
Introduction to Artificial Intelligence
Backtracking

Andres Mendez-Vazquez

April 23, 2019

1 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

2 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

3 / 48



Images/cinvestav.jpg

In the Beginning

James Bernoulli 17th Century [1]
He successfully used the principle to solve the “Tot tibi sunt dotes”

Basically a Combinatoric Problem
How many ways exist to write such words by permuting them?

tibi sunt tot dotes
sunt tibi tot dotes

· · ·

His notes with the traces exist
They look as a classic backtracking algorithm...

4 / 48



Images/cinvestav.jpg

In the Beginning

James Bernoulli 17th Century [1]
He successfully used the principle to solve the “Tot tibi sunt dotes”

Basically a Combinatoric Problem
How many ways exist to write such words by permuting them?

tibi sunt tot dotes
sunt tibi tot dotes

· · ·

His notes with the traces exist
They look as a classic backtracking algorithm...

4 / 48



Images/cinvestav.jpg

In the Beginning

James Bernoulli 17th Century [1]
He successfully used the principle to solve the “Tot tibi sunt dotes”

Basically a Combinatoric Problem
How many ways exist to write such words by permuting them?

tibi sunt tot dotes
sunt tibi tot dotes

· · ·

His notes with the traces exist
They look as a classic backtracking algorithm...

4 / 48



Images/cinvestav.jpg

Further

Around 1882
Edourdad Lucas credited his student Tremaux

I About the use of depth-first search in walk of a tree...

The problem of the 8 queens was first proposed in 1948-1950
By Max Bezzel and Franz Nauck

An here comes Gauss, the prince in mathematics
He saw the publications by Franz Nauck and wrote several letters to
his friend H.C. Schumacher...

5 / 48



Images/cinvestav.jpg

Further

Around 1882
Edourdad Lucas credited his student Tremaux

I About the use of depth-first search in walk of a tree...

The problem of the 8 queens was first proposed in 1948-1950
By Max Bezzel and Franz Nauck

An here comes Gauss, the prince in mathematics
He saw the publications by Franz Nauck and wrote several letters to
his friend H.C. Schumacher...

5 / 48



Images/cinvestav.jpg

Further

Around 1882
Edourdad Lucas credited his student Tremaux

I About the use of depth-first search in walk of a tree...

The problem of the 8 queens was first proposed in 1948-1950
By Max Bezzel and Franz Nauck

An here comes Gauss, the prince in mathematics
He saw the publications by Franz Nauck and wrote several letters to
his friend H.C. Schumacher...

5 / 48



Images/cinvestav.jpg

And in the letter dated 27 of September 1850

Gauss explained how to find all the solutions by Backtracking
He called the procedure “Tatonniren” from French “to feel one’s way.”

6 / 48



Images/cinvestav.jpg

Finally

Computer arrived finally 100 years latter
And the technique was fully described by Robert J. Walker

He introduced a full description of Backtracking
We will review it latter on...

7 / 48



Images/cinvestav.jpg

Finally

Computer arrived finally 100 years latter
And the technique was fully described by Robert J. Walker

He introduced a full description of Backtracking
We will review it latter on...

7 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

8 / 48



Images/cinvestav.jpg

n Chess Queen Problem

A Puzzle
Given a n× n chessboard, How to position n queens such that they
cannot attack each other?

Remember
The Queen attacks any piece in the same row, column or either
diagonal.

9 / 48



Images/cinvestav.jpg

n Chess Queen Problem

A Puzzle
Given a n× n chessboard, How to position n queens such that they
cannot attack each other?

Remember
The Queen attacks any piece in the same row, column or either
diagonal.

9 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

10 / 48



Images/cinvestav.jpg

The First Step

Starting from an empty board
Place a Queen in the first column... then the second row... and so on

Then after doing so
We try in the next column and proceed recursively

11 / 48



Images/cinvestav.jpg

The First Step

Starting from an empty board
Place a Queen in the first column... then the second row... and so on

Then after doing so
We try in the next column and proceed recursively

11 / 48



Images/cinvestav.jpg

The Backtracking Step

If we get stuck at some column k
Then, we backtrack to the previous column k − 1

Observe the tree is constructed in Preorder
We do calculations before we move to any possible options...

12 / 48



Images/cinvestav.jpg

The Backtracking Step

If we get stuck at some column k
Then, we backtrack to the previous column k − 1

Observe the tree is constructed in Preorder
We do calculations before we move to any possible options...

