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Iteratively it tries to improve the solution by changing one element of the
solution so far.

It is applicable to find a solution for the TSP.

Then
If the change produces a better solution, an incremental change is
made to the new solution.

I Until no improvements can be made!!!
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Discrete Space Hill Climbing Algorithm

1 currentNode = startNode
2 while true
3 L = NEIGHBORS(currentNode)
4 nextEval = −∞
5 nextNode = NULL
6 for all x ∈ L
7 if (EVAL(x) > nextEval)
8 nextNode = x

9 nextEval = EVAL(x)
10 if nextEval <= EVAL(currentNode)
11 //Return current node since no better neighbors exist
12 return currentNode
13 currentNode = nextNode
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Example: TSP
Goal
The main idea of TSP is the problem faced by a salesman to visit all
towns or cities in an area, without visiting the same town twice.

The Simplest Version
It assumes that each town is a point in the R2 plane.
Thus a node in the problem is a sequence of cities to be visited in
order

Xi = 〈x1,x2, ...,xn〉

Where x1 == xn

The “Eval” function

Eval (〈x1,x2, ...,xn〉) =
n∑

i=1
‖xi+1 − xi‖
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A new neighbor will be created by swapping two cities
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Actually

This idea of neighborhood
It is used for Genetic Algorithm (GA) for mutating elements in the
population!!!

Thus
By looking at elements of the neighborhood

New permutations by swapping cities

It is possible to obtain local improvements by improving

Eval (〈x1,x2, ...,xn〉) =
n∑

i=1
‖xi+1 − xi‖
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Fact: as problem graphs are so huge, waiting for the algorithm to
terminate becomes unacceptable.

Then
Heuristic search algorithms were developed that do not insist on the optimal
solution.

Some strategies even sacrifice completeness and may fail to find a solution of a
solvable problem instance.

I But the have strategies to decrease the likelihood of such errors.

Thus
Several algorithms have been adapted to these type of constraints:
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Overconsistent A*
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Problem
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Hill Climbing can be trapped in state space problem graph with dead
ends

We want something more stable
A more stable version is enforced hill-climbing.
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Algorithm

Enforced-Hill-Climbing(s, h, Expand)
Input: Implicitly given graph with start node s, successor generating

function Expand and a heuristic h
Output: Path to node t ∈ T

1 u = s

2 ht = h (s)
3 while (ht 6= 0)
4 (u′, ht′) =EHC-BFS(u, h,Expand)
5 if (ht′ =∞) return ∅
6 u = u′

7 ht = ht′

8 return Path (u)
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Algorithm

EHC-BFS(u, h, Expand)
Input: Node u with evaluation h(u)

Output: Node v with evaluation h(v) < h(u) or failure
1 Enqueue (Q, u)
2 while (Q 6= 0)
3 v = Dequeue (Q)
4 if (h(v) < h(u)) return (v, h (v))
5 Succ (v) = Expand (v)
6 for each w ∈ Succ (v)
7 Enqueue (w)
8 return (·,∞)
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Definition
Given a planning task, a state S is called a dead end if and only if it is
reachable and no sequence of actions achieves the goal from it.

We will look more about this in Classic Planning
“The FF Planning System: Fast Plan Generation Through Heuristic
Search”
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Then

Theorem (Completeness Enforced Hill-Climbing)
If the state space graph contains no dead-ends then EHC-BFS will find a
solution.

Proof
1 There is only one case that the algorithm does not find a solution.

1 For some intermediate node v, no better evaluated node v can be
found.

2 Since BFS is a complete search method =⇒ BFS will find a node on
a solution path with better evaluation.

Finally
In fact, because there are not dead-ends, the evaluation h will decrease
along a solution path until finding a t ∈ T such that h (t) = 0.
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Example of enforced hill-climbing (two iterations)
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It is more

Search plateaus generated with enforced hill-climbing
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Even with this...

