
Introduction to Artificial Intelligence
Uninformed Search

Andres Mendez-Vazquez

January 14, 2020

1 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

2 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

3 / 123

Something is quite interesting to observe

Solving Problems as Humans
It requires to start in some point and take an action to move to the
next state.

In mathematics, we do the following (Example Jarviz’s Gift Wrapping
Convex Hull)

4 / 123

Something is quite interesting to observe
Solving Problems as Humans

It requires to start in some point and take an action to move to the
next state.

In mathematics, we do the following (Example Jarviz’s Gift Wrapping
Convex Hull)

4 / 123

Therefore

Once one has established the initial policy (Cost Function) to solve
the problem

You can start designing a way to search for the possible solution.

Therefore
The Concept of Search is the one that need to be explored in order to
obtain an answer!!!

5 / 123

Therefore

Once one has established the initial policy (Cost Function) to solve
the problem

You can start designing a way to search for the possible solution.

Therefore
The Concept of Search is the one that need to be explored in order to
obtain an answer!!!

5 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

6 / 123

What is Search?

In computer Sciences
Every algorithm searches for the completion of a given task. [1]

The process of problem solving can often be modeled as a search in a
State Space.

1 A set of rules to move from a state to another state.
2 A state path that indicates our search in the State Space.
3 A Goal in such State Space.

Looking for the best possible path.

7 / 123

What is Search?

In computer Sciences
Every algorithm searches for the completion of a given task. [1]

The process of problem solving can often be modeled as a search in a
State Space.

1 A set of rules to move from a state to another state.
2 A state path that indicates our search in the State Space.
3 A Goal in such State Space.

Looking for the best possible path.

7 / 123

What is Search?

In computer Sciences
Every algorithm searches for the completion of a given task. [1]

The process of problem solving can often be modeled as a search in a
State Space.

1 A set of rules to move from a state to another state.
2 A state path that indicates our search in the State Space.
3 A Goal in such State Space.

Looking for the best possible path.

7 / 123

What is Search?

In computer Sciences
Every algorithm searches for the completion of a given task. [1]

The process of problem solving can often be modeled as a search in a
State Space.

1 A set of rules to move from a state to another state.
2 A state path that indicates our search in the State Space.
3 A Goal in such State Space.

Looking for the best possible path.

7 / 123

What is Search?

In computer Sciences
Every algorithm searches for the completion of a given task. [1]

The process of problem solving can often be modeled as a search in a
State Space.

1 A set of rules to move from a state to another state.
2 A state path that indicates our search in the State Space.
3 A Goal in such State Space.

Looking for the best possible path.

7 / 123

What is Search?

Example based in the idea of Breadth First Search

Start Node

Explored Nodes
Frontier Nodes
Unexplored Nodes

Figure: Example of Search

8 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

9 / 123

State Space Problem

State Space Problem [1]
Definition A state space problem P = (S,A, s, T) consists of a:

1 Set of states S.
2 A starting state s
3 A set of goal states T ⊆ S.
4 A finite set of actions A = {a1, a2..., an}.

1 Where ai : S → S is a function that transform a state
into another state.

10 / 123

State Space Problem

State Space Problem [1]
Definition A state space problem P = (S,A, s, T) consists of a:

1 Set of states S.
2 A starting state s
3 A set of goal states T ⊆ S.
4 A finite set of actions A = {a1, a2..., an}.

1 Where ai : S → S is a function that transform a state
into another state.

10 / 123

State Space Problem

State Space Problem [1]
Definition A state space problem P = (S,A, s, T) consists of a:

1 Set of states S.
2 A starting state s
3 A set of goal states T ⊆ S.
4 A finite set of actions A = {a1, a2..., an}.

1 Where ai : S → S is a function that transform a state
into another state.

10 / 123

State Space Problem

State Space Problem [1]
Definition A state space problem P = (S,A, s, T) consists of a:

1 Set of states S.
2 A starting state s
3 A set of goal states T ⊆ S.
4 A finite set of actions A = {a1, a2..., an}.

1 Where ai : S → S is a function that transform a state
into another state.

10 / 123

State Space Problem

State Space Problem [1]
Definition A state space problem P = (S,A, s, T) consists of a:

1 Set of states S.
2 A starting state s
3 A set of goal states T ⊆ S.
4 A finite set of actions A = {a1, a2..., an}.

1 Where ai : S → S is a function that transform a state
into another state.

10 / 123

State Space Problem

State Space Problem [1]
Definition A state space problem P = (S,A, s, T) consists of a:

1 Set of states S.
2 A starting state s
3 A set of goal states T ⊆ S.
4 A finite set of actions A = {a1, a2..., an}.

1 Where ai : S → S is a function that transform a state
into another state.

10 / 123

Example, Railroad Switching

Description
An engine (E) at the siding can push or pull two cars (A and B) on the track.

The railway passes through a tunnel that only the engine, but not the rail cars, can
pass.

Goal
To exchange the location of the two cars and have the engine back on the siding.

11 / 123

Example, Railroad Switching

Description
An engine (E) at the siding can push or pull two cars (A and B) on the track.

The railway passes through a tunnel that only the engine, but not the rail cars, can
pass.

Goal
To exchange the location of the two cars and have the engine back on the siding.

11 / 123

Example, Railroad Switching

Description
An engine (E) at the siding can push or pull two cars (A and B) on the track.

The railway passes through a tunnel that only the engine, but not the rail cars, can
pass.

Goal
To exchange the location of the two cars and have the engine back on the siding.

11 / 123

Example: RAILROAD SWITCHING

The Structue of the Problem

Tunnel

E A

B

12 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

13 / 123

State Space Problem Graph

Definition
A problem graph G = (V,E, s, T) for the state space problem
P = (S,A, s, T) is defined by:

1 V = S as the set of nodes.
2 s ∈ S as the initial node.
3 T as the set of goal nodes.
4 E ⊆ V × V as the set of edges that connect nodes to nodes with

(u, v) ∈ E if and only if there exists an a ∈ A with a(u) = v.

14 / 123

State Space Problem Graph

Definition
A problem graph G = (V,E, s, T) for the state space problem
P = (S,A, s, T) is defined by:

1 V = S as the set of nodes.
2 s ∈ S as the initial node.
3 T as the set of goal nodes.
4 E ⊆ V × V as the set of edges that connect nodes to nodes with

(u, v) ∈ E if and only if there exists an a ∈ A with a(u) = v.

14 / 123

State Space Problem Graph

Definition
A problem graph G = (V,E, s, T) for the state space problem
P = (S,A, s, T) is defined by:

1 V = S as the set of nodes.
2 s ∈ S as the initial node.
3 T as the set of goal nodes.
4 E ⊆ V × V as the set of edges that connect nodes to nodes with

(u, v) ∈ E if and only if there exists an a ∈ A with a(u) = v.

14 / 123

State Space Problem Graph

Definition
A problem graph G = (V,E, s, T) for the state space problem
P = (S,A, s, T) is defined by:

1 V = S as the set of nodes.
2 s ∈ S as the initial node.
3 T as the set of goal nodes.
4 E ⊆ V × V as the set of edges that connect nodes to nodes with

(u, v) ∈ E if and only if there exists an a ∈ A with a(u) = v.

14 / 123

State Space Problem Graph

Definition
A problem graph G = (V,E, s, T) for the state space problem
P = (S,A, s, T) is defined by:

1 V = S as the set of nodes.
2 s ∈ S as the initial node.
3 T as the set of goal nodes.
4 E ⊆ V × V as the set of edges that connect nodes to nodes with

(u, v) ∈ E if and only if there exists an a ∈ A with a(u) = v.

14 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

15 / 123

Example

Engine

Car A

Car B

Figure: Possible states are labeled by the locations of the engine (E) and the cars
(A and B), either in the form of a string or of a pictogram; EAB is the start state,
EBA is the goal state.

16 / 123

Example

Inside of each state you could have
Engine

Car A

Car B

17 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

18 / 123

Solution

Definition
A solution π = (a1, a2, ..., ak) is an ordered sequence of actions
ai ∈ A, i ∈ 1, ..., k that transforms the initial state s into one of the
goal states t ∈ T .

