Artificial Intelligence Informed Optimal Search

Andres Mendez-Vazquez

January 23, 2019

Outline

(1) Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic - Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches - Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Outline

(1) Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?

What is an Heuristic? [1]

Heuristic

- It is possible to use domain-dependent knowledge to capture information about the problem

Updating Function

We have the following Cost function

$$
f: V \longrightarrow \mathbb{R} \text { with } f=g+h
$$

Updating Function

We have the following Cost function

$$
f: V \longrightarrow \mathbb{R} \text { with } f=g+h
$$

Where

- V is the state space of the search

Updating Function

We have the following Cost function

$$
f: V \longrightarrow \mathbb{R} \text { with } f=g+h
$$

Where

- V is the state space of the search

$$
f(u)=g(u)+h(u)
$$

- $g(u)$ is the weight of the (current optimal) path from s to u.

Updating Function

We have the following Cost function

$$
f: V \longrightarrow \mathbb{R} \text { with } f=g+h
$$

Where

- V is the state space of the search

$$
f(u)=g(u)+h(u)
$$

- $g(u)$ is the weight of the (current optimal) path from s to u.
- $h(u)$ is an estimate (lower bound) of the remaining costs from u to a goal, the heuristic function.

Graphically, we have

We have then

Outline

(1) Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Formal Definition

Definition

- Given the weighted state space problem, $G=(V, E, s, T, w)$.
- A heuristic h is a node evaluation function, mapping $h: V \rightarrow \mathbb{R}^{+}$.

Example quite simplified!!!

No Information

Figure: The states are uniform no information $h(u)=0$

Example

More Information

Figure: Some Information

Formal Definition

Total Information - Follow the heuristic

Figure: Total information

Outline

(1) Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Desirable Properties of a Heuristic

Definition 1.8

An estimate h is an admissible heuristic if it is a lower bound for the optimal solution costs; that is, $h(u) \leq \delta(u, T)$ for all $u \in V$.

Example

Tile Game

Figure: A game where the player can move tiles Up, Down, Left and Right to an empty spot

Example

Movements in the Tile Game

Figure: A game where the player can move tiles Up, Down, Left and Right to an empty spot

Example

Goal State of the Tile Game

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Figure: Goal State

Examples of Admissible Heuristics for the Tile Game

Hamming Distance

- The Hamming distance is the total number of misplaced tiles.

Examples of Admissible Heuristics for the Tile Game

Hamming Distance

- The Hamming distance is the total number of misplaced tiles.

Using the Manhattan distance

$$
\begin{equation*}
d_{1}(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \tag{1}
\end{equation*}
$$

With $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$.

Examples of Admissible Heuristics for the Tile Game

Thus, we have the following heuristic

$$
\begin{equation*}
h(v)=\sum_{i \in v} d\left(t i l e_{i} \text { position, correct position of } t i l e_{i}\right) \tag{2}
\end{equation*}
$$

Examples of Admissible Heuristics for the Tile Game

Thus, we have the following heuristic

$$
\begin{equation*}
h(v)=\sum_{i \in v} d\left(\text { tile }_{i} \text { position, correct position of tile } e_{i}\right) \tag{2}
\end{equation*}
$$

Where

$$
\begin{equation*}
d\left(\text { tile }_{i}, \text { correct position of } \text { tile }_{i}\right)=\left|x_{1}^{(i)}-y_{1}^{(i)}\right|+\left|x_{2}^{(i)}-y_{2}^{(i)}\right| \tag{3}
\end{equation*}
$$

Examples of Admissible Heuristics for the Tile Game

Thus, we have the following heuristic

$$
\begin{equation*}
h(v)=\sum_{i \in v} d\left(t^{2 l} e_{i} \text { position, correct position of tile } e_{i}\right) \tag{2}
\end{equation*}
$$

Where

$$
\begin{equation*}
d\left(\text { tile }_{i}, \text { correct position of } \text { tile }_{i}\right)=\left|x_{1}^{(i)}-y_{1}^{(i)}\right|+\left|x_{2}^{(i)}-y_{2}^{(i)}\right| \tag{3}
\end{equation*}
$$

With

- tile $_{i}$ position $=\left(x_{1}, x_{2}\right)^{t} \in \mathbb{N}^{2}$
- correct position of tile $=\left(y_{1}^{(i)}, y_{2}^{(i)}\right)^{t} \in \mathbb{N}^{2}$

Outline

(1) Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic - Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?

Desirable Properties of a Heuristic

Desirable Properties of a Heuristic

Definition 1.9 (Consistency and Monotonicity)

- Let $G=(V, E, s, T, w)$ be a weighted state space problem graph.
(1) A goal estimate h is a consistent heuristic if $h(u) \leq h(v)+w(u, v)$ for all edges $e=(u, v) \in E$.

Desirable Properties of a Heuristic

Definition 1.9 (Consistency and Monotonicity)

- Let $G=(V, E, s, T, w)$ be a weighted state space problem graph.
(1) A goal estimate h is a consistent heuristic if $h(u) \leq h(v)+w(u, v)$ for all edges $e=(u, v) \in E$.
(2) Let $\left(u_{0}, \ldots, u_{k}\right)$ be any path, $g\left(u_{i}\right)$ be the path cost of $\left(u_{0}, \ldots, u_{i}\right)$, and define $f\left(u_{i}\right)=g\left(u_{i}\right)+h\left(u_{i}\right)$.

Desirable Properties of a Heuristic

Definition 1.9 (Consistency and Monotonicity)

- Let $G=(V, E, s, T, w)$ be a weighted state space problem graph.
(1) A goal estimate h is a consistent heuristic if $h(u) \leq h(v)+w(u, v)$ for all edges $e=(u, v) \in E$.
(2) Let $\left(u_{0}, \ldots, u_{k}\right)$ be any path, $g\left(u_{i}\right)$ be the path cost of $\left(u_{0}, \ldots, u_{i}\right)$, and define $f\left(u_{i}\right)=g\left(u_{i}\right)+h\left(u_{i}\right)$.
(1) A goal estimate h is a monotone heuristic if $f\left(u_{i}\right) \leq f\left(u_{j}\right)$ for all $i<j, 0 \leq i, j \leq k$.

Equivalence between Consistency and Monotonicity

Theorem 1.1 (Equivalence between Consistency and Monotonicity)

- A heuristic is consistent if and only if it is monotone.

Equivalence between Consistency and Monotonicity

Theorem 1.1 (Equivalence between Consistency and Monotonicity)

- A heuristic is consistent if and only if it is monotone.

Proof

- For two subsequent states u_{i-1} and u_{i} on a path $\left(u_{0}, u_{1}, \ldots, u_{k}\right)$

Proof

We have

$$
f\left(u_{i}\right)=g\left(u_{i}\right)+h\left(u_{i}\right)
$$

Proof

We have

$$
\begin{aligned}
f\left(u_{i}\right) & =g\left(u_{i}\right)+h\left(u_{i}\right) \\
& =g\left(u_{i-1}\right)+w\left(u_{i-1}, u_{i}\right)+h\left(u_{i}\right)
\end{aligned}
$$

Proof

We have

$$
\begin{aligned}
f\left(u_{i}\right) & =g\left(u_{i}\right)+h\left(u_{i}\right) \\
& =g\left(u_{i-1}\right)+w\left(u_{i-1}, u_{i}\right)+h\left(u_{i}\right) \\
& \geq g\left(u_{i-1}\right)+h\left(u_{i-1}\right)
\end{aligned}
$$

Proof

We have

$$
\begin{aligned}
f\left(u_{i}\right) & =g\left(u_{i}\right)+h\left(u_{i}\right) \\
& =g\left(u_{i-1}\right)+w\left(u_{i-1}, u_{i}\right)+h\left(u_{i}\right) \\
& \geq g\left(u_{i-1}\right)+h\left(u_{i-1}\right) \\
& =f\left(u_{i-1}\right)
\end{aligned}
$$

Consistent Estimates are Admissible

Theorem 1.2 (Consistency and Admissibility)
Consistent estimates are admissible.