Unavoidable
Hill climbing is subject to getting stuck in a variety of local conditions.

Two Solutions
Random restart hill climbing
Simulated annealing
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Random Restart Hill Climbing

Pretty obvious what this is...
Generate a random start state
Run hill climbing and store answer
Iterate, keeping the current best answer as you go

I Stopping... when?
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We can do better by using Simulated Annealing

Definition of terms
Annealing: Solid material is heated past its melting point and then
cooled back into a solid state.
Structural properties of the cooled solid depends on the rate of
cooling.

Authors
Metropolis et al. (1953) simulated the change in energy of the system
as it cools, until it converges to a steady “frozen” state.
Kirkpatrick et al. (1983) suggested using SA for optimization, applied
it to VLSI design and TSP
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Analogy

Slowly cool down a heated solid, so that all particles arrange in the
ground energy state
At each temperature wait until the solid reaches its thermal equilibrium
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Concepts
f : Ω→ R be an objective function
ω∗ the global minimum

I f (ω∗) ≤ f (ω) for all ω ∈ Ω

In addition
There is a neighborhood function N (ω) for ω ∈ Ω

Thus
Simulated Annealing starts with an initial solution ω ∈ Ω
Then a new ω′ is generated randomly or by using a predefined rule.
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The Metropolis Acceptance Criterion

Something Notable
The criterion models how a thermodynamic system moves from the
current solution ω ∈ Ω to a candidate solution ω′ ∈ N (ω).

Acceptance Probability

P
(
Accept ω′

)
=

exp
{
−f(ω′)−f(ω)

tk

}
if f (ω′)− f (ω) > 0

1 if f (ω′)− f (ω) ≤ 0

Where tk is a temperature parameter at iteration k

tk > 0 for all k and lim
k→+∞

tk = 0
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We call ∆E = f (ω′)− f (ω)

Something Quite Interesting
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tk
→∞
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{
−∆E
tk
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→ 0

If ∆E
tk
→ 0
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−∆E
tk

}
→ 1
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Meaning

The larger is the tk
The more probable we accept larger jumps from f (ω).

The smaller is tk
We tend to accept only small jumps from f (ω).
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Thus if the temperature is slowly reduced

Something Notable
The system will reach an equilibrium at certain iteration k

This equilibrium follows the Boltzmann distribution
It is the probability of the system being in state ω ∈ Ω with energy f (ω)
at temperature T such that

P {System in state ω at temp T} =
exp

{
−f(ω)

tk

}
∑

ω′′∈Ω exp
{
−f(ω′′)

tk

}
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Algorithm

Simulated_Annealing(ω,Mk, εt, ε, tk, f)
1 ∆E =∞
2 while |∆E| > ε

3 for i = 0, 1, 2, ...,Mk

4 Randomly select ω′ in N (ω)
5 ∆E = f (ω′)− f (ω)
6 if ∆E ≤ 0
7 ω = ω′

8 if ∆E > 0
9 ω = ω′ with probability Pr {Accepted} = exp

{
−∆E

tk

}
10 tk = tk − εt # We can also use tk = εt · tk
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Meaning of probability Pr {Accepted} = exp
{
−∆E
tk

}

Basically
You draw a random value α from the distribution U (0, 1)

Then if
exp

{
−∆E

tk

}
> α you make ω = ω′

Else
You reject state ω′
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What if you have a cost function with the following characteristics
It is parametrically defined.
It is smooth.

We can use the following technique
Gradient Descent
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Example

Consider the following hypothetical problem
1 x =sales price of Intel’s newest chip (in $1000’s of dollars)
2 f (x) =profit per chip when it costs $1000.00 dollars

Assume that Intel’s marketing research team has found that the profit
per chip (as a function of x) is

f (x) = x2 − x3

Assume
we must have x non-negative and no greater than one in percentage.
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Thus

Maximization
Objective function is profit f (x) that needs to be maximized.

