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Introduction

Observation
Games are interesting because they are too hard to solve.

For example:
Chess has an average branching factor of about 35.
Chess games often go to 50 moves by each player, so the search tree
has about 35100 nodes.

In addition
Games also penalize inefficiency severely.
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Example Against Using Classic Search

Something Notable
A* is a best-first graph search algorithm that finds the least-cost path
from a given initial node to one goal node.

However
Although this can be half efficient in many problems.
In adversarial games as chess, a single bad move can be highly
penalized.
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Differences

We have two main differences
"Unpredictable" opponents

I It makes specifying every move for every reply given by the opponent
something quite difficult.

Time Limits
I Quite different to find a goal, thus you must approximate.
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Example

Chess Board
According to John McCarthy, Chess is the Drosophila of AI, in an analogy
with dominant use of that fruit fly to study inheritance.
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Game Theory

Definition
“Game theory is the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers."

Myerson, Roger B. (1991). Game Theory: Analysis of Conflict,
Harvard University Press, p. 1. Chapter-preview links, pp. vii–xi.

Here, yo need to define
1 Players of the game
2 Payoff for each outcome
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Example: Two Player Game
Rock-Scissor-Paper
Consider the two player game “Rock-Scissors-Paper”

Rules
If both persons play the same action, then it is a draw game.
You get a matrix of possible payoffs

P S R
P 0 -1 1
S 1 0 -1
R -1 1 0

or A =

 0 −1 1
1 0 −1
−1 1 0



Observations
In game theory, this is the two player zero-sum game.
It is based on the definition of Nash equilibrium.
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Strategy
Definition
The strategy of a player is any of the options it can choose in a setting
where the outcome depends not only on his own actions but on the action
of others.

Thus
A strategy set of a player defines what strategies are available for them to
play.

For example
In the case of the Rock-Scissor-Paper’s Game, we could use the following
strategy:

Rock Scissor Paper
0 0 1

Note: You always choose Paper.
12 / 104
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Therefore

Something Notable
We know there is no pure strategy solution for this game.

Where pure strategies provides a complete definition of how a player
will play a game.

Solution? Use a probabilistic approach with the pure strategy(1
3 ,

1
3 ,

1
3

)
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Formally

A game can be seen a search problem with
The initial state – include the board position and initial player.
A successor function, which returns a list of (move, state) pairs.

I This indicate a legal move and the resulting state.

In addition
A series of terminal states, which determines if the game is over.
A utility function (objective function or payoff function), which gives
a numeric value for the terminal states.

I For example Chess – win, loss, or draw +1, -1, or 0.
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Example

If you are player “X”
Win is +1
Loss is -1
Draw is 0
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Minimax

Rule
Minimax is a decision rule used in decision theory, game theory, statistics
and philosophy for minimizing the possible loss for a worst case (maximum
loss) scenario.

History
Originally formulated for two-player zero-sum game theory.

I Here players can take alternate moves or simultaneous moves.

In this games each turn
Finishes after each Max and Min make a move:

In game parlance, this game is one deep move, consisting of two
half-moves, called ply.
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Strategy for the Minimax Game

Consider all moves and select the optimal one
Optimal is the move that results in the most favorable position even if
opponent does his/her best.

Little Problem!!!
You do not know what opponent thinks is the best but assume he/she
thinks like you.
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What is known as Nash Equilibrium

Definition
In game theory, the Nash equilibrium is a solution concept of a
non-cooperative game involving two or more players:

In which each player is assumed to know the equilibrium strategies of
the other players
No player has anything to gain by changing only their own strategy.
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John Forbes Nash, Jr

Who is him?

John Forbes Nash, Jr. (born June 13, 1928) is an American
mathematician whose works in game theory, differential geometry, and
partial differential equations have provided insight into the factors that
govern chance and events inside complex systems in daily life.
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John von Neumann
Who is him?

