
Artificial Intelligence
Informed Optimal Search

Andres Mendez-Vazquez

January 23, 2019

1 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

2 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

3 / 97

What is an Heuristic? [1]

Heuristic
It is possible to use domain-dependent knowledge to capture
information about the problem

4 / 97

Updating Function

We have the following Cost function

f : V −→ R with f = g + h

Where
V is the state space of the search

f (u) = g (u) + h (u)
g(u) is the weight of the (current optimal) path from s to u.
h(u) is an estimate (lower bound) of the remaining costs from u to a goal, the
heuristic function.

5 / 97

Updating Function

We have the following Cost function

f : V −→ R with f = g + h

Where
V is the state space of the search

f (u) = g (u) + h (u)
g(u) is the weight of the (current optimal) path from s to u.
h(u) is an estimate (lower bound) of the remaining costs from u to a goal, the
heuristic function.

5 / 97

Updating Function

We have the following Cost function

f : V −→ R with f = g + h

Where
V is the state space of the search

f (u) = g (u) + h (u)
g(u) is the weight of the (current optimal) path from s to u.
h(u) is an estimate (lower bound) of the remaining costs from u to a goal, the
heuristic function.

5 / 97

Updating Function

We have the following Cost function

f : V −→ R with f = g + h

Where
V is the state space of the search

f (u) = g (u) + h (u)
g(u) is the weight of the (current optimal) path from s to u.
h(u) is an estimate (lower bound) of the remaining costs from u to a goal, the
heuristic function.

5 / 97

Graphically, we have

We have then

s

6 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

7 / 97

Formal Definition

Definition
Given the weighted state space problem, G = (V,E, s, T, w).

I A heuristic h is a node evaluation function, mapping h : V → R+ .

8 / 97

Example quite simplified!!!

No Information

Figure: The states are uniform no information h (u) = 0

9 / 97

Example

More Information

Figure: Some Information

10 / 97

Formal Definition

Total Information - Follow the heuristic

Figure: Total information

11 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

12 / 97

Desirable Properties of a Heuristic

Definition 1.8
An estimate h is an admissible heuristic if it is a lower bound for the
optimal solution costs; that is, h(u) ≤ δ(u, T) for all u ∈ V .

13 / 97

Example

Tile Game

1

2

3

45

6

7

89

10

11 1213

14

15

Figure: A game where the player can move tiles Up, Down, Left and Right to an
empty spot

14 / 97

Example

Movements in the Tile Game

1 3 4

6

9

13 14 15

8

1211

Figure: A game where the player can move tiles Up, Down, Left and Right to an
empty spot

15 / 97

Example

Goal State of the Tile Game

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure: Goal State

16 / 97

Examples of Admissible Heuristics for the Tile Game

Hamming Distance
The Hamming distance is the total number of misplaced tiles.

Using the Manhattan distance

d1 (x,y) = ‖x− y‖1 =
n∑
i=1
|xi − yi| (1)

With x,y ∈ Rn.

17 / 97

Examples of Admissible Heuristics for the Tile Game

Hamming Distance
The Hamming distance is the total number of misplaced tiles.

Using the Manhattan distance

d1 (x,y) = ‖x− y‖1 =
n∑
i=1
|xi − yi| (1)

With x,y ∈ Rn.

17 / 97

Examples of Admissible Heuristics for the Tile Game

Thus, we have the following heuristic

h (v) =
∑
i∈v

d (tilei position, correct position of tilei) (2)

Where

d (tilei, correct position of tilei) =
∣∣∣x(i)

1 − y
(i)
1

∣∣∣+ ∣∣∣x(i)
2 − y

(i)
2

∣∣∣ (3)

With
tilei position = (x1, x2)t ∈ N2

correct position of tilei =
(
y

(i)
1 , y

(i)
2

)t
∈ N2

18 / 97

Examples of Admissible Heuristics for the Tile Game

Thus, we have the following heuristic

h (v) =
∑
i∈v

d (tilei position, correct position of tilei) (2)

Where

d (tilei, correct position of tilei) =
∣∣∣x(i)

1 − y
(i)
1

∣∣∣+ ∣∣∣x(i)
2 − y

(i)
2

∣∣∣ (3)

With
tilei position = (x1, x2)t ∈ N2

correct position of tilei =
(
y

(i)
1 , y

(i)
2

)t
∈ N2

18 / 97

Examples of Admissible Heuristics for the Tile Game

Thus, we have the following heuristic

h (v) =
∑
i∈v

d (tilei position, correct position of tilei) (2)

Where

d (tilei, correct position of tilei) =
∣∣∣x(i)

1 − y
(i)
1

∣∣∣+ ∣∣∣x(i)
2 − y

(i)
2

∣∣∣ (3)

With
tilei position = (x1, x2)t ∈ N2

correct position of tilei =
(
y

(i)
1 , y

(i)
2

)t
∈ N2

18 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

19 / 97

Desirable Properties of a Heuristic

Definition 1.9 (Consistency and Monotonicity)
Let G = (V,E, s, T, w) be a weighted state space problem graph.

1 A goal estimate h is a consistent heuristic if h(u) ≤ h(v) + w(u, v)
for all edges e = (u, v) ∈ E.

2 Let (u0, ..., uk) be any path, g (ui) be the path cost of (u0, ..., ui), and
define f (ui) = g (ui) + h (ui).

1 A goal estimate h is a monotone heuristic if f (ui) ≤ f (uj) for all
i < j, 0 ≤ i, j ≤ k.

20 / 97

Desirable Properties of a Heuristic

Definition 1.9 (Consistency and Monotonicity)
Let G = (V,E, s, T, w) be a weighted state space problem graph.

1 A goal estimate h is a consistent heuristic if h(u) ≤ h(v) + w(u, v)
for all edges e = (u, v) ∈ E.

2 Let (u0, ..., uk) be any path, g (ui) be the path cost of (u0, ..., ui), and
define f (ui) = g (ui) + h (ui).

1 A goal estimate h is a monotone heuristic if f (ui) ≤ f (uj) for all
i < j, 0 ≤ i, j ≤ k.

20 / 97

Desirable Properties of a Heuristic

Definition 1.9 (Consistency and Monotonicity)
Let G = (V,E, s, T, w) be a weighted state space problem graph.

1 A goal estimate h is a consistent heuristic if h(u) ≤ h(v) + w(u, v)
for all edges e = (u, v) ∈ E.

2 Let (u0, ..., uk) be any path, g (ui) be the path cost of (u0, ..., ui), and
define f (ui) = g (ui) + h (ui).

1 A goal estimate h is a monotone heuristic if f (ui) ≤ f (uj) for all
i < j, 0 ≤ i, j ≤ k.

20 / 97

Desirable Properties of a Heuristic

Definition 1.9 (Consistency and Monotonicity)
Let G = (V,E, s, T, w) be a weighted state space problem graph.

1 A goal estimate h is a consistent heuristic if h(u) ≤ h(v) + w(u, v)
for all edges e = (u, v) ∈ E.

2 Let (u0, ..., uk) be any path, g (ui) be the path cost of (u0, ..., ui), and
define f (ui) = g (ui) + h (ui).

1 A goal estimate h is a monotone heuristic if f (ui) ≤ f (uj) for all
i < j, 0 ≤ i, j ≤ k.

20 / 97

Equivalence between Consistency and Monotonicity

Theorem 1.1 (Equivalence between Consistency and Monotonicity)
A heuristic is consistent if and only if it is monotone.

Proof
For two subsequent states ui−1 and ui on a path (u0, u1, ..., uk)

21 / 97

Equivalence between Consistency and Monotonicity

Theorem 1.1 (Equivalence between Consistency and Monotonicity)
A heuristic is consistent if and only if it is monotone.

Proof
For two subsequent states ui−1 and ui on a path (u0, u1, ..., uk)

21 / 97

Proof

We have

f (ui) = g (ui) + h (ui)
= g (ui−1) + w (ui−1, ui) + h (ui)
≥ g (ui−1) + h (ui−1)
= f (ui−1)

22 / 97

Proof

We have

f (ui) = g (ui) + h (ui)
= g (ui−1) + w (ui−1, ui) + h (ui)
≥ g (ui−1) + h (ui−1)
= f (ui−1)

22 / 97

Proof

We have

f (ui) = g (ui) + h (ui)
= g (ui−1) + w (ui−1, ui) + h (ui)
≥ g (ui−1) + h (ui−1)
= f (ui−1)

22 / 97

Proof

We have

f (ui) = g (ui) + h (ui)
= g (ui−1) + w (ui−1, ui) + h (ui)
≥ g (ui−1) + h (ui−1)
= f (ui−1)

22 / 97

Consistent Estimates are Admissible

Theorem 1.2 (Consistency and Admissibility)
Consistent estimates are admissible.

Proof
if h is consistent we have that h (u)− h (v) ≤ w (u, v) for all
(u, v) ∈ E
Let p = (v0, ..., vk) be any path from u = v0 to t = vk

23 / 97

Consistent Estimates are Admissible

Theorem 1.2 (Consistency and Admissibility)
Consistent estimates are admissible.