Thus
Solution to the optimization problem will be the optimum chip sales price.
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Important Notes about Optimization Problems

What we want
We are interested in knowing those points x ∈ D ⊆ Rn such that
f (x0) ≤ f (x) of f (x0) ≥ f (x)

Or
A minimum or a maximum point x0.

The process of finding x0

It is a search process using certain properties of the function.
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Thus

Local vs Global Minimum/Maximum
Local minimum/maximum is the minimum/maximum in a
neighborhood L ⊂ D.
Global minimum/maximum is the lowest value of f for all x ∈ D

I it is usually much harder to find.

Examples of minimums
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Furthermore

Something Notable
Optimization is a very difficult problem in general.

Especially when x is high dimensional, unless f is simple (e.g. linear)
and known analytically.

We have this classification
1 Analytical methods - They work fine when f can be handled in an

analytical way.
2 Numerical methods - Here, we use inherent properties of the function

like the rate of change of the function.

In our case
We will look at the Gradient Descent Method!!!
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Analytical Method: Differentiating
Assume f is known analytically and twice differentiable
The critical points of f , i.e. the points of potential maximum or minimum,
can be found using the equation:

df

dx
= 0 (1)

For example
df (x)
dx

= d
[
x2 − x3]
dx

= 2x− 3x2 = 0

Finding the roots x1, x2, ..., xk

x = 2
3
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Do we have a Maximum or a Minimum

Second Derivative Test
The sign of the second derivative tells if each of those points is a
maximum or a minimum:

1 If d2f(xi)
dx2 > 0 for x = xithen xi is a minimum.

2 If d2f(xi)
dx2 < 0 for x = xithen xi is a maximum.
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Example

In our case
d2f (x)
dx2 = 2− 6x

Then
d2f

(
2
3

)
dx2 = 2− 6× 2

3 = 2− 4 = −2

Maximum Profit for the $1000.00 dollar Chip

$667.00
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What if d2f(xi)
dx2 = 0?

Question
If the second derivative is 0 in a critical point xi, then xi may or may not
be a minimum or a maximum of f . WHY?

We have for x3 − 3x2 + x− 2
With derivative

d2f (x)
dx2 = 6x− 6
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Actually a point where d2f(xi)
dx2 = 0

We have a change in the “curvature u d2f(x)
dx2 ”
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Properties of Differentiating

Generalization
To move to higher dimensional functions, we will require to take partial
derivatives!!!

Solving
A system of equations!!!

Remark
For a bounded D the only possible points of maximum/minimum are
critical or boundary ones, so, in principle, we can find the global extremum.
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Problems

A lot of them
Potential problems include transcendent equations, not solvable
analytically.
High cost of finding derivatives, especially in high dimensions (e.g. for
neural networks)

Thus
Partial Solution of the problems comes from a numerical technique called
the gradient descent

62 / 88



Images/cinvestav.jpg

Problems

A lot of them
Potential problems include transcendent equations, not solvable
analytically.
High cost of finding derivatives, especially in high dimensions (e.g. for
neural networks)

Thus
Partial Solution of the problems comes from a numerical technique called
the gradient descent

62 / 88



Images/cinvestav.jpg

Outline
1 Introduction

Why do we want optimization?

2 Hill Climbing
Basic Theory
Algorithm
Example, Travleing Sales Problem (TSP)
Enforced Hill Climbing

Problem with Dead-Ends

3 Simulated Annealing
Basic Idea
The Metropolis Acceptance Criterion
Algorithm

4 Gradient Descent
Introduction
Notes about Optimization
Numerical Method: Gradient Descent
Properties of the Gradient Descent
Gradient Descent Algorithm

63 / 88



Images/cinvestav.jpg

Numerical Method: Gradient Descent

Imagine the following
f is a smooth objective function.
Now you have a x0 state and you need to find the next one.

