Introduction to Artificial Intelligence Backtracking

Andres Mendez-Vazquez

April 23, 2019

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

In the Beginning

James Bernoulli 17th Century [1]

- He successfully used the principle to solve the "Tot tibi sunt dotes"

In the Beginning

James Bernoulli 17th Century [1]

- He successfully used the principle to solve the "Tot tibi sunt dotes"

Basically a Combinatoric Problem

- How many ways exist to write such words by permuting them?
tibi sunt tot dotes
sunt tibi tot dotes

In the Beginning

James Bernoulli 17th Century [1]

- He successfully used the principle to solve the "Tot tibi sunt dotes"

Basically a Combinatoric Problem

- How many ways exist to write such words by permuting them?
tibi sunt tot dotes
sunt tibi tot dotes

His notes with the traces exist

- They look as a classic backtracking algorithm...

Further

Around 1882

- Edourdad Lucas credited his student Tremaux
- About the use of depth-first search in walk of a tree...

Further

Around 1882

- Edourdad Lucas credited his student Tremaux
- About the use of depth-first search in walk of a tree...

The problem of the 8 queens was first proposed in 1948-1950

- By Max Bezzel and Franz Nauck

Further

Around 1882

- Edourdad Lucas credited his student Tremaux
- About the use of depth-first search in walk of a tree...

The problem of the 8 queens was first proposed in 1948-1950

- By Max Bezzel and Franz Nauck

An here comes Gauss, the prince in mathematics

- He saw the publications by Franz Nauck and wrote several letters to his friend H.C. Schumacher...

And in the letter dated 27 of September 1850

Gauss explained how to find all the solutions by Backtracking

- He called the procedure "Tatonniren" from French "to feel one's way."

Finally

Computer arrived finally 100 years latter

- And the technique was fully described by Robert J. Walker

Finally

Computer arrived finally 100 years latter

- And the technique was fully described by Robert J. Walker

He introduced a full description of Backtracking

- We will review it latter on...

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

n Chess Queen Problem

A Puzzle

- Given a $n \times n$ chessboard, How to position n queens such that they cannot attack each other?

n Chess Queen Problem

A Puzzle

- Given a $n \times n$ chessboard, How to position n queens such that they cannot attack each other?

Remember

- The Queen attacks any piece in the same row, column or either diagonal.

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

The First Step

Starting from an empty board

- Place a Queen in the first column... then the second row... and so on

The First Step

Starting from an empty board

- Place a Queen in the first column... then the second row... and so on

Then after doing so

- We try in the next column and proceed recursively

The Backtracking Step

If we get stuck at some column k

- Then, we backtrack to the previous column $k-1$

The Backtracking Step

If we get stuck at some column k

- Then, we backtrack to the previous column $k-1$

Observe the tree is constructed in Preorder

- We do calculations before we move to any possible options...

Example

Something Notable

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Codification

How do we get compact and easy to use?

Position Column	1	2	3	4
Row Position	2	4	1	3

Codification

How do we get compact and easy to use?

Position Column	1	2	3	4
Row Position	2	4	1	3

A simple vector

2	4	1	3

Codification

How do we get compact and easy to use?

Position Column	1	2	3	4
Row Position	2	4	1	3

A simple vector

2	4	1	3

What about?

- We need to have a way to know when a queen can attack another.

We can have three boolean arrays

Array A

- It indicates if a row does not contain a queen.

We can have three boolean arrays

Array A

- It indicates if a row does not contain a queen.

Array B

- It indicates if a front diagonal does not contain a queen
- Indexation is the sum of row and columns.

We can have three boolean arrays

Array A

- It indicates if a row does not contain a queen.

Array B

- It indicates if a front diagonal does not contain a queen
- Indexation is the sum of row and columns.

Array C

- It indicates if a back diagonal does not contain a queen.
- Indexation is the difference of row and columns.

With the following indexes

For the array A

- The indexing goes from 1 to 4 .

With the following indexes

For the array A

- The indexing goes from 1 to 4 .

For the array B

- The indexing goes from 2 to 8 .

With the following indexes

For the array A

- The indexing goes from 1 to 4 .

For the array B

- The indexing goes from 2 to 8 .

For the array C

- The indexing goes from -3 to 3 .

We have something quite interesting

Something Notable

- The sum of the row and column indices is constant along diagonals
- The difference of the row and column indices is constant along diagonals

We have something quite interesting

Something Notable

- The sum of the row and column indices is constant along diagonals
- The difference of the row and column indices is constant along diagonals

We can see that in the 4 Queen chessboard

- Take a lock at the board...