Thus
There exists a sequence of states ui ∈ S, i ∈ 0, ..., k, with u0 = s,
uk = t, and ui is the outcome of applying ai to ui−1, i ∈ 1, ..., k.

19 / 123

Solution
Definition

A solution π = (a1, a2, ..., ak) is an ordered sequence of actions
ai ∈ A, i ∈ 1, ..., k that transforms the initial state s into one of the
goal states t ∈ T .

Thus
There exists a sequence of states ui ∈ S, i ∈ 0, ..., k, with u0 = s,
uk = t, and ui is the outcome of applying ai to ui−1, i ∈ 1, ..., k.

Problem Space

19 / 123

We want the following

We are interested in!!!
Solution length of a problem i.e.

I the number of actions in the sequence.
Cost of the solution

I Based on a Cost Function.

20 / 123

We want the following

We are interested in!!!
Solution length of a problem i.e.

I the number of actions in the sequence.
Cost of the solution

I Based on a Cost Function.

20 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

21 / 123

It is more

As in Graph Theory
We can add a weight to each edge

We can then
Define the Weighted State Space Problem

22 / 123

It is more

As in Graph Theory
We can add a weight to each edge

We can then
Define the Weighted State Space Problem

22 / 123

Weighted State Space Problem

Definition
A weighted state space problem is a tuple P = (S,A, s, T, w), where
w is a cost functionw : A→ R. The cost of a path consisting of
actions a1, ..., an is defined as

∑n
i=1w (ai).

In a weighted search space, we call a solution optimal, if it has
minimum cost among all feasible solutions.

23 / 123

Weighted State Space Problem

Definition
A weighted state space problem is a tuple P = (S,A, s, T, w), where
w is a cost functionw : A→ R. The cost of a path consisting of
actions a1, ..., an is defined as

∑n
i=1w (ai).

In a weighted search space, we call a solution optimal, if it has
minimum cost among all feasible solutions.

23 / 123

Then

Observations I
For a weighted state space problem, there is a corresponding weighted
problem graph G = (V,E, s, T, w), where w is extended to E → R in
the straightforward way.
The weight or cost of a path π = (v0, ..., vk) is defined as
w (π) =

∑k
i=1w (vi−1, vi).

Observations II
δ (s, t) = min {w(π)|π = (v0 = s, ..., vk = t)}
The optimal solution cost can be abbreviated as
δ(s, T) = min {t ∈ T |δ(s, t)}.

24 / 123

Then

Observations I
For a weighted state space problem, there is a corresponding weighted
problem graph G = (V,E, s, T, w), where w is extended to E → R in
the straightforward way.
The weight or cost of a path π = (v0, ..., vk) is defined as
w (π) =

∑k
i=1w (vi−1, vi).

Observations II
δ (s, t) = min {w(π)|π = (v0 = s, ..., vk = t)}
The optimal solution cost can be abbreviated as
δ(s, T) = min {t ∈ T |δ(s, t)}.

24 / 123

Then

Observations I
For a weighted state space problem, there is a corresponding weighted
problem graph G = (V,E, s, T, w), where w is extended to E → R in
the straightforward way.
The weight or cost of a path π = (v0, ..., vk) is defined as
w (π) =

∑k
i=1w (vi−1, vi).

Observations II
δ (s, t) = min {w(π)|π = (v0 = s, ..., vk = t)}
The optimal solution cost can be abbreviated as
δ(s, T) = min {t ∈ T |δ(s, t)}.

24 / 123

Then

Observations I
For a weighted state space problem, there is a corresponding weighted
problem graph G = (V,E, s, T, w), where w is extended to E → R in
the straightforward way.
The weight or cost of a path π = (v0, ..., vk) is defined as
w (π) =

∑k
i=1w (vi−1, vi).

Observations II
δ (s, t) = min {w(π)|π = (v0 = s, ..., vk = t)}
The optimal solution cost can be abbreviated as
δ(s, T) = min {t ∈ T |δ(s, t)}.

24 / 123

Example

The weights

Weighted Problem Space

25 / 123

Notes in Graph Representation

Terms
Node expansion (a.k.a. node exploration):

I Generation of all neighbors of a node u.
I This nodes are called successors of u.
I u is a parent or predecessor.

In addition...
All nodes u0, ..., un−1 are called antecessors of u.
u is a descendant of each node u0, ..., un−1.
Thus, ancestor and descendant refer to paths of possibly more than
one edge.

26 / 123

Notes in Graph Representation

Terms
Node expansion (a.k.a. node exploration):

I Generation of all neighbors of a node u.
I This nodes are called successors of u.
I u is a parent or predecessor.

In addition...
All nodes u0, ..., un−1 are called antecessors of u.
u is a descendant of each node u0, ..., un−1.
Thus, ancestor and descendant refer to paths of possibly more than
one edge.

26 / 123

Notes in Graph Representation

Terms
Node expansion (a.k.a. node exploration):

I Generation of all neighbors of a node u.
I This nodes are called successors of u.
I u is a parent or predecessor.

In addition...
All nodes u0, ..., un−1 are called antecessors of u.
u is a descendant of each node u0, ..., un−1.
Thus, ancestor and descendant refer to paths of possibly more than
one edge.

26 / 123

Notes in Graph Representation

Terms
Node expansion (a.k.a. node exploration):

I Generation of all neighbors of a node u.
I This nodes are called successors of u.
I u is a parent or predecessor.

In addition...
All nodes u0, ..., un−1 are called antecessors of u.
u is a descendant of each node u0, ..., un−1.
Thus, ancestor and descendant refer to paths of possibly more than
one edge.

26 / 123

Notes in Graph Representation

Terms
Node expansion (a.k.a. node exploration):

I Generation of all neighbors of a node u.
I This nodes are called successors of u.
I u is a parent or predecessor.

In addition...
All nodes u0, ..., un−1 are called antecessors of u.
u is a descendant of each node u0, ..., un−1.
Thus, ancestor and descendant refer to paths of possibly more than
one edge.

26 / 123

Notes in Graph Representation

Terms
Node expansion (a.k.a. node exploration):

I Generation of all neighbors of a node u.
I This nodes are called successors of u.
I u is a parent or predecessor.

In addition...
All nodes u0, ..., un−1 are called antecessors of u.
u is a descendant of each node u0, ..., un−1.
Thus, ancestor and descendant refer to paths of possibly more than
one edge.

26 / 123

Notes in Graph Representation

Terms
Node expansion (a.k.a. node exploration):

I Generation of all neighbors of a node u.
I This nodes are called successors of u.
I u is a parent or predecessor.

In addition...
All nodes u0, ..., un−1 are called antecessors of u.
u is a descendant of each node u0, ..., un−1.
Thus, ancestor and descendant refer to paths of possibly more than
one edge.

26 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

27 / 123

Evaluation of Search Strategies

Completeness
Does it always find a solution if one exists?

Time complexity
How many nodes are generated?

Space complexity
Maximum number of nodes in memory.

28 / 123

Evaluation of Search Strategies

Completeness
Does it always find a solution if one exists?

Time complexity
How many nodes are generated?

Space complexity
Maximum number of nodes in memory.

28 / 123

Evaluation of Search Strategies

Completeness
Does it always find a solution if one exists?

Time complexity
How many nodes are generated?

Space complexity
Maximum number of nodes in memory.

28 / 123

Evaluation of Search Strategies

Optimality
Does it always find a least-cost solution?

29 / 123

Measuring Time and Space Complexity

Branching Factor
b: Branching factor of a state is the number of successors it has.

If Succ(u) abbreviates the successor set of a state u ∈ S
Then the branching factor is |Succ(u)|

I That is, cardinality of Succ(u).

Depth of the Solution
δ: Depth of the least-cost solution.
m: Maximum depth of the state space (may be ∞).

30 / 123

Measuring Time and Space Complexity

Branching Factor
b: Branching factor of a state is the number of successors it has.

