden common causes.
- 2 There must not be selection bias.

There must be no feedback loops

bservations

- Even with these there is a lot of controversy as to its validity.
- It seems to be false in quantum mechanical

Conditions

- There must be no hidden common causes.
- O There must not be selection bias.
- There must be no feedback loops.

Even with these there is a lot of controversy as to its validity

It seems to be false in quantum mechanical

Conditions

- There must be no hidden common causes.
- 2 There must not be selection bias.
- There must be no feedback loops.

Observations

Even with these there is a lot of controversy as to its validity.

イロト イヨト イヨト

Conditions

- There must be no hidden common causes.
- 2 There must not be selection bias.
- There must be no feedback loops.

Observations

- Even with these there is a lot of controversy as to its validity.
- It seems to be false in quantum mechanical.

イロト 不得 トイヨト イヨト

Consider the following DAG

Something Notable

- If a DAG is created on the basis of causal relationships between the variables under consideration,
 - Then X and Y would be marginally independent according to the Markov condition.
 - If Information is given to $H = h_i$

Consider the following DAG

Something Notable

- If a DAG is created on the basis of causal relationships between the variables under consideration,
 - ► Then X and Y would be marginally independent according to the Markov condition.
 - If Information is given to $H = h_i$

< ロ > < 同 > < 三 > < 三 >

Consider the following DAG

However

• If H is hidden, they will normally be dependent.

Consider the following DAG

However

• If H is hidden, they will normally be dependent.

イロト イヨト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition

Inference in Bayesian Networks

- Example
- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

What do we want from Bayesian Networks?

The main point of Bayesian Networkss is to enable probabilistic inference to be performed.

What do we want from Bayesian Networks?

The main point of Bayesian Networkss is to enable probabilistic inference to be performed.

Two different types of inferences

Belief Updating.

イロト イヨト イヨト

What do we want from Bayesian Networks?

The main point of Bayesian Networkss is to enable probabilistic inference to be performed.

Two different types of inferences

- Belief Updating.
- Ø Abduction Inference.

イロト イヨト イヨト

Belief updating

It is used to obtain the posterior probability of one or more variables given evidence concerning the values of other variables.

Abductive inference

It finds the most probable configuration of a set of variables (hypothesis) given certain evidence.

イロト イロト イヨト イヨト

Belief updating

It is used to obtain the posterior probability of one or more variables given evidence concerning the values of other variables.

Abductive inference

It finds the most probable configuration of a set of variables (hypothesis) given certain evidence.

イロト イヨト イヨト

Consider the following Bayesian Networks

 Consider answering a query in a Bayesian Network

 • Q= set of query variables

 • computation of conditional distribution Project

 • interence --- computation of conditional distribution Project

74 / 99

Consider answering a query in a Bayesian Network

- Q= set of query variables
- e = evidence (set of instantiated variable-value pairs)

Inference = computation of conditional distribution P(Q)

< ロ > < 同 > < 回 > < 回 >

Consider answering a query in a Bayesian Network

- Q= set of query variables
- *e*= evidence (set of instantiated variable-value pairs)
- Inference = computation of conditional distribution P(Q|e)

Examples

- P(burglary|alarm)
 - P(earthquake | JCalls, MCalls)
- $\bullet P(JCalls, MCalls | burglary, earthquake)$

Examples

- P(burglary|alarm)
- P(earthquake|JCalls, MCalls)

Can we use the structure of the Bayesian Network to answer such queries efficiently?

Examples

- P(burglary|alarm)
- P(earthquake|JCalls, MCalls)
- $\bullet \ P(JCalls, MCalls | burglary, earthquake)$

Can we use the structure of the Bayesian Network to answer such queries efficiently?

YES

 Note: Generally speaking, complexity is inversely proportional to sparsity of graph

Cinvestav

75 / 99

< ロ > < 同 > < 回 > < 回 >

Examples

- P(burglary|alarm)
- $\bullet \ P(earthquake|JCalls, MCalls)$
- $\bullet \ P(JCalls, MCalls | burglary, earthquake)$

So

Can we use the structure of the Bayesian Network to answer such queries efficiently?