12 / 48



Images/cinvestav.jpg

Example
Something Notable

13 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

14 / 48



Images/cinvestav.jpg

Codification

How do we get compact and easy to use?
Position Column 1 2 3 4
Row Position 2 4 1 3

A simple vector
2 4 1 3

What about?
We need to have a way to know when a queen can attack another.

15 / 48



Images/cinvestav.jpg

Codification

How do we get compact and easy to use?
Position Column 1 2 3 4
Row Position 2 4 1 3

A simple vector
2 4 1 3

What about?
We need to have a way to know when a queen can attack another.

15 / 48



Images/cinvestav.jpg

Codification

How do we get compact and easy to use?
Position Column 1 2 3 4
Row Position 2 4 1 3

A simple vector
2 4 1 3

What about?
We need to have a way to know when a queen can attack another.

15 / 48



Images/cinvestav.jpg

We can have three boolean arrays

Array A
It indicates if a row does not contain a queen.

Array B
It indicates if a front diagonal does not contain a queen

I Indexation is the sum of row and columns.

Array C
It indicates if a back diagonal does not contain a queen.

I Indexation is the difference of row and columns.

16 / 48



Images/cinvestav.jpg

We can have three boolean arrays

Array A
It indicates if a row does not contain a queen.

Array B
It indicates if a front diagonal does not contain a queen

I Indexation is the sum of row and columns.

Array C
It indicates if a back diagonal does not contain a queen.

I Indexation is the difference of row and columns.

16 / 48



Images/cinvestav.jpg

We can have three boolean arrays

Array A
It indicates if a row does not contain a queen.

Array B
It indicates if a front diagonal does not contain a queen

I Indexation is the sum of row and columns.

Array C
It indicates if a back diagonal does not contain a queen.

I Indexation is the difference of row and columns.

16 / 48



Images/cinvestav.jpg

With the following indexes

For the array A
The indexing goes from 1 to 4.

For the array B
The indexing goes from 2 to 8.

For the array C
The indexing goes from -3 to 3.

17 / 48



Images/cinvestav.jpg

With the following indexes

For the array A
The indexing goes from 1 to 4.

For the array B
The indexing goes from 2 to 8.

For the array C
The indexing goes from -3 to 3.

17 / 48



Images/cinvestav.jpg

With the following indexes

For the array A
The indexing goes from 1 to 4.

For the array B
The indexing goes from 2 to 8.

For the array C
The indexing goes from -3 to 3.

17 / 48



Images/cinvestav.jpg

We have something quite interesting

Something Notable
The sum of the row and column indices is constant along diagonals
The difference of the row and column indices is constant along
diagonals

We can see that in the 4 Queen chessboard
Take a lock at the board...

18 / 48



Images/cinvestav.jpg

We have something quite interesting

Something Notable
The sum of the row and column indices is constant along diagonals
The difference of the row and column indices is constant along
diagonals

We can see that in the 4 Queen chessboard
Take a lock at the board...

18 / 48



Images/cinvestav.jpg

Code for the 8 Queens

Queen(col : N):
1 local row : N
2 Init a, b, c to true
3 for row = 1 to 8
4 if a [row] and b [row + col] and c [row − col] then
5 x [col] = row

6 a [row] = b [row + col] = c [row − col] = False

7 if col < 8 then Queen(col + 1) else Print x
8 a [row] = b [row + col] = c [row − col] = True

19 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

20 / 48



Images/cinvestav.jpg

Some Notes

Properties
It uses Depth-First Search.
It takes a sequence V = {x1, x2, ..., xn} of variables of X to be
instantiated (Initially X including all the variables).
An initially empty instantiation I as arguments.

21 / 48



Images/cinvestav.jpg

Some Notes

Properties
It uses Depth-First Search.
It takes a sequence V = {x1, x2, ..., xn} of variables of X to be
instantiated (Initially X including all the variables).
An initially empty instantiation I as arguments.

21 / 48



Images/cinvestav.jpg

Some Notes

Properties
It uses Depth-First Search.
It takes a sequence V = {x1, x2, ..., xn} of variables of X to be
instantiated (Initially X including all the variables).
An initially empty instantiation I as arguments.