Proof
if h is consistent we have that h (u)− h (v) ≤ w (u, v) for all
(u, v) ∈ E
Let p = (v0, ..., vk) be any path from u = v0 to t = vk

23 / 97

Consistent Estimates are Admissible

Theorem 1.2 (Consistency and Admissibility)
Consistent estimates are admissible.

Proof
if h is consistent we have that h (u)− h (v) ≤ w (u, v) for all
(u, v) ∈ E
Let p = (v0, ..., vk) be any path from u = v0 to t = vk

23 / 97

Proof

We have

w (p) =
k−1∑
i=1

w (vi, vi+1)

≥
k−1∑
i=1

(h (vi)− h (vi+1))

= h (u)− h (v)
= h (u)

24 / 97

Proof

We have

w (p) =
k−1∑
i=1

w (vi, vi+1)

≥
k−1∑
i=1

(h (vi)− h (vi+1))

= h (u)− h (v)
= h (u)

24 / 97

Proof

We have

w (p) =
k−1∑
i=1

w (vi, vi+1)

≥
k−1∑
i=1

(h (vi)− h (vi+1))

= h (u)− h (v)
= h (u)

24 / 97

Proof

We have

w (p) =
k−1∑
i=1

w (vi, vi+1)

≥
k−1∑
i=1

(h (vi)− h (vi+1))

= h (u)− h (v)
= h (u)

24 / 97

Proof

This is also true in the important case of p being optimal

h (u) ≤ δ (u, T) (4)

25 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

26 / 97

Dominance

In Heuristics
Given h1, h2 admissible heuristics. If h1 (n) ≤ h2 (n), then h2 dominates
h1.

Given that we want
h an admissible heuristic such that h(u) ≤ δ(u, T) for all u ∈ V .

27 / 97

Dominance

In Heuristics
Given h1, h2 admissible heuristics. If h1 (n) ≤ h2 (n), then h2 dominates
h1.

Given that we want
h an admissible heuristic such that h(u) ≤ δ(u, T) for all u ∈ V .

27 / 97

Better Lower Approximation

Thus
Given the dominance and admissibility:

h1 (n) ≤ h2 (n) ≤ δ (u, T) (5)

Therefore
We have a better approximation to the real solution using the heuristic h2
than h1 .

Drawback
This has a problem!!! If the problem is NP-Complete!!!

Thus, the calculation of h2 may be more expansive than the
calculation of h1.

28 / 97

Better Lower Approximation

Thus
Given the dominance and admissibility:

h1 (n) ≤ h2 (n) ≤ δ (u, T) (5)

Therefore
We have a better approximation to the real solution using the heuristic h2
than h1 .

Drawback
This has a problem!!! If the problem is NP-Complete!!!

Thus, the calculation of h2 may be more expansive than the
calculation of h1.

28 / 97

Better Lower Approximation

Thus
Given the dominance and admissibility:

h1 (n) ≤ h2 (n) ≤ δ (u, T) (5)

Therefore
We have a better approximation to the real solution using the heuristic h2
than h1 .

Drawback
This has a problem!!! If the problem is NP-Complete!!!

Thus, the calculation of h2 may be more expansive than the
calculation of h1.

28 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

29 / 97

The most prominent heuristic search algorithm is A*.

This algorithm uses the estimate

f (u) = g (u) + h (u) (6)

That requires
A way to keep a priority!!

Thus
1 Open a MIN priority queue.
2 Closed is a set

30 / 97

The most prominent heuristic search algorithm is A*.

This algorithm uses the estimate

f (u) = g (u) + h (u) (6)

That requires
A way to keep a priority!!

Thus
1 Open a MIN priority queue.
2 Closed is a set

30 / 97

The most prominent heuristic search algorithm is A*.

This algorithm uses the estimate

f (u) = g (u) + h (u) (6)

That requires
A way to keep a priority!!

Thus
1 Open a MIN priority queue.
2 Closed is a set

30 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

31 / 97

Pseudo-Code

Procedure A*
Input: Implicit graph with start node s, weight function w, heuristic h, function Expand and Predicate Goal

Output: Optimal path from s to t ∈ T , or ∅.

1 Closed = ∅
2 Insert(Open, s)
3 f (s) = h (s)
4 while (Open 6= ∅)
5 u = remove MINf(u) (Open)
6 Closed = Closed ∪ {u}
7 if (Goal(u)) return Path (u)
8 else Succ (u) = Expand (u)
9 for each v in Succ (u)
10 Improve(u, v)
11 return ∅

32 / 97

Pseudo-Code

Procedure A*
Input: Implicit graph with start node s, weight function w, heuristic h, function Expand and Predicate Goal

Output: Optimal path from s to t ∈ T , or ∅.

1 Closed = ∅
2 Insert(Open, s)
3 f (s) = h (s)
4 while (Open 6= ∅)
5 u = remove MINf(u) (Open)
6 Closed = Closed ∪ {u}
7 if (Goal(u)) return Path (u)
8 else Succ (u) = Expand (u)
9 for each v in Succ (u)
10 Improve(u, v)
11 return ∅

32 / 97

Pseudo-Code

Procedure A*
Input: Implicit graph with start node s, weight function w, heuristic h, function Expand and Predicate Goal

Output: Optimal path from s to t ∈ T , or ∅.

1 Closed = ∅
2 Insert(Open, s)
3 f (s) = h (s)
4 while (Open 6= ∅)
5 u = remove MINf(u) (Open)
6 Closed = Closed ∪ {u}
7 if (Goal(u)) return Path (u)
8 else Succ (u) = Expand (u)
9 for each v in Succ (u)
10 Improve(u, v)
11 return ∅

32 / 97

Pseudo-Code

Procedure A*
Input: Implicit graph with start node s, weight function w, heuristic h, function Expand and Predicate Goal

Output: Optimal path from s to t ∈ T , or ∅.

1 Closed = ∅
2 Insert(Open, s)
3 f (s) = h (s)
4 while (Open 6= ∅)
5 u = remove MINf(u) (Open)
6 Closed = Closed ∪ {u}
7 if (Goal(u)) return Path (u)
8 else Succ (u) = Expand (u)
9 for each v in Succ (u)
10 Improve(u, v)
11 return ∅

32 / 97

Procedure Improve

Procedure Improve
Input: Node u and v, v successor of u

Effects: Update parent of v, f (v),
Open and Closed

1. if v ∈ Open ⇒Node generated but not
expanded

2. if (g (u, v) + w (u, v) < g (v))

3. parent (v) = u

4. f (v) = g (u) + w (u, v) + h (v)

5. else if v ∈ Closed ⇒Node already expanded

6. if (g (u, v) + w (u, v) < g (v))

7. parent (v) = u

8. f (v) = g (u) + w (u, v) + h (v)

9. Closed = Closed− {v}

10. Insert(Open, v)

11. else⇒Node not seen before

12. parent (v) = u

13. Initialize f (v) = g (u) + w (u, v) + h (v)

14. Insert(Open, v) with f (v)

33 / 97

Procedure Improve

Procedure Improve
Input: Node u and v, v successor of u

Effects: Update parent of v, f (v),
Open and Closed

1. if v ∈ Open ⇒Node generated but not
expanded

2. if (g (u, v) + w (u, v) < g (v))

3. parent (v) = u

4. f (v) = g (u) + w (u, v) + h (v)

5. else if v ∈ Closed ⇒Node already expanded

6. if (g (u, v) + w (u, v) < g (v))

7. parent (v) = u

8. f (v) = g (u) + w (u, v) + h (v)

9. Closed = Closed− {v}

10. Insert(Open, v)

11. else⇒Node not seen before

12. parent (v) = u

13. Initialize f (v) = g (u) + w (u, v) + h (v)

14. Insert(Open, v) with f (v)

33 / 97

Procedure Improve

Procedure Improve
Input: Node u and v, v successor of u

Effects: Update parent of v, f (v),
Open and Closed

1. if v ∈ Open ⇒Node generated but not
expanded

2. if (g (u, v) + w (u, v) < g (v))

3. parent (v) = u

4. f (v) = g (u) + w (u, v) + h (v)

5. else if v ∈ Closed ⇒Node already expanded

6. if (g (u, v) + w (u, v) < g (v))

7. parent (v) = u

8. f (v) = g (u) + w (u, v) + h (v)

9. Closed = Closed− {v}

10. Insert(Open, v)

11. else⇒Node not seen before

12. parent (v) = u

13. Initialize f (v) = g (u) + w (u, v) + h (v)

14. Insert(Open, v) with f (v)

33 / 97

A* Example

We can use our previous example

S

E

34 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

35 / 97

Thus!!! We like consistency in A*

Theorem 2.9 (A* for Consistent Heuristics)
Let h be consistent. If we set f(s) = h(s) for the initial node s and
update f(v) with f(u) + ŵ(u, v), where
ŵ(u, v) = h (v)− h(u) + w (u, v), instead of f(u) + w(u, v), at each
time a node t ∈ T is selected, we have f(t) = δ(s, t).