75 / 99

Examples

- P(burglary|alarm)
- P(earthquake|JCalls, MCalls)
- $\bullet \ P(JCalls, MCalls | burglary, earthquake)$

So

Can we use the structure of the Bayesian Network to answer such queries efficiently?

YES Note: Generally speaking, complexity is inversely proportional to sparsity of graph 	Answer	
sparsity of graph	 Note: Generally speaking, complexit 	
Cinuc	sparsity of graph	Cinve

75 / 99

Using the Structure II

Examples

- P(burglary|alarm)
- $\bullet \ P(earthquake|JCalls, MCalls)$
- $\bullet \ P(JCalls, MCalls | burglary, earthquake)$

So

Can we use the structure of the Bayesian Network to answer such queries efficiently?

Answer YES • Note: Generally speaking, complexity is inversely proportional to sparsity of graph

75 / 99

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale

Causal DAG

- The Causal Markov Condition
- Inference in Bayesian Networks

Example

- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

We have the following mode

 $p\left(a,b,c,d,e,f,g
ight)$ is modeled by

p(a, b, c, d, e, f, g) = p(a|b) p(c|b) p(f|e) p(g|e) p(b|d) p(e|d) p(d)

イロン イヨン イヨン イヨン 三日

77 / 99

We have the following model

 $p\left(a,b,c,d,e,f,g
ight)$ is modeled by

 $p\left(a,b,c,d,e,f,g\right) = p\left(a|b\right)p\left(c|b\right)p\left(f|e\right)p\left(g|e\right)p\left(b|d\right)p\left(e|d\right)p\left(d\right)$

-

イロト 不得 トイヨト イヨト

Given values in C = c and G = g

We want to calculate the following

 $p\left(a|c,g\right)$

Given values in C = c and G = g

We want to calculate the following

$$p\left(a|c,g\right)$$

Then, if you have brute force approach

However, a direct calculation leads to use a demarginalization

$$p\left(a|c,g\right) = \sum_{b,d,e,f} p\left(a,b,d,e,f|c,g\right)$$

• This will require that if we fix the value of a, c and g to have a complexity of $O(m^4)$ with $m = \max\{|B|, |D|, |E|, |F|\}$

However, a direct calculation leads to use a demarginalization

$$p(a|c,g) = \sum_{b,d,e,f} p(a,b,d,e,f|c,g)$$

• This will require that if we fix the value of $a,\,c$ and g to have a complexity of $O\left(m^4\right)$ with $m=\max\left\{\left|B\right|,\left|D\right|,\left|E\right|,\left|F\right|\right\}$

We get some information about $(a = a_i, c = c_i, g = g_i)$

First, we use the chain representation

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b, d, e, f, c = c_i, g = g_i) \times \cdots$$

$$\dots p\left(d|e_{i}f_{i}c = c_{i}, g = g_{i}\right) \times \dots$$

$$\dots \left(c|f_{i}c = c_{i}, g = g_{i}\right) \times \dots$$

$$\dots p\left(f|c = c_{i}, g = g_{i}\right) \times \dots$$

$$\dots p\left(c = c_{i}|g = g_{i}\right) \times p\left(g = g_{i}\right)$$

イロト イヨト イヨト イヨト

First, we use the chain representation

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b, d, e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(b | d, e, f, c = c_i, g = g_i) \times \cdots$$

First, we use the chain representation

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b, d, e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(b | d, e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(d | e, f, c = c_i, g = g_i) \times \cdots$$

< ロ > < 回 > < 回 > < 回 > < 回 >

First, we use the chain representation

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b, d, e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(b | d, e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(d | e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots (e | f, c = c_i, g = g_i) \times \cdots$$

< ロ > < 回 > < 回 > < 回 > < 回 >

First, we use the chain representation

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b, d, e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(b | d, e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(d | e, f, c = c_i, g = g_i) \times \cdots$$
$$\dots (e | f, c = c_i, g = g_i) \times \cdots$$
$$\dots p(f | c = c_i, g = g_i) \times \cdots$$

