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Introduction

Search Constraint
A search constraint is a restriction on the set of possible solutions to
a search problem.

Examples
For goal constraints (the standard setting in state space search), we
specify goal states, and these incorporate constraints on the goal.

I Constraints refer to the end of solution paths - the constraints applied
to terminal states.

For path constraints, constraints refer to the path as a whole.
I Expressed in temporal logic
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Value

Definition
A value is something that can be assigned to a variable.
Generally, we reference by vi the value of the variable Xi.

Something Notable
The nature of these values is a typification of the variables of the
problem.

Examples
Boolean Variables.
Symbolic Variables: Colors in a graph.
etc.
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Domain of a Variable

Definition
The domain of a variable is the set of all the values that this variable
can take.

Thus
If the variable is denoted by Xi , then the most general notation of
the domain associated with this variable is either Di or Dxi.
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Degree of a Variable

Definition
The degree of a variable is the number of constraints in which it is
involved.

Example

X1 +X3 + 3X2 < 15
7X2 × 4X5 = 84

2X1 + 6X4 −X2 ≥ 9X3

Then, Degree(X1) = 2, Degree(X2) = 3, etc
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Constraint

Definition
A constraint on a set of variables is a restriction on the set of values
that these variables can take simultaneously.
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Arity of a Constraint

Defintion
The arity of a constraint C is the number of variables involved in C.

Thus
A constraint is called unary if it relates to a single variable.
If its arity is equal to two, then we speak of a binary constraint.
A constraint is called n-ary if its arity is equal to n.
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Instantiation

Definition
An instantiation I is the simultaneous assignment of values to a set of
variables.

Therefore
This instantiation may be in the form of a set of values where each value
relates to a variable.

It can be total or partial.
They are consistent if the assignement satisfies all the constraints
concerned by the variables that it involves.

Example
Tuple of values (v1, v2, ..., vn) is a possible instantiation of the variables
(X1, X2, ..., Xn).
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Where is it used?
Constraint satisfaction is used to model and solve combinatorial
problems.

Something Notable
Constraint satisfaction relies on a declarative problem description that
consists of a set of variables together with their respective domains.

Examples
0 ≤ X ≤ 9
X + Y = 7
X − Y = 5
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A little of NP-Hard

Something Notable
In constraint solving practice, elementary calculus is often not
sufficient to determine the set of feasible solutions.

It is more
In fact, most constraint satisfaction domains are NP-hard.
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Definition

Constraint Satisfaction Problem
A constraint satisfaction problem (CSP) consists of

A finite set of variables V1, ..., Vn over finite domains Dv1 , ..., Dvn

A finite set of constraints C = {C1, ..., Cm}
I They are relation between arbitrary variables

A set R = {R1, ..., Rm} of m relations associated with the
constraints where each one of the relations

Ri ∈ Di1 × ...×Dik

define all combinations of values permitted by Ci.
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The Different Representations of a CSP

Graphical Representation
The Most Common...
Thus, we have two main representations
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Or a Global Representation
Via a graph of al CSP constraints.

Associating
Any CSP (X,D,C,R) a graph of constraints G = (X,C)whose
nodes represent the variables and the edges the constraints.
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We not only have these representations

Representation in Extensions
The set of pairs authorized for the binary constraints or more
generally the n-uplets authorized for the n-ary constraints.

Representation in Intention
The constraints are in the form of equations or predicates.
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Nevertheless

Finally, we want a solution
It is a complete assignment of values to variables satisfying all the
constraints.

22 / 80



Images/ITESM.png

IMPORTANT

For the sake of simplicity
We are ruling out continuous variables in the definition!!!
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We have
Binary CSP is a CSP where the constraints involve only two variables

For example take the following CSP
X + Y = Z, X < Y

Domain DX = {1, 2}, DY = {3, 4} and DZ = {5, 6}
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Classic Example

Task
To place eight queens on a chess board, but with at most one queen
in the same row, column, or diagonal.

Variables
Xi denotes the row of the queen i, i ∈ {1, ..., 8}.
Yi denotes the column of the queen i, i ∈ {1, ..., 8}.