Consistent Estimates are Admissible

Theorem 1.2 (Consistency and Admissibility)
Consistent estimates are admissible.

Proof

- if h is consistent we have that $h(u)-h(v) \leq w(u, v)$ for all $(u, v) \in E$

Consistent Estimates are Admissible

Theorem 1.2 (Consistency and Admissibility)
Consistent estimates are admissible.
Proof

- if h is consistent we have that $h(u)-h(v) \leq w(u, v)$ for all $(u, v) \in E$
- Let $p=\left(v_{0}, \ldots, v_{k}\right)$ be any path from $u=v_{0}$ to $t=v_{k}$

Proof

We have

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

Proof

We have

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) \\
& \geq \sum_{i=1}^{k-1}\left(h\left(v_{i}\right)-h\left(v_{i+1}\right)\right)
\end{aligned}
$$

Proof

We have

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) \\
& \geq \sum_{i=1}^{k-1}\left(h\left(v_{i}\right)-h\left(v_{i+1}\right)\right) \\
& =h(u)-h(v)
\end{aligned}
$$

Proof

We have

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) \\
& \geq \sum_{i=1}^{k-1}\left(h\left(v_{i}\right)-h\left(v_{i+1}\right)\right) \\
& =h(u)-h(v) \\
& =h(u)
\end{aligned}
$$

Proof

This is also true in the important case of p being optimal

$$
\begin{equation*}
h(u) \leq \delta(u, T) \tag{4}
\end{equation*}
$$

Outline

(1) Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Dominance

In Heuristics

Given h_{1}, h_{2} admissible heuristics. If $h_{1}(n) \leq h_{2}(n)$, then h_{2} dominates h_{1}.

Dominance

In Heuristics

Given h_{1}, h_{2} admissible heuristics. If $h_{1}(n) \leq h_{2}(n)$, then h_{2} dominates h_{1}.

Given that we want

h an admissible heuristic such that $h(u) \leq \delta(u, T)$ for all $u \in V$.

Better Lower Approximation

Thus

Given the dominance and admissibility:

$$
\begin{equation*}
h_{1}(n) \leq h_{2}(n) \leq \delta(u, T) \tag{5}
\end{equation*}
$$

Better Lower Approximation

Thus

Given the dominance and admissibility:

$$
\begin{equation*}
h_{1}(n) \leq h_{2}(n) \leq \delta(u, T) \tag{5}
\end{equation*}
$$

Therefore

We have a better approximation to the real solution using the heuristic h_{2} than h_{1}.

Better Lower Approximation

Thus

Given the dominance and admissibility:

$$
\begin{equation*}
h_{1}(n) \leq h_{2}(n) \leq \delta(u, T) \tag{5}
\end{equation*}
$$

Therefore

We have a better approximation to the real solution using the heuristic h_{2} than h_{1}.

Drawback

This has a problem!!! If the problem is NP-Complete!!!

- Thus, the calculation of h_{2} may be more expansive than the calculation of h_{1}.

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

The most prominent heuristic search algorithm is A*.

This algorithm uses the estimate

$$
\begin{equation*}
f(u)=g(u)+h(u) \tag{6}
\end{equation*}
$$

The most prominent heuristic search algorithm is A*.

This algorithm uses the estimate

$$
\begin{equation*}
f(u)=g(u)+h(u) \tag{6}
\end{equation*}
$$

That requires

- A way to keep a priority!!

The most prominent heuristic search algorithm is A^{*}.

This algorithm uses the estimate

$$
\begin{equation*}
f(u)=g(u)+h(u) \tag{6}
\end{equation*}
$$

That requires

- A way to keep a priority!!

Thus

(1) Open a MIN priority queue.
(Closed is a set

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A*
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Pseudo-Code

Procedure A*

$$
\text { Input: Implicit graph with start node } s \text {, weight function } w \text {, heuristic } h \text {, function Expand and Predicate Goal }
$$ Output: Optimal path from s to $t \in T$, or \emptyset.

(1) Closed $=\emptyset$
(2) $\operatorname{Insert}($ Open, s)
(3) $f(s)=h(s)$

Pseudo-Code

Procedure A*

$$
\text { Input: Implicit graph with start node } s \text {, weight function } w \text {, heuristic } h \text {, function Expand and Predicate Goal }
$$ Output: Optimal path from s to $t \in T$, or \emptyset.

(1) Closed $=\emptyset$
(2) $\operatorname{Insert}($ Open, $s)$
(3) $f(s)=h(s)$
(9) while $($ Open $\neq \emptyset)$
©

$$
\begin{aligned}
& u=\text { remove } \mathbf{M I N}_{f(u)}(\text { Open }) \\
& \text { Closed }=\text { Closed } \cup\{u\}
\end{aligned}
$$

Pseudo-Code

Procedure A*

Input: Implicit graph with start node s, weight function w, heuristic h, function Expand and Predicate Goal Output: Optimal path from s to $t \in T$, or \emptyset.
(1) Closed $=\emptyset$
(2) $\operatorname{Insert}($ Open, $s)$
(3) $f(s)=h(s)$
(3) while $($ Open $\neq \emptyset)$
©
$u=$ remove $\mathbf{M I N}_{f(u)}$ (Open)
Closed $=$ Closed $\cup\{u\}$
if $(\operatorname{Goal}(u))$ return Path (u)
else $\operatorname{Succ}(u)=\operatorname{Expand}(u)$
for each v in $\operatorname{Succ}(u)$
Improve (u, v)

Pseudo-Code

Procedure A*

Input: Implicit graph with start node s, weight function w, heuristic h, function Expand and Predicate Goal Output: Optimal path from s to $t \in T$, or \emptyset.
(1) Closed $=\emptyset$
(2) $\operatorname{Insert}($ Open, $s)$
(3) $f(s)=h(s)$
(9) while $($ Open $\neq \emptyset)$
©
$u=$ remove $\mathbf{M I N}_{f(u)}$ (Open)
Closed $=$ Closed $\cup\{u\}$
if (Goal(u)) return Path (u)
else $\operatorname{Succ}(u)=\operatorname{Expand}(u)$
for each v in $\operatorname{Succ}(u)$
Improve (u, v)
(1) return \emptyset

Procedure Improve

Procedure Improve

Input: Node u and v, v successor of u
Effects: Update parent of $v, f(v)$,
Open and Closed

1. if $v \in$ Open \Rightarrow Node generated but not expanded
2. if $(g(u, v)+w(u, v)<g(v))$
3.

parent $(v)=u$
4. $\quad f(v)=g(u)+w(u, v)+h(v)$

Procedure Improve

Procedure Improve

Input: Node u and v, v successor of u
Effects: Update parent of $v, f(v)$,
Open and Closed

1. expanded
2. if $(g(u, v)+w(u, v)<g(v))$
3.

$$
\operatorname{parent}(v)=u
$$

4.

$f(v)=g(u)+w(u, v)+h(v)$
5. else if $v \in$ Closed \Rightarrow Node already expanded
6.
if $(g(u, v)+w(u, v)<g(v))$
parent $(v)=u$
8.
$f(v)=g(u)+w(u, v)+h(v)$
9.

Closed $=$ Closed $-\{v\}$
10.

Insert(Open, v)

Procedure Improve

Procedure Improve

Input: Node u and v, v successor of u
Effects: Update parent of $v, f(v)$, Open and Closed

1. if $v \in$ Open \Rightarrow Node generated but not expanded
2. if $(g(u, v)+w(u, v)<g(v))$
3. parent $(v)=u$
4. $\quad f(v)=g(u)+w(u, v)+h(v)$
5. else if $v \in$ Closed \Rightarrow Node already expanded

$$
\text { 6. } \quad \text { if }(g(u, v)+w(u, v)<g(v))
$$

parent $(v)=u$
8.
$f(v)=g(u)+w(u, v)+h(v)$
9. 10.