First, we use the chain representation

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b, d, e, f, c = c_i, g = g_i) \times \cdots$$

$$\dots p(b | d, e, f, c = c_i, g = g_i) \times \cdots$$

$$\dots p(d | e, f, c = c_i, g = g_i) \times \cdots$$

$$\dots (e | f, c = c_i, g = g_i) \times \cdots$$

$$\dots p(f | c = c_i, g = g_i) \times \cdots$$

$$\dots p(c = c_i | g = g_i) \times p(g = g_i)$$

Then, we have that

Using the DAG structure

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b) p(b | d, c = c_i) \times \cdots$$
$$\dots p(d | e) p(e, f | g = g_i)$$

I hen given the original sum at the de-margenalization

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = \sum_b p(a = a_i | b) \sum_d p(b | d, c = c_i) \times \cdots$$
$$\dots \sum_e p(d | e) \sum_f p(e, f | g = g_i)$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Then, we have that

Using the DAG structure

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = p(a = a_i | b) p(b | d, c = c_i) \times \cdots$$

...p(d|e) p(e, f | g = g_i)

Then given the original sum at the de-margenalization

$$p(a = a_i, b, d, e, f | c = c_i, g = g_i) = \sum_b p(a = a_i | b) \sum_d p(b | d, c = c_i) \times \cdots$$
$$\dots \sum_e p(d | e) \sum_f p(e, f | g = g_i)$$

イロン イロン イヨン イヨン

Now, we can concentrate $\sum_{f} p(e, f | g = g_i)$

Using this information, we can reduce one of the sums by marginalization

Now, we can concentrate $\sum_{f} p(e, f | g = g_i)$

Using this information, we can reduce one of the sums by marginalization

$$\sum_{f} p\left(e, f | g = g_i\right) = p\left(e | g = g_i\right)$$

How?

Remember that

$$\sum_{f} p(e, f | g = g_i) = \sum_{f} p(e | f, g = g_i) p(f | g = g_i)$$

How?

Remember that

$$\sum_{f} p(e, f|g = g_i) = \sum_{f} p(e|f, g = g_i) p(f|g = g_i)$$
$$= \sum_{f} pp(e|f, g = g_i)$$

How?

Remember that

$$\sum_{f} p(e, f|g = g_i) = \sum_{f} p(e|f, g = g_i) p(f|g = g_i)$$
$$= \sum_{f} pp(e|f, g = g_i)$$
$$= p(e|g = g_i)$$

Then, we have that

hus, we can reduce the size of our sum

 $\sum_{b} p\left(a = a_{i}|b\right) \sum_{d} p\left(b|d, c = c_{i}\right) \sum_{e} p\left(d|e\right) p\left(e|g = g_{i}\right)$

Cinvestav

Then, we have that

Thus, we can reduce the size of our sum

$$\sum_{b} p\left(a = a_{i}|b\right) \sum_{d} p\left(b|d, c = c_{i}\right) \sum_{e} p\left(d|e\right) p\left(e|g = g_{i}\right)$$

Cinvestav

Then, we can use the realtion with respect to \boldsymbol{D}

Now, we can calculate the probability of D by using the chain rule

 $p(d|e) p(e|g = g_i) = p(d|e, g = g_i) p(e|g = g_i) = p(d, e|g = g_i)$

Cinvestav ≧ ∽ ९ (~ 86 / 99

イロン イロン イヨン イヨン

Then, we can use the realtion with respect to D

Now, we can calculate the probability of D by using the chain rule

 $p(d|e) p(e|g = g_i) = p(d|e, g = g_i) p(e|g = g_i) = p(d, e|g = g_i)$

86 / 99

Now, we can calculate the probability of D by using the chain rule

 $\sum_{b} p\left(a = a_{i}|b\right) \sum_{d} p\left(b|d, c = c_{i}\right) \sum_{e} p\left(d, e|g = g_{i}\right)$