36 / 97

Proof

First h is consistent
The, we have that h (u) ≤ h (v) + w (u, v)

Therefore
We have the difference

ŵ (u, v) = w (u, v) + h (v)− h (u) ≥ 0 (7)

Thus, given the
Given the recasting of A* as Disjkstra’s Algorithm with weights
ŵ (u, v) ≥ 0.

37 / 97

Proof

First h is consistent
The, we have that h (u) ≤ h (v) + w (u, v)

Therefore
We have the difference

ŵ (u, v) = w (u, v) + h (v)− h (u) ≥ 0 (7)

Thus, given the
Given the recasting of A* as Disjkstra’s Algorithm with weights
ŵ (u, v) ≥ 0.

37 / 97

Proof

First h is consistent
The, we have that h (u) ≤ h (v) + w (u, v)

Therefore
We have the difference

ŵ (u, v) = w (u, v) + h (v)− h (u) ≥ 0 (7)

Thus, given the
Given the recasting of A* as Disjkstra’s Algorithm with weights
ŵ (u, v) ≥ 0.

37 / 97

Proof

We have that for a shortest path 〈s = p0, p1, ..., u = pn〉 under ŵ with

f (p1) = ŵ(p0, p1) + h (s) (8)

Thus

f (pn) = ŵ (pn, pn−1) + ...+ ŵ (p2, p1) + ŵ (p1, p0)︸ ︷︷ ︸
δ̂(s,u)

+ h (s) (9)

Given that once the shortest path is achieved, it does not change
(Lemma 2.3)

f (u) = δ̂ (s, u) + h (s) (10)

38 / 97

Proof

We have that for a shortest path 〈s = p0, p1, ..., u = pn〉 under ŵ with

f (p1) = ŵ(p0, p1) + h (s) (8)

Thus

f (pn) = ŵ (pn, pn−1) + ...+ ŵ (p2, p1) + ŵ (p1, p0)︸ ︷︷ ︸
δ̂(s,u)

+ h (s) (9)

Given that once the shortest path is achieved, it does not change
(Lemma 2.3)

f (u) = δ̂ (s, u) + h (s) (10)

38 / 97

Proof

We have that for a shortest path 〈s = p0, p1, ..., u = pn〉 under ŵ with

f (p1) = ŵ(p0, p1) + h (s) (8)

Thus

f (pn) = ŵ (pn, pn−1) + ...+ ŵ (p2, p1) + ŵ (p1, p0)︸ ︷︷ ︸
δ̂(s,u)

+ h (s) (9)

Given that once the shortest path is achieved, it does not change
(Lemma 2.3)

f (u) = δ̂ (s, u) + h (s) (10)

38 / 97

Proof

Hence, if t ∈ T is selected from Open and 〈s = p0, p1, ..., t = pn〉

f (t) = δ̂ (s, t) + h (s)

=
n∑
i=1

ŵ (pi, pi−1) + h (s)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)] + h (s)

=
n∑
i=1

w (pi−1, pn) + h (t)− h (s) + h (s) (Telescopic Sum)

=
n∑
i=1

w (pi−1, pn) (h (t) = 0)

= δ (s, t)

39 / 97

Proof

Hence, if t ∈ T is selected from Open and 〈s = p0, p1, ..., t = pn〉

f (t) = δ̂ (s, t) + h (s)

=
n∑
i=1

ŵ (pi, pi−1) + h (s)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)] + h (s)

=
n∑
i=1

w (pi−1, pn) + h (t)− h (s) + h (s) (Telescopic Sum)

=
n∑
i=1

w (pi−1, pn) (h (t) = 0)

= δ (s, t)

39 / 97

Proof

Hence, if t ∈ T is selected from Open and 〈s = p0, p1, ..., t = pn〉

f (t) = δ̂ (s, t) + h (s)

=
n∑
i=1

ŵ (pi, pi−1) + h (s)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)] + h (s)

=
n∑
i=1

w (pi−1, pn) + h (t)− h (s) + h (s) (Telescopic Sum)

=
n∑
i=1

w (pi−1, pn) (h (t) = 0)

= δ (s, t)

39 / 97

Proof

Hence, if t ∈ T is selected from Open and 〈s = p0, p1, ..., t = pn〉

f (t) = δ̂ (s, t) + h (s)

=
n∑
i=1

ŵ (pi, pi−1) + h (s)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)] + h (s)

=
n∑
i=1

w (pi−1, pn) + h (t)− h (s) + h (s) (Telescopic Sum)

=
n∑
i=1

w (pi−1, pn) (h (t) = 0)

= δ (s, t)

39 / 97

Proof

Hence, if t ∈ T is selected from Open and 〈s = p0, p1, ..., t = pn〉

f (t) = δ̂ (s, t) + h (s)

=
n∑
i=1

ŵ (pi, pi−1) + h (s)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)] + h (s)

=
n∑
i=1

w (pi−1, pn) + h (t)− h (s) + h (s) (Telescopic Sum)

=
n∑
i=1

w (pi−1, pn) (h (t) = 0)

= δ (s, t)

39 / 97

Proof

Hence, if t ∈ T is selected from Open and 〈s = p0, p1, ..., t = pn〉

f (t) = δ̂ (s, t) + h (s)

=
n∑
i=1

ŵ (pi, pi−1) + h (s)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)] + h (s)

=
n∑
i=1

w (pi−1, pn) + h (t)− h (s) + h (s) (Telescopic Sum)

=
n∑
i=1

w (pi−1, pn) (h (t) = 0)

= δ (s, t)

39 / 97

Finally

Since
ŵ ≥ 0, we have f (v) ≥ f (u) for all successors v of u.

Given that we take a less restrictive condition for a graph with
negative weights

δ (u, T) = min {δ (u, t) |t ∈ T} ≥ 0 ∀u (11)

Then
The f−values increases monotonically so that at the first extraction
of t ∈ T :

δ (s, t) = δ (s, T) . (12)

40 / 97

Finally

Since
ŵ ≥ 0, we have f (v) ≥ f (u) for all successors v of u.

Given that we take a less restrictive condition for a graph with
negative weights

δ (u, T) = min {δ (u, t) |t ∈ T} ≥ 0 ∀u (11)

Then
The f−values increases monotonically so that at the first extraction
of t ∈ T :

δ (s, t) = δ (s, T) . (12)

40 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

41 / 97

Remember!!!
Lemma 2.3

Let G be a weighted problem graph and h : V → R. Define the
modified weight ŵ (u, v) as

ŵ (u, v) = w (u, v)− h (u) + h (v) (13)

Let δ (s, t) be the length of the shortest path from s to t in the
original graph and δ̂ (s, t) be the corresponding in the reweighed
graph.

1 For a path p, we have w (p) = δ (s, t) if and only if ŵ (u, v) = δ̂ (s, t).
2 In addition, G has no negatively weighted cycles with respect to w if

and only if it has none with respect ŵ.

Proof
It can be found at the Johnson’s Algorithm part in “All-Pairs Shortest
Path.”

42 / 97

Remember!!!
Lemma 2.3

Let G be a weighted problem graph and h : V → R. Define the
modified weight ŵ (u, v) as

ŵ (u, v) = w (u, v)− h (u) + h (v) (13)

Let δ (s, t) be the length of the shortest path from s to t in the
original graph and δ̂ (s, t) be the corresponding in the reweighed
graph.

1 For a path p, we have w (p) = δ (s, t) if and only if ŵ (u, v) = δ̂ (s, t).
2 In addition, G has no negatively weighted cycles with respect to w if

and only if it has none with respect ŵ.

Proof
It can be found at the Johnson’s Algorithm part in “All-Pairs Shortest
Path.”

42 / 97

Remember!!!
Lemma 2.3

Let G be a weighted problem graph and h : V → R. Define the
modified weight ŵ (u, v) as

ŵ (u, v) = w (u, v)− h (u) + h (v) (13)

Let δ (s, t) be the length of the shortest path from s to t in the
original graph and δ̂ (s, t) be the corresponding in the reweighed
graph.

1 For a path p, we have w (p) = δ (s, t) if and only if ŵ (u, v) = δ̂ (s, t).
2 In addition, G has no negatively weighted cycles with respect to w if

and only if it has none with respect ŵ.

Proof
It can be found at the Johnson’s Algorithm part in “All-Pairs Shortest
Path.”

42 / 97

Remember!!!
Lemma 2.3

Let G be a weighted problem graph and h : V → R. Define the
modified weight ŵ (u, v) as

ŵ (u, v) = w (u, v)− h (u) + h (v) (13)

Let δ (s, t) be the length of the shortest path from s to t in the
original graph and δ̂ (s, t) be the corresponding in the reweighed
graph.

1 For a path p, we have w (p) = δ (s, t) if and only if ŵ (u, v) = δ̂ (s, t).
2 In addition, G has no negatively weighted cycles with respect to w if

and only if it has none with respect ŵ.

Proof
It can be found at the Johnson’s Algorithm part in “All-Pairs Shortest
Path.”

42 / 97

Remember!!!
Lemma 2.3

Let G be a weighted problem graph and h : V → R. Define the
modified weight ŵ (u, v) as

ŵ (u, v) = w (u, v)− h (u) + h (v) (13)

Let δ (s, t) be the length of the shortest path from s to t in the
original graph and δ̂ (s, t) be the corresponding in the reweighed
graph.