Domain
DX1 = ... = DX8 = {1, ..., 8}.
DY1 = ... = DY8 = {1, ..., 8}.
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The Final Constraints

Constraints
The constraints that induce no conflict are

Xi 6= Xj (no vertical threat) for all 1 ≤ i 6= j ≤ 8
Yi 6= Yj (no horizontal threat) for all 1 ≤ i 6= j ≤ 8
|Xi −Xj | 6= |Yi − Yj | (no diagonal threat) for all 1 ≤ i 6= j ≤ 8
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The map-coloring problem

Definition
You need to color a map with k colors in such a way that the two
neighboring areas, having a common border, are not of the same color.

Example
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The CSP for the Map-Coloring

You have the triplet (X,D,C)
X = {R1, R2, R3, R4, R5}.
D = {D1, D2, D3, D4, D5} where Di = {r, g, b}

With the following Constraints

C = {R1 6= R2, R1 6= R3, R1 6= R4, R3 6= R4

R2 6= R3, R3 6= R5, R4 6= R5}
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How do we solve this?

Using an efficient Algorithm
Such a problem formulation calls for an efficient search algorithm to find a
feasible variable assignment representing valid placements of the queens on
the board.

Naive solution
A naive strategy considers all 88 possible assignments, which can easily be
reduced to 8!.

Better
We need a refined approach maintains a vector for a partial assignment in
a vector, which grows with increasing depth and shrinks with each
backtrack.
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How do we solve this?

In addition
To limit the branching during the search, we additionally maintain a global
data structure to mark all places that are in conflict with the current
assignment.

This is known as consistency
Once, we can define this, it is possible to talk of feasible algorithms!!!
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Consistency

What is this?
Consistency is an inference mechanism to rule out certain variable
assignments, which in turn enhances the search.

Simple version
The simplest consistency check tests a current assignment against the set
of constraints.

34 / 80



Images/ITESM.png

Consistency

What is this?
Consistency is an inference mechanism to rule out certain variable
assignments, which in turn enhances the search.

Simple version
The simplest consistency check tests a current assignment against the set
of constraints.

34 / 80



Images/ITESM.png

Simple Algorithm
Procedure Consistent

Input: Label set L, constraints C
Output: L satisfies C true/false

1 for each c ∈ C
2 if V ariables (c) ⊆ L
3 if not Satisfied (c, L)
4 return false // When an inconsistency happens
5 return true

With
V ariables (c) denotes the set of variables in mentioned in the
constraint c.
Satisfied(c, L) to denote if the constraint c is satisfied by the
current label set L(values to variables).
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However

We need something better
There is a long list of algorithms for this.

However
We will look to algorithms that check between constraints between two
variables.
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Introduction
Arc consistency is one of the most powerful propagation techniques for
binary constraints.

What are binary constraints?
A binary constraint is a constraint involving only two variables

Example over Graphs
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Basic Definitions

Definition - K-Consistency
A CSP (X,D,C,R) is k-consistent if and only if, for any n-tuplet of k
variables (X1, ..., Xk) of X, any consistent k − 1 instantiation may be
extended to a consistent instantiation with the kth variable.

Definition - Strong K-Consistency
A CSP P (X,D,C,R) is said to be strongly k-consistent if and only if,
∀i, 1 ≤ i ≤ k, P is i-consistent.
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Basic Definitions

Definition - Node Consistency
A node-consistent CSP (X,D,C,R) is a 1-consistent CSP. This
consistency is only verified if for any Xi variable of X, and for any vi value
of Di, the partial assignment (Xi, vi) satisfies all the unary constraints of
C involving this variable.
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Arc Consistency

Definition
A CSP (X,D,C,R) is called arc consistent if and only if, for any couple
of variables (Xi, Xj) of X, each couple represents an arc in the associated
constraint graph, and for any value vi from the domain Di that satisfies
the unary constraints involving Xi, there is a value vj in the domain Dj

compatible with vi.

Something Notable
Initially presented by A.K. Mackworth.
Arc consistency is expressed on each couple of variables of a problem
with binary constraints.

I It is equivalent to the 2-consistency.
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Example

Consider a simple CSP with variables A and B
Domains DA = {1, 2} and DB = {1, 2, 3}
With constraint A < B

Thus...
We can easily remove 1 from DB.
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What kind of problems?

To solve this kind of problems
Graph coloring problem:

Given a planar graph, assign one of 4 colors to each vertex such that
any two adjacent vertices have different colors.

Example
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Two Main Algorithms

We will look at
AC-1
AC-3

I They both rely in a very simple function called Revise!!!

It is applied to
Couple of variables (Xi, Xj) connected by a constraint Cij by removing
the locally inconsistent values from the Xi.