If Succ(u) abbreviates the successor set of a state u ∈ S
Then the branching factor is |Succ(u)|

I That is, cardinality of Succ(u).

Depth of the Solution
δ: Depth of the least-cost solution.
m: Maximum depth of the state space (may be ∞).

30 / 123

Measuring Time and Space Complexity

Branching Factor
b: Branching factor of a state is the number of successors it has.

If Succ(u) abbreviates the successor set of a state u ∈ S
Then the branching factor is |Succ(u)|

I That is, cardinality of Succ(u).

Depth of the Solution
δ: Depth of the least-cost solution.
m: Maximum depth of the state space (may be ∞).

30 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

31 / 123

There is a Duality

Between
Graph representation as abstract collection of vertices and edges
A sparse Adjacency Representation

Therefore, we can do the classic in Mathematics
Use our Linear Algebra tools to solve Graphical Problems

However
Matrices have not traditionally been used for practical computing
with graphs,

I Given that the 2D arrays are not efficient representation of them

32 / 123

There is a Duality

Between
Graph representation as abstract collection of vertices and edges
A sparse Adjacency Representation

Therefore, we can do the classic in Mathematics
Use our Linear Algebra tools to solve Graphical Problems

However
Matrices have not traditionally been used for practical computing
with graphs,

I Given that the 2D arrays are not efficient representation of them

32 / 123

There is a Duality

Between
Graph representation as abstract collection of vertices and edges
A sparse Adjacency Representation

Therefore, we can do the classic in Mathematics
Use our Linear Algebra tools to solve Graphical Problems

However
Matrices have not traditionally been used for practical computing
with graphs,

I Given that the 2D arrays are not efficient representation of them

32 / 123

However

New Data Structures are palliating such problems
Then, a G = (V,E) with N vertices and M edges, the N ×N
adjacency matrix A has the property:

I A (i, j) = 1, if eij ∈ E

Something Notable
There is a duality between the matrix multiplication and breadth-first
search

BFS (G, s)⇔ ATv,v (s) = 1

33 / 123

However

New Data Structures are palliating such problems
Then, a G = (V,E) with N vertices and M edges, the N ×N
adjacency matrix A has the property:

I A (i, j) = 1, if eij ∈ E

Something Notable
There is a duality between the matrix multiplication and breadth-first
search

BFS (G, s)⇔ ATv,v (s) = 1

33 / 123

For this, we can use sparse structures

Adjacency Matrix
1

2

3

4

1 19 3 11

2 43

2 27 3 35

34 / 123

Here, we propose a new way of representing Graphs

Graphs can be represented by the use of Matrices

3

1 2

4 5

6 7

1
2
3
4
5
6
7

0 1 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 1 0

35 / 123

Why not to use Sparse Matrices?

We can have the following Coordinate Representation in lexicographic
order

i IA JA AA
1 1 2 1
2 1 3 1
3 1 4 1
4 2 4 1
5 2 5 1
6 3 6 1

i IA JA AA
7 4 3 1
8 4 6 1
9 4 7 1
10 5 4 1
11 5 7 1
12 7 6 1

36 / 123

Why not extend the data structure using linked list for
iterators

Like
1 −→ 1 −→ 2 −→ 3

2 −→ 4 −→ 5

4 −→ 3 −→ 6 −→ 7

37 / 123

Empty

Sparse_Matrix_bit_level(A, x)
1 R = A.iterRows() −→ Use an iterator for the list of iterators
2 Z sparse vector
3 Do I = R.next()
4 Index = I.val

5 Z [Index] = 0
6 I = I.next()
7 while I! = Null

8 Z [Index] = Z [Index] +A.AA (I.val) ∗ x (A.JA (I.val))
9 I = I.next()
10 return Z

38 / 123

Complexity

We have with K nonzero values in the matrix A
m∑
it=1

n∑
jit

I (A (it, jit) 6= 0) = O (K)

39 / 123

Then, we have the following

Matrix_BFS(A, s)
1 for i = 1 to V
2 distance [i] = 0
3 distance [s] = 1
4 front = distances

5 for i = 1 to V
6 front =Sparse_Matrix(A, front) & ¬distance
7 nxt =find(front)
8 if nxt = Null

9 break
10 distance (nxt) = i+ 1
11 distance− = 1

40 / 123

Here

¬distance

¬distance =
{

1 if distance [j] == 0
0 else

Using Python notation
find(front) return the indexes that are not zero.

41 / 123

Here

¬distance

¬distance =
{

1 if distance [j] == 0
0 else

Using Python notation
find(front) return the indexes that are not zero.

41 / 123

We have

As you can see

3

1 2

4 5

6 7

s

0 1 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 1 0

T

1
0
0
0
0
0
0

42 / 123

Therefore, we have that

The following product

3

1 2

4 5

6 7

s

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 1
0 0 0 1 1 0 0

1
0
0
0
0
0
0

=

0
1
1
1
0
0
0

43 / 123

Now

The Next Step

43 4

1 2

5

6 7

s

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 1
0 0 0 1 1 0 0

0
1
1
1
0
0
0

=

0
0
0
0
1
1
1

44 / 123

Complexity

If we do not use rows on the graph, not used in the front expansion
It is possible to reduce the complexity to

O (KV)

Making possible to have an efficient algorithms
After all, we want efficiency.

45 / 123

Complexity

If we do not use rows on the graph, not used in the front expansion
It is possible to reduce the complexity to

O (KV)

Making possible to have an efficient algorithms
After all, we want efficiency.

45 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

46 / 123

Implicit State Space Graph [1]

An Interesting Fact
Solving state space problems is sometimes better characterized as a
search in an implicit graph.

The difference is that not all edges have to be explicitly stored
They are generated by a set of Rules.

This setting of an implicit generation of the search space
It is also called on-the-fly, incremental, or lazy state space
generation in some domains.

47 / 123

Implicit State Space Graph [1]

An Interesting Fact
Solving state space problems is sometimes better characterized as a
search in an implicit graph.

The difference is that not all edges have to be explicitly stored
They are generated by a set of Rules.

This setting of an implicit generation of the search space
It is also called on-the-fly, incremental, or lazy state space
generation in some domains.

47 / 123

Implicit State Space Graph [1]

An Interesting Fact
Solving state space problems is sometimes better characterized as a
search in an implicit graph.

The difference is that not all edges have to be explicitly stored
They are generated by a set of Rules.

This setting of an implicit generation of the search space
It is also called on-the-fly, incremental, or lazy state space
generation in some domains.

47 / 123

Here the following modification to the explicit Sparse
Matrix

Add the necessary information (Nodes and Edges based on actions)
A a new node is generated

I You only need to update the possible edges

This allows to maintain a compact representation
After all this was one of the main critiques that leaded to an AI
Winder

48 / 123

Here the following modification to the explicit Sparse
Matrix

Add the necessary information (Nodes and Edges based on actions)
A a new node is generated

I You only need to update the possible edges

This allows to maintain a compact representation
After all this was one of the main critiques that leaded to an AI
Winder

48 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

49 / 123

A More Complete Definition

Definition
In an implicit state space graph, we have

An initial node s ∈ V .
A set of goal nodes determined by a predicate

Goal : V → B = {false, true}

A node expansion procedure Expand : V → 2V .

50 / 123

A More Complete Definition

Definition
In an implicit state space graph, we have

An initial node s ∈ V .
A set of goal nodes determined by a predicate

Goal : V → B = {false, true}

A node expansion procedure Expand : V → 2V .

50 / 123

A More Complete Definition

Definition
In an implicit state space graph, we have

An initial node s ∈ V .
A set of goal nodes determined by a predicate

Goal : V → B = {false, true}

A node expansion procedure Expand : V → 2V .

50 / 123

A More Complete Definition

Definition
In an implicit state space graph, we have

An initial node s ∈ V .
A set of goal nodes determined by a predicate

Goal : V → B = {false, true}

A node expansion procedure Expand : V → 2V .