1 For a path p, we have w (p) = δ (s, t) if and only if ŵ (u, v) = δ̂ (s, t).
2 In addition, G has no negatively weighted cycles with respect to w if

and only if it has none with respect ŵ.

Proof
It can be found at the Johnson’s Algorithm part in “All-Pairs Shortest
Path.”

42 / 97

Lemma

Lemma 2.4 - Toward Admissibility
Let G be a weighted problem graph, h be a heuristic, and
ŵ(u, v) = h (v)− h(u) + w (u, v). If h is admissible, then
δ̂ (u, T) ≥ 0.

Proof
Since h (t) = 0 and the shortest path costs remains invariant under
re-weighting of G by Lemma 2.3, we have...

43 / 97

Lemma

Lemma 2.4 - Toward Admissibility
Let G be a weighted problem graph, h be a heuristic, and
ŵ(u, v) = h (v)− h(u) + w (u, v). If h is admissible, then
δ̂ (u, T) ≥ 0.

Proof
Since h (t) = 0 and the shortest path costs remains invariant under
re-weighting of G by Lemma 2.3, we have...

43 / 97

Proof

By the definition of δ̂ (u, T)

δ̂ (u, T) = min
{
δ̂ (u, t) |t ∈ T

}
= min {δ (u, t)− h (u) + h (t) |t ∈ T}

Because the telescopic sum

δ̂ (u, t) =
n∑
i=1

ŵ (pi, pi−1)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)]

= δ (u, t) + h (t)− h (u)

44 / 97

Proof

By the definition of δ̂ (u, T)

δ̂ (u, T) = min
{
δ̂ (u, t) |t ∈ T

}
= min {δ (u, t)− h (u) + h (t) |t ∈ T}

Because the telescopic sum

δ̂ (u, t) =
n∑
i=1

ŵ (pi, pi−1)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)]

= δ (u, t) + h (t)− h (u)

44 / 97

Proof

By the definition of δ̂ (u, T)

δ̂ (u, T) = min
{
δ̂ (u, t) |t ∈ T

}
= min {δ (u, t)− h (u) + h (t) |t ∈ T}

Because the telescopic sum

δ̂ (u, t) =
n∑
i=1

ŵ (pi, pi−1)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)]

= δ (u, t) + h (t)− h (u)

44 / 97

Proof

By the definition of δ̂ (u, T)

δ̂ (u, T) = min
{
δ̂ (u, t) |t ∈ T

}
= min {δ (u, t)− h (u) + h (t) |t ∈ T}

Because the telescopic sum

δ̂ (u, t) =
n∑
i=1

ŵ (pi, pi−1)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)]

= δ (u, t) + h (t)− h (u)

44 / 97

Proof

By the definition of δ̂ (u, T)

δ̂ (u, T) = min
{
δ̂ (u, t) |t ∈ T

}
= min {δ (u, t)− h (u) + h (t) |t ∈ T}

Because the telescopic sum

δ̂ (u, t) =
n∑
i=1

ŵ (pi, pi−1)

=
n∑
i=1

w (pi, pi−1) +
n∑
i=1

[h (pi)− h (pi−1)]

= δ (u, t) + h (t)− h (u)

44 / 97

Proof

Therefore

δ̂ (u, T) = min {δ (u, t)− h (u) |t ∈ T}
= min {δ (u, t) |t ∈ T} − h (u)
= δ (u, T)− h (u) ≥ 0 Q.E.D.

45 / 97

Proof

Therefore

δ̂ (u, T) = min {δ (u, t)− h (u) |t ∈ T}
= min {δ (u, t) |t ∈ T} − h (u)
= δ (u, T)− h (u) ≥ 0 Q.E.D.

45 / 97

Proof

Therefore

δ̂ (u, T) = min {δ (u, t)− h (u) |t ∈ T}
= min {δ (u, t) |t ∈ T} − h (u)
= δ (u, T)− h (u) ≥ 0 Q.E.D.

45 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

46 / 97

Now

Something Notable
Given a graph with non-negative weights we have that Dijkstra’s
algorithms is optimal (Theorem 2.1).

But in negative weighted graphs
Negatively weighted graphs may contain negatively weighted cycles!!!

I Thus, we can handle this situation by using the Bellman-Ford
Algorithm.

But we can use a less restrictive condition
1 To define a new Improve for the new Extended Dijkstra.

1 Look at page 57 Edelkamp
2 And a Lemma about the Invariance of the Extended Dijkstra.

47 / 97

Now

Something Notable
Given a graph with non-negative weights we have that Dijkstra’s
algorithms is optimal (Theorem 2.1).

But in negative weighted graphs
Negatively weighted graphs may contain negatively weighted cycles!!!

I Thus, we can handle this situation by using the Bellman-Ford
Algorithm.

But we can use a less restrictive condition
1 To define a new Improve for the new Extended Dijkstra.

1 Look at page 57 Edelkamp
2 And a Lemma about the Invariance of the Extended Dijkstra.

47 / 97

Now

Something Notable
Given a graph with non-negative weights we have that Dijkstra’s
algorithms is optimal (Theorem 2.1).

But in negative weighted graphs
Negatively weighted graphs may contain negatively weighted cycles!!!

I Thus, we can handle this situation by using the Bellman-Ford
Algorithm.

But we can use a less restrictive condition
1 To define a new Improve for the new Extended Dijkstra.

1 Look at page 57 Edelkamp
2 And a Lemma about the Invariance of the Extended Dijkstra.

47 / 97

Now

Something Notable
Given a graph with non-negative weights we have that Dijkstra’s
algorithms is optimal (Theorem 2.1).

But in negative weighted graphs
Negatively weighted graphs may contain negatively weighted cycles!!!

I Thus, we can handle this situation by using the Bellman-Ford
Algorithm.

But we can use a less restrictive condition
1 To define a new Improve for the new Extended Dijkstra.

1 Look at page 57 Edelkamp
2 And a Lemma about the Invariance of the Extended Dijkstra.

47 / 97

Now

Something Notable
Given a graph with non-negative weights we have that Dijkstra’s
algorithms is optimal (Theorem 2.1).

But in negative weighted graphs
Negatively weighted graphs may contain negatively weighted cycles!!!

I Thus, we can handle this situation by using the Bellman-Ford
Algorithm.

But we can use a less restrictive condition
1 To define a new Improve for the new Extended Dijkstra.

1 Look at page 57 Edelkamp
2 And a Lemma about the Invariance of the Extended Dijkstra.

47 / 97

Now

Something Notable
Given a graph with non-negative weights we have that Dijkstra’s
algorithms is optimal (Theorem 2.1).

But in negative weighted graphs
Negatively weighted graphs may contain negatively weighted cycles!!!

I Thus, we can handle this situation by using the Bellman-Ford
Algorithm.

But we can use a less restrictive condition
1 To define a new Improve for the new Extended Dijkstra.

1 Look at page 57 Edelkamp
2 And a Lemma about the Invariance of the Extended Dijkstra.

47 / 97

New Improved Algorithm
Improved Algorithm

Input: Nodes u and v, v successor of u
Side effects: Update parent of v, f(v), Open, and Closed.

1 if (v ∈ Open)
2 if (f (u) + w (u, v) < f (v)) / Shorter Path
3 parent (v)← u and f (v)← f (u) + w (u, v)
4 elseif (v ∈ Closed)
5 if (f (u) + w (u, v) < f (v))
6 parent (v)← u and f (v)← f (u) + w (u, v)
7 Remove v from Closed and Insert it into Open with
f (v)

8 else
9 parent (v)← u and Init f (v)← f (u) + w (u, v)
10 Insert v into Open with f (v)

48 / 97

New Improved Algorithm
Improved Algorithm

Input: Nodes u and v, v successor of u
Side effects: Update parent of v, f(v), Open, and Closed.

1 if (v ∈ Open)
2 if (f (u) + w (u, v) < f (v)) / Shorter Path
3 parent (v)← u and f (v)← f (u) + w (u, v)
4 elseif (v ∈ Closed)
5 if (f (u) + w (u, v) < f (v))
6 parent (v)← u and f (v)← f (u) + w (u, v)
7 Remove v from Closed and Insert it into Open with
f (v)

8 else
9 parent (v)← u and Init f (v)← f (u) + w (u, v)
10 Insert v into Open with f (v)

48 / 97

New Improved Algorithm
Improved Algorithm

Input: Nodes u and v, v successor of u
Side effects: Update parent of v, f(v), Open, and Closed.

1 if (v ∈ Open)
2 if (f (u) + w (u, v) < f (v)) / Shorter Path
3 parent (v)← u and f (v)← f (u) + w (u, v)
4 elseif (v ∈ Closed)
5 if (f (u) + w (u, v) < f (v))
6 parent (v)← u and f (v)← f (u) + w (u, v)
7 Remove v from Closed and Insert it into Open with
f (v)

8 else
9 parent (v)← u and Init f (v)← f (u) + w (u, v)
10 Insert v into Open with f (v)

48 / 97

Given

The less restrictive condition

δ (u, T) = min {δ (u, t) |t ∈ T} ≥ 0 ∀u (14)

Note: 1 That is, the distance from each node to the goal is
non-negative.