Code for the 8 Queens

Queen $($ col : $\mathbb{N})$:

(1) local row: \mathbb{N}
(2) Init a, b, c to true
(3) for row $=1$ to 8
(9) if $a[r o w]$ and $b[r o w+c o l]$ and $c[r o w-c o l]$ then
©

$$
x[\mathrm{col}]=\mathrm{row}
$$

(6)
$a[$ row $]=b[$ row $+c o l]=c[$ row $-c o l]=$ False
if $\mathrm{col}<8$ then Queen $(c o l+1)$ else Print x
(8)

$$
a[\text { row }]=b[r o w+c o l]=c[r o w-c o l]=\text { True }
$$

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Some Notes

Properties

- It uses Depth-First Search.

Some Notes

Properties

- It uses Depth-First Search.
- It takes a sequence $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of variables of X to be instantiated (Initially X including all the variables).

Some Notes

Properties

- It uses Depth-First Search.
- It takes a sequence $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of variables of X to be instantiated (Initially X including all the variables).
- An initially empty instantiation I as arguments.

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Here, we can use something quite elegant

The use of recursion

- Here, we can use a recursion algorithm that at a certain node with assignaimets

$$
p=\left\langle x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{j}=a_{j}\right\rangle
$$

Here, we can use something quite elegant

The use of recursion

- Here, we can use a recursion algorithm that at a certain node with assignaimets

$$
p=\left\langle x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{j}=a_{j}\right\rangle
$$

Then, a new variable is added and a search in the possible values done

$$
p^{\prime}=\left\langle x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{j}=a_{j}, x_{j+1}\right\rangle
$$

Here, we can use something quite elegant

The use of recursion

- Here, we can use a recursion algorithm that at a certain node with assignaimets

$$
p=\left\langle x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{j}=a_{j}\right\rangle
$$

Then, a new variable is added and a search in the possible values done

$$
p^{\prime}=\left\langle x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{j}=a_{j}, x_{j+1}\right\rangle
$$

We can see this

- I the naive backtracking algorithm.

Recursive Backtracking Algorithm

BackTracking (V, I)

(1) If $V=\emptyset$ then
(2) I is a solution
(3) else
(9) Let $x_{i} \in V$
(6) for each $v \in D_{x_{i}}$ do
(6) If $I \cup\left\{\left(x_{i}, v\right)\right\}$ is consistent then
© BackTracking $\left(V-\left\{x_{i}\right\}, I \cup\left(x_{i}, v\right)\right)$

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Clearly

Any Recursive Version of the Algorithm

- It can be converted into an iterative version by means...

Clearly

Any Recursive Version of the Algorithm

- It can be converted into an iterative version by means...

Extra memory

- Of an stack to simulate the depth-first search of the software stack...

Now, we have an iterative version

Here, we have the following set

- $S_{k}=\left\langle s=x_{1}, x_{2}, \ldots, x_{k}\right\rangle$ a sequence of states

Now, we have an iterative version

Here, we have the following set

- $S_{k}=\left\langle s=x_{1}, x_{2}, \ldots, x_{k}\right\rangle$ a sequence of states

A always a Boolean statement

$$
P\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

- That it turns TRUE when reaching a feasible solution

Iterative Backtracking Algorithm

BackTracking

(1) $k=1$
(2) Generate S_{1} a stack with the initial states
(3) while $k>0$:
(9) while $S_{k} \neq \emptyset$
(6)
©
(1)

B
-
(10) $k=k+1$
(1) Generate new stack S_{k}
(12)
push (T, S_{k})
(3) $k=k-1$

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Backtracking

Something Notable

Backtracking is based on that it is often possible to reject a solution by looking at just a small portion of it.

Backtracking

Something Notable

Backtracking is based on that it is often possible to reject a solution by looking at just a small portion of it.

Example

If an instance of SAT contains the clause $C_{i}=\left(x_{1} \vee x_{2}\right)$, then all assignments with $x_{1}=x_{2}=0$ can be instantly eliminated.

Example

Pruning Example

Given the possible values that you can give to two literals:

x_{1}	x_{2}
1	1
1	0
0	1
$\mathbf{0}$	$\mathbf{0}$

It is possible to prune a quarter of the entire search space... Can this be systematically exploited?