Closed $=$ Closed $-\{v\}$
Insert(Open, v)
7.
.
11. else \Rightarrow Node not seen before
12. \quad parent $(v)=u$
13. Initialize $f(v)=g(u)+w(u, v)+h(v)$
14. Insert (Open, v) with $f(v)$
-

A* Example

We can use our previous example

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Thus!!! We like consistency in A^{*}

Theorem 2.9 (A* for Consistent Heuristics)

- Let h be consistent. If we set $f(s)=h(s)$ for the initial node s and update $f(v)$ with $f(u)+\widehat{w}(u, v)$, where $\widehat{w}(u, v)=h(v)-h(u)+w(u, v)$, instead of $f(u)+w(u, v)$, at each time a node $t \in T$ is selected, we have $f(t)=\delta(s, t)$.

Proof

First h is consistent

The, we have that $h(u) \leq h(v)+w(u, v)$

Proof

First h is consistent

The, we have that $h(u) \leq h(v)+w(u, v)$
Therefore
We have the difference

$$
\begin{equation*}
\widehat{w}(u, v)=w(u, v)+h(v)-h(u) \geq 0 \tag{7}
\end{equation*}
$$

Proof

First h is consistent

The, we have that $h(u) \leq h(v)+w(u, v)$

Therefore
We have the difference

$$
\begin{equation*}
\widehat{w}(u, v)=w(u, v)+h(v)-h(u) \geq 0 \tag{7}
\end{equation*}
$$

Thus, given the
Given the recasting of A^{*} as Disjkstra's Algorithm with weights $\widehat{w}(u, v) \geq 0$.

Proof

We have that for a shortest path $\left\langle s=p_{0}, p_{1}, \ldots, u=p_{n}\right\rangle$ under \widehat{w} with

$$
\begin{equation*}
f\left(p_{1}\right)=\widehat{w}\left(p_{0}, p_{1}\right)+h(s) \tag{8}
\end{equation*}
$$

Proof

We have that for a shortest path $\left\langle s=p_{0}, p_{1}, \ldots, u=p_{n}\right\rangle$ under \widehat{w} with

$$
\begin{equation*}
f\left(p_{1}\right)=\widehat{w}\left(p_{0}, p_{1}\right)+h(s) \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
f\left(p_{n}\right)=\underbrace{\widehat{w}\left(p_{n}, p_{n-1}\right)+\ldots+\widehat{w}\left(p_{2}, p_{1}\right)+\widehat{w}\left(p_{1}, p_{0}\right)}_{\widehat{\delta}(s, u)}+h(s) \tag{9}
\end{equation*}
$$

Proof

We have that for a shortest path $\left\langle s=p_{0}, p_{1}, \ldots, u=p_{n}\right\rangle$ under \widehat{w} with

$$
\begin{equation*}
f\left(p_{1}\right)=\widehat{w}\left(p_{0}, p_{1}\right)+h(s) \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
f\left(p_{n}\right)=\underbrace{\widehat{w}\left(p_{n}, p_{n-1}\right)+\ldots+\widehat{w}\left(p_{2}, p_{1}\right)+\widehat{w}\left(p_{1}, p_{0}\right)}_{\widehat{\delta}(s, u)}+h(s) \tag{9}
\end{equation*}
$$

Given that once the shortest path is achieved, it does not change (Lemma 2.3)

$$
\begin{equation*}
f(u)=\widehat{\delta}(s, u)+h(s) \tag{10}
\end{equation*}
$$

Proof

Hence, if $t \in T$ is selected from Open and $\left\langle s=p_{0}, p_{1}, \ldots, t=p_{n}\right\rangle$

$$
f(t)=\widehat{\delta}(s, t)+h(s)
$$

Proof

Hence, if $t \in T$ is selected from Open and $\left\langle s=p_{0}, p_{1}, \ldots, t=p_{n}\right\rangle$

$$
\begin{aligned}
f(t) & =\widehat{\delta}(s, t)+h(s) \\
& =\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right)+h(s)
\end{aligned}
$$

Proof

Hence, if $t \in T$ is selected from Open and $\left\langle s=p_{0}, p_{1}, \ldots, t=p_{n}\right\rangle$

$$
\begin{aligned}
f(t) & =\widehat{\delta}(s, t)+h(s) \\
& =\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right)+h(s) \\
& =\sum_{i=1}^{n} w\left(p_{i}, p_{i-1}\right)+\sum_{i=1}^{n}\left[h\left(p_{i}\right)-h\left(p_{i-1}\right)\right]+h(s)
\end{aligned}
$$

Proof

Hence, if $t \in T$ is selected from Open and $\left\langle s=p_{0}, p_{1}, \ldots, t=p_{n}\right\rangle$

$$
\begin{aligned}
f(t) & =\widehat{\delta}(s, t)+h(s) \\
& =\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right)+h(s) \\
& =\sum_{i=1}^{n} w\left(p_{i}, p_{i-1}\right)+\sum_{i=1}^{n}\left[h\left(p_{i}\right)-h\left(p_{i-1}\right)\right]+h(s) \\
& =\sum_{i=1}^{n} w\left(p_{i-1}, p_{n}\right)+h(t)-h(s)+h(s) \text { (Telescopic Sum) }
\end{aligned}
$$

Proof

Hence, if $t \in T$ is selected from Open and $\left\langle s=p_{0}, p_{1}, \ldots, t=p_{n}\right\rangle$

$$
\begin{aligned}
f(t) & =\widehat{\delta}(s, t)+h(s) \\
& =\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right)+h(s) \\
& =\sum_{i=1}^{n} w\left(p_{i}, p_{i-1}\right)+\sum_{i=1}^{n}\left[h\left(p_{i}\right)-h\left(p_{i-1}\right)\right]+h(s) \\
& =\sum_{i=1}^{n} w\left(p_{i-1}, p_{n}\right)+h(t)-h(s)+h(s) \quad \text { (Telescopic Sum) } \\
& =\sum_{i=1}^{n} w\left(p_{i-1}, p_{n}\right) \quad(h(t)=0)
\end{aligned}
$$

Proof

Hence, if $t \in T$ is selected from Open and $\left\langle s=p_{0}, p_{1}, \ldots, t=p_{n}\right\rangle$

$$
\begin{aligned}
f(t) & =\widehat{\delta}(s, t)+h(s) \\
& =\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right)+h(s) \\
& =\sum_{i=1}^{n} w\left(p_{i}, p_{i-1}\right)+\sum_{i=1}^{n}\left[h\left(p_{i}\right)-h\left(p_{i-1}\right)\right]+h(s) \\
& =\sum_{i=1}^{n} w\left(p_{i-1}, p_{n}\right)+h(t)-h(s)+h(s) \quad \text { (Telescopic Sum) } \\
& =\sum_{i=1}^{n} w\left(p_{i-1}, p_{n}\right) \quad(h(t)=0) \\
& =\delta(s, t)
\end{aligned}
$$

Finally

Since

- $\widehat{w} \geq 0$, we have $f(v) \geq f(u)$ for all successors v of u.

Finally

Since

- $\widehat{w} \geq 0$, we have $f(v) \geq f(u)$ for all successors v of u.

Given that we take a less restrictive condition for a graph with negative weights

$$
\begin{equation*}
\delta(u, T)=\min \{\delta(u, t) \mid t \in T\} \geq 0 \forall u \tag{11}
\end{equation*}
$$

Then

- The f-values increases monotonically so that at the first extraction of $t \in T$:

$$
\begin{equation*}
\delta(s, t)=\delta(s, T) \tag{12}
\end{equation*}
$$

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Remember!!!

Lemma 2.3

- Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$. Define the modified weight $\widehat{w}(u, v)$ as

$$
\begin{equation*}
\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \tag{13}
\end{equation*}
$$

Remember!!!

Lemma 2.3

- Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$. Define the modified weight $\widehat{w}(u, v)$ as

$$
\begin{equation*}
\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \tag{13}
\end{equation*}
$$

Let $\delta(s, t)$ be the length of the shortest path from s to t in the original graph and $\widehat{\delta}(s, t)$ be the corresponding in the reweighed graph.