2 Figuratively speaking, we can have negative edges when
far from the goal, but they get “eaten up” when coming
closer.

3 The condition implies that no negatively weighted cycles
exist.

Thus, we get a more general version of the Dijkstra’s Algorithm
That contains an invariance that we need to prove...

49 / 97

Given

The less restrictive condition

δ (u, T) = min {δ (u, t) |t ∈ T} ≥ 0 ∀u (14)

Note: 1 That is, the distance from each node to the goal is
non-negative.

2 Figuratively speaking, we can have negative edges when
far from the goal, but they get “eaten up” when coming
closer.

3 The condition implies that no negatively weighted cycles
exist.

Thus, we get a more general version of the Dijkstra’s Algorithm
That contains an invariance that we need to prove...

49 / 97

Given

The less restrictive condition

δ (u, T) = min {δ (u, t) |t ∈ T} ≥ 0 ∀u (14)

Note: 1 That is, the distance from each node to the goal is
non-negative.

2 Figuratively speaking, we can have negative edges when
far from the goal, but they get “eaten up” when coming
closer.

3 The condition implies that no negatively weighted cycles
exist.

Thus, we get a more general version of the Dijkstra’s Algorithm
That contains an invariance that we need to prove...

49 / 97

Given

The less restrictive condition

δ (u, T) = min {δ (u, t) |t ∈ T} ≥ 0 ∀u (14)

Note: 1 That is, the distance from each node to the goal is
non-negative.

2 Figuratively speaking, we can have negative edges when
far from the goal, but they get “eaten up” when coming
closer.

3 The condition implies that no negatively weighted cycles
exist.

Thus, we get a more general version of the Dijkstra’s Algorithm
That contains an invariance that we need to prove...

49 / 97

Given

The less restrictive condition

δ (u, T) = min {δ (u, t) |t ∈ T} ≥ 0 ∀u (14)

Note: 1 That is, the distance from each node to the goal is
non-negative.

2 Figuratively speaking, we can have negative edges when
far from the goal, but they get “eaten up” when coming
closer.

3 The condition implies that no negatively weighted cycles
exist.

Thus, we get a more general version of the Dijkstra’s Algorithm
That contains an invariance that we need to prove...

49 / 97

Invariance for Extended Dijkstra’s Algorithm

Lemma 2.2
Let G = (V,E,w) be a weighted graph. p = (s = v0, ..., vn = t) be a least
cost path from the start node s to a goal node t ∈ T , and f be the
approximation in the extended Dijkstra’s Algorithm. At each selection of a
node u from Open, we have the following invariance:
(I). Unless vn is in Closed with f (vn) = δ (s, vn), there is a node

vi ∈ Open such that f (vi) = δ (s, vi), and no j > i exists such that
vj is in Closed with f (vj) = δ (s, vj).

50 / 97

Proof

Given that
Without loss of generality let i be maximal among the nodes
satisfying the invariance (I).
We have two cases...

Case I
Node u is not on p or f (u) > δ (s, u)
Then, vi 6= u remains in Open.
Since no v in Open ∩ p ∩ Succ (u) with
f (v) = δ (s, v) ≤ f (u) + w (u, v) is changed and no other node is
added to Closed
(I) is preserved

51 / 97

Proof

Given that
Without loss of generality let i be maximal among the nodes
satisfying the invariance (I).
We have two cases...

Case I
Node u is not on p or f (u) > δ (s, u)
Then, vi 6= u remains in Open.
Since no v in Open ∩ p ∩ Succ (u) with
f (v) = δ (s, v) ≤ f (u) + w (u, v) is changed and no other node is
added to Closed
(I) is preserved

51 / 97

Proof

Given that
Without loss of generality let i be maximal among the nodes
satisfying the invariance (I).
We have two cases...

Case I
Node u is not on p or f (u) > δ (s, u)
Then, vi 6= u remains in Open.
Since no v in Open ∩ p ∩ Succ (u) with
f (v) = δ (s, v) ≤ f (u) + w (u, v) is changed and no other node is
added to Closed
(I) is preserved

51 / 97

Proof

Given that
Without loss of generality let i be maximal among the nodes
satisfying the invariance (I).
We have two cases...

Case I
Node u is not on p or f (u) > δ (s, u)
Then, vi 6= u remains in Open.
Since no v in Open ∩ p ∩ Succ (u) with
f (v) = δ (s, v) ≤ f (u) + w (u, v) is changed and no other node is
added to Closed
(I) is preserved

51 / 97

Proof

Given that
Without loss of generality let i be maximal among the nodes
satisfying the invariance (I).
We have two cases...

Case I
Node u is not on p or f (u) > δ (s, u)
Then, vi 6= u remains in Open.
Since no v in Open ∩ p ∩ Succ (u) with
f (v) = δ (s, v) ≤ f (u) + w (u, v) is changed and no other node is
added to Closed
(I) is preserved

51 / 97

Proof

Given that
Without loss of generality let i be maximal among the nodes
satisfying the invariance (I).
We have two cases...

Case I
Node u is not on p or f (u) > δ (s, u)
Then, vi 6= u remains in Open.
Since no v in Open ∩ p ∩ Succ (u) with
f (v) = δ (s, v) ≤ f (u) + w (u, v) is changed and no other node is
added to Closed
(I) is preserved

51 / 97

Proof

Case II
Node u is on p and f(u) = δ(s, u). If u = vn, there is nothing to
show.

Now the proof, first assume u = vi

Then, Improve will be called for v = vi+1 ∈ Succ(u)

Then
For all other nodes in Succ(u)−{vi+1}, the argument of case 1 holds.

52 / 97

Proof

Case II
Node u is on p and f(u) = δ(s, u). If u = vn, there is nothing to
show.

Now the proof, first assume u = vi

Then, Improve will be called for v = vi+1 ∈ Succ(u)

Then
For all other nodes in Succ(u)−{vi+1}, the argument of case 1 holds.

52 / 97

Proof

Case II
Node u is on p and f(u) = δ(s, u). If u = vn, there is nothing to
show.

Now the proof, first assume u = vi

Then, Improve will be called for v = vi+1 ∈ Succ(u)

Then
For all other nodes in Succ(u)−{vi+1}, the argument of case 1 holds.

52 / 97

Proof

According to (I)
If v is in Closed, then f (v) > δ (s, v) and it will be reinserted in
Open with f (v) = δ (s, u) + w (u, v) = δ (s, v).

If v is not in Open nor Closed
It is inserted into Open with f (v) = δ (s, u) + w (u, v)
Otherwise the operation will set it to δ (s, u).

It does not matter
The invariance holds in both cases!!!

53 / 97

Proof

According to (I)
If v is in Closed, then f (v) > δ (s, v) and it will be reinserted in
Open with f (v) = δ (s, u) + w (u, v) = δ (s, v).

If v is not in Open nor Closed
It is inserted into Open with f (v) = δ (s, u) + w (u, v)
Otherwise the operation will set it to δ (s, u).

It does not matter
The invariance holds in both cases!!!

53 / 97

Proof

According to (I)
If v is in Closed, then f (v) > δ (s, v) and it will be reinserted in
Open with f (v) = δ (s, u) + w (u, v) = δ (s, v).

If v is not in Open nor Closed
It is inserted into Open with f (v) = δ (s, u) + w (u, v)
Otherwise the operation will set it to δ (s, u).

It does not matter
The invariance holds in both cases!!!

53 / 97

Proof

Now suppose u 6= vi
By the maximality of i, we have that for k < i u = vk

If v = vi
Any improve operation will not change the optimal value of
f (v) = δ (s, u) + w (u, v) = δ (s, v)

In the other case
vi remains in Open with an unchanged f value and no other node
besides u is inserted into Closed, thus vipreserves (I).

54 / 97

Proof

Now suppose u 6= vi
By the maximality of i, we have that for k < i u = vk

If v = vi
Any improve operation will not change the optimal value of
f (v) = δ (s, u) + w (u, v) = δ (s, v)

In the other case
vi remains in Open with an unchanged f value and no other node
besides u is inserted into Closed, thus vipreserves (I).

54 / 97

Proof

Now suppose u 6= vi
By the maximality of i, we have that for k < i u = vk

If v = vi
Any improve operation will not change the optimal value of
f (v) = δ (s, u) + w (u, v) = δ (s, v)

In the other case
vi remains in Open with an unchanged f value and no other node
besides u is inserted into Closed, thus vipreserves (I).

54 / 97

From this Lemma, we get

Theorem 2.3 - Correctness of the Extended Dijkstra
Let G = (V,E,w) be a weighted graph so that for all u ∈ V we have
δ (u, T) ≥ 0. The Extended Dijkstra is optimal; that is, at the first
extraction of a node t ∈ T we have f(t) = δ(s, T)

55 / 97

From Algorithms

Lemma 2.4
Let G be a weighted problem graph, h be a heuristic, and

ŵ (u, v) = w (u, v)− h (u) + h (v)

If h is admissible, then δ̂ (u, T) ≥ 0

56 / 97

Finally, Admissibility in A*

Theorem (A* for Admissible Heuristics)
For weighted graphs G = (V,E,w) and admissible heuristics h,
algorithm A* is complete and optimal.