An example of exploiting this idea in SAT solvers

Consider the following Boolean formula $\phi(w, x, y, z)$

$$
(w \vee x \vee y \vee z) \wedge(w \vee \neg x) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg w) \wedge(\neg w \vee \neg z)
$$

An example of exploiting this idea in SAT solvers
Consider the following Boolean formula $\phi(w, x, y, z)$

$$
(w \vee x \vee y \vee z) \wedge(w \vee \neg x) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg w) \wedge(\neg w \vee \neg z)
$$

We start branching in one variable, we can choose w

Initial formula ϕ

Note: This selection does not violate any of the clauses of $\phi(w, x, y, z)$

Now

The partial assignment $w=0, x=1$ violates the clause $(w \vee \neg x)$

Initial formula ϕ

Now

Then, we prune that branch

Initial formula ϕ

In addition

What if $w=0, x=0$
Then, the following clauses are satisfied
(1) $\neg w=1$
(2) $\neg x=1$

In addition

What if $w=0, x=0$

Then, the following clauses are satisfied
(1) $\neg w=1$
(2) $\neg x=1$

Thus, we have the following left
(1) Before
(1) $(w \vee x \vee y \vee z) \wedge(w \vee \neg x) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg w) \wedge(\neg w \vee \neg z)$
(2) After

$$
\text { (1) }(0 \vee 0 \vee y \vee z) \wedge(0 \vee 1) \wedge(0 \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee 1) \wedge(1 \vee \neg z)
$$

Finally

> We have the following reduced number of equations
> $(y \vee z),(1),(\neg y),(y \vee \neg z),(1),(1) \Leftrightarrow(\boldsymbol{y} \vee \boldsymbol{z}),(\neg \boldsymbol{y}),(\boldsymbol{y} \vee \neg \boldsymbol{z})$

Finally

We have the following reduced number of equations
$(y \vee z),(1),(\neg y),(y \vee \neg z),(1),(1) \Leftrightarrow(\boldsymbol{y} \vee \boldsymbol{z}),(\neg \boldsymbol{y}),(\boldsymbol{y} \vee \neg \boldsymbol{z})$
What if $w=0, x=1$
(1) Before
(1) $(w \vee x \vee y \vee z) \wedge(w \vee \neg x) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(z \vee \neg w) \wedge(\neg w \vee \neg z)$
(2) After
(1) $(1) \wedge(0) \wedge(1) \wedge(y \vee \neg z) \wedge(1) \wedge(1)$

Thus

We have something no satisfiable
 $(1) \wedge(0) \wedge(1) \wedge(y \vee \neg z) \wedge(1) \wedge(1) \Leftrightarrow(),(y \vee \neg z)$

Thus

We have something no satisfiable

$(1) \wedge(0) \wedge(1) \wedge(y \vee \neg z) \wedge(1) \wedge(1) \Leftrightarrow(),(y \vee \neg z)$

Clearly

We prune that part of the search tree.
Note we use " ()$\equiv(0)$ " to point out to a "empty clause" ruling out satisfiability.

The decisions we need to make in backtracking

First
Which subproblem to expand next.

The decisions we need to make in backtracking

First

Which subproblem to expand next.

Second

Which branching variable to use.

The decisions we need to make in backtracking

First

Which subproblem to expand next.

Second

Which branching variable to use.

Remark

The benefit of backtracking lies in its ability to eliminate portions of the search space.

Choosing

Something Notable
 A classic strategy:

Choosing

Something Notable

A classic strategy:

- You choose the subproblem that contains the smallest clause.

Choosing

Something Notable

A classic strategy:

- You choose the subproblem that contains the smallest clause.
- Then, you branch on a variable in that clause.

Choosing

Something Notable

A classic strategy:

- You choose the subproblem that contains the smallest clause.
- Then, you branch on a variable in that clause.

Then

If the clause is a singleton then at least one of the resulting branches will be terminated.

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
(1) Failure: the subproblem has no solution.

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
(1) Failure: the subproblem has no solution.
(2) Success: a solution to the subproblem is found.

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
(1) Failure: the subproblem has no solution.
(2) Success: a solution to the subproblem is found.
(3) Uncertainty.

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
(1) Failure: the subproblem has no solution.
(2) Success: a solution to the subproblem is found.
(3) Uncertainty.

What about SAT

- The test declares failure if there is an empty clause

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
(1) Failure: the subproblem has no solution.
(2) Success: a solution to the subproblem is found.
(3) Uncertainty.