Something Notable
We want to find x in the neighborhood D of x0 such that

f (x) < f (x0)
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Taylor’s Expansion

Using the first order Taylor’s expansion around point x ∈ Rn for
f : Rn → R

f (x) = f (x0) +∇f (x0)T · (x− x0) +O
(
‖x− x0‖2

)

Note: Actually the Taylor’s expansions are polynomial
approximation to the function!!!
∇f (x) =

[
∂f(x)
∂x1

, ∂f(x)
∂x2

, ..., ∂f(x)
∂xn

]T
with

x = (x1, x2, ..., xn)T

If we can find a neighborhood D small enough
We can discard the terms of the second and higher orders because the
linear approximation is enough!!!
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How do we do this?
Simple

x = x0 + hu

where x0 and u are vectors and h is a constant.

Then we get

f (x0 + hu)− f (x0) = h∇f (x0)T · u + h2O (1)

We make h2 term insignificant by shrinking h
Thus, if we want to decrease f (x0 + hu)− f (x0) < 0 the fastest,
enforcing f (x0 + hu) < f (x0):

f (x0 + hu)− f (x0) ≈ h∇f (x0)T · u
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Then

We minimize

∇f (x0)T · u

Thus, the unit vector that minimize
In order to obtain the largest difference

u = − ∇f (x0)
‖∇f (x0)‖

Then

∇f (x0)T ×− ∇f (x0)
‖∇f (x0)‖ = −‖∇f (x0)‖ < 0
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Therefore

We have that

x = x0 + hu

= x0 − h
∇f (x0)
‖∇f (x0)‖

= x0 − h′∇f (x0)

With h′ = h
‖∇f(x0)‖
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1 Introduction

Why do we want optimization?

2 Hill Climbing
Basic Theory
Algorithm
Example, Travleing Sales Problem (TSP)
Enforced Hill Climbing

Problem with Dead-Ends

3 Simulated Annealing
Basic Idea
The Metropolis Acceptance Criterion
Algorithm

4 Gradient Descent
Introduction
Notes about Optimization
Numerical Method: Gradient Descent
Properties of the Gradient Descent
Gradient Descent Algorithm
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Gradient Descent

In the method of Gradient descent, we have a cost function J (w)
where

w (n+ 1) = w (n)− η∇J (w (n))

How, we prove that J (w (n+ 1)) < J (w (n))?
We use the first-order Taylor series expansion around w (n)

J (w (n+ 1)) ≈ J (w (n)) +∇JT (w (n)) ∆w (n) (2)

Remark: This is quite true when the step size is quite small!!! In
addition, ∆w (n) = w (n+ 1)−w (n)
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Why? Look at the case in R

The equation of the tangent line to the curve y = J (w (n))

L (w (n)) = J ′ (w (n)) [w (n+ 1)− w (n)] + J (w (n)) (3)

Example
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Thus, we have that in R

Remember Something quite Classic

tan θ =J (w (n+ 1))− J (w (n))
w (n+ 1)− w (n)

tan θ (w (n+ 1)− w (n)) =J (w (n+ 1))− J (w (n))
J ′ (w (n)) (w (n+ 1)− w (n)) = J (w (n+ 1))− J (w (n))
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Thus, we have that

Using the First Taylor expansion

J (w (n)) ≈ J (w (n)) + J ′ (w (n)) [w (n+ 1)− w (n)] (4)
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Now, for Many Variables

An hyperplane in Rn is a set of the form

H =
{

x|aT x = b
}

(5)

Given x ∈ H and x0 ∈ H

b = aT x = aT x0

Thus, we have that

H =
{

x|aT (x− x0) = 0
}
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Thus, we have the following definition

Definition (Differentiability)
Assume that J is defined in a disk D containing w (n). We say that J is
differentiable at w (n) if:

1 ∂J(w(n))
∂wi

exist for all i = 1, ..., n.
2 J is locally linear at w (n).
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Thus, given J (w (n))