I This comes from the previous Lemma and Theorem

57 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

58 / 97

Expansion of Different Strategies
The expansion trees

59 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

60 / 97

Optimality in A* - Once we have dealt with the negative
edges

Theorem 2.11. (Efficiency Lower Bound)
Let G be a problem graph with nonnegative weight function, with initial
node s and final node set T , and let f∗ = δ(s, T) be the optimal solution
cost. Any optimal algorithm has to visit all nodes u ∈ V with δ(s, u) < f∗.

Explanation
We can view a search with a consistent heuristic as a search in a
re-weighted problem graph with nonnegative costs!!!

61 / 97

Optimality in A* - Once we have dealt with the negative
edges

Theorem 2.11. (Efficiency Lower Bound)
Let G be a problem graph with nonnegative weight function, with initial
node s and final node set T , and let f∗ = δ(s, T) be the optimal solution
cost. Any optimal algorithm has to visit all nodes u ∈ V with δ(s, u) < f∗.

Explanation
We can view a search with a consistent heuristic as a search in a
re-weighted problem graph with nonnegative costs!!!

61 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

62 / 97

PROBLEM!!!

We have a BFS style Algorithm
A* is a BFS style algorithm!!!

Improvement
We can use the iterative-deepening to improve it!!!

63 / 97

PROBLEM!!!

We have a BFS style Algorithm
A* is a BFS style algorithm!!!

Improvement
We can use the iterative-deepening to improve it!!!

63 / 97

ITERATIVE-DEEPENING A*

Procedure IDA*-Driver
Input: Start node s, function w, heuristics h, function Expand and

function Goal
Output: Path from s to t ∈ T or ∅ if no such path exists

1 U ′ ← h (s)
2 bestPath← ∅
3 while (bestPath == ∅ and U ′ 6=∞) / Goal not found, unexplored

nodes left
4 U ← U ′/ Reset Global Threshold
5 U ′ ←∞
6 bestPath← IDA ∗ (s, 0, U)
7 return bestPath

64 / 97

ITERATIVE-DEEPENING A*
Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node t ∈ T or ∅ if no such path exists

SideEffects: Update of threshold U ′

1 if (Goal (u)) return Path (u)
2 Succ (u)← Expand (u)
3 for each v in Succ (u)
4 if (g + w (u, v) + h (v) > U)
5 if (g + w (u, v) + h (v) < U ′)
6 U ′ ← g + w (u, v) + h (v)
7 else
8 p← IDA ∗ (v, g + w (u, v) , U)
9 if (p 6= ∅) return (u, p)
10 return ∅

65 / 97

ITERATIVE-DEEPENING A*
Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node t ∈ T or ∅ if no such path exists

SideEffects: Update of threshold U ′

1 if (Goal (u)) return Path (u)
2 Succ (u)← Expand (u)
3 for each v in Succ (u)
4 if (g + w (u, v) + h (v) > U)
5 if (g + w (u, v) + h (v) < U ′)
6 U ′ ← g + w (u, v) + h (v)
7 else
8 p← IDA ∗ (v, g + w (u, v) , U)
9 if (p 6= ∅) return (u, p)
10 return ∅

65 / 97

ITERATIVE-DEEPENING A*
Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node t ∈ T or ∅ if no such path exists

SideEffects: Update of threshold U ′

1 if (Goal (u)) return Path (u)
2 Succ (u)← Expand (u)
3 for each v in Succ (u)
4 if (g + w (u, v) + h (v) > U)
5 if (g + w (u, v) + h (v) < U ′)
6 U ′ ← g + w (u, v) + h (v)
7 else
8 p← IDA ∗ (v, g + w (u, v) , U)
9 if (p 6= ∅) return (u, p)
10 return ∅

65 / 97

ITERATIVE-DEEPENING A*
Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node t ∈ T or ∅ if no such path exists

SideEffects: Update of threshold U ′

1 if (Goal (u)) return Path (u)
2 Succ (u)← Expand (u)
3 for each v in Succ (u)
4 if (g + w (u, v) + h (v) > U)
5 if (g + w (u, v) + h (v) < U ′)
6 U ′ ← g + w (u, v) + h (v)
7 else
8 p← IDA ∗ (v, g + w (u, v) , U)
9 if (p 6= ∅) return (u, p)
10 return ∅

65 / 97

Optimality of ITERATIVE-DEEPENING A*

Theorem 5.4 (Optimality Iterative-Deepening A*)
Algorithm IDA* for graphs with admissible weight function is optimal.

66 / 97

Proof

Something Notable

Something Notable

Properties

67 / 97

Proof

Something Notable

Something Notable

Properties

67 / 97

Proof

Something Notable

Something Notable

Properties

67 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

68 / 97

Casting A* as a Dijkstra’s Algorithm

Something Notable
We can use the following re-weighting to incorporate the heuristic the
weight function and sometimes to avoid negative weights!!!

ŵ(u, v) = w(u, v)− h(u) + h(v)

Note: as Dijkstra’s Algorithm on a re-wighted graph!!!

Why?
One motivation for this transformation is to inherit correctness proofs!!!

69 / 97

Casting A* as a Dijkstra’s Algorithm

Something Notable
We can use the following re-weighting to incorporate the heuristic the
weight function and sometimes to avoid negative weights!!!

ŵ(u, v) = w(u, v)− h(u) + h(v)

Note: as Dijkstra’s Algorithm on a re-wighted graph!!!

Why?
One motivation for this transformation is to inherit correctness proofs!!!

69 / 97

A*: Re-Weighting Edges

Lemma 2.3
Let G be a weighted problem graph and h : V → R a consistent heuristic. Define the
modified weight ŵ(u, v) = w(u, v)− h(u) + h(v) ≥ 0. Let δ (s, t) be the length of the
shortest path from s to t in the original graph and δ̂ (s, t) be the corresponding value in
the re-weighted graph.

1 For a path p, we have w(p) = δ(s, t), if and only if ŵ(p) = δ̂(s, t).
2 Moreover, G has no negatively weighted cycles with respect to w if and only if it

has none with respect to ŵ.

70 / 97

A*: Re-Weighting Edges

Lemma 2.3
Let G be a weighted problem graph and h : V → R a consistent heuristic. Define the
modified weight ŵ(u, v) = w(u, v)− h(u) + h(v) ≥ 0. Let δ (s, t) be the length of the
shortest path from s to t in the original graph and δ̂ (s, t) be the corresponding value in
the re-weighted graph.

1 For a path p, we have w(p) = δ(s, t), if and only if ŵ(p) = δ̂(s, t).
2 Moreover, G has no negatively weighted cycles with respect to w if and only if it

has none with respect to ŵ.

70 / 97

A*: Re-Weighting Edges

Lemma 2.3
Let G be a weighted problem graph and h : V → R a consistent heuristic. Define the
modified weight ŵ(u, v) = w(u, v)− h(u) + h(v) ≥ 0. Let δ (s, t) be the length of the
shortest path from s to t in the original graph and δ̂ (s, t) be the corresponding value in
the re-weighted graph.

1 For a path p, we have w(p) = δ(s, t), if and only if ŵ(p) = δ̂(s, t).
2 Moreover, G has no negatively weighted cycles with respect to w if and only if it

has none with respect to ŵ.

70 / 97

However

Given the implicit graphs
We have the following question

Given a Incosistent Heuristic Re-Weighting helps at all?
Sometimes it does not work...

71 / 97

However

Given the implicit graphs
We have the following question

Given a Incosistent Heuristic Re-Weighting helps at all?
Sometimes it does not work...

71 / 97

Example of Re-weighting Edges on an Inconsistent
Heuristic

Example: A problem graph before (left) and after (right) re-weighting.

Figure: h ∗ (u) = δ (u, t) and f for the first expansions in the new graph

72 / 97

Problem!!!

We have a INCONSISTENT heuristic

h (b) ≥ h (a) + w (b, a)!!!

That creates a negative weight
How do we deal with an inconsistent heuristic?

73 / 97

Problem!!!

We have a INCONSISTENT heuristic

h (b) ≥ h (a) + w (b, a)!!!

That creates a negative weight
How do we deal with an inconsistent heuristic?

73 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

74 / 97

Dealing with inconsistent but admissible heuristics

We use the idea of Pathmax
Taking the maximum of the accumulated weights on the path to a
node to enforce a monotone growth in the cost function.

Pathmax
For a node u with child v

f (v) = max {f (v) , f (u)} or equivalent
h (v) = max {h (v) , h (u)− w (u, v)}.

75 / 97

Dealing with inconsistent but admissible heuristics

We use the idea of Pathmax
Taking the maximum of the accumulated weights on the path to a
node to enforce a monotone growth in the cost function.

Pathmax
For a node u with child v

f (v) = max {f (v) , f (u)} or equivalent
h (v) = max {h (v) , h (u)− w (u, v)}.