Remember!!!

Lemma 2.3

- Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$. Define the modified weight $\widehat{w}(u, v)$ as

$$
\begin{equation*}
\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \tag{13}
\end{equation*}
$$

Let $\delta(s, t)$ be the length of the shortest path from s to t in the original graph and $\widehat{\delta}(s, t)$ be the corresponding in the reweighed graph.
(1) For a path p, we have $w(p)=\delta(s, t)$ if and only if $\widehat{w}(u, v)=\widehat{\delta}(s, t)$.

Remember!!!

Lemma 2.3

- Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$. Define the modified weight $\widehat{w}(u, v)$ as

$$
\begin{equation*}
\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \tag{13}
\end{equation*}
$$

Let $\delta(s, t)$ be the length of the shortest path from s to t in the original graph and $\widehat{\delta}(s, t)$ be the corresponding in the reweighed graph.
(1) For a path p, we have $w(p)=\delta(s, t)$ if and only if $\widehat{w}(u, v)=\widehat{\delta}(s, t)$.
(2) In addition, G has no negatively weighted cycles with respect to w if and only if it has none with respect \widehat{w}.

Remember!!!

Lemma 2.3

- Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$. Define the modified weight $\widehat{w}(u, v)$ as

$$
\begin{equation*}
\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \tag{13}
\end{equation*}
$$

Let $\delta(s, t)$ be the length of the shortest path from s to t in the original graph and $\widehat{\delta}(s, t)$ be the corresponding in the reweighed graph.
(1) For a path p, we have $w(p)=\delta(s, t)$ if and only if $\widehat{w}(u, v)=\widehat{\delta}(s, t)$.
(2) In addition, G has no negatively weighted cycles with respect to w if and only if it has none with respect \widehat{w}.

Proof

It can be found at the Johnson's Algorithm part in "All-Pairs Shortest Path."

Lemma

Lemma 2.4 - Toward Admissibility

- Let G be a weighted problem graph, h be a heuristic, and $\widehat{w}(u, v)=h(v)-h(u)+w(u, v)$. If h is admissible, then $\widehat{\delta}(u, T) \geq 0$.

Lemma

Lemma 2.4 - Toward Admissibility

- Let G be a weighted problem graph, h be a heuristic, and $\widehat{w}(u, v)=h(v)-h(u)+w(u, v)$. If h is admissible, then $\widehat{\delta}(u, T) \geq 0$.

Proof

- Since $h(t)=0$ and the shortest path costs remains invariant under re-weighting of G by Lemma 2.3, we have...

Proof

By the definition of $\widehat{\delta}(u, T)$

$$
\widehat{\delta}(u, T)=\min \{\widehat{\delta}(u, t) \mid t \in T\}
$$

Proof

By the definition of $\hat{\delta}(u, T)$

$$
\begin{aligned}
\widehat{\delta}(u, T) & =\min \{\widehat{\delta}(u, t) \mid t \in T\} \\
& =\min \{\delta(u, t)-h(u)+h(t) \mid t \in T\}
\end{aligned}
$$

Because the telescopic sum

Proof

By the definition of $\widehat{\delta}(u, T)$

$$
\begin{aligned}
\widehat{\delta}(u, T) & =\min \{\widehat{\delta}(u, t) \mid t \in T\} \\
& =\min \{\delta(u, t)-h(u)+h(t) \mid t \in T\}
\end{aligned}
$$

Because the telescopic sum

$$
\widehat{\delta}(u, t)=\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right)
$$

Proof

By the definition of $\widehat{\delta}(u, T)$

$$
\begin{aligned}
\widehat{\delta}(u, T) & =\min \{\widehat{\delta}(u, t) \mid t \in T\} \\
& =\min \{\delta(u, t)-h(u)+h(t) \mid t \in T\}
\end{aligned}
$$

Because the telescopic sum

$$
\begin{aligned}
\widehat{\delta}(u, t) & =\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right) \\
& =\sum_{i=1}^{n} w\left(p_{i}, p_{i-1}\right)+\sum_{i=1}^{n}\left[h\left(p_{i}\right)-h\left(p_{i-1}\right)\right]
\end{aligned}
$$

Proof

By the definition of $\widehat{\delta}(u, T)$

$$
\begin{aligned}
\widehat{\delta}(u, T) & =\min \{\widehat{\delta}(u, t) \mid t \in T\} \\
& =\min \{\delta(u, t)-h(u)+h(t) \mid t \in T\}
\end{aligned}
$$

Because the telescopic sum

$$
\begin{aligned}
\widehat{\delta}(u, t) & =\sum_{i=1}^{n} \widehat{w}\left(p_{i}, p_{i-1}\right) \\
& =\sum_{i=1}^{n} w\left(p_{i}, p_{i-1}\right)+\sum_{i=1}^{n}\left[h\left(p_{i}\right)-h\left(p_{i-1}\right)\right] \\
& =\delta(u, t)+h(t)-h(u)
\end{aligned}
$$

Proof

Therefore

$$
\widehat{\delta}(u, T)=\min \{\delta(u, t)-h(u) \mid t \in T\}
$$

Proof

Therefore

$$
\begin{aligned}
\widehat{\delta}(u, T) & =\min \{\delta(u, t)-h(u) \mid t \in T\} \\
& =\min \{\delta(u, t) \mid t \in T\}-h(u)
\end{aligned}
$$

Proof

Therefore

$$
\begin{aligned}
\widehat{\delta}(u, T) & =\min \{\delta(u, t)-h(u) \mid t \in T\} \\
& =\min \{\delta(u, t) \mid t \in T\}-h(u) \\
& =\delta(u, T)-h(u) \geq 0 \text { Q.E.D. }
\end{aligned}
$$

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A* *
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Now

Something Notable

- Given a graph with non-negative weights we have that Dijkstra's algorithms is optimal (Theorem 2.1).

Now

Something Notable

- Given a graph with non-negative weights we have that Dijkstra's algorithms is optimal (Theorem 2.1).

But in negative weighted graphs

- Negatively weighted graphs may contain negatively weighted cycles!!!

Now

Something Notable

- Given a graph with non-negative weights we have that Dijkstra's algorithms is optimal (Theorem 2.1).

But in negative weighted graphs

- Negatively weighted graphs may contain negatively weighted cycles!!!
- Thus, we can handle this situation by using the Bellman-Ford Algorithm.

Now

Something Notable

- Given a graph with non-negative weights we have that Dijkstra's algorithms is optimal (Theorem 2.1).

But in negative weighted graphs

- Negatively weighted graphs may contain negatively weighted cycles!!!
- Thus, we can handle this situation by using the Bellman-Ford Algorithm.

But we can use a less restrictive condition

(1) To define a new Improve for the new Extended Dijkstra.

Now

Something Notable

- Given a graph with non-negative weights we have that Dijkstra's algorithms is optimal (Theorem 2.1).

But in negative weighted graphs

- Negatively weighted graphs may contain negatively weighted cycles!!!
- Thus, we can handle this situation by using the Bellman-Ford Algorithm.

But we can use a less restrictive condition

(1) To define a new Improve for the new Extended Dijkstra.
(1) Look at page 57 Edelkamp

Now

Something Notable

- Given a graph with non-negative weights we have that Dijkstra's algorithms is optimal (Theorem 2.1).

But in negative weighted graphs

- Negatively weighted graphs may contain negatively weighted cycles!!!
- Thus, we can handle this situation by using the Bellman-Ford Algorithm.

But we can use a less restrictive condition

(1) To define a new Improve for the new Extended Dijkstra.
(1) Look at page 57 Edelkamp
(2) And a Lemma about the Invariance of the Extended Dijkstra.