21 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

22 / 48



Images/cinvestav.jpg

Here, we can use something quite elegant

The use of recursion
Here, we can use a recursion algorithm that at a certain node with
assignaimets

p = 〈x1 = a1, x2 = a2, ..., xj = aj〉

Then, a new variable is added and a search in the possible values done

p′ = 〈x1 = a1, x2 = a2, ..., xj = aj , xj+1〉

We can see this
I the naive backtracking algorithm.

23 / 48



Images/cinvestav.jpg

Here, we can use something quite elegant

The use of recursion
Here, we can use a recursion algorithm that at a certain node with
assignaimets

p = 〈x1 = a1, x2 = a2, ..., xj = aj〉

Then, a new variable is added and a search in the possible values done

p′ = 〈x1 = a1, x2 = a2, ..., xj = aj , xj+1〉

We can see this
I the naive backtracking algorithm.

23 / 48



Images/cinvestav.jpg

Here, we can use something quite elegant

The use of recursion
Here, we can use a recursion algorithm that at a certain node with
assignaimets

p = 〈x1 = a1, x2 = a2, ..., xj = aj〉

Then, a new variable is added and a search in the possible values done

p′ = 〈x1 = a1, x2 = a2, ..., xj = aj , xj+1〉

We can see this
I the naive backtracking algorithm.

23 / 48



Images/cinvestav.jpg

Recursive Backtracking Algorithm

BackTracking(V, I)
1 If V = ∅ then
2 I is a solution
3 else
4 Let xi ∈ V
5 for each v ∈ Dxi do
6 IfI ∪ {(xi, v)} is consistent then
7 BackTracking (V − {xi} , I ∪ (xi, v))

24 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

25 / 48



Images/cinvestav.jpg

Clearly

Any Recursive Version of the Algorithm
It can be converted into an iterative version by means...

Extra memory
Of an stack to simulate the depth-first search of the software stack...

26 / 48



Images/cinvestav.jpg

Clearly

Any Recursive Version of the Algorithm
It can be converted into an iterative version by means...

Extra memory
Of an stack to simulate the depth-first search of the software stack...

26 / 48



Images/cinvestav.jpg

Now, we have an iterative version

Here, we have the following set
Sk = 〈s = x1, x2, ..., xk〉 a sequence of states

A always a Boolean statement

P (x1, x2, ..., xk)

That it turns TRUE when reaching a feasible solution

27 / 48



Images/cinvestav.jpg

Now, we have an iterative version

Here, we have the following set
Sk = 〈s = x1, x2, ..., xk〉 a sequence of states

A always a Boolean statement

P (x1, x2, ..., xk)

That it turns TRUE when reaching a feasible solution

27 / 48



Images/cinvestav.jpg

Iterative Backtracking Algorithm
BackTracking

1 k = 1
2 Generate S1 a stack with the initial states
3 while k > 0:
4 while Sk 6= ∅
5 . Advance to next position
6 xk = pop (S)
7 pk = 〈x1, x2, ..., xk−1〉 ◦ xk

8 If P (pk) then return pk

9 T = Generate the new expansion from xk

10 k = k + 1
11 Generate new stack Sk

12 push (T, Sk)
13 k = k − 1

28 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

29 / 48



Images/cinvestav.jpg

Backtracking

Something Notable
Backtracking is based on that it is often possible to reject a solution by
looking at just a small portion of it.

Example
If an instance of SAT contains the clause Ci = (x1 ∨ x2), then all
assignments with x1 = x2 = 0 can be instantly eliminated.

30 / 48



Images/cinvestav.jpg

Backtracking

Something Notable
Backtracking is based on that it is often possible to reject a solution by
looking at just a small portion of it.

Example
If an instance of SAT contains the clause Ci = (x1 ∨ x2), then all
assignments with x1 = x2 = 0 can be instantly eliminated.

30 / 48



Images/cinvestav.jpg

Example

Pruning Example
Given the possible values that you can give to two literals:

x1 x2

1 1
1 0
0 1
0 0

It is possible to prune a quarter of the entire search space... Can
this be systematically exploited?