50 / 123

Open and Closed List

Reached Nodes
They are divided into

I Expanded Nodes - Closed List
I Generated Nodes (Still not expanded) - Open List - Search Frontier

Search Tree
The set of all explicitly generated paths rooted at the start node
(leaves = Open Nodes) constitutes the search tree of the
underlying problem graph.

51 / 123

Open and Closed List

Reached Nodes
They are divided into

I Expanded Nodes - Closed List
I Generated Nodes (Still not expanded) - Open List - Search Frontier

Search Tree
The set of all explicitly generated paths rooted at the start node
(leaves = Open Nodes) constitutes the search tree of the
underlying problem graph.

51 / 123

Open and Closed List

Reached Nodes
They are divided into

I Expanded Nodes - Closed List
I Generated Nodes (Still not expanded) - Open List - Search Frontier

Search Tree
The set of all explicitly generated paths rooted at the start node
(leaves = Open Nodes) constitutes the search tree of the
underlying problem graph.

51 / 123

Open and Closed List

Reached Nodes
They are divided into

I Expanded Nodes - Closed List
I Generated Nodes (Still not expanded) - Open List - Search Frontier

Search Tree
The set of all explicitly generated paths rooted at the start node
(leaves = Open Nodes) constitutes the search tree of the
underlying problem graph.

51 / 123

Example

Problem Graph

a

s

c

g

d

b

f
e

r

t

s

ac

e

f

d

a

s b

ga

c bs b

tg r

d t t

g r

d t t

af

c

e

sa

d
b

g r

tt

f

c

e

sa

d

f

c

e

sa

a

Figure: Problem Graph and Expansion Tree

52 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

53 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Skeleton of a Search Algorithm
Basic Algorithm
Procedure Implicit-Graph-Search

Input: Start node s, successor function Expand and Goal

Output: Path from s to a goal node t ∈ T or ∅ if no such path exist

1 Closed = ∅
2 Open = {s}
3 while (Open 6= ∅)
4 Get u from Open

5 Closed = Closed ∪ {u}
6 if (Goal (u))
7 return Path(u)
8 Succ(u) =Expand(u)
9 for each v ∈Succ(u)
10 Improve(u, v)
11 return ∅

54 / 123

Improve Algorithm

Basic Algorithm
Improve

Input: Nodes u and v, v successor of u

Output: Update parent v, Open and Closed

1 if (v /∈ Closed ∪Open)
2 Insert v into Open

3 parent (v) = u

55 / 123

Returning the Path

Basic Algorithm
Procedure Path

Input: Node u, start node s and parents set by the algorithm
Output: Path from s to u

1 P ath = P ath ∪ {u}
2 while (parent (u) 6= s)
3 u = parent (u)
4 P ath = P ath ∪ {u}

56 / 123

Algorithms to be Explored

Algorithm
1 Depth-First Search
2 Breadth-First Search
3 Dijkstra’s Algorithm
4 Relaxed Node Selection
5 Bellman-Ford
6 Dynamic Programming

57 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

58 / 123

Depth First Search (DFS) [2]

Implementation
Open List uses a Stack

I Insert == Push
I Select == Pop
I Open == Stack
I Closed == Set

59 / 123

Example of the Implicit Graph

Something Notable

S

UNEXPLORED
 STATES

CLOSED

O
P
E
N

60 / 123

By The Way

Did you notice the following? Given X a search space
Open ∩ Closed == ∅
X−(Open ∪ Closed) ∩ Open == ∅
X−(Open ∪ Closed) ∩ Closed == ∅

Disjoint Set Representation
Yes!!! We can do it!!!
For the Closed set!!!

61 / 123

By The Way

Did you notice the following? Given X a search space
Open ∩ Closed == ∅
X−(Open ∪ Closed) ∩ Open == ∅
X−(Open ∪ Closed) ∩ Closed == ∅

Disjoint Set Representation
Yes!!! We can do it!!!
For the Closed set!!!

61 / 123

How DFS measures?

Complete?
No: fails in infinite-depth spaces or spaces with loops (If you
allow node repetition)!!!

Modify to avoid repeated states along path
However, you still have a problem What if you only store the
search frontier?
Ups!!! We have a problem... How do we recognize repeated
states in complex search spaces?

Nevertheless
Complete in finite spaces

62 / 123

How DFS measures?

Complete?
No: fails in infinite-depth spaces or spaces with loops (If you
allow node repetition)!!!

Modify to avoid repeated states along path
However, you still have a problem What if you only store the
search frontier?
Ups!!! We have a problem... How do we recognize repeated
states in complex search spaces?

Nevertheless
Complete in finite spaces

62 / 123

How DFS measures?

Complete?
No: fails in infinite-depth spaces or spaces with loops (If you
allow node repetition)!!!

Modify to avoid repeated states along path
However, you still have a problem What if you only store the
search frontier?
Ups!!! We have a problem... How do we recognize repeated
states in complex search spaces?

Nevertheless
Complete in finite spaces

62 / 123

How DFS measures?

Complete?
No: fails in infinite-depth spaces or spaces with loops (If you
allow node repetition)!!!

Modify to avoid repeated states along path
However, you still have a problem What if you only store the
search frontier?
Ups!!! We have a problem... How do we recognize repeated
states in complex search spaces?

Nevertheless
Complete in finite spaces

62 / 123

Time?

It depends a lot on the representation an data structure representation
In the case of adjacency lists for graph representation.

If we do not have repetitions
O (V + E) = O (E) and |V | � |E|

Given the branching b
O(bm): terrible if m is much larger than δ, but if solutions are
dense, may be much faster than breadth-first search

63 / 123

Time?

It depends a lot on the representation an data structure representation
In the case of adjacency lists for graph representation.

If we do not have repetitions
O (V + E) = O (E) and |V | � |E|

Given the branching b
O(bm): terrible if m is much larger than δ, but if solutions are
dense, may be much faster than breadth-first search

63 / 123

Time?

It depends a lot on the representation an data structure representation
In the case of adjacency lists for graph representation.

If we do not have repetitions
O (V + E) = O (E) and |V | � |E|

Given the branching b
O(bm): terrible if m is much larger than δ, but if solutions are
dense, may be much faster than breadth-first search

63 / 123

What about the Space Complexity and Optimality?

Maintaining only the frontier

64 / 123

Optimal? No, look at the following example...
Example

a

s

c

g

d

b

f
e

r

t

Figure: Goal at t from source node s

65 / 123

The Pseudo-Code - Solving the Problem of Repeated
Nodes
Code - Iterative Version - Solving the Repetition of Nodes
DFS-Iterative(s)

Input: start node s, set of Goals

1 Given s an starting node

2 Open is a stack

3 Closed is a set
4 Open.Push(s)

5 Closed = ∅

6 while Open 6= ∅

7 v=Open.pop()

8 if Closed 6=Closed ∪ (v)

9 if v ∈ Goal return P ath(v)

10 succ(v) = Expand(v)

11 for each vertex u ∈ succ(v)

12 if Closed 6= Closed ∪ (u)

13 Open.push(u)
66 / 123

The Pseudo-Code - Solving the Problem of Repeated
Nodes
Code - Iterative Version - Solving the Repetition of Nodes
DFS-Iterative(s)

Input: start node s, set of Goals

1 Given s an starting node

2 Open is a stack

3 Closed is a set
4 Open.Push(s)

5 Closed = ∅

6 while Open 6= ∅

7 v=Open.pop()

8 if Closed 6=Closed ∪ (v)

9 if v ∈ Goal return P ath(v)

10 succ(v) = Expand(v)

11 for each vertex u ∈ succ(v)

12 if Closed 6= Closed ∪ (u)

13 Open.push(u)
66 / 123

The Pseudo-Code - Solving the Problem of Repeated
Nodes
Code - Iterative Version - Solving the Repetition of Nodes
DFS-Iterative(s)

Input: start node s, set of Goals

1 Given s an starting node

2 Open is a stack

3 Closed is a set
4 Open.Push(s)

5 Closed = ∅

6 while Open 6= ∅

7 v=Open.pop()

8 if Closed 6=Closed ∪ (v)