What about SAT

- The test declares failure if there is an empty clause
- The test declares success if there are no clauses

The Backtracking Test

The test needs to look at the subproblem to declare quickly if
(1) Failure: the subproblem has no solution.
(2) Success: a solution to the subproblem is found.
(3) Uncertainty.

What about SAT

- The test declares failure if there is an empty clause
- The test declares success if there are no clauses
- Uncertainty Otherwise.

Example

We have the following

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Pseudo-code for Backtracking

We have
BACKTRACKING $\left(P_{0}\right)$
(1) Start with some problem P_{0}
(2) Let $\mathcal{S}=\left\{P_{0}\right\}$, the set if active subproblems

Pseudo-code for Backtracking

We have
BACKTRACKING $\left(P_{0}\right)$
(1) Start with some problem P_{0}
(2) Let $\mathcal{S}=\left\{P_{0}\right\}$, the set if active subproblems
(3) While $\mathcal{S} \neq \emptyset$
(1) choose a subproblem $P \in \mathcal{S}$ and remove it from \mathcal{S}
(6) expand it into smaller subproblems $P_{1}, P_{2}, \ldots, P_{k}$

Pseudo-code for Backtracking

We have

BACKTRACKING $\left(P_{0}\right)$
(1) Start with some problem P_{0}
(2) Let $\mathcal{S}=\left\{P_{0}\right\}$, the set if active subproblems
(3) While $\mathcal{S} \neq \emptyset$
(1) choose a subproblem $P \in \mathcal{S}$ and remove it from \mathcal{S}
(6) expand it into smaller subproblems $P_{1}, P_{2}, \ldots, P_{k}$
(0) For each P_{i}

O
©
0
if test $\left(P_{i}\right)$ succeeds: halt and return the branch solution
if $\operatorname{test}\left(P_{i}\right)$ fails: discard P_{i}
Otherwise: add P_{i} to \mathcal{S}

Pseudo-code for Backtracking

We have

BACKTRACKING $\left(P_{0}\right)$
(1) Start with some problem P_{0}
(2) Let $\mathcal{S}=\left\{P_{0}\right\}$, the set if active subproblems
(3) While $\mathcal{S} \neq \emptyset$
(9) choose a subproblem $P \in \mathcal{S}$ and remove it from \mathcal{S}
(6) expand it into smaller subproblems $P_{1}, P_{2}, \ldots, P_{k}$
(0) For each P_{i}
if test $\left(P_{i}\right)$ succeeds: halt and return the branch solution
if $\operatorname{test}\left(P_{i}\right)$ fails: discard P_{i}
Otherwise: add P_{i} to \mathcal{S}
(10) return there is no solution.

Outline

(1) Introduction

- The Obscure Origins of Backtracking
- n Chess Queen Problem
- Constructing a Solution
- Codification
(2) Backtrack Algorithm
- Introduction
- The Elegant Recursion
- An Iterative Solution
- Example
- Backtracking Algorithm
- Explanation

Choose and Expand

For SAT

(1) The choose procedure picks a clause,
(2) Expand picks a variable within that clause.

Choose and Expand

For SAT

(1) The choose procedure picks a clause,
(2) Expand picks a variable within that clause.

There has been already
A discussion on how to make such choices.

Notes

With the right test, expand, and choose routines

- Backtracking can be remarkably effective in practice

Notes

With the right test, expand, and choose routines

- Backtracking can be remarkably effective in practice

Further

- The backtracking algorithm we showed for SAT is the basis of many successful satisfiability programs

Notes

With the right test, expand, and choose routines

- Backtracking can be remarkably effective in practice

Further

- The backtracking algorithm we showed for SAT is the basis of many successful satisfiability programs

For Example, 2-SAT problems

- It is a conjunction (a Boolean and operation) of clauses,
- Where each clause is a disjunction (a Boolean or operation) of two variables or negated variables.

Then

Backtracking

- If presented with a 2-SAT instance,
- it will always find a satisfying assignment, if one exists, in polynomial time!!!

Then

Backtracking

- If presented with a 2-SAT instance,
- it will always find a satisfying assignment, if one exists, in polynomial time!!!

Something Notable

- Therefore, we depend on the constraints!!!

Then

Backtracking

- If presented with a 2-SAT instance,
- it will always find a satisfying assignment, if one exists, in polynomial time!!!

Something Notable

- Therefore, we depend on the constraints!!!

These problems are known as

- Constraint Satisfaction Problems!!!

Bibliography

D. E. Knuth, The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 2.
Pearson Education India, 2011.