New Improved Algorithm

Improved Algorithm

Input: Nodes u and v, v successor of u
Side effects: Update parent of $v, f(v)$, Open, and Closed.
(1) if $(v \in$ Open)
(2) if $(f(u)+w(u, v)<f(v)) \triangleleft$ Shorter Path
© parent $(v) \leftarrow u$ and $f(v) \leftarrow f(u)+w(u, v)$

New Improved Algorithm

Improved Algorithm

Input: Nodes u and v, v successor of u
Side effects: Update parent of $v, f(v)$, Open, and Closed.
(1) if $(v \in$ Open)
(2) if $(f(u)+w(u, v)<f(v)) \triangleleft$ Shorter Path
(3) parent $(v) \leftarrow u$ and $f(v) \leftarrow f(u)+w(u, v)$
(9) elseif $(v \in$ Closed)
(6) if $(f(u)+w(u, v)<f(v))$
© parent $(v) \leftarrow u$ and $f(v) \leftarrow f(u)+w(u, v)$
(1) Remove v from Closed and Insert it into Open with $f(v)$

New Improved Algorithm

Improved Algorithm

Input: Nodes u and v, v successor of u
Side effects: Update parent of $v, f(v)$, Open, and Closed.
(1) if $(v \in$ Open)
(2) if $(f(u)+w(u, v)<f(v)) \triangleleft$ Shorter Path
(3) parent $(v) \leftarrow u$ and $f(v) \leftarrow f(u)+w(u, v)$
(9) elseif $(v \in$ Closed)
(6) if $(f(u)+w(u, v)<f(v))$
© parent $(v) \leftarrow u$ and $f(v) \leftarrow f(u)+w(u, v)$
© Remove v from Closed and Insert it into Open with $f(v)$
(3) else
(9) $\quad \operatorname{parent}(v) \leftarrow u$ and Init $f(v) \leftarrow f(u)+w(u, v)$
(1) Insert v into Open with $f(v)$

Given

The less restrictive condition

$$
\begin{equation*}
\delta(u, T)=\min \{\delta(u, t) \mid t \in T\} \geq 0 \forall u \tag{14}
\end{equation*}
$$

Given

The less restrictive condition

$$
\begin{equation*}
\delta(u, T)=\min \{\delta(u, t) \mid t \in T\} \geq 0 \forall u \tag{14}
\end{equation*}
$$

Note: (1) That is, the distance from each node to the goal is non-negative.

Given

The less restrictive condition

$$
\begin{equation*}
\delta(u, T)=\min \{\delta(u, t) \mid t \in T\} \geq 0 \forall u \tag{14}
\end{equation*}
$$

Note: (1) That is, the distance from each node to the goal is non-negative.
(2) Figuratively speaking, we can have negative edges when far from the goal, but they get "eaten up" when coming closer.

Given

The less restrictive condition

$$
\begin{equation*}
\delta(u, T)=\min \{\delta(u, t) \mid t \in T\} \geq 0 \forall u \tag{14}
\end{equation*}
$$

Note: (1) That is, the distance from each node to the goal is non-negative.
(2) Figuratively speaking, we can have negative edges when far from the goal, but they get "eaten up" when coming closer.
(3) The condition implies that no negatively weighted cycles exist.

Given

The less restrictive condition

$$
\begin{equation*}
\delta(u, T)=\min \{\delta(u, t) \mid t \in T\} \geq 0 \forall u \tag{14}
\end{equation*}
$$

Note: (1) That is, the distance from each node to the goal is non-negative.
(2) Figuratively speaking, we can have negative edges when far from the goal, but they get "eaten up" when coming closer.
(3) The condition implies that no negatively weighted cycles exist.

Thus, we get a more general version of the Dijkstra's Algorithm
That contains an invariance that we need to prove...

Invariance for Extended Dijkstra's Algorithm

Lemma 2.2

Let $G=(V, E, w)$ be a weighted graph. $p=\left(s=v_{0}, \ldots, v_{n}=t\right)$ be a least cost path from the start node s to a goal node $t \in T$, and f be the approximation in the extended Dijkstra's Algorithm. At each selection of a node u from Open, we have the following invariance:
(I). Unless v_{n} is in Closed with $f\left(v_{n}\right)=\delta\left(s, v_{n}\right)$, there is a node $v_{i} \in$ Open such that $f\left(v_{i}\right)=\delta\left(s, v_{i}\right)$, and no $j>i$ exists such that v_{j} is in Closed with $f\left(v_{j}\right)=\delta\left(s, v_{j}\right)$.

Proof

Given that

- Without loss of generality let i be maximal among the nodes satisfying the invariance (I).

Proof

Given that

- Without loss of generality let i be maximal among the nodes satisfying the invariance (I).
- We have two cases...

Proof

Given that

- Without loss of generality let i be maximal among the nodes satisfying the invariance (I).
- We have two cases...

Case I

- Node u is not on p or $f(u)>\delta(s, u)$

Proof

Given that

- Without loss of generality let i be maximal among the nodes satisfying the invariance (I).
- We have two cases...

Case I

- Node u is not on p or $f(u)>\delta(s, u)$
- Then, $v_{i} \neq u$ remains in Open.

Proof

Given that

- Without loss of generality let i be maximal among the nodes satisfying the invariance (I).
- We have two cases...

Case I

- Node u is not on p or $f(u)>\delta(s, u)$
- Then, $v_{i} \neq u$ remains in Open.
- Since no v in Open $\cap p \cap \operatorname{Succ}(u)$ with $f(v)=\delta(s, v) \leq f(u)+w(u, v)$ is changed and no other node is added to Closed

Proof

Given that

- Without loss of generality let i be maximal among the nodes satisfying the invariance (I).
- We have two cases...

Case I

- Node u is not on p or $f(u)>\delta(s, u)$
- Then, $v_{i} \neq u$ remains in Open.
- Since no v in Open $\cap p \cap \operatorname{Succ}(u)$ with $f(v)=\delta(s, v) \leq f(u)+w(u, v)$ is changed and no other node is added to Closed
- (I) is preserved

Proof

Case II

- Node u is on p and $f(u)=\delta(s, u)$. If $u=v_{n}$, there is nothing to show.

Proof

Case II

- Node u is on p and $f(u)=\delta(s, u)$. If $u=v_{n}$, there is nothing to show.

Now the proof, first assume $u=v_{i}$

- Then, Improve will be called for $v=v_{i+1} \in \operatorname{Succ}(u)$

Proof

Case II

- Node u is on p and $f(u)=\delta(s, u)$. If $u=v_{n}$, there is nothing to show.

Now the proof, first assume $u=v_{i}$

- Then, Improve will be called for $v=v_{i+1} \in \operatorname{Succ}(u)$

Then

- For all other nodes in $\operatorname{Succ}(u)-\left\{v_{i+1}\right\}$, the argument of case 1 holds.

Proof

According to (I)

- If v is in Closed, then $f(v)>\delta(s, v)$ and it will be reinserted in Open with $f(v)=\delta(s, u)+w(u, v)=\delta(s, v)$.

Proof

According to (I)

- If v is in Closed, then $f(v)>\delta(s, v)$ and it will be reinserted in Open with $f(v)=\delta(s, u)+w(u, v)=\delta(s, v)$.

If v is not in Open nor Closed

- It is inserted into Open with $f(v)=\delta(s, u)+w(u, v)$
- Otherwise the operation will set it to $\delta(s, u)$.

Proof

According to (I)

- If v is in Closed, then $f(v)>\delta(s, v)$ and it will be reinserted in Open with $f(v)=\delta(s, u)+w(u, v)=\delta(s, v)$.

If v is not in Open nor Closed

- It is inserted into Open with $f(v)=\delta(s, u)+w(u, v)$
- Otherwise the operation will set it to $\delta(s, u)$.

It does not matter

- The invariance holds in both cases!!!