31 / 48



Images/cinvestav.jpg

An example of exploiting this idea in SAT solvers

Consider the following Boolean formula φ (w, x, y, z)
(w ∨ x ∨ y ∨ z) ∧ (w ∨ ¬x) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬w) ∧ (¬w ∨ ¬z)

We start branching in one variable, we can choose w

Note: This selection does not violate any of the clauses of
φ (w, x, y, z)

32 / 48



Images/cinvestav.jpg

An example of exploiting this idea in SAT solvers

Consider the following Boolean formula φ (w, x, y, z)
(w ∨ x ∨ y ∨ z) ∧ (w ∨ ¬x) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬w) ∧ (¬w ∨ ¬z)

We start branching in one variable, we can choose w

Initial formula 

Note: This selection does not violate any of the clauses of
φ (w, x, y, z)

32 / 48



Images/cinvestav.jpg

Now

The partial assignment w = 0, x = 1 violates the clause (w ∨ ¬x)

Initial formula 

33 / 48



Images/cinvestav.jpg

Now

Then, we prune that branch

Initial formula 

34 / 48



Images/cinvestav.jpg

In addition

What if w = 0, x = 0
Then, the following clauses are satisfied

1 ¬w = 1
2 ¬x = 1

Thus, we have the following left
1 Before

1 (w ∨ x ∨ y ∨ z)∧(w ∨ ¬x)∧(x ∨ ¬y)∧(y ∨ ¬z)∧(z ∨ ¬w)∧(¬w ∨ ¬z)
2 After

1 (0 ∨ 0 ∨ y ∨ z) ∧ (0 ∨ 1) ∧ (0 ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ 1) ∧ (1 ∨ ¬z)

35 / 48



Images/cinvestav.jpg

In addition

What if w = 0, x = 0
Then, the following clauses are satisfied

1 ¬w = 1
2 ¬x = 1

Thus, we have the following left
1 Before

1 (w ∨ x ∨ y ∨ z)∧(w ∨ ¬x)∧(x ∨ ¬y)∧(y ∨ ¬z)∧(z ∨ ¬w)∧(¬w ∨ ¬z)
2 After

1 (0 ∨ 0 ∨ y ∨ z) ∧ (0 ∨ 1) ∧ (0 ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ 1) ∧ (1 ∨ ¬z)

35 / 48



Images/cinvestav.jpg

Finally

We have the following reduced number of equations
(y ∨ z) , (1) , (¬y) , (y ∨ ¬z) , (1) , (1)⇔ (y ∨ z) , (¬y) , (y ∨ ¬z)

What if w = 0, x = 1
1 Before

1 (w ∨ x ∨ y ∨ z)∧(w ∨ ¬x)∧(x ∨ ¬y)∧(y ∨ ¬z)∧(z ∨ ¬w)∧(¬w ∨ ¬z)
2 After

1 (1) ∧ (0) ∧ (1) ∧ (y ∨ ¬z) ∧ (1) ∧ (1)

36 / 48



Images/cinvestav.jpg

Finally

We have the following reduced number of equations
(y ∨ z) , (1) , (¬y) , (y ∨ ¬z) , (1) , (1)⇔ (y ∨ z) , (¬y) , (y ∨ ¬z)

What if w = 0, x = 1
1 Before

1 (w ∨ x ∨ y ∨ z)∧(w ∨ ¬x)∧(x ∨ ¬y)∧(y ∨ ¬z)∧(z ∨ ¬w)∧(¬w ∨ ¬z)
2 After

1 (1) ∧ (0) ∧ (1) ∧ (y ∨ ¬z) ∧ (1) ∧ (1)

36 / 48



Images/cinvestav.jpg

Thus

We have something no satisfiable
(1) ∧ (0) ∧ (1) ∧ (y ∨ ¬z) ∧ (1) ∧ (1)⇔ (), (y ∨ ¬z)

Clearly
We prune that part of the search tree.

Note we use “()≡(0)” to point out to a “empty clause” ruling out
satisfiability.

37 / 48



Images/cinvestav.jpg

Thus

We have something no satisfiable
(1) ∧ (0) ∧ (1) ∧ (y ∨ ¬z) ∧ (1) ∧ (1)⇔ (), (y ∨ ¬z)

Clearly
We prune that part of the search tree.

Note we use “()≡(0)” to point out to a “empty clause” ruling out
satisfiability.

37 / 48



Images/cinvestav.jpg

The decisions we need to make in backtracking

First
Which subproblem to expand next.

Second
Which branching variable to use.

Remark
The benefit of backtracking lies in its ability to eliminate portions of the
search space.