John von Neumann was a Hungarian and later American pure and applied
mathematician, physicist, inventor and polymath.
He made major contributions to a number of fields, including mathematics
(foundations of mathematics, functional analysis, ergodic theory, geometry,
topology, and numerical analysis), physics (quantum mechanics,
hydrodynamics, and fluid dynamics), economics (game theory), computing
(Von Neumann architecture, linear programming, self-replicating machines,
stochastic computing), and statistics. 25 / 104
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Setup for the Minimax Theorem

Remember the Payoff Matrix for Paper-Scissor-Rock
P S R

P 0 -1 1
S 1 0 -1
R -1 1 0

or A =

 0 −1 1
1 0 −1
−1 1 0

 or A = (aij)

aij represents a payoff given by
I i strategy - row player
I j strategy - column player
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Thus, The Game is Played as Follow

We have then
The payoff aij is given to the row player when he/she picks strategy i and
the column player picks strategy j

Therefore
The payoff to the column player is −aij

Then
Let yi and xj represent probabilities of the row player and column player
picking their ith and jth strategies respectively
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Thus, we have

The vectors for the mixed strategies

y =


y1
y2
...
yn

 and x =


x1
x2
...
xm

 (1)
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∑
i yi = 1 and

∑
j xj = 1

The resulting expected payoffs

yTAx (2)
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Thus for this Game

We have the following theorem
Theorem (Von Neumann Minimax Theorem)

For every two-person, zero-sum game given by a payoff
matrix n×m A, there exists a mixed strategy for each
player, such that the expected payoff for both is the same
value V when the players use these strategies. Furthermore,
V is the best payoff each can expect to receive from a play
of the game; that is, these mixed strategies are the optimal
strategies for the two players.
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Proof

We formulate the payoff of row player and column player as below
Payoff of row player (minmaximizer) = min

y∈∆n
max

x∈∆m
ytAx

Payoff of column player (maxminimizer) = max
x∈∆m

min
y∈∆n

ytAx

Where
A is the payoff matrix n×m.
x and y are probability vectors i.e.

∑n
i=1 yi = 1 and

∑m
j=1 xj = 1 .

∆m or ∆n strategy sets.
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Formally, the Minimax Theorem looks like

Theorem (Von Neumann Minimax Theorem)

min
y∈∆n

max
x∈∆m

ytAx = V = max
x∈∆m

min
y∈∆n

ytAx (3)
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Proof

Questions
What happens if one of the players exposes her mixed strategy and let
the other player choose the strategy of his liking?
if we reverse the order of the players?

Actually
The von Neumann’s theorem allow to say the order does not change the
valuer of the game
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Proof

Now
If you chose strategy x, the payoff min

y∈∆n
ytAx is a simple linear

programming problem

With the constraints

y ≥ 0∑
i

yi = 1

34 / 104



Images/ITESM.png

Proof

Now
If you chose strategy x, the payoff min

y∈∆n
ytAx is a simple linear

programming problem

With the constraints

y ≥ 0∑
i

yi = 1

34 / 104



Images/ITESM.png

Proof

This problem defines a polytope
With vectors {ei}ni=1, where ei is a vector with 1 at ith location and 0
otherwise.

In other words
We may always assume the second player always chooses a pure strategy
to achieve the best payoff for herself.

35 / 104



Images/ITESM.png

Proof

This problem defines a polytope
With vectors {ei}ni=1, where ei is a vector with 1 at ith location and 0
otherwise.

In other words
We may always assume the second player always chooses a pure strategy
to achieve the best payoff for herself.

35 / 104



Images/ITESM.png

Proof

Then, we have that

max
x∈∆m

min
y∈∆n

ytAx = max
x∈∆m

min
i

(Ax)i (4)

Second

min
y∈∆n

max
x∈∆m

ytAx = min
y∈∆n

max
j

(yA)j (5)
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Proof

What we want?
We want to prove that they are equal!!!

max
x∈∆m

min
i

(Ax)i = min
y∈∆n

max
j

(yA)j (6)
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Proof

Using Linear Programming setup equation max
x∈∆m

min
i

(Ax)i becomes

maxt
s.t.

∑
j

aijxj ≥ t∑
j

xj = 1

x ≥ 0
t ≶ 0 (Unconstrained)
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Proof

Similarly the payoff for the column player, min
y∈∆n

maxj (yA)j

minw
s.t.

∑
j

yiaij ≤ w

y ∈ ∆n

w ≶ 0 (Unconstrained)

Thus
We can use the idea of duality for it
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Proof

An intuitive idea about the Duality!!!

CONCAVE SYSTEM

CONVEX SYSTEM

SOLUTION FOR BOTH SYSTEMS
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A more formal and different view

Primal of linear programming

maximize :z =
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≤ bi (i = 1, 2, ...,m)

xj ≥ 0 (j = 1, 2, ..., n)
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A more formal view

Symmetric Dual

minimize :v =
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≥ cj (i = 1, 2, ...,m)

yi ≥ 0 (j = 1, 2, ..., n)
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Proof

Primal for LP
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Dual for LP
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Re-writing the Primal

Primal

maxt
s.t. t−

∑
j

aijxj ≤ 0

∑
j

xj = 1

x ≥ 0
t ≶ 0 (Unconstrained)

The Strong Duality Theorem
If either Primal or Dual has a finite optimal value, then so does the other,
the optimal values coincide, and optimal solutions to both Primal and
Dual exist.
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Thus

Applying the definition

minw
s.t. w −

∑
i

yiaij ≥ 0∑
i

yi = 1

y ≥ 0
w ≶ 0 (Unconstrained)
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Then

Re-writing the Dual

minw
s.t.