We know that we have the following operator

∇ =
(

∂

∂w1
,
∂

∂w2
, ...,

∂

∂wm

)
(6)

Thus, we have

∇J (w (n)) =
(
∂J (w (n))

∂w1
,
∂J (w (n))

∂w2
, ...,

∂J (w (n))
∂wm

)
=

m∑
i=1

ŵi
∂J (w (n))

∂wi

Where: ŵT
i = (1, 0, ..., 0) ∈ R
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Now

Given a curve function r (t) that lies on the level set J (w (n)) = c
(When is in R3)
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Level Set

Definition

{(w1, w2, ..., wm) ∈ Rm|J (w1, w2, ..., wm) = c} (7)

Remark: In a normal Calculus course we will use x and f instead of w
and J .
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Where
Any curve has the following parametrization

r : [a, b]→ Rm

r(t) = (w1 (t) , ..., wm (t))

With r(n+ 1) = (w1 (n+ 1) , ..., wm (n+ 1))

We can write the parametrized version of it

z(t) = J (w1 (t) , w2 (t) , ..., wm (t)) = c (8)

Differentiating with respect to t and using the chain rule for multiple
variables

dz(t)
dt

=
m∑

i=1

∂J (w (t))
∂wi

· dwi(t)
dt

= 0 (9)
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Note

First
Given y = f (u) = (f1 (u) , ..., fl (u)) and
u = g (x) = (g1 (x) , ..., gm (x)).

We have then that
∂ (f1, f2, ..., fl)
∂ (x1, x2, ..., xk) = ∂ (f1, f2, ..., fl)

∂ (g1, g2, ..., gm) ·
∂ (g1, g2, ..., gm)
∂ (x1, x2, ..., xk) (10)

Thus
∂ (f1, f2, ..., fl)

∂xi
= ∂ (f1, f2, ..., fl)
∂ (g1, g2, ..., gm) ·

∂ (g1, g2, ..., gm)
∂xi

=
m∑

k=1

∂ (f1, f2, ..., fl)
∂gk

∂gk

∂xi
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Thus

Evaluating at t = n
m∑

i=1

∂J (w (n))
∂wi

· dwi(n)
dt

= 0

We have that

∇J (w (n)) · r′ (n) = 0 (11)

This proves that for every level set the gradient is perpendicular to
the tangent to any curve that lies on the level set
In particular to the point w (n).
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Now the tangent plane to the surface can be described
generally

Thus
L (w (n+ 1)) = J (w (n)) +∇JT (w (n)) [w (n+ 1)−w (n)] (12)

This looks like
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Proving the fact about the Gradient Descent

We want the following

J (w (n+ 1)) < J (w (n))

Using the first-order Taylor approximation

J (w (n+ 1))− J (w (n)) ≈ ∇JT (w (n)) ∆w (n)

So, we ask the following

∆w (n) ≈ −η∇J (w (n)) with η > 0
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Then

We have that

J (w (n+ 1))− J (w (n)) ≈ −η∇JT (w (n))∇J (w (n)) = −η ‖∇J (w (n))‖2

Thus

J (w (n+ 1))− J (w (n)) < 0

Or

J (w (n+ 1)) < J (w (n))
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Algorithm of Gradient Descent

Initialization
1 Guess an init point x0
2 Use a Nmax iteration count
3 A gradient norm tolerance εg to know if we have arrived to a critical

point.
4 A step tolerance εx to know if we have done significant progress
5 αt is known as the step size.

1 It is chosen to maintain a balance between convergence speed and
avoiding divergence.
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Finally

Gradient_Descent(x0, Nmax, εg, εt, αt)
1 for t = 0, 1, 2, ..., Nmax
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IMPORTANT

I forgot to mention something
∇f (x) give us the direction of the fastest change at x.

Observations
Gradient descent can only work if at least we can differentiate the
cost function
Gradient descent gets bottled up in local minima or maxima
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