9 if v ∈ Goal return P ath(v)

10 succ(v) = Expand(v)

11 for each vertex u ∈ succ(v)

12 if Closed 6= Closed ∪ (u)

13 Open.push(u)
66 / 123

The Pseudo-Code - Solving the Problem of Repeated
Nodes
Code - Iterative Version - Solving the Repetition of Nodes
DFS-Iterative(s)

Input: start node s, set of Goals

1 Given s an starting node

2 Open is a stack

3 Closed is a set
4 Open.Push(s)

5 Closed = ∅

6 while Open 6= ∅

7 v=Open.pop()

8 if Closed 6=Closed ∪ (v)

9 if v ∈ Goal return P ath(v)

10 succ(v) = Expand(v)

11 for each vertex u ∈ succ(v)

12 if Closed 6= Closed ∪ (u)

13 Open.push(u)
66 / 123

The Pseudo-Code - Solving the Problem of Repeated
Nodes
Code - Iterative Version - Solving the Repetition of Nodes
DFS-Iterative(s)

Input: start node s, set of Goals

1 Given s an starting node

2 Open is a stack

3 Closed is a set
4 Open.Push(s)

5 Closed = ∅

6 while Open 6= ∅

7 v=Open.pop()

8 if Closed 6=Closed ∪ (v)

9 if v ∈ Goal return P ath(v)

10 succ(v) = Expand(v)

11 for each vertex u ∈ succ(v)

12 if Closed 6= Closed ∪ (u)

13 Open.push(u)
66 / 123

The Pseudo-Code - Solving the Problem of Repeated
Nodes
Code - Iterative Version - Solving the Repetition of Nodes
DFS-Iterative(s)

Input: start node s, set of Goals

1 Given s an starting node

2 Open is a stack

3 Closed is a set
4 Open.Push(s)

5 Closed = ∅

6 while Open 6= ∅

7 v=Open.pop()

8 if Closed 6=Closed ∪ (v)

9 if v ∈ Goal return P ath(v)

10 succ(v) = Expand(v)

11 for each vertex u ∈ succ(v)

12 if Closed 6= Closed ∪ (u)

13 Open.push(u)
66 / 123

Disjoint Set Representation

Using our Disjoint Set Representation
We get the ability to be able to compare two sets through the
representatives!!!

Not only that
Using that, we solve the problem of node repetition

Little Problem
If we are only storing the frontier our disjoint set representation is not
enough!!!

More research is needed!!!

67 / 123

Disjoint Set Representation

Using our Disjoint Set Representation
We get the ability to be able to compare two sets through the
representatives!!!

Not only that
Using that, we solve the problem of node repetition

Little Problem
If we are only storing the frontier our disjoint set representation is not
enough!!!

More research is needed!!!

67 / 123

Disjoint Set Representation

Using our Disjoint Set Representation
We get the ability to be able to compare two sets through the
representatives!!!

Not only that
Using that, we solve the problem of node repetition

Little Problem
If we are only storing the frontier our disjoint set representation is not
enough!!!

More research is needed!!!

67 / 123

Example

Example

68 / 123

Example

Example

Step Selection Open Closed Remarks
1 {} {S} {} Push start node into the Stack
2 S {d, c, b, a} {S}

69 / 123

Example

Example

Step Selection Open Closed Remarks
3 {d} {g, c, b, a} {S} S and c are repeated
4 {g} c, b, aK {S, d}

70 / 123

Example

Example

Step Selection Open Closed Remarks
4 {g} {c, b, a} {S, d}

71 / 123

The Depth-First Search Tree

With the following tree expantion

72 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

73 / 123

Bradth-First Search (BFS) [2]

Implementation by Adjacency List
Open List uses a Queue

I Insert == Enqueue
I Select == Dequeue
I Open == Queue
I Closed == Set

74 / 123

Breast-First Search Pseudo-Code

BFS-Implicit(s)

Input: start node s, set of Goals

1 Open is a queue
2 Closed is a set
3 Open.enqueue(s)
4 Closed = ∅
5 while Open 6= ∅
6 v = Open.dequeue()
7 if Closed 6=Closed ∪ (v)
8 if v ∈ Goal return Path(v)
9 succ(v) = Expand(v)
10 for each vertex u ∈ succ(v)
11 if Closed 6= Closed ∪ (u)
12 Open.enqueue(u)

75 / 123

How BFS measures?

Evaluation
Complete? Yes if b is finite
Time? 1 + b+ b2 + b3 + . . .+ bδ = O(bδ)
Space? O

(
bδ
)
This is a big problem

Optimal? Yes, If cost is equal for each step.

76 / 123

How BFS measures?

Evaluation
Complete? Yes if b is finite
Time? 1 + b+ b2 + b3 + . . .+ bδ = O(bδ)
Space? O

(
bδ
)
This is a big problem

Optimal? Yes, If cost is equal for each step.

76 / 123

How BFS measures?

Evaluation
Complete? Yes if b is finite
Time? 1 + b+ b2 + b3 + . . .+ bδ = O(bδ)
Space? O

(
bδ
)
This is a big problem

Optimal? Yes, If cost is equal for each step.

76 / 123

How BFS measures?

Evaluation
Complete? Yes if b is finite
Time? 1 + b+ b2 + b3 + . . .+ bδ = O(bδ)
Space? O

(
bδ
)
This is a big problem

Optimal? Yes, If cost is equal for each step.

76 / 123

Question

Can we re-implement this in a different way?
Linear Algebra Style?

What about such Complexity?
Can we calculate such thing?

77 / 123

Question

Can we re-implement this in a different way?
Linear Algebra Style?

What about such Complexity?
Can we calculate such thing?

77 / 123

Example

Example

S

E

78 / 123

Example

Over-impose a Graph and take a look at the board

S

E

79 / 123

Example
With Breadth First Search Tree

S

E
80 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

81 / 123

Can we combine the benefits of both algorithms?
First Limit the Depth

Depth-Limited Search (DLS) is an uninformed search.
It is DFS imposing a maximum limit on the depth of the search.

Algorithm
DLS(node, goal,depth)

1 if (depth ≥ 0)
2 if (node == goal)
3 return node
4 for each child in expand(node)
5 DLS(child, goal, depth− 1)

IMPORTANT!!!
If depth < δ we will never find the answer!!!

82 / 123

Can we combine the benefits of both algorithms?
First Limit the Depth

Depth-Limited Search (DLS) is an uninformed search.
It is DFS imposing a maximum limit on the depth of the search.

Algorithm
DLS(node, goal,depth)

1 if (depth ≥ 0)
2 if (node == goal)
3 return node
4 for each child in expand(node)
5 DLS(child, goal, depth− 1)

IMPORTANT!!!
If depth < δ we will never find the answer!!!

82 / 123

Can we combine the benefits of both algorithms?
First Limit the Depth

Depth-Limited Search (DLS) is an uninformed search.
It is DFS imposing a maximum limit on the depth of the search.

Algorithm
DLS(node, goal,depth)

1 if (depth ≥ 0)
2 if (node == goal)
3 return node
4 for each child in expand(node)
5 DLS(child, goal, depth− 1)

IMPORTANT!!!
If depth < δ we will never find the answer!!!

82 / 123

Can we combine the benefits of both algorithms?
First Limit the Depth

Depth-Limited Search (DLS) is an uninformed search.
It is DFS imposing a maximum limit on the depth of the search.

Algorithm
DLS(node, goal,depth)

1 if (depth ≥ 0)
2 if (node == goal)
3 return node
4 for each child in expand(node)
5 DLS(child, goal, depth− 1)

IMPORTANT!!!
If depth < δ we will never find the answer!!!

82 / 123

Can we combine the benefits of both algorithms?
First Limit the Depth

Depth-Limited Search (DLS) is an uninformed search.
It is DFS imposing a maximum limit on the depth of the search.

Algorithm
DLS(node, goal,depth)

1 if (depth ≥ 0)
2 if (node == goal)
3 return node
4 for each child in expand(node)
5 DLS(child, goal, depth− 1)

IMPORTANT!!!
If depth < δ we will never find the answer!!!