∑
i

yiaij ≤ w

y ∈ ∆n

w ≶ 0 (Unconstrained)
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Finally

We have the following
The previous system is equivalent to the problem of

min
y∈∆n

max
j

(yA)j (7)

Then

max
x∈∆m

min
i

(Ax)i = min
y∈∆n

max
j

(yA)j Q.E.D. (8)
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Minimax Algorithm

It is based in the repeated application d-times of two ply to a game

max
i

min
j

max
k

...min
w︸ ︷︷ ︸

d

f (i, j, ..., w)

Thus
You have that the MAX player tries to get as many points as possible, and
the MIN player tries to minimize its loses.
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Minimax Algorithm

This allows to define the following cost function Minimax function

MinMax (n) =


Utility (n) if n is a terminal state
maxs∈Succ(n) {MinMax (s)} if n is a MAX state
mins∈Succ(n) {MinMax (s)} if n is a MIN state
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Final Algorithm

Procedure Minimax(u)
Input: Position u

Output: Value at root

1 if (leaf (u))
2 return Eval (u)
3 if (max− node (u)) / Selecting the Max or Min Node
4 val = −∞
5 else
6 val = +∞
7 for each v ∈ Succ (u)
8 if (max− node (u))
9 val = max {val,Minimax (v)}
10 else
11 val = min {val,Minimax (v)}
12 return val
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Properties of the Minimax

Properties
1 Complete? Yes (if tree is finite)
2 Optimal? Yes (against an optimal opponent)
3 Time complexity? O

(
bδ
)

4 Space complexity? O(bδ) (depth-first exploration)
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However

STILL!!!
For chess, b ≈ 35, δ ≈ 100 for "reasonable" games THUS exact solution
completely infeasible

What to do?
Pruning minimax tree
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Pruning

Are there times when you know you need not explore a particular
move?

When the move is poor?
Poor compared to what?
Poor compared to what you have explored so far.
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Thus

α− β Pruning
We can improve on the performance of the minimax algorithm through
α− β pruning

Basic Idea
“If you have an idea that is surely bad, don’t take the time to see how
truly awful it is.” – Pat Winston
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Example: If the minimum value in a min node is below the
max?

No matter what it is, it cannot affect the value of the root node.
MAX

MIN

MAX

2 7 1 ?

=2

 

 We do not need to compute 
the value at this node.
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How is done?

First
Traverse the search tree in depth-first order

Second
At each MAX node n, α(n) = the maximum lower bound of possible
solutions.

The α value is changed to t (Coming from the children) if α < t.

Third
At each MIN node n, β(n) = the minimum upper bound of possible
solutions.

The β value is changed to t (Coming from the children) if β > t.
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A more graphical view

IMPORTANT
The α values start at −∞ and only increase.
The β values start at +∞ and only decrease.

You have intervals where solutions V (n) can happen if
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Example

You start with (α = −∞, β =∞)
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MIN
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MIN
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(α = −∞ ,β = ∞ )
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Example

αis changed to 15 then cut right children
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Algorithm

Procedure MinimaxAlphaBeta(u, α, β)
Input: Position u, value α, value β

Output: Value at root

1 if (leaf (u))
2 return Eval (u)
3 if (max− node (u))
4 res = α
5 for each v ∈ Succ (u)
6 val = MinimaxAlphaBeta(v, res, β)
7 res = max {res, val}
8 if (res ≥ β) return res ⇒ res exceeds threshold
9 else
10 res = β
11 for each v ∈ Succ (u)
12 val = MinimaxAlphaBeta(v, α, res)
13 res = max {res, val}
14 if (res ≤ α) return res ⇒ res exceeds threshold
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A graphical view of exceeding thresholds

“if (α ≥ β) return α” or “if (β ≤ α) return β
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Correctness of Minimax Search with αβ-Pruning

Theorem 12.1
Let u be an arbitrary position in a game and α < β. Then the following
three assertions are true.