Cinvestav

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Now, we can calculate the probability of D by using the chain rule

$$\sum_{b} p\left(a = a_i | b\right) \sum_{d} p\left(b | d, c = c_i\right) \sum_{e} p\left(d, e | g = g_i\right)$$

Cinvestav

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ = のQC 87/99

Now, we sum over all possible values of J

 $\sum p(d, e|g = g_i) = p(d|g = g_i)$

Cinvestav

Now, we sum over all possible values of E

$$\sum_{e} p\left(d, e | g = g_i\right) = p\left(d | g = g_i\right)$$

Cinvestav

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 日 の 4 C
88 / 99

We get the following

Cinvestav

We get the following

$$\sum_{b} p\left(a = a_i | b\right) \sum_{d} p\left(b | d, c = c_i\right) p\left(d | g = g_i\right)$$

Cinvestav

Again the chain rule for L

$p(b|d, c = c_i) p(d|g = g_i) = p(b|d, c = c_i, g = g_i) p(d|c = c_i, g = g_i)$ $= p(b, d|c = c_i, g = g_i)$

S LP P

Again the chain rule for D

$$p(b|d, c = c_i) p(d|g = g_i) = p(b|d, c = c_i, g = g_i) p(d|c = c_i, g = g_i)$$
$$= p(b, d|c = c_i, g = g_i)$$

Now, we sum over all possible values of 1

$$\sum_{b} p\left(a = a_i | b\right) p\left(b | c = c_i, g = g_i\right)$$

Cinvestav

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q () 91 / 99

Now, we sum over all possible values of D

$$\sum_{b} p\left(a = a_i | b\right) p\left(b | c = c_i, g = g_i\right)$$

Cinvestav

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のQ() 91/99

Example

DAG

Now, we use the chain rule for reducing again

 $p(a = a_i|b) p(b|c = c_i, g = g_i) = p(a = a_i, b|c = c_i, g = g_i)$

(investav くロト く ()) ト く ミト く ミト ミ シ つ ら () 92 / 99

Example

DAG

Now, we use the chain rule for reducing again

$$p(a = a_i|b) p(b|c = c_i, g = g_i) = p(a = a_i, b|c = c_i, g = g_i)$$

Cinvestav Ξ ∽ < <> 92 / 99

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

DAG

Now, we use the chain rule for reducing again

 $\sum_{b} p(a = a_i, b | c = c_i, g = g_i) = p(a = a_i | c = c_i, g = g_i)$

Cinvestav

93 / 99

Now, we use the chain rule for reducing again

$$\sum_{b} p(a = a_i, b | c = c_i, g = g_i) = p(a = a_i | c = c_i, g = g_i)$$

Cinvestav

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Complexity

Because this can be computed using a sequence of four for loops

The complexity simply becomes $O\left(m
ight)$ when compared with $O\left(m^4
ight)$

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks
- Example

General Strategy of Inference

Inference - An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

General Strategy for Inference

Query

• Want to compute P(q|e)!!!

Step 1

• $P(q|e) = \frac{P(q,e)}{P(e)} = aP(q,e)$, since a = P(e) is constant wrt Q.

Step 2

• $P(q,e) = \sum_{a..z} P(q,e,a,b,\ldots,z)$, by the law of total probability.

General Strategy for Inference

Query

• Want to compute P(q|e)!!!

Step 1

•
$$P(q|e) = \frac{P(q,e)}{P(e)} = aP(q,e)$$
, since $a = P(e)$ is constant wrt Q .

• $P(q,e) = \sum_{a..z} P(q,e,a,b,\ldots,z)$, by the law of total probability.

General Strategy for Inference

Query

• Want to compute P(q|e)!!!

Step 1

•
$$P(q|e) = \frac{P(q,e)}{P(e)} = aP(q,e)$$
, since $a = P(e)$ is constant wrt Q .

Step 2

•
$$P(q,e) = \sum_{a..z} P(q,e,a,b,\ldots,z)$$
, by the law of total probability.

General Strategy for inference

Step 3

• $\sum_{a..z} P(q, e, a, b, ..., z) = \sum_{a..z} \prod P(\text{variable } i \mid \text{parents } i)$ (using Bayesian network factoring)

Distribute summations across product terms for efficient computation.