82 / 123

We can do much more!!!

Iterative Deepening Search (IDS) [3]
We can increment the depth in each run until we find the

Algorithm
IDS(node, goal)

1 for D = 0 to ∞ : Step Size L
2 result = DLS(node, goal,D)
3 if result == goal

4 return result

83 / 123

We can do much more!!!

Iterative Deepening Search (IDS) [3]
We can increment the depth in each run until we find the

Algorithm
IDS(node, goal)

1 for D = 0 to ∞ : Step Size L
2 result = DLS(node, goal,D)
3 if result == goal

4 return result

83 / 123

Example

Example: D == 1

84 / 123

Example

Example: D == 1

85 / 123

Example

Example: D == 1

86 / 123

Example

Example: D == 1

87 / 123

Example

Example: D == 2

88 / 123

Example

Example: D == 2

89 / 123

Example

Example: D == 2

90 / 123

Example

Example: D == 2

91 / 123

Example

Example: D == 2

92 / 123

Example

Example: D == 2

93 / 123

Example

Over-impose a Graph and take a look at the board

S

E

94 / 123

Properties of IDS

Properties
Complete? Yes
Time? δb1 + (δ − 1)b2 + . . .+ bδ = O(bδ)
Space? O (δb)
Optimal? Yes, if step cost = 1

95 / 123

Properties of IDS

Properties
Complete? Yes
Time? δb1 + (δ − 1)b2 + . . .+ bδ = O(bδ)
Space? O (δb)
Optimal? Yes, if step cost = 1

95 / 123

Properties of IDS

Properties
Complete? Yes
Time? δb1 + (δ − 1)b2 + . . .+ bδ = O(bδ)
Space? O (δb)
Optimal? Yes, if step cost = 1

95 / 123

Properties of IDS

Properties
Complete? Yes
Time? δb1 + (δ − 1)b2 + . . .+ bδ = O(bδ)
Space? O (δb)
Optimal? Yes, if step cost = 1

95 / 123

Iterative Deepening Search Works

Setup - Thanks to Felipe 2015 Class
Dk the search depth in the algorithm at step k in the wrap part of
the algorithm

I Which can have certain step size!!!

96 / 123

Iterative Deepening Search Works

Theorem (IDS works)
Let dminmin the minimum depth of all goal states in the search tree rooted
at s. Suppose that

Dk−1 < dmin ≤ Dk

where D0 = 0. Then IDS will find a goal whose depth is as much Dk.

97 / 123

Iterative Deepening Search Works

Theorem (IDS works)
Let dminmin the minimum depth of all goal states in the search tree rooted
at s. Suppose that

Dk−1 < dmin ≤ Dk

where D0 = 0. Then IDS will find a goal whose depth is as much Dk.

97 / 123

Proof

Since b > 0 and finite
We know that the algorithm Depth-Limited Search has no vertices below
depth D making the tree finite

In addition
A dept-first search will find the solution in such a tree if any exist.

By definition of dmin

The tree generated by Depth-Limited Search must have a goal if and only
if D ≥ dmin.

98 / 123

Proof

Since b > 0 and finite
We know that the algorithm Depth-Limited Search has no vertices below
depth D making the tree finite

In addition
A dept-first search will find the solution in such a tree if any exist.

By definition of dmin

The tree generated by Depth-Limited Search must have a goal if and only
if D ≥ dmin.

98 / 123

Proof

Since b > 0 and finite
We know that the algorithm Depth-Limited Search has no vertices below
depth D making the tree finite

In addition
A dept-first search will find the solution in such a tree if any exist.

By definition of dmin

The tree generated by Depth-Limited Search must have a goal if and only
if D ≥ dmin.

98 / 123

Proof

Thus
No goal can be find until D = Dk at which time a goal will be found.

Because
The Goal is in the tree, its depth is at most Dk.

99 / 123

Proof

Thus
No goal can be find until D = Dk at which time a goal will be found.

Because
The Goal is in the tree, its depth is at most Dk.

99 / 123

Iterative Deepening Search Problems

Theorem (Upper Bound of calls to IDS)
Suppose that Dk = k and b > 1 (Branching greater than one) for all
non-goal vertices s. Let be I the number of calls to Depth Limited
Search until a solution is found. Let L be the number of vertices
placed in the queue by the BFS. Then, I < 3 (L+ 1).

Note
The theorem points that at least that IDS will be called at most 3
times the number of vertices placed in the queue by BFS.

100 / 123

Iterative Deepening Search Problems

Theorem (Upper Bound of calls to IDS)
Suppose that Dk = k and b > 1 (Branching greater than one) for all
non-goal vertices s. Let be I the number of calls to Depth Limited
Search until a solution is found. Let L be the number of vertices
placed in the queue by the BFS. Then, I < 3 (L+ 1).

Note
The theorem points that at least that IDS will be called at most 3
times the number of vertices placed in the queue by BFS.

100 / 123

Proof

Claim
Suppose b > 1 for any non-goal vertex. Let κ be the least depth of
any goal.
Let dk be the number of vertices in the search tree at depth k.
Let mk be the number of vertices at depth less than k.

Thus, for k ≤ κ

We have that

mk < dk

mk−1 ≤ 1
2mk

101 / 123

Proof

Claim
Suppose b > 1 for any non-goal vertex. Let κ be the least depth of
any goal.
Let dk be the number of vertices in the search tree at depth k.
Let mk be the number of vertices at depth less than k.

Thus, for k ≤ κ

We have that

mk < dk

mk−1 ≤ 1
2mk

101 / 123

Proof

Claim
Suppose b > 1 for any non-goal vertex. Let κ be the least depth of
any goal.
Let dk be the number of vertices in the search tree at depth k.
Let mk be the number of vertices at depth less than k.

Thus, for k ≤ κ

We have that

mk < dk

mk−1 ≤ 1
2mk

101 / 123

Proof

Claim
Suppose b > 1 for any non-goal vertex. Let κ be the least depth of
any goal.
Let dk be the number of vertices in the search tree at depth k.
Let mk be the number of vertices at depth less than k.

Thus, for k ≤ κ

We have that

mk < dk

mk−1 ≤ 1
2mk

101 / 123

Proof

Claim
Suppose b > 1 for any non-goal vertex. Let κ be the least depth of
any goal.
Let dk be the number of vertices in the search tree at depth k.
Let mk be the number of vertices at depth less than k.

Thus, for k ≤ κ

We have that

mk < dk

mk−1 ≤ 1
2mk

101 / 123

Proof

Claim
Suppose b > 1 for any non-goal vertex. Let κ be the least depth of
any goal.
Let dk be the number of vertices in the search tree at depth k.
Let mk be the number of vertices at depth less than k.

Thus, for k ≤ κ

We have that

mk < dk

mk−1 ≤ 1
2mk

101 / 123

Proof

Claim
Suppose b > 1 for any non-goal vertex. Let κ be the least depth of
any goal.
Let dk be the number of vertices in the search tree at depth k.
Let mk be the number of vertices at depth less than k.

Thus, for k ≤ κ

We have that

mk < dk

mk−1 ≤ 1
2mk

101 / 123

Proof

Thus, we have

mk ≤
1
2mk+1 ≤

(1
2

)2
mk+1 ≤ ... ≤

(1
2

)κ−k
mκ (1)

Suppose
The first goal encountered by the BFS is the nth vertex at depth κ .

We have that

L = mκ + n− 1 (2)

because the goal is not placed on the queue of the BFS.

102 / 123

Proof

Thus, we have

mk ≤
1
2mk+1 ≤

(1
2

)2
mk+1 ≤ ... ≤

(1
2

)κ−k
mκ (1)

Suppose
The first goal encountered by the BFS is the nth vertex at depth κ .

We have that

L = mκ + n− 1 (2)

because the goal is not placed on the queue of the BFS.

102 / 123

Proof

Thus, we have

mk ≤
1
2mk+1 ≤

(1
2

)2
mk+1 ≤ ... ≤

(1
2

)κ−k
mκ (1)

Suppose
The first goal encountered by the BFS is the nth vertex at depth κ .