1 MinimaxAlphaBeta(u, α, β) ≤ α if and only if Eval(u) ≤ α.
2 MinimaxAlphaBeta(u, α, β) ≥ β if and only if Eval(u) ≥ β.
3 α < MinimaxAlphaBeta(u, α, β) < α if and only if
α < Eval(u) < β.
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Effectiveness of α− β

Something Notable
α− β is guaranteed to compute the same value for the root node as
computed by minimax, with less or equal computation.

Worst case
No pruning, examining bδ leaf nodes, where each node has b children and a
δ-ply search is performed

Best case
It examines only (2b)δ/2 leaf nodes.

You can search twice as deep as minimax!
Best case is when each player’s best move is the first alternative
generated!!!
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It is more...

Something Notable
In Deep Blue, they found empirically that alpha-beta pruning meant that
the average branching factor at each node was about 6 instead of about
35!
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Why is it called α− β?

First
α is the value of the best (i.e., highest-value) choice found so far at any
choice point along the path for max.

Then
If v is worse than α, max will avoid it, then prune that branch

Similarly
Define β similarly for min
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Something Notable
Although α− β allows to cut the search tree, it still needs to search to a
portion of the terminal states.

Thus
Shannon proposed instead ( Programming a computer for playing chess
1950) that the programs should cut off early and apply a heuristic
evaluation function.
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Imagine the following
Suppose we have 100 s
And we explore 104 nodes/second

We need to explore
106 nodes per move!!! TOO MUCH

What can we do?
1 Use an Evaluation Function = estimated desirability of position
2 Use a Cuttoff test - for example “depth limit”
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Evaluation functions

Something Notable
Most Evaluations functions work by calculating different features in a
equivalence class of states.

For Example
Experience suggest 72% of the states encountered so far lead to win
(utility +1).
20% to a loss (utility -1).
8% to a draw (utility 0).

Thus

feval = 0.72× 1 + 0.2×−1 + 0.08× 0 = 0.52

96 / 104



Images/ITESM.png

Evaluation functions

Something Notable
Most Evaluations functions work by calculating different features in a
equivalence class of states.

For Example
Experience suggest 72% of the states encountered so far lead to win
(utility +1).
20% to a loss (utility -1).
8% to a draw (utility 0).

Thus

feval = 0.72× 1 + 0.2×−1 + 0.08× 0 = 0.52

96 / 104



Images/ITESM.png

Evaluation functions

Something Notable
Most Evaluations functions work by calculating different features in a
equivalence class of states.

For Example
Experience suggest 72% of the states encountered so far lead to win
(utility +1).
20% to a loss (utility -1).
8% to a draw (utility 0).

Thus

feval = 0.72× 1 + 0.2×−1 + 0.08× 0 = 0.52

96 / 104



Images/ITESM.png

However...

Something Notable
This type of evaluation functions will force you to know all the categories.

Better
It is better to compute separate numerical functions and combine them

Example Chess

feval (s) =
n∑
i=1

wifi (s)
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Example

You could have something like this

f1 (s) = (number of white queens)-(number of black queens)

Observations
Still Eval functions should be applied only to positions unlikely to
exhibit wild swings in value.
Many techniques from Machine Learning can be used when no
experience about the problem exist.
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Backgammon
Backgammon is a two-player game with uncertainty.
Players roll dice to determine what moves to make.

Something Notable
Such games are good for exploring decision making in adversarial problems
involving skill and luck.

100 / 104



Images/ITESM.png

Example

Backgammon
Backgammon is a two-player game with uncertainty.
Players roll dice to determine what moves to make.

Something Notable
Such games are good for exploring decision making in adversarial problems
involving skill and luck.

100 / 104



Images/ITESM.png

How can we handle them?

Chance Nodes
They are used to represent random events

Something Notable
For a random event with N outcomes, each chance node has N distinct
children; a probability is associated with each

101 / 104



Images/ITESM.png

How can we handle them?

Chance Nodes
They are used to represent random events

Something Notable
For a random event with N outcomes, each chance node has N distinct
children; a probability is associated with each

101 / 104



Images/ITESM.png

How can we handle them?

Then, it is possible to use a Expected Minimax function

ExMinMax (n) =


Utility (n) if n is a terminal state
maxs∈Succ(n) {ExMinMax (s)} if n is a MAX state
mins∈Succ(n) {ExMinMax (s)} if n is a MIN state∑

s∈Succ(n) P r(s)ExMinMax (s) if n is a chance state
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Example

We have
MAX

MIN

4 3 6 2 2 1 9 5 3 1 5 4 7 5

 

CHANCE

.6 .4 .4 .3 .3 .8 .2
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