General Strategy for inference

Step 3

•
$$\sum_{a..z} P(q, e, a, b, ..., z) = \sum_{a..z} \prod P(\text{variable } i \mid \text{parents } i)$$
 (using Bayesian network factoring)

Step 4

• Distribute summations across product terms for efficient computation.

イロト イヨト イヨト イヨト

Outline

Introduction

The History of Bayesian Applications

Bayes Theorem

- Everything Starts at Someplace
- Why Bayesian Networks?

2 Bayesian Networks

- Definition
- Markov Condition

Example

- Using the Markov Condition
- Representing the Joint Distribution
 - Example
 - Observations
- Markov Condition and DAG's
 Example
- Causality and Bayesian Networks
 - Precautionary Tale
- Causal DAG
- The Causal Markov Condition
- Inference in Bayesian Networks

Example

- General Strategy of Inference
- Inference An Overview

< ロ > < 回 > < 回 > < 回 > < 回 >

Case 1

- Trees and singly connected networks only one path between any two nodes:
 - ▶ Message passing (Pearl, 1988)

		99 / 99

Case 1

- Trees and singly connected networks only one path between any two nodes:
 - Message passing (Pearl, 1988)

• Multiply connected networks:

- A range of algorithms including cut-set conditioning (Pearl, 1988), junction tree propagation (Lauritzen and Spiegelhalter, 1988), bucket elimination (Dechter, 1996) to mention a few.
- A range of algorithms for approximate inference.

Case 1

- Trees and singly connected networks only one path between any two nodes:
 - Message passing (Pearl, 1988)

Case 2

• Multiply connected networks:

A range of algorithms including cut-set conditioning (Pearl, 1988), junction tree propagation (Lauritzen and Spiegelhalter, 1988), bucket elimination (Dechter, 1996) to mention a few.

A range of algorithms for approximate inference.

Both exact and approximate inference are NP-hard in the worst case

 Here the focus will be on message passing and junction tree propagation for discrete variables.

Case 1

- Trees and singly connected networks only one path between any two nodes:
 - Message passing (Pearl, 1988)

Case 2

- Multiply connected networks:
 - A range of algorithms including cut-set conditioning (Pearl, 1988), junction tree propagation (Lauritzen and Spiegelhalter, 1988), bucket elimination (Dechter, 1996) to mention a few.

• Both exact and approximate inference are NP-hard in the worst case

 Here the focus will be on message passing and junction tree propagation for discrete variables.

Case 1

- Trees and singly connected networks only one path between any two nodes:
 - Message passing (Pearl, 1988)

Case 2

- Multiply connected networks:
 - A range of algorithms including cut-set conditioning (Pearl, 1988), junction tree propagation (Lauritzen and Spiegelhalter, 1988), bucket elimination (Dechter, 1996) to mention a few.
 - A range of algorithms for approximate inference.

Both exact and approximate inference are NP-hard in the worst case.
Here the focus will be on message passing and junction tree propagation for discrete variables.

Case 1

- Trees and singly connected networks only one path between any two nodes:
 - Message passing (Pearl, 1988)

Case 2

- Multiply connected networks:
 - A range of algorithms including cut-set conditioning (Pearl, 1988), junction tree propagation (Lauritzen and Spiegelhalter, 1988), bucket elimination (Dechter, 1996) to mention a few.
 - A range of algorithms for approximate inference.

Notes

• Both exact and approximate inference are NP-hard in the worst case.

Case 1

- Trees and singly connected networks only one path between any two nodes:
 - Message passing (Pearl, 1988)

Case 2

- Multiply connected networks:
 - A range of algorithms including cut-set conditioning (Pearl, 1988), junction tree propagation (Lauritzen and Spiegelhalter, 1988), bucket elimination (Dechter, 1996) to mention a few.
 - A range of algorithms for approximate inference.

Notes

- Both exact and approximate inference are NP-hard in the worst case.
- Here the focus will be on message passing and junction tree propagation for discrete variables.