We have that

L = mκ + n− 1 (2)

because the goal is not placed on the queue of the BFS.

102 / 123

Proof

The total number of call of DLS
For Dk = k < κ is

mk + dk (3)

103 / 123

Proof
The total number of calls of DLS before we find the solution

I =
κ−1∑
k=0

[mk + dk] +mκ + n

=
κ−1∑
k=0

mk+1 +mκ + n

=
κ∑
k=1

mk +mκ + n

≤
κ∑
k=1

(1
2

)κ−k
mκ +mκ + n

< mκ

∞∑
i=0

(1
2

)i
+mκ + n

< 2mκ +mκ + n = 2mκ + L+ 1 ≤ 3 (L+ 1)

104 / 123

Proof
The total number of calls of DLS before we find the solution

I =
κ−1∑
k=0

[mk + dk] +mκ + n

=
κ−1∑
k=0

mk+1 +mκ + n

=
κ∑
k=1

mk +mκ + n

≤
κ∑
k=1

(1
2

)κ−k
mκ +mκ + n

< mκ

∞∑
i=0

(1
2

)i
+mκ + n

< 2mκ +mκ + n = 2mκ + L+ 1 ≤ 3 (L+ 1)

104 / 123

Proof
The total number of calls of DLS before we find the solution

I =
κ−1∑
k=0

[mk + dk] +mκ + n

=
κ−1∑
k=0

mk+1 +mκ + n

=
κ∑
k=1

mk +mκ + n

≤
κ∑
k=1

(1
2

)κ−k
mκ +mκ + n

< mκ

∞∑
i=0

(1
2

)i
+mκ + n

< 2mκ +mκ + n = 2mκ + L+ 1 ≤ 3 (L+ 1)

104 / 123

Proof
The total number of calls of DLS before we find the solution

I =
κ−1∑
k=0

[mk + dk] +mκ + n

=
κ−1∑
k=0

mk+1 +mκ + n

=
κ∑
k=1

mk +mκ + n

≤
κ∑
k=1

(1
2

)κ−k
mκ +mκ + n

< mκ

∞∑
i=0

(1
2

)i
+mκ + n

< 2mκ +mκ + n = 2mκ + L+ 1 ≤ 3 (L+ 1)

104 / 123

Proof
The total number of calls of DLS before we find the solution

I =
κ−1∑
k=0

[mk + dk] +mκ + n

=
κ−1∑
k=0

mk+1 +mκ + n

=
κ∑
k=1

mk +mκ + n

≤
κ∑
k=1

(1
2

)κ−k
mκ +mκ + n

< mκ

∞∑
i=0

(1
2

)i
+mκ + n

< 2mκ +mκ + n = 2mκ + L+ 1 ≤ 3 (L+ 1)

104 / 123

Proof
The total number of calls of DLS before we find the solution

I =
κ−1∑
k=0

[mk + dk] +mκ + n

=
κ−1∑
k=0

mk+1 +mκ + n

=
κ∑
k=1

mk +mκ + n

≤
κ∑
k=1

(1
2

)κ−k
mκ +mκ + n

< mκ

∞∑
i=0

(1
2

)i
+mκ + n

< 2mκ +mκ + n = 2mκ + L+ 1 ≤ 3 (L+ 1)

104 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

105 / 123

In the Class of 2014

The Class of 2014
They solved a maze using the previous techniques using Python as
base language.

The Maze was Randomly Generated
Using a Randomize Prim Algorithm

Here is important to notice
The Problem is the number of nodes explored each time

106 / 123

In the Class of 2014

The Class of 2014
They solved a maze using the previous techniques using Python as
base language.

The Maze was Randomly Generated
Using a Randomize Prim Algorithm

Here is important to notice
The Problem is the number of nodes explored each time

106 / 123

In the Class of 2014

The Class of 2014
They solved a maze using the previous techniques using Python as
base language.

The Maze was Randomly Generated
Using a Randomize Prim Algorithm

Here is important to notice
The Problem is the number of nodes explored each time

106 / 123

Table Maze Example

Thanks to Lea and Orlando Class 2014 Cinvestav
Size of Maze 40×20

Start (36, 2)
Goal (33, 7)

Algorithm Expanded Nodes Generated Nodes Path Size #Iterations
DFS 482 502 35 NA
BFS 41 47 9 NA
IDS 1090 3197 9 9
IDA* 11 20 9 2

107 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

108 / 123

Weights in the Implicit Graph

Wights in a Graph
Until now, we have been looking to implicit graphs without weights.
What to do if we have a function w : E → R such that there is a
variability in expanding each path!!!

Algorithms to attack the problem
Dijkstra’s Algorithm
Bellman-Ford Algorithm

109 / 123

Weights in the Implicit Graph

Wights in a Graph
Until now, we have been looking to implicit graphs without weights.
What to do if we have a function w : E → R such that there is a
variability in expanding each path!!!

Algorithms to attack the problem
Dijkstra’s Algorithm
Bellman-Ford Algorithm

109 / 123

Weights in the Implicit Graph

Wights in a Graph
Until now, we have been looking to implicit graphs without weights.
What to do if we have a function w : E → R such that there is a
variability in expanding each path!!!

Algorithms to attack the problem
Dijkstra’s Algorithm
Bellman-Ford Algorithm

109 / 123

Weights in the Implicit Graph

Wights in a Graph
Until now, we have been looking to implicit graphs without weights.
What to do if we have a function w : E → R such that there is a
variability in expanding each path!!!

Algorithms to attack the problem
Dijkstra’s Algorithm
Bellman-Ford Algorithm

109 / 123

Clearly somethings need to be taken into account!!!

Implementation
Open List uses a Queue

I MIN Queue Q == GRAY
I Out of the Queue Q == BLACK
I Update == Relax

110 / 123

Dijkstra’s algorithm

DIJKSTRA(s, w)
1 Open is a MIN queue
2 Closed is a set
3 Open.enqueue(s)
4 Closed = ∅
5 while Open 6= ∅
6 u =Extract-Min(Q)
7 if Closed 6=Closed ∪ (u)
8 succ(u) = Expand(u)
9 for each vertex v ∈ succ(u)
10 if Closed 6= Closed ∪ (v)
11 Relax(u, v, w)
12 Closed = Closed ∪ {u}

111 / 123

Relax Procedure

Basic Algorithm
Procedure Relax(u, v, w)

Input: Nodes u, v and v successor of u

SideEffects: Update parent of v, distance to origin f (v), Open and Closed

1 if (v ∈ Open)⇒Node generated but not expanded
2 if (f (u) + w (u, v) < f (v))
3 parent (v) = u

4 f (v) = f (u) + w (u, v)
5 else
6 if (v /∈ Closed)⇒Not yet expanded
7 parent (v) = u

8 f (v) = f (u) + w (u, v)
9 Insert v into Open with f (v)

112 / 123

Complexity

Worst Case Performance - Time Complexity

O (E + V log V) (4)

Space Complexity

O
(
V 2
)

(5)

113 / 123

Complexity

Worst Case Performance - Time Complexity

O (E + V log V) (4)

Space Complexity

O
(
V 2
)

(5)

113 / 123

Correctness Dijkstra’s Algorithm

Theorem (Optimality of Dijkstra’s)
In weighted graphs with nonnegative weight function the algorithm of
Dijkstra’s algorithm is optimal.

Theorem (Correctness of Dijkstra’s)
If the weight function w of a problem graph G = (V,E,w) is strictly
positive and if the weight of every infinite path is infinite, then
Dijkstra’s algorithm terminates with an optimal solution.

114 / 123

Correctness Dijkstra’s Algorithm

This was shown in the previous class
Analysis of Algorithms...