38 / 48



Images/cinvestav.jpg

The decisions we need to make in backtracking

First
Which subproblem to expand next.

Second
Which branching variable to use.

Remark
The benefit of backtracking lies in its ability to eliminate portions of the
search space.

38 / 48



Images/cinvestav.jpg

The decisions we need to make in backtracking

First
Which subproblem to expand next.

Second
Which branching variable to use.

Remark
The benefit of backtracking lies in its ability to eliminate portions of the
search space.

38 / 48



Images/cinvestav.jpg

Choosing

Something Notable
A classic strategy:

You choose the subproblem that contains the smallest clause.
Then, you branch on a variable in that clause.

Then
If the clause is a singleton then at least one of the resulting branches will
be terminated.

39 / 48



Images/cinvestav.jpg

Choosing

Something Notable
A classic strategy:

You choose the subproblem that contains the smallest clause.
Then, you branch on a variable in that clause.

Then
If the clause is a singleton then at least one of the resulting branches will
be terminated.

39 / 48



Images/cinvestav.jpg

Choosing

Something Notable
A classic strategy:

You choose the subproblem that contains the smallest clause.
Then, you branch on a variable in that clause.

Then
If the clause is a singleton then at least one of the resulting branches will
be terminated.

39 / 48



Images/cinvestav.jpg

Choosing

Something Notable
A classic strategy:

You choose the subproblem that contains the smallest clause.
Then, you branch on a variable in that clause.

Then
If the clause is a singleton then at least one of the resulting branches will
be terminated.

39 / 48



Images/cinvestav.jpg

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
1 Failure: the subproblem has no solution.
2 Success: a solution to the subproblem is found.
3 Uncertainty.

What about SAT
The test declares failure if there is an empty clause
The test declares success if there are no clauses
Uncertainty Otherwise.

40 / 48



Images/cinvestav.jpg

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
1 Failure: the subproblem has no solution.
2 Success: a solution to the subproblem is found.
3 Uncertainty.

What about SAT
The test declares failure if there is an empty clause
The test declares success if there are no clauses
Uncertainty Otherwise.

40 / 48



Images/cinvestav.jpg

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
1 Failure: the subproblem has no solution.
2 Success: a solution to the subproblem is found.
3 Uncertainty.

What about SAT
The test declares failure if there is an empty clause
The test declares success if there are no clauses
Uncertainty Otherwise.

40 / 48



Images/cinvestav.jpg

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
1 Failure: the subproblem has no solution.
2 Success: a solution to the subproblem is found.
3 Uncertainty.

What about SAT
The test declares failure if there is an empty clause
The test declares success if there are no clauses
Uncertainty Otherwise.

40 / 48



Images/cinvestav.jpg

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
1 Failure: the subproblem has no solution.
2 Success: a solution to the subproblem is found.
3 Uncertainty.

What about SAT
The test declares failure if there is an empty clause
The test declares success if there are no clauses
Uncertainty Otherwise.

40 / 48



Images/cinvestav.jpg

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
1 Failure: the subproblem has no solution.
2 Success: a solution to the subproblem is found.
3 Uncertainty.

What about SAT
The test declares failure if there is an empty clause
The test declares success if there are no clauses
Uncertainty Otherwise.

40 / 48



Images/cinvestav.jpg

Example

We have the following

41 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

42 / 48



Images/cinvestav.jpg

Pseudo-code for Backtracking

We have
BACKTRACKING(P0)

1 Start with some problem P0
2 Let S = {P0}, the set if active subproblems
3 While S 6= ∅
4 choose a subproblem P ∈ S and remove it from S
5 expand it into smaller subproblems P1, P2, ..., Pk

6 For each Pi

7 if test(Pi) succeeds: halt and return the branch solution
8 if test(Pi) fails: discard Pi

9 Otherwise: add Pi to S
10 return there is no solution.

43 / 48



Images/cinvestav.jpg

Pseudo-code for Backtracking

We have
BACKTRACKING(P0)

1 Start with some problem P0
2 Let S = {P0}, the set if active subproblems
3 While S 6= ∅
4 choose a subproblem P ∈ S and remove it from S
5 expand it into smaller subproblems P1, P2, ..., Pk

6 For each Pi

7 if test(Pi) succeeds: halt and return the branch solution
8 if test(Pi) fails: discard Pi