75 / 97

However

Even with this!!!
In the previous figure:

After expanding s and a, we have Open = {(b, 12) , (t, 15)} and
Closed = {(s, 6) , (a, 11)}.
Now a is reached by (b, 12), and it is moved to Closed
Then, it is compared to the closed list
12 is now the pathmax on path (s, b, a), but we never added to
Closed

I Remember the code

We lose the information for (a, 12)

76 / 97

However

Even with this!!!
In the previous figure:

After expanding s and a, we have Open = {(b, 12) , (t, 15)} and
Closed = {(s, 6) , (a, 11)}.
Now a is reached by (b, 12), and it is moved to Closed
Then, it is compared to the closed list
12 is now the pathmax on path (s, b, a), but we never added to
Closed

I Remember the code

We lose the information for (a, 12)

76 / 97

However

Even with this!!!
In the previous figure:

After expanding s and a, we have Open = {(b, 12) , (t, 15)} and
Closed = {(s, 6) , (a, 11)}.
Now a is reached by (b, 12), and it is moved to Closed
Then, it is compared to the closed list
12 is now the pathmax on path (s, b, a), but we never added to
Closed

I Remember the code

We lose the information for (a, 12)

76 / 97

However

Even with this!!!
In the previous figure:

After expanding s and a, we have Open = {(b, 12) , (t, 15)} and
Closed = {(s, 6) , (a, 11)}.
Now a is reached by (b, 12), and it is moved to Closed
Then, it is compared to the closed list
12 is now the pathmax on path (s, b, a), but we never added to
Closed

I Remember the code

We lose the information for (a, 12)

76 / 97

However

Even with this!!!
In the previous figure:

After expanding s and a, we have Open = {(b, 12) , (t, 15)} and
Closed = {(s, 6) , (a, 11)}.
Now a is reached by (b, 12), and it is moved to Closed
Then, it is compared to the closed list
12 is now the pathmax on path (s, b, a), but we never added to
Closed

I Remember the code

We lose the information for (a, 12)

76 / 97

However

Even with this!!!
In the previous figure:

After expanding s and a, we have Open = {(b, 12) , (t, 15)} and
Closed = {(s, 6) , (a, 11)}.
Now a is reached by (b, 12), and it is moved to Closed
Then, it is compared to the closed list
12 is now the pathmax on path (s, b, a), but we never added to
Closed

I Remember the code

We lose the information for (a, 12)

76 / 97

However

Even with this!!!
In the previous figure:

After expanding s and a, we have Open = {(b, 12) , (t, 15)} and
Closed = {(s, 6) , (a, 11)}.
Now a is reached by (b, 12), and it is moved to Closed
Then, it is compared to the closed list
12 is now the pathmax on path (s, b, a), but we never added to
Closed

I Remember the code

We lose the information for (a, 12)

76 / 97

Therefore

Even with the Pathmax
We have a problem!!!

77 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

78 / 97

Best-First Searches

Best-First Searches
They are a family of search algorithms which explores a graph by
expanding the most promising node chosen according to a specified
rule.

I First described by Judea Pearl in “Heuristics: Intelligent Search
Strategies for Computer Problem Solving,” Addison-Wesley, 1984. p.
48.

For this they use...
A heuristic evaluation function f(n) for each node.

I “It may depend on the description of n, the description of the goal, the
information gathered by the search up to that point, and most
important, on any extra knowledge about the problem domain." -
Judea Pearl

79 / 97

Best-First Searches

Best-First Searches
They are a family of search algorithms which explores a graph by
expanding the most promising node chosen according to a specified
rule.

I First described by Judea Pearl in “Heuristics: Intelligent Search
Strategies for Computer Problem Solving,” Addison-Wesley, 1984. p.
48.

For this they use...
A heuristic evaluation function f(n) for each node.

I “It may depend on the description of n, the description of the goal, the
information gathered by the search up to that point, and most
important, on any extra knowledge about the problem domain." -
Judea Pearl

79 / 97

Best-First Searches

Best-First Searches
They are a family of search algorithms which explores a graph by
expanding the most promising node chosen according to a specified
rule.

I First described by Judea Pearl in “Heuristics: Intelligent Search
Strategies for Computer Problem Solving,” Addison-Wesley, 1984. p.
48.

For this they use...
A heuristic evaluation function f(n) for each node.

I “It may depend on the description of n, the description of the goal, the
information gathered by the search up to that point, and most
important, on any extra knowledge about the problem domain." -
Judea Pearl

79 / 97

Best-First Searches

Best-First Searches
They are a family of search algorithms which explores a graph by
expanding the most promising node chosen according to a specified
rule.

I First described by Judea Pearl in “Heuristics: Intelligent Search
Strategies for Computer Problem Solving,” Addison-Wesley, 1984. p.
48.

For this they use...
A heuristic evaluation function f(n) for each node.

I “It may depend on the description of n, the description of the goal, the
information gathered by the search up to that point, and most
important, on any extra knowledge about the problem domain." -
Judea Pearl

79 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

80 / 97

Best-First Generic Algorithm

Best-First Generic Algorithm
1 Open= [initial state]

2 Closed= []
3 while

4 Remove the best node from Open, call it n, add it to Closed.

5 If n is the goal state, back-trace path to n and return path.

6 Create n’s successors.
7 For each successor do:

8 If it is not in Closed:
Evaluate it, add it to Open, and record its parent.

9 else change recorded parent if this new path is better than previous one.

81 / 97

Best-First Generic Algorithm

Best-First Generic Algorithm
1 Open= [initial state]

2 Closed= []
3 while

4 Remove the best node from Open, call it n, add it to Closed.

5 If n is the goal state, back-trace path to n and return path.

6 Create n’s successors.
7 For each successor do:

8 If it is not in Closed:
Evaluate it, add it to Open, and record its parent.

9 else change recorded parent if this new path is better than previous one.

81 / 97

Best-First Generic Algorithm

Best-First Generic Algorithm
1 Open= [initial state]

2 Closed= []
3 while

4 Remove the best node from Open, call it n, add it to Closed.

5 If n is the goal state, back-trace path to n and return path.

6 Create n’s successors.
7 For each successor do:

8 If it is not in Closed:
Evaluate it, add it to Open, and record its parent.

9 else change recorded parent if this new path is better than previous one.

81 / 97

Best-First Generic Algorithm

Best-First Generic Algorithm
1 Open= [initial state]

2 Closed= []
3 while

4 Remove the best node from Open, call it n, add it to Closed.

5 If n is the goal state, back-trace path to n and return path.

6 Create n’s successors.
7 For each successor do:

8 If it is not in Closed:
Evaluate it, add it to Open, and record its parent.

9 else change recorded parent if this new path is better than previous one.

81 / 97

Best-First Generic Algorithm

Best-First Generic Algorithm
1 Open= [initial state]

2 Closed= []
3 while

4 Remove the best node from Open, call it n, add it to Closed.

5 If n is the goal state, back-trace path to n and return path.

6 Create n’s successors.
7 For each successor do:

8 If it is not in Closed:
Evaluate it, add it to Open, and record its parent.

9 else change recorded parent if this new path is better than previous one.

81 / 97

Best-First Generic Algorithm

Best-First Generic Algorithm
1 Open= [initial state]

2 Closed= []
3 while

4 Remove the best node from Open, call it n, add it to Closed.

5 If n is the goal state, back-trace path to n and return path.

6 Create n’s successors.
7 For each successor do:

8 If it is not in Closed:
Evaluate it, add it to Open, and record its parent.

9 else change recorded parent if this new path is better than previous one.

81 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

82 / 97

Greedy Best First Search

Definition
Evaluation function f(n) = h(n)
h(n)= estimate of cost from n to goal.
Greedy best-first search expands the node that appears to be closest
to goal

83 / 97

Example

Straight Line Distance to Bucharest

Hirsova 151

Iasi 226

Lugoj 244

Mehadia 241

Meamt 234

Oradea 380

Pitasti 10

Rimnicu Vilcea 193

Sibiu 253

Timisora 329

Urziceni 80

Vaslui 199

Zerind 374

Straight Line Distance to Bucharest

Arad 366

Bucharest 0

Craiova 160

Dobreta 242

Efoire 161

Fagaras 176

Giurgu 77

84 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

85 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi ->

Neamt ->
Time? O(bm), but a good heuristic can give dramatic improvement
Space? O(bm) – keeps all nodes in memory

Optimal? No

Vs A* Properties
Complete? Yes (unless there are infinitely many nodes with

f (n) ≤ f (G))
Time? Exponential O(bm)
Space? Keeps all nodes in memory Worst case O(bm)

Optimal? Yes

86 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

87 / 97

Origin of Heuristics

Common View
Heuristic could come from relaxing the constraints of a problem and
trying to solve it exactly!!!

Example
A prominent example for this is the straight-line distance estimate for
routing problems.
It can be interpreted as adding straight routes to the map.

Example
This is captured by the abstraction transformation.
It is used to automate the generation of heuristics.

88 / 97

Origin of Heuristics

Common View
Heuristic could come from relaxing the constraints of a problem and
trying to solve it exactly!!!

Example
A prominent example for this is the straight-line distance estimate for
routing problems.
It can be interpreted as adding straight routes to the map.