Proof

Now suppose $u \neq v_{i}$

- By the maximality of i , we have that for $k<i u=v_{k}$

Proof

Now suppose $u \neq v_{i}$

- By the maximality of i , we have that for $k<i u=v_{k}$

If $v=v_{i}$

- Any improve operation will not change the optimal value of $f(v)=\delta(s, u)+w(u, v)=\delta(s, v)$

Proof

Now suppose $u \neq v_{i}$

- By the maximality of i , we have that for $k<i u=v_{k}$

If $v=v_{i}$

- Any improve operation will not change the optimal value of $f(v)=\delta(s, u)+w(u, v)=\delta(s, v)$

In the other case

- v_{i} remains in Open with an unchanged f value and no other node besides u is inserted into Closed, thus v_{i} preserves (I).

From this Lemma, we get

Theorem 2.3 - Correctness of the Extended Dijkstra

- Let $G=(V, E, w)$ be a weighted graph so that for all $u \in V$ we have $\delta(u, T) \geq 0$. The Extended Dijkstra is optimal; that is, at the first extraction of a node $t \in T$ we have $f(t)=\delta(s, T)$

From Algorithms

Lemma 2.4

- Let G be a weighted problem graph, h be a heuristic, and

$$
\widehat{w}(u, v)=w(u, v)-h(u)+h(v)
$$

If h is admissible, then $\widehat{\delta}(u, T) \geq 0$

Finally, Admissibility in A^{*}

Theorem (A* for Admissible Heuristics)

- For weighted graphs $G=(V, E, w)$ and admissible heuristics h, algorithm A* is complete and optimal.
- This comes from the previous Lemma and Theorem

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A*
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Expansion of Different Strategies

The expansion trees

Expansion Criterion: $u \in$ Open with max. $g(u)$
(a)

Expansion Criterion:
$u \in$ Open with min. $g(u)+h(u)$ (c)

Expansion Criterion:
$u \in$ Open with min. $g(u)$
(b)

Expansion Criterion: $u \in$ Open with min. $h(u)$
(d)

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance

(2) A* Algorithm

- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A*
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Optimality in A* - Once we have dealt with the negative edges

Theorem 2.11. (Efficiency Lower Bound)

Let G be a problem graph with nonnegative weight function, with initial node s and final node set T, and let $f^{*}=\delta(s, T)$ be the optimal solution cost. Any optimal algorithm has to visit all nodes $u \in V$ with $\delta(s, u)<f^{*}$.

Optimality in A^{*} - Once we have dealt with the negative edges

Theorem 2.11. (Efficiency Lower Bound)

Let G be a problem graph with nonnegative weight function, with initial node s and final node set T, and let $f^{*}=\delta(s, T)$ be the optimal solution cost. Any optimal algorithm has to visit all nodes $u \in V$ with $\delta(s, u)<f^{*}$.

Explanation

- We can view a search with a consistent heuristic as a search in a re-weighted problem graph with nonnegative costs!!!

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

PROBLEM!!!

We have a BFS style Algorithm
A^{*} is a BFS style algorithm!!!

PROBLEM!!!

We have a BFS style Algorithm
A* is a BFS style algorithm!!!
Improvement
We can use the iterative-deepening to improve it!!!

ITERATIVE-DEEPENING A*

Procedure IDA*-Driver

Input: Start node s, function w, heuristics h, function Expand and function Goal

Output: Path from s to $t \in T$ or \emptyset if no such path exists
(1) $U^{\prime} \leftarrow h(s)$
(2) bestPath $\leftarrow \emptyset$
(3) while (bestPath $==\emptyset$ and $\left.U^{\prime} \neq \infty\right) \triangleleft$ Goal not found, unexplored nodes left
(ㅇ) $U \leftarrow U^{\prime} \triangleleft$ Reset Global Threshold
(3) $U^{\prime} \leftarrow \infty$
(0) bestPath $\leftarrow I D A *(s, 0, U)$
(return bestPath

ITERATIVE-DEEPENING A*

Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node $t \in T$ or \emptyset if no such path exists SideEffects: Update of threshold U^{\prime}
(1) if $($ Goal $(u))$ return Path (u)
(2) $\operatorname{Succ}(u) \leftarrow \operatorname{Expand}(u)$

ITERATIVE-DEEPENING A*

Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node $t \in T$ or \emptyset if no such path exists SideEffects: Update of threshold U^{\prime}
(1) if $($ Goal $(u))$ return Path (u)
(2) $\operatorname{Succ}(u) \leftarrow \operatorname{Expand}(u)$
(3) for each v in $\operatorname{Succ}(u)$
©

$$
\text { if } \quad \begin{aligned}
& (g+w(u, v)+h(v)>U) \\
& \quad \text { if }\left(g+w(u, v)+h(v)<U^{\prime}\right)
\end{aligned}
$$

©

$$
U^{\prime} \leftarrow g+w(u, v)+h(v)
$$

ITERATIVE-DEEPENING A*

Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node $t \in T$ or \emptyset if no such path exists SideEffects: Update of threshold U^{\prime}
(1) if (Goal $(u))$ return Path (u)
(2) $\operatorname{Succ}(u) \leftarrow \operatorname{Expand}(u)$
(3) for each v in $\operatorname{Succ}(u)$
©

$$
\begin{aligned}
& \text { if }(g+w(u, v)+h(v)>U) \\
& \text { if }\left(g+w(u, v)+h(v)<U^{\prime}\right) \\
& U^{\prime} \leftarrow g+w(u, v)+h(v)
\end{aligned}
$$

(1) else
©

$$
\begin{aligned}
& p \leftarrow I D A *(v, g+w(u, v), U) \\
& \text { if }(p \neq \emptyset) \text { return }(u, p)
\end{aligned}
$$

0

ITERATIVE-DEEPENING A*

Procedure IDA*

Input: Node u, path length g, upper bound U
Output: Shortest path to a goal node $t \in T$ or \emptyset if no such path exists SideEffects: Update of threshold U^{\prime}
(1) if (Goal $(u))$ return Path (u)
(2) $\operatorname{Succ}(u) \leftarrow \operatorname{Expand}(u)$
(3) for each v in $\operatorname{Succ}(u)$
(3)

$$
\begin{aligned}
& \text { if }(g+w(u, v)+h(v)>U) \\
& \text { if }\left(g+w(u, v)+h(v)<U^{\prime}\right) \\
& U^{\prime} \leftarrow g+w(u, v)+h(v)
\end{aligned}
$$

(1) else

B

$$
\begin{aligned}
& p \leftarrow I D A *(v, g+w(u, v), U) \\
& \text { if }(p \neq \emptyset) \text { return }(u, p)
\end{aligned}
$$

0
(10) return \emptyset

Optimality of ITERATIVE-DEEPENING A*

Theorem 5.4 (Optimality Iterative-Deepening A*)
Algorithm IDA* for graphs with admissible weight function is optimal.

Proof

Something Notable

Proof

Something Notable

Something Notable

Proof

Something Notable

Something Notable

Properties

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Casting A* as a Dijkstra's Algorithm

Something Notable

We can use the following re-weighting to incorporate the heuristic the weight function and sometimes to avoid negative weights!!!

$$
\widehat{w}(u, v)=w(u, v)-h(u)+h(v)
$$

Note: as Dijkstra's Algorithm on a re-wighted graph!!!

Casting A* as a Dijkstra's Algorithm

Something Notable

We can use the following re-weighting to incorporate the heuristic the weight function and sometimes to avoid negative weights!!!

$$
\widehat{w}(u, v)=w(u, v)-h(u)+h(v)
$$

Note: as Dijkstra's Algorithm on a re-wighted graph!!!

Why?

One motivation for this transformation is to inherit correctness proofs!!!

A*: Re-Weighting Edges

Lemma 2.3

Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$ a consistent heuristic. Define the modified weight $\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \geq 0$. Let $\delta(s, t)$ be the length of the shortest path from s to t in the original graph and $\widehat{\delta}(s, t)$ be the corresponding value in the re-weighted graph.

A*: Re-Weighting Edges

Lemma 2.3

Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$ a consistent heuristic. Define the modified weight $\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \geq 0$. Let $\delta(s, t)$ be the length of the shortest path from s to t in the original graph and $\widehat{\delta}(s, t)$ be the corresponding value in the re-weighted graph.
(1) For a path p , we have $w(p)=\delta(s, t)$, if and only if $\widehat{w}(p)=\widehat{\delta}(s, t)$.

