Introduction to Artificial Intelligence Introduction to Probability

Andres Mendez-Vazquez

February 6, 2019

Outline

(1) Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions - Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

Outline

1 Basic Theory

- Intuitive Formulation

```
Famous Examples
```Axioms
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{Gerolamo Cardano: Gambling out of Darkness}

\section*{Gambling}

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

\section*{Gerolamo Cardano: Gambling out of Darkness}

\section*{Gambling}

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

\section*{Gerolamo Cardano (16th century)}

While gambling he developed the following rule!!!

\section*{Gerolamo Cardano: Gambling out of Darkness}

\section*{Gambling}

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

\section*{Gerolamo Cardano (16th century)}

While gambling he developed the following rule!!!

\section*{Equal conditions}
"The most fundamental principle of all in gambling is simply equal conditions, e.g. of opponents, of bystanders, of money, of situation, of the dice box and of the dice itself. To the extent to which you depart from that equity, if it is in your opponent's favour, you are a fool, and if in your own, you are unjust."

\section*{Gerolamo Cardano's Definition}

\section*{Probability}
"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favorable throws, and since the circuit is 36 , the rest of the throws in which these points will not turn up will be 9 ; the odds will therefore be 3 to 1 ."

\section*{Gerolamo Cardano's Definition}

\section*{Probability}
"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favorable throws, and since the circuit is 36 , the rest of the throws in which these points will not turn up will be 9 ; the odds will therefore be 3 to 1 ."

\section*{Meaning}

Probability as a ratio of favorable to all possible outcomes!!! As long all events are equiprobable...

\section*{Gerolamo Cardano's Definition}

\section*{Probability}
"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favorable throws, and since the circuit is 36 , the rest of the throws in which these points will not turn up will be 9 ; the odds will therefore be 3 to 1 ."

\section*{Meaning}

Probability as a ratio of favorable to all possible outcomes!!! As long all events are equiprobable...

Thus, we get
\[
P(\text { All favourable throws })=\frac{\text { Number All favourable throws }}{\text { Number of All throws }}
\]

\section*{Intuitive Formulation}

\section*{Empiric Definition}

Intuitively, the probability of an event \(A\) could be defined as:
\[
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
\]

Where \(N(A)\) is the number that event a happens in n trials.

\section*{Intuitive Formulation}

\section*{Empiric Definition}

Intuitively, the probability of an event \(A\) could be defined as:
\[
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
\]

Where \(N(A)\) is the number that event a happens in n trials.

\section*{Example}

Imagine you have three dices, then

\section*{Intuitive Formulation}

\section*{Empiric Definition}

Intuitively, the probability of an event \(A\) could be defined as:
\[
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
\]

Where \(N(A)\) is the number that event a happens in n trials.

\section*{Example}

Imagine you have three dices, then
- The total number of outcomes is \(6^{3}\)

\section*{Intuitive Formulation}

\section*{Empiric Definition}

Intuitively, the probability of an event \(A\) could be defined as:
\[
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
\]

Where \(N(A)\) is the number that event a happens in n trials.

\section*{Example}

Imagine you have three dices, then
- The total number of outcomes is \(6^{3}\)
- If we have event \(A=\) all numbers are equal, \(|A|=6\)

\section*{Intuitive Formulation}

\section*{Empiric Definition}

Intuitively, the probability of an event \(A\) could be defined as:
\[
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{n}
\]

Where \(N(A)\) is the number that event a happens in n trials.

\section*{Example}

Imagine you have three dices, then
- The total number of outcomes is \(6^{3}\)
- If we have event \(A=\) all numbers are equal, \(|A|=6\)
- Then, we have that \(P(A)=\frac{6}{6^{3}}=\frac{1}{36}\)

\section*{Outline}

1 Basic Theory
－Intuitive Formulation
－Famous Examples
Axioms
－Using Set Operations
－Example
－Finite and Infinite Space
－Counting．Frequentist Approach
－Independence
－Repeated Trials
－Cartesian Products
－Uncondition＇ial and Conditional Probability
－Conditional Probability
－Independence
－Law of Total Probability
－Bayes Theorem
－Application in Universal Hashing
（2）Random Variables
－Introduction
－Formal Defintion
－Probability of a Random Variable
－Types of Random Variables
－Distribution Functions
－Function of Random Variables
－Some Properties of the Distribution Functions －Relations Between Join and Individual Densities
（3．Expected Value
－Introduction
－Definition
－Properties
－Minimizing Distances
－Variance
－Definition of Variance

\section*{Some Famous Examples}

\section*{Famous Coin Tosses}
- Count of Buffon tossed a coin 4040 times. Heads appeared 2048 times.
- K. Pearson tossed a coin 12000 times and 24000 times.
- The heads appeared 6019 times and 12012, respectively.

\section*{Some Famous Examples}

\section*{Famous Coin Tosses}
- Count of Buffon tossed a coin 4040 times. Heads appeared 2048 times.
- K. Pearson tossed a coin 12000 times and 24000 times.
- The heads appeared 6019 times and 12012, respectively.

\section*{Something Notable}
- For these three tosses the relative frequencies of heads are 0.5049 , 0.5016 , and 0.5005 .

\section*{Outline}
(1) Basic Theory
- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{Axioms of Probability}

\section*{Axioms}

Given a sample space \(S\) of events, we have that

\section*{Axioms of Probability}

\section*{Axioms}

Given a sample space \(S\) of events, we have that
(1) \(0 \leq P(A)\) for \(A \subseteq S\)

\section*{Axioms of Probability}

\section*{Axioms}

Given a sample space \(S\) of events, we have that
(1) \(0 \leq P(A)\) for \(A \subseteq S\)
(2) \(P(S)=1\)

\section*{Axioms of Probability}

\section*{Axioms}

Given a sample space \(S\) of events, we have that
(1) \(0 \leq P(A)\) for \(A \subseteq S\)
(2) \(P(S)=1\)
(3) If \(A_{1}\) and \(A_{2}\) are mutually exclusive events (i.e. \(P\left(A_{1} \cap A_{2}\right)=0\)), then:
\[
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)
\]

\section*{Outline}
(1) Basic Theory
- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{Events as Sets}

For example, in a dice experiment
\[
A=\{i \mid \text { with } i \text { an even number }\}
\]

\section*{Events as Sets}

\section*{For example, in a dice experiment}
\[
A=\{i \mid \text { with } i \text { an even number }\}
\]

Thus, we have the following set operations
(1) \(A \cup B=\{x \mid x \in A\) or \(x \in B\}\)

\section*{Events as Sets}

\section*{For example, in a dice experiment}
\[
A=\{i \mid \text { with } i \text { an even number }\}
\]

Thus, we have the following set operations
(1) \(A \cup B=\{x \mid x \in A\) or \(x \in B\}\)
(2) \(A \cap B=\{x \mid x \in A\) and \(x \in B\}\)

\section*{Events as Sets}

\section*{For example, in a dice experiment}
\