Where
This couple of variables represents an arc in the graph of constraints
often denoted by (i, j).
The arc consistency is verified if and only if all the arcs on the graph
of constraints are arc consistent.
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Revise Procedure

Revise(i, j)
output Boolean

1 CHANGE = False

2 for each x ∈ Di

3 If there is no y ∈ Dj such that Rij(x, y) is true then
4 delete x from Di

5 CHANGE = True

6 return CHANGE
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Example we are going to use

Graph to color
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2

3

47 / 80



Images/ITESM.png

Outline

1 Introduction
A little bit of search constraints
Basic Concepts

2 Constrain Satisfaction
Introduction
Definition
Representation
Examples
Solving the CSP

3 Consistency
Solving the Problem
Arc Consistency
Two Main Algorithms
AC-1 Algorithm
AC-3 Algorithm

Backtracking
Example

48 / 80



Images/ITESM.png

AC-1

AC-1
Early version is due to ROSENFELD A., HUMMEL R., ZUCKER S.

What is this?
The main mechanism for implementing this procedure is based on a
list Q supplied by all the couples of variables (Xi, Xj)
(Xj , Xi) are linked by a constraint Cij .
The algorithm visits each couple (Xi, Xj) and removes all the values
that violate Cij from domain Di.
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AC-1 Algorithms

Procedure AC1
1 Q = {(i, j)|Cij ∈ C, i 6= j}.
2 Repeat
3 CHANGE = False

4 for each(i, j) ∈ Q do
5 CHANGE = (Revise(i, j) ∨ CHANGE)
6 Until ¬Change
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Example

We have that
In the first column, the current couple of variables (i, j) being treated
by the revise procedure is colored in red.
In the second column, the value (color) removed by the revise
procedure is colored in red.
In the second column, the final domains obtained after performing the
whole AC-1 are emphasized.
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Example

Then
ITERATION Q Di Change

1(Repeat).1(For) {(1, 2); (2, 1) ; (1, 3) D1 = {R,G,B} FALSE
(3, 1) ; (2, 3) ; (3, 2)} D2 = {R,G}

D3 = {G}
1.2 {(1, 2) ; (2, 1); (1, 3) D1 = {R,G,B} FALSE

(3, 1) ; (2, 3) ; (3, 2)} D2 = {R,G}
D3 = {G}

1.3 {(1, 2) ; (2, 1); (1, 3) D1 = {R,G,B} TRUE
(3, 1) ; (2, 3) ; (3, 2)} D2 = {R,G}

D3 = {G}
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Complexity of AC-1

Something Notable
The systematic nature of the revisions of all the problem’s arcs, each time
a value is removed, deteriorates the AC-1 performances, since the removal
of a value from a variable X.

With n variables, we have that
d = max {|Di|}ni=1

The worst case on the number of constraints n(n−1)
2

We have that
Temporal Complexity: O

(
n3d3)

Spatial Complexity: O
(
n2)
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Can we improve the AC-1?

If we observe the idea of locality
Arc consistency can be obtained by testing the neighboring area that
consists of the set of variables connected by a binary constraint.

We do the following
The algorithm uses a queue structure Q.
To determine all non-viable values, AC-3 seeks support for each value
on each constraints.
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Then

Then
At each step a pop element, an arc (i, j), is revised using the Revise
procedure.

During this revision
If the removal of a value vi occurs in Di, the set of arcs (k, i) such as
k 6= i and k 6= j are added to Q (If not there already).

Next
AC-3 re-examines the viability of all the values vk ∈ Dk in relation to Cki.
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Important!!!

We can have the following
It may happen that (i, vi) is the sole support for certain values of Dk and
the removal of vi makes them not arc consistent.
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Algorithm AC-3

Procedure AC-3
Input: Set of variables V , set of domains D, set of constraints C

Output: Satisfiable true/false, restricted set of domains

1 Q={(i, j) |cij ∈ C, i 6= j} // Where Q is a Queue
2 while (Q 6= ∅)
3 c = Q.pop()
4 if Revise(i, j)
5 Q = Q ∪ {(k, i) |cki ∈ C, k 6= i, k 6= j}
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Explanation

Then
1 All the arcs are added to the queue Q.
2 If an arc has been removed... it can be added again to Q (Line 5)
3 This allows to again revise that arc so maybe something else to

discard.
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Complexity

Something Notable
This algorithm re-examines the viability of more values than necessary
(re-examines all the values even those that are not concerned by the
removal).