A*: Re-Weighting Edges

Lemma 2.3

Let G be a weighted problem graph and $h: V \rightarrow \mathbb{R}$ a consistent heuristic. Define the modified weight $\widehat{w}(u, v)=w(u, v)-h(u)+h(v) \geq 0$. Let $\delta(s, t)$ be the length of the shortest path from s to t in the original graph and $\widehat{\delta}(s, t)$ be the corresponding value in the re-weighted graph.
(1) For a path p , we have $w(p)=\delta(s, t)$, if and only if $\widehat{w}(p)=\widehat{\delta}(s, t)$.
(2) Moreover, G has no negatively weighted cycles with respect to w if and only if it has none with respect to \widehat{w}.

However

Given the implicit graphs

We have the following question

However

Given the implicit graphs

We have the following question

Given a Incosistent Heuristic Re-Weighting helps at all?

Sometimes it does not work...

Example of Re-weighting Edges on an Inconsistent

 Heuristic
Example: A problem graph before (left) and after (right) re-weighting.

Figure: $h *(u)=\delta(u, t)$ and f for the first expansions in the new graph

Problem!!!

We have a INCONSISTENT heuristic

$$
h(b) \geq h(a)+w(b, a)!!!
$$

Problem!!!

We have a INCONSISTENT heuristic

$$
h(b) \geq h(a)+w(b, a)!!!
$$

That creates a negative weight How do we deal with an inconsistent heuristic?

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Dealing with inconsistent but admissible heuristics

We use the idea of Pathmax

- Taking the maximum of the accumulated weights on the path to a node to enforce a monotone growth in the cost function.

Dealing with inconsistent but admissible heuristics

We use the idea of Pathmax

- Taking the maximum of the accumulated weights on the path to a node to enforce a monotone growth in the cost function.

Pathmax

For a node u with child v

- $f(v)=\max \{f(v), f(u)\}$ or equivalent $h(v)=\max \{h(v), h(u)-w(u, v)\}$.

However

Even with this!!!

In the previous figure:

However

Even with this!!!

In the previous figure:

- After expanding s and a, we have Open $=\{(b, 12),(t, 15)\}$ and Closed $=\{(s, 6),(a, 11)\}$.

However

Even with this!!!

In the previous figure:

- After expanding s and a, we have Open $=\{(b, 12),(t, 15)\}$ and Closed $=\{(s, 6),(a, 11)\}$.
- Now a is reached by $(b, 12)$, and it is moved to Closed

However

Even with this!!!

In the previous figure:

- After expanding s and a, we have Open $=\{(b, 12),(t, 15)\}$ and Closed $=\{(s, 6),(a, 11)\}$.
- Now a is reached by $(b, 12)$, and it is moved to Closed
- Then, it is compared to the closed list

However

Even with this!!!

In the previous figure:

- After expanding s and a, we have Open $=\{(b, 12),(t, 15)\}$ and Closed $=\{(s, 6),(a, 11)\}$.
- Now a is reached by $(b, 12)$, and it is moved to Closed
- Then, it is compared to the closed list
- 12 is now the pathmax on path (s, b, a), but we never added to Closed

However

Even with this!!!

In the previous figure:

- After expanding s and a, we have Open $=\{(b, 12),(t, 15)\}$ and Closed $=\{(s, 6),(a, 11)\}$.
- Now a is reached by $(b, 12)$, and it is moved to Closed
- Then, it is compared to the closed list
- 12 is now the pathmax on path (s, b, a), but we never added to Closed
- Remember the code

However

Even with this!!!

In the previous figure:

- After expanding s and a, we have Open $=\{(b, 12),(t, 15)\}$ and Closed $=\{(s, 6),(a, 11)\}$.
- Now a is reached by $(b, 12)$, and it is moved to Closed
- Then, it is compared to the closed list
- 12 is now the pathmax on path (s, b, a), but we never added to Closed
- Remember the code
- We lose the information for $(a, 12)$

Therefore

Even with the Pathmax

- We have a problem!!!

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Best-First Searches

Best-First Searches

- They are a family of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.

Best-First Searches

Best-First Searches

- They are a family of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.
- First described by Judea Pearl in "Heuristics: Intelligent Search Strategies for Computer Problem Solving," Addison-Wesley, 1984. p. 48.

Best-First Searches

Best-First Searches

- They are a family of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.
- First described by Judea Pearl in "Heuristics: Intelligent Search Strategies for Computer Problem Solving," Addison-Wesley, 1984. p. 48.

For this they use...

- A heuristic evaluation function $f(n)$ for each node.

Best-First Searches

Best-First Searches

- They are a family of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.
- First described by Judea Pearl in "Heuristics: Intelligent Search Strategies for Computer Problem Solving," Addison-Wesley, 1984. p. 48.

For this they use...

- A heuristic evaluation function $f(n)$ for each node.
- "It may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain." Judea Pearl

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Best-First Generic Algorithm

Best-First Generic Algorithm

(1) Open $=[$ initial state]
(2) Closed $=[]$

Best-First Generic Algorithm

Best-First Generic Algorithm

(1) Open $=[$ initial state]
(2) Closed= []
(3) while
4) Remove the best node from Open, call it n, add it to Closed.

Best-First Generic Algorithm

Best-First Generic Algorithm

(1) Open $=[$ initial state $]$
(2) Closed $=[]$
(3) while
(4) Remove the best node from Open, call it n, add it to Closed.
(5) If n is the goal state, back-trace path to n and return path.

Best-First Generic Algorithm

Best-First Generic Algorithm

(1) Open $=[$ initial state]
(2) Closed $=[]$
(3) while
(4) Remove the best node from Open, call it n, add it to Closed.
(5) If n is the goal state, back-trace path to n and return path.
(6) Create n 's successors.

Best-First Generic Algorithm

Best-First Generic Algorithm

(1) Open $=[$ initial state $]$
(2) Closed $=[]$
(3) while
(4) Remove the best node from Open, call it n, add it to Closed.
(5) If n is the goal state, back-trace path to n and return path.
(6) Create n 's successors.
(7) For each successor do:

8
If it is not in Closed:
Evaluate it, add it to Open, and record its parent.

Best-First Generic Algorithm

Best-First Generic Algorithm

(1) Open $=[$ initial state]
(2) Closed $=[]$
(3) while
(4) Remove the best node from Open, call it n, add it to Closed.
(5) If n is the goal state, back-trace path to n and return path.
(6) Create n 's successors.
(7) For each successor do:

If it is not in Closed:
Evaluate it, add it to Open, and record its parent.
-
else change recorded parent if this new path is better than previous one.

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Greedy Best First Search

Definition

- Evaluation function $f(n)=h(n)$
- $h(n)=$ estimate of cost from n to goal.
- Greedy best-first search expands the node that appears to be closest to goal

Example

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A*
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A*
- Expansion of Different Strategies
- Optimality in A*
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Greedy BFS Vs. A*

Properties of greedy Best-First Search
Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Greedy BFS Vs. A*

Properties of greedy Best-First Search

Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Time? $O(b m)$, but a good heuristic can give dramatic improvement

Greedy BFS Vs. A*

Properties of greedy Best-First Search

Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Time? $O(b m)$, but a good heuristic can give dramatic improvement Space? $O(b m)$ - keeps all nodes in memory

Greedy BFS Vs. A*

Properties of greedy Best-First Search

Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Time? $O(b m)$, but a good heuristic can give dramatic improvement Space? $O(b m)$ - keeps all nodes in memory
Optimal? No

Greedy BFS Vs. A*

Properties of greedy Best-First Search

Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Time? $O(b m)$, but a good heuristic can give dramatic improvement Space? $O(b m)$ - keeps all nodes in memory
Optimal? No