9 Otherwise: add Pi to S
10 return there is no solution.

43 / 48



Images/cinvestav.jpg

Pseudo-code for Backtracking

We have
BACKTRACKING(P0)

1 Start with some problem P0
2 Let S = {P0}, the set if active subproblems
3 While S 6= ∅
4 choose a subproblem P ∈ S and remove it from S
5 expand it into smaller subproblems P1, P2, ..., Pk

6 For each Pi

7 if test(Pi) succeeds: halt and return the branch solution
8 if test(Pi) fails: discard Pi

9 Otherwise: add Pi to S
10 return there is no solution.

43 / 48



Images/cinvestav.jpg

Pseudo-code for Backtracking

We have
BACKTRACKING(P0)

1 Start with some problem P0
2 Let S = {P0}, the set if active subproblems
3 While S 6= ∅
4 choose a subproblem P ∈ S and remove it from S
5 expand it into smaller subproblems P1, P2, ..., Pk

6 For each Pi

7 if test(Pi) succeeds: halt and return the branch solution
8 if test(Pi) fails: discard Pi

9 Otherwise: add Pi to S
10 return there is no solution.

43 / 48



Images/cinvestav.jpg

Outline

1 Introduction
The Obscure Origins of Backtracking
n Chess Queen Problem
Constructing a Solution
Codification

2 Backtrack Algorithm
Introduction
The Elegant Recursion
An Iterative Solution
Example
Backtracking Algorithm

Explanation

44 / 48



Images/cinvestav.jpg

Choose and Expand

For SAT
1 The choose procedure picks a clause,
2 Expand picks a variable within that clause.

There has been already
A discussion on how to make such choices.

45 / 48



Images/cinvestav.jpg

Choose and Expand

For SAT
1 The choose procedure picks a clause,
2 Expand picks a variable within that clause.

There has been already
A discussion on how to make such choices.

45 / 48



Images/cinvestav.jpg

Notes

With the right test, expand, and choose routines
Backtracking can be remarkably effective in practice

Further
The backtracking algorithm we showed for SAT is the basis of many
successful satisfiability programs

For Example, 2-SAT problems
It is a conjunction (a Boolean and operation) of clauses,
Where each clause is a disjunction (a Boolean or operation) of two
variables or negated variables.

46 / 48



Images/cinvestav.jpg

Notes

With the right test, expand, and choose routines
Backtracking can be remarkably effective in practice

Further
The backtracking algorithm we showed for SAT is the basis of many
successful satisfiability programs

For Example, 2-SAT problems
It is a conjunction (a Boolean and operation) of clauses,
Where each clause is a disjunction (a Boolean or operation) of two
variables or negated variables.

46 / 48



Images/cinvestav.jpg

Notes

With the right test, expand, and choose routines
Backtracking can be remarkably effective in practice

Further
The backtracking algorithm we showed for SAT is the basis of many
successful satisfiability programs

For Example, 2-SAT problems
It is a conjunction (a Boolean and operation) of clauses,
Where each clause is a disjunction (a Boolean or operation) of two
variables or negated variables.

46 / 48



Images/cinvestav.jpg

Then

Backtracking
If presented with a 2-SAT instance,

I it will always find a satisfying assignment, if one exists, in polynomial
time!!!

Something Notable
Therefore, we depend on the constraints!!!

These problems are known as
Constraint Satisfaction Problems!!!

47 / 48



Images/cinvestav.jpg

Then

Backtracking
If presented with a 2-SAT instance,

I it will always find a satisfying assignment, if one exists, in polynomial
time!!!

Something Notable
Therefore, we depend on the constraints!!!

These problems are known as
Constraint Satisfaction Problems!!!

47 / 48



Images/cinvestav.jpg

Then

Backtracking
If presented with a 2-SAT instance,

I it will always find a satisfying assignment, if one exists, in polynomial
time!!!

Something Notable
Therefore, we depend on the constraints!!!

These problems are known as
Constraint Satisfaction Problems!!!

47 / 48



Images/cinvestav.jpg

Bibliography

D. E. Knuth, The Art of Computer Programming, Volume 4A:
Combinatorial Algorithms, Part 2.
Pearson Education India, 2011.

48 / 48


	Introduction
	The Obscure Origins of Backtracking
	n Chess Queen Problem

	Backtrack Algorithm
	Introduction
	The Elegant Recursion
	An Iterative Solution
	Example
	Explanation