Example
This is captured by the abstraction transformation.
It is used to automate the generation of heuristics.

88 / 97

Origin of Heuristics

Common View
Heuristic could come from relaxing the constraints of a problem and
trying to solve it exactly!!!

Example
A prominent example for this is the straight-line distance estimate for
routing problems.
It can be interpreted as adding straight routes to the map.

Example
This is captured by the abstraction transformation.
It is used to automate the generation of heuristics.

88 / 97

Origin of Heuristics

Common View
Heuristic could come from relaxing the constraints of a problem and
trying to solve it exactly!!!

Example
A prominent example for this is the straight-line distance estimate for
routing problems.
It can be interpreted as adding straight routes to the map.

Example
This is captured by the abstraction transformation.
It is used to automate the generation of heuristics.

88 / 97

Origin of Heuristics

Common View
Heuristic could come from relaxing the constraints of a problem and
trying to solve it exactly!!!

Example
A prominent example for this is the straight-line distance estimate for
routing problems.
It can be interpreted as adding straight routes to the map.

Example
This is captured by the abstraction transformation.
It is used to automate the generation of heuristics.

88 / 97

Outline
1 Informed Optimal Search

What is an Heuristic?
Formal Definition of a Heuristic
Desirable Properties of a Heuristic
Consistency and Monotonicity
Dominance

2 A* Algorithm
The Heuristic A*
Pseudo-Code
Consistency of A*
Admissibility in A*
Lemma Toward Admissibility of A*
Expansion of Different Strategies
Optimality in A*
Iterative-Deepening for A*
A*: Re-weighting Edges
Dealing with the problem
Best-First Searches
Algorithm

Greedy Best First Search
Greedy Best-First Search Vs. A* Algorithm

3 Limits in Heuristics
Where do heuristics come from?
Abstraction Transformations and Valtortas’s Theorem

89 / 97

Abstraction Transformations

Definition 4.1
An abstraction transformation φ : S → S′ maps states u in the
concrete problem space to abstract states φ(u) and concrete actions a
to abstract actions φ(a).

90 / 97

Thus

We have the following Intuition
Intuitively, this agrees with a common explanation of the origin of
heuristics.
As the cost of exact solutions to a relaxed problem.
A relaxed problem is one where we drop constraints (e.g., on move
execution).

Example
For example, the Manhattan distance for sliding-tile puzzles can be
regarded as acting in an abstract problem space that allows multiple
tiles to occupy the same square.

91 / 97

Thus

We have the following Intuition
Intuitively, this agrees with a common explanation of the origin of
heuristics.
As the cost of exact solutions to a relaxed problem.
A relaxed problem is one where we drop constraints (e.g., on move
execution).

Example
For example, the Manhattan distance for sliding-tile puzzles can be
regarded as acting in an abstract problem space that allows multiple
tiles to occupy the same square.

91 / 97

Thus

We have the following Intuition
Intuitively, this agrees with a common explanation of the origin of
heuristics.
As the cost of exact solutions to a relaxed problem.
A relaxed problem is one where we drop constraints (e.g., on move
execution).

Example
For example, the Manhattan distance for sliding-tile puzzles can be
regarded as acting in an abstract problem space that allows multiple
tiles to occupy the same square.

91 / 97

Thus

We have the following Intuition
Intuitively, this agrees with a common explanation of the origin of
heuristics.
As the cost of exact solutions to a relaxed problem.
A relaxed problem is one where we drop constraints (e.g., on move
execution).

Example
For example, the Manhattan distance for sliding-tile puzzles can be
regarded as acting in an abstract problem space that allows multiple
tiles to occupy the same square.

91 / 97

Embedding and Homomorphism

Definition 4.2
An Abstraction Transformation (Map) φ is an embedding
transformation if it adds edges to S such that the concrete and
abstract state sets are the same; that is, φ(u) = u for all u ∈ S.
An Abstract Homomorphism requires that for all edges (u, v) ∈ S,
there must also be an edge (φ(u), φ(v)) ∈ S′ .

92 / 97

Embedding and Homomorphism

Theorem 4.1 (Admissibility and Consistency of Abstraction Heuristics)
Let S be a state space and S′ = φ(S) be any homomorphic
abstraction transformation of S. Let heuristic function hφ(u) for state
u and goal t be defined as the length of the shortest path from φ(u)
to φ(t) in S .

I Then hφ is an admissible, consistent heuristic function.

93 / 97

Embedding and Homomorphism

Theorem 4.1 (Admissibility and Consistency of Abstraction Heuristics)
Let S be a state space and S′ = φ(S) be any homomorphic
abstraction transformation of S. Let heuristic function hφ(u) for state
u and goal t be defined as the length of the shortest path from φ(u)
to φ(t) in S .

I Then hφ is an admissible, consistent heuristic function.

93 / 97

VALTORTA’S THEOREM

VALTORTA’S THEOREM
Let u be any state necessarily expanded, when the problem (s, t) is
solved in S with Breadth-First Serch. In addition:

I φ : S → S′ be any abstraction mapping; the heuristic estimate h(u) be
computed by blindly searching from φ(u) to φ(t).

I If the problem is solved by the A* algorithm using h, then either u
itself will be expanded, or φ(u) will be expanded.

94 / 97

VALTORTA’S THEOREM

VALTORTA’S THEOREM
Let u be any state necessarily expanded, when the problem (s, t) is
solved in S with Breadth-First Serch. In addition:

I φ : S → S′ be any abstraction mapping; the heuristic estimate h(u) be
computed by blindly searching from φ(u) to φ(t).

I If the problem is solved by the A* algorithm using h, then either u
itself will be expanded, or φ(u) will be expanded.

94 / 97

VALTORTA’S THEOREM

VALTORTA’S THEOREM
Let u be any state necessarily expanded, when the problem (s, t) is
solved in S with Breadth-First Serch. In addition:

I φ : S → S′ be any abstraction mapping; the heuristic estimate h(u) be
computed by blindly searching from φ(u) to φ(t).

I If the problem is solved by the A* algorithm using h, then either u
itself will be expanded, or φ(u) will be expanded.

94 / 97

Consequences of Valtora’s Theorem

Corollary 4.1
For an embedding φ, A*-using h computed by blind search in the abstract
problem space-necessarily expands every state that is expanded by blind
search in the original space.

95 / 97

Consequences of Valtora’s Theorem

Observe!!
Based on this theorem, we define "Valtorta’s Barrier" to be the
number of nodes expanded when blindly searching in a space.
Valtorta’s theorem states that this barrier cannot be "broken" using
any embedding transformation.

HOWEVER!!!
Contrary to the case of embeddings, this negative result of Valtorta’s
theorem does not apply in this way to abstractions based on
homomorphisms.
It is more, they can reduce the search effort, since the abstract space
is often smaller than the original one.

96 / 97

Consequences of Valtora’s Theorem

Observe!!
Based on this theorem, we define "Valtorta’s Barrier" to be the
number of nodes expanded when blindly searching in a space.
Valtorta’s theorem states that this barrier cannot be "broken" using
any embedding transformation.

HOWEVER!!!
Contrary to the case of embeddings, this negative result of Valtorta’s
theorem does not apply in this way to abstractions based on
homomorphisms.
It is more, they can reduce the search effort, since the abstract space
is often smaller than the original one.

96 / 97

Consequences of Valtora’s Theorem

Observe!!
Based on this theorem, we define "Valtorta’s Barrier" to be the
number of nodes expanded when blindly searching in a space.
Valtorta’s theorem states that this barrier cannot be "broken" using
any embedding transformation.

HOWEVER!!!
Contrary to the case of embeddings, this negative result of Valtorta’s
theorem does not apply in this way to abstractions based on
homomorphisms.
It is more, they can reduce the search effort, since the abstract space
is often smaller than the original one.

96 / 97

Consequences of Valtora’s Theorem

Observe!!
Based on this theorem, we define "Valtorta’s Barrier" to be the
number of nodes expanded when blindly searching in a space.
Valtorta’s theorem states that this barrier cannot be "broken" using
any embedding transformation.

HOWEVER!!!
Contrary to the case of embeddings, this negative result of Valtorta’s
theorem does not apply in this way to abstractions based on
homomorphisms.
It is more, they can reduce the search effort, since the abstract space
is often smaller than the original one.

96 / 97

Bibliography

S. Edelkamp and S. Schrodl, Heuristic Search - Theory and
Applications.
Academic Press, 2012.

97 / 97

	Informed Optimal Search
	What is an Heuristic?
	Formal Definition of a Heuristic
	Desirable Properties of a Heuristic
	Consistency and Monotonicity
	Dominance

	A* Algorithm
	The Heuristic A*
	Pseudo-Code
	Consistency of A*
	Admissibility in A*
	Lemma Toward Admissibility of A*
	Expansion of Different Strategies
	Optimality in A*
	Iterative-Deepening for A*
	A*: Re-weighting Edges
	Dealing with the problem
	Best-First Searches
	Algorithm

	Greedy Best First Search
	Greedy Best-First Search Vs. A* Algorithm

	Limits in Heuristics
	Where do heuristics come from?
	Abstraction Transformations and Valtortas's Theorem