Then
For a complete graph of constraints, the Q will see the insertion of
O

(
n2d

)
arcs

Temporal Complexity O
(
n2d3)

- More efficient than AC-3
Spatial Complexity O

(
n2)
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There are other methods for arc consistency

You can look at them in
“Constraint Satisfaction Problems: CSP Formalisms and Techniques” by
Khaled Ghedira.
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How can we use this?
Various techniques for solving CSP have been developed
Classification of them:

Complete methods that guarantee completeness (quality) at the
expense of efficiency (temporal complexity)
Incomplete methods that sacrifice completeness for the sake of
efficiency.

We will look at a complete resolution method: Backtracking
Remember it?? Solving NP-Problems

Properties
It uses Depth-First Search.
It takes a sequence V of variables of X to be instantiated (Initially X
including all the variables).
An initially empty instantiation I as arguments.
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Backtracking Algorithm

BackTracking(V, I)
1 If V = ∅ then
2 I is a solution
3 else
4 Let x ∈ V
5 for each v ∈ Dx do
6 IfI ∪ {(x, v)} is consistent then
7 BackTracking (V − {x} , I ∪ (x, v))
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Example

Pruning Example
Given the possible values that you can give to two literals:

x1 x2

1 1
1 0
0 1
0 0

It is possible to prune a quarter of the entire search space... Can
this be systematically exploited?
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An example of exploiting this idea in SAT solvers

Consider the following Boolean formula φ (w, x, y, z)
(w ∨ x ∨ y ∨ z) ∧ (w ∨ ¬x) ∧ (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ ¬w) ∧ (¬w ∨ ¬z)

We start branching in one variable, we can choose w

Note: This selection does not violate any of the clauses of
φ (w, x, y, z)
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Now

The partial assignment w = 0, x = 1 violates the clause (w ∨ ¬x)

Initial formula 

72 / 80



Images/ITESM.png

Now

Then, we prune that branch

Initial formula 

73 / 80



Images/ITESM.png

In addition

What if w = 0, x = 0
instantiation
Then, the following clauses are satisfied

1 ¬w = 1
2 ¬x = 1

Thus, we have the following left
1 Before

1 (w ∨ x ∨ y ∨ z)∧(w ∨ ¬x)∧(x ∨ ¬y)∧(y ∨ ¬z)∧(z ∨ ¬w)∧(¬w ∨ ¬z)
2 After

1 (0 ∨ 0 ∨ y ∨ z) ∧ (0 ∨ 1) ∧ (0 ∨ ¬y) ∧ (y ∨ ¬z) ∧ (z ∨ 1) ∧ (1 ∨ ¬z)
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Finally

We have the following reduced number of equations
(y ∨ z) , (1) , (¬y) , (y ∨ ¬z) , (1) , (1)⇔ (y ∨ z) , (¬y) , (y ∨ ¬z)

What if w = 0, x = 1
1 Before

1 (w ∨ x ∨ y ∨ z)∧(w ∨ ¬x)∧(x ∨ ¬y)∧(y ∨ ¬z)∧(z ∨ ¬w)∧(¬w ∨ ¬z)
2 After

1 (1) ∧ (0) ∧ (1) ∧ (y ∨ ¬z) ∧ (1) ∧ (1)
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Thus

We have something no satisfiable
(1) ∧ (0) ∧ (1) ∧ (y ∨ ¬z) ∧ (1) ∧ (1)⇔ (), (y ∨ ¬z)

Clearly
We prune that part of the search tree.

Note we use “()≡(0)” to point out to a “empty clause” ruling out
satisfiability.
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The decisions we need to make in backtracking

First
Which subproblem to expand next.

Second
Which branching variable to use.

Remark
The benefit of backtracking lies in its ability to eliminate portions of the
search space.
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Choosing

Something Notable
A classic strategy:

You choose the subproblem that contains the smallest clause.
Then, you branch on a variable in that clause.

Then
If the clause is a singleton then at least one of the resulting branches will
be terminated.
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The Backtracking Test

The test needs to look at the subproblem to declare quickly if
1 Failure: the subproblem has no solution.
2 Success: a solution to the subproblem is found.
3 Uncertainty.

What about SAT
The test declares failure if there is an empty clause
The test declares success if there are no clauses
Uncertainty Otherwise.
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