Vs A* Properties

Complete? Yes (unless there are infinitely many nodes with

$$
f(n) \leq f(G))
$$

Greedy BFS Vs. A*

Properties of greedy Best-First Search

Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Time? $O(b m)$, but a good heuristic can give dramatic improvement Space? $O(b m)$ - keeps all nodes in memory

Optimal? No

Vs A* Properties

Complete? Yes (unless there are infinitely many nodes with

$$
f(n) \leq f(G))
$$

Time? Exponential $O\left(b^{m}\right)$

Greedy BFS Vs. A*

Properties of greedy Best-First Search

Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Time? $O(b m)$, but a good heuristic can give dramatic improvement Space? $O(b m)$ - keeps all nodes in memory
Optimal? No

Vs A* Properties

Complete? Yes (unless there are infinitely many nodes with

$$
f(n) \leq f(G))
$$

Time? Exponential $O\left(b^{m}\right)$
Space? Keeps all nodes in memory Worst case $O\left(b^{m}\right)$

Greedy BFS Vs. A*

Properties of greedy Best-First Search

Complete? No - can get stuck in loops, e.g., lasi -> Neamt -> lasi -> Neamt ->

Time? $O(b m)$, but a good heuristic can give dramatic improvement Space? $O(b m)$ - keeps all nodes in memory
Optimal? No

Vs A* Properties

Complete? Yes (unless there are infinitely many nodes with

$$
f(n) \leq f(G))
$$

Time? Exponential $O\left(b^{m}\right)$
Space? Keeps all nodes in memory Worst case $O\left(b^{m}\right)$
Optimal? Yes

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A^{*}
- Pseudo-Code
- Consistency of A^{*}
- Admissibility in A^{*}
- Lemma Toward Admissibility of A^{*}
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?

Origin of Heuristics

Common View

- Heuristic could come from relaxing the constraints of a problem and trying to solve it exactly!!!

Origin of Heuristics

Common View

- Heuristic could come from relaxing the constraints of a problem and trying to solve it exactly!!!

Example

- A prominent example for this is the straight-line distance estimate for routing problems.

Origin of Heuristics

Common View

- Heuristic could come from relaxing the constraints of a problem and trying to solve it exactly!!!

Example

- A prominent example for this is the straight-line distance estimate for routing problems.
- It can be interpreted as adding straight routes to the map.

Origin of Heuristics

Common View

- Heuristic could come from relaxing the constraints of a problem and trying to solve it exactly!!!

Example

- A prominent example for this is the straight-line distance estimate for routing problems.
- It can be interpreted as adding straight routes to the map.

Example

- This is captured by the abstraction transformation.

Origin of Heuristics

Common View

- Heuristic could come from relaxing the constraints of a problem and trying to solve it exactly!!!

Example

- A prominent example for this is the straight-line distance estimate for routing problems.
- It can be interpreted as adding straight routes to the map.

Example

- This is captured by the abstraction transformation.
- It is used to automate the generation of heuristics.

Outline

Informed Optimal Search

- What is an Heuristic?
- Formal Definition of a Heuristic
- Desirable Properties of a Heuristic
- Consistency and Monotonicity
- Dominance
(2) A* Algorithm
- The Heuristic A^{*}
- Pseudo-Code
- Consistency of A*
- Admissibility in A^{*}
- Lemma Toward Admissibility of A^{*}
- Expansion of Different Strategies
- Optimality in A^{*}
- Iterative-Deepening for A^{*}
- A*: Re-weighting Edges
- Dealing with the problem
- Best-First Searches
- Algorithm
- Greedy Best First Search
- Greedy Best-First Search Vs. A* Algorithm
(3) Limits in Heuristics
- Where do heuristics come from?
- Abstraction Transformations and Valtortas's Theorem

Abstraction Transformations

Definition 4.1

- An abstraction transformation $\phi: S \rightarrow S^{\prime}$ maps states u in the concrete problem space to abstract states $\phi(u)$ and concrete actions a to abstract actions $\phi(a)$.

Thus

We have the following Intuition

- Intuitively, this agrees with a common explanation of the origin of heuristics.

Thus

We have the following Intuition

- Intuitively, this agrees with a common explanation of the origin of heuristics.
- As the cost of exact solutions to a relaxed problem.

Thus

We have the following Intuition

- Intuitively, this agrees with a common explanation of the origin of heuristics.
- As the cost of exact solutions to a relaxed problem.
- A relaxed problem is one where we drop constraints (e.g., on move execution).

Thus

We have the following Intuition

- Intuitively, this agrees with a common explanation of the origin of heuristics.
- As the cost of exact solutions to a relaxed problem.
- A relaxed problem is one where we drop constraints (e.g., on move execution).

Example

- For example, the Manhattan distance for sliding-tile puzzles can be regarded as acting in an abstract problem space that allows multiple tiles to occupy the same square.

Embedding and Homomorphism

Definition 4.2

- An Abstraction Transformation (Map) ϕ is an embedding transformation if it adds edges to S such that the concrete and abstract state sets are the same; that is, $\phi(u)=u$ for all $u \in S$.
- An Abstract Homomorphism requires that for all edges $(u, v) \in S$, there must also be an edge $(\phi(u), \phi(v)) \in S^{\prime}$.

Embedding and Homomorphism

Theorem 4.1 (Admissibility and Consistency of Abstraction Heuristics)

- Let S be a state space and $S^{\prime}=\phi(S)$ be any homomorphic abstraction transformation of S. Let heuristic function $h_{\phi}(u)$ for state u and goal t be defined as the length of the shortest path from $\phi(u)$ to $\phi(t)$ in S.

Embedding and Homomorphism

Theorem 4.1 (Admissibility and Consistency of Abstraction Heuristics)

- Let S be a state space and $S^{\prime}=\phi(S)$ be any homomorphic abstraction transformation of S. Let heuristic function $h_{\phi}(u)$ for state u and goal t be defined as the length of the shortest path from $\phi(u)$ to $\phi(t)$ in S.
- Then h_{ϕ} is an admissible, consistent heuristic function.

VALTORTA'S THEOREM

VALTORTA'S THEOREM

VALTORTA'S THEOREM

VALTORTA'S THEOREM

- Let u be any state necessarily expanded, when the problem (s, t) is solved in S with Breadth-First Serch. In addition:
- $\phi: S \rightarrow S^{\prime}$ be any abstraction mapping; the heuristic estimate $h(u)$ be computed by blindly searching from $\phi(u)$ to $\phi(t)$.
- If the problem is solved by the \mathbf{A}^{*} algorithm using h, then either u itself will be expanded, or $\phi(u)$ will be expanded.

Consequences of Valtora's Theorem

Corollary 4.1

For an embedding ϕ, A^{*}-using h computed by blind search in the abstract problem space-necessarily expands every state that is expanded by blind search in the original space.

Consequences of Valtora's Theorem

Consequences of Valtora's Theorem

Observe!!

- Based on this theorem, we define "Valtorta's Barrier" to be the number of nodes expanded when blindly searching in a space.
- Valtorta's theorem states that this barrier cannot be "broken" using any embedding transformation.

Consequences of Valtora's Theorem

Observe!!

- Based on this theorem, we define "Valtorta's Barrier" to be the number of nodes expanded when blindly searching in a space.
- Valtorta's theorem states that this barrier cannot be "broken" using any embedding transformation.

HOWEVER!!!

- Contrary to the case of embeddings, this negative result of Valtorta's theorem does not apply in this way to abstractions based on homomorphisms.

Consequences of Valtora's Theorem

Observe!!

- Based on this theorem, we define "Valtorta's Barrier" to be the number of nodes expanded when blindly searching in a space.
- Valtorta's theorem states that this barrier cannot be "broken" using any embedding transformation.

HOWEVER!!!

- Contrary to the case of embeddings, this negative result of Valtorta's theorem does not apply in this way to abstractions based on homomorphisms.
- It is more, they can reduce the search effort, since the abstract space is often smaller than the original one.

Bibliography

(i. S. Edelkamp and S. Schrodl, Heuristic Search - Theory and Applications.
Academic Press, 2012.