115 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

116 / 123

When Negative Weights Exist

Solution
You can use the Bellman-Ford Algorithm - Basically Dynamic
Programming

Bellman uses node relaxation
f(v)← min {f(v), f(u) + w(u, v)}

Implementation on an Implicit Graph
Open List uses a Queue

I Insert = Enqueue
I Select = Denqueue

117 / 123

When Negative Weights Exist

Solution
You can use the Bellman-Ford Algorithm - Basically Dynamic
Programming

Bellman uses node relaxation
f(v)← min {f(v), f(u) + w(u, v)}

Implementation on an Implicit Graph
Open List uses a Queue

I Insert = Enqueue
I Select = Denqueue

117 / 123

When Negative Weights Exist

Solution
You can use the Bellman-Ford Algorithm - Basically Dynamic
Programming

Bellman uses node relaxation
f(v)← min {f(v), f(u) + w(u, v)}

Implementation on an Implicit Graph
Open List uses a Queue

I Insert = Enqueue
I Select = Denqueue

117 / 123

Outline
1 Motivation

Mimicking the way Human Solve Problems
What is Search?

2 First Idea, State Space Problem
Introduction
Better Representation
Example

Solution Definition
Weighted State Space Problem
Evaluation of Search Strategies
Sparse Representation of Graphs

3 Uninformed Graph Search Algorithms
Implicit State Space Graph
Back to Implicit State Space Definition
Basic Functions
Depth-First Search
Breadth-First Search
Combining DFS and BFS
We Have the Results of Solving a Maze

4 Different ways of doing Stuff
What happened when you have weights?
What to do with negative weights?
Implicit Bellman-Ford

118 / 123

Implicit Bellman-Ford

Procedure Implicit Bellman-Ford
Input: Start node s, function w, function Expand and function

Goal

Output: Cheapest path from s to t ∈ T stored in f (s)

1 Open← {s}
2 f (s)← h (s)
3 while (Open 6= ∅)
4 u = Open.dequeue()
5 Closed = Closed ∪ {u}
6 Succ (u)← Expand (u)
7 for each v ∈ Succ (u)
8 improve (u, v)

119 / 123

Implicit Bellman-Ford

Procedure Implicit Bellman-Ford
Input: Start node s, function w, function Expand and function

Goal

Output: Cheapest path from s to t ∈ T stored in f (s)

1 Open← {s}
2 f (s)← h (s)
3 while (Open 6= ∅)
4 u = Open.dequeue()
5 Closed = Closed ∪ {u}
6 Succ (u)← Expand (u)
7 for each v ∈ Succ (u)
8 improve (u, v)

119 / 123

Implicit Bellman-Ford

Procedure Implicit Bellman-Ford
Input: Start node s, function w, function Expand and function

Goal

Output: Cheapest path from s to t ∈ T stored in f (s)

1 Open← {s}
2 f (s)← h (s)
3 while (Open 6= ∅)
4 u = Open.dequeue()
5 Closed = Closed ∪ {u}
6 Succ (u)← Expand (u)
7 for each v ∈ Succ (u)
8 improve (u, v)

119 / 123

Implicit Bellman-Ford

Procedure Implicit Bellman-Ford
Input: Start node s, function w, function Expand and function

Goal

Output: Cheapest path from s to t ∈ T stored in f (s)

1 Open← {s}
2 f (s)← h (s)
3 while (Open 6= ∅)
4 u = Open.dequeue()
5 Closed = Closed ∪ {u}
6 Succ (u)← Expand (u)
7 for each v ∈ Succ (u)
8 improve (u, v)

119 / 123

Implicit Bellman-Ford

Procedure Implicit Bellman-Ford
Input: Start node s, function w, function Expand and function

Goal

Output: Cheapest path from s to t ∈ T stored in f (s)

1 Open← {s}
2 f (s)← h (s)
3 while (Open 6= ∅)
4 u = Open.dequeue()
5 Closed = Closed ∪ {u}
6 Succ (u)← Expand (u)
7 for each v ∈ Succ (u)
8 improve (u, v)

119 / 123

Algorithm

Procedure Improve
Input: Nodes u and v, number of problem graph node n

SideEffects: Update parent of v, f (v), Open and Closed

1 if (v ∈ Open)
2 if (f (u) + w (u, v) < f (v))
3 if (lenght (P ath (v)) ≥ n− 1)
4 exit
5 parent (v)← u

6 Update f (v)← f (u) + w (u, v)
7 else if (v ∈ Closed)
8 if (f (u) + w (u, v) < f (v))
9 if (lenght (P ath (v)) ≥ n− 1)
10 exit

120 / 123

Algorithm

Procedure Improve
Input: Nodes u and v, number of problem graph node n

SideEffects: Update parent of v, f (v), Open and Closed

1 if (v ∈ Open)
2 if (f (u) + w (u, v) < f (v))
3 if (lenght (P ath (v)) ≥ n− 1)
4 exit
5 parent (v)← u

6 Update f (v)← f (u) + w (u, v)
7 else if (v ∈ Closed)
8 if (f (u) + w (u, v) < f (v))
9 if (lenght (P ath (v)) ≥ n− 1)
10 exit

120 / 123

Algorithm

Procedure Improve
Input: Nodes u and v, number of problem graph node n

SideEffects: Update parent of v, f (v), Open and Closed

1 if (v ∈ Open)
2 if (f (u) + w (u, v) < f (v))
3 if (lenght (P ath (v)) ≥ n− 1)
4 exit
5 parent (v)← u

6 Update f (v)← f (u) + w (u, v)
7 else if (v ∈ Closed)
8 if (f (u) + w (u, v) < f (v))
9 if (lenght (P ath (v)) ≥ n− 1)
10 exit

120 / 123

Algorithm

Cont...

1 parent (v)← u

2 Remove v from Closed

3 Update f (v)← f (u) + w (u, v)
4 Enqueue v in Open

5 else
6 parent (v)← u

7 Initialize f (v)← f (u) + w (u, v)
8 Enqueue v in Open

121 / 123

Algorithm

Cont...

1 parent (v)← u

2 Remove v from Closed

3 Update f (v)← f (u) + w (u, v)
4 Enqueue v in Open

5 else
6 parent (v)← u

7 Initialize f (v)← f (u) + w (u, v)
8 Enqueue v in Open

121 / 123

Complexity and Optimality

Theorem (Optimality of Implicit Bellman-Ford)
Implicit Bellman-Ford is correct and computes optimal cost solution paths.

Theorem (Complexity of Implicit Bellman-Ford)
Implicit Bellman-Ford applies no more than O(V E) node generations.

Space Complexity

O
(
V 2
)

(6)

122 / 123

Complexity and Optimality

Theorem (Optimality of Implicit Bellman-Ford)
Implicit Bellman-Ford is correct and computes optimal cost solution paths.

Theorem (Complexity of Implicit Bellman-Ford)
Implicit Bellman-Ford applies no more than O(V E) node generations.

Space Complexity

O
(
V 2
)

(6)

122 / 123

Complexity and Optimality

Theorem (Optimality of Implicit Bellman-Ford)
Implicit Bellman-Ford is correct and computes optimal cost solution paths.

Theorem (Complexity of Implicit Bellman-Ford)
Implicit Bellman-Ford applies no more than O(V E) node generations.

Space Complexity

O
(
V 2
)

(6)

122 / 123

Bibliography

S. Edelkamp and S. Schrodl, Heuristic Search - Theory and
Applications.
Academic Press, 2012.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms.
MIT press, 2009.

R. E. Korf, “Depth-first iterative-deepening: An optimal admissible
tree search,” Artificial intelligence, vol. 27, no. 1, pp. 97–109, 1985.

123 / 123

	Motivation
	Mimicking the way Human Solve Problems
	What is Search?

	First Idea, State Space Problem
	Introduction
	Better Representation
	Solution Definition
	Weighted State Space Problem
	Evaluation of Search Strategies
	Sparse Representation of Graphs

	Uninformed Graph Search Algorithms
	Implicit State Space Graph
	Back to Implicit State Space Definition
	Basic Functions
	Depth-First Search
	Breadth-First Search
	Combining DFS and BFS
	We Have the Results of Solving a Maze

	Different ways of doing Stuff
	What happened when you have weights?
	What to do with negative weights?
	Implicit Bellman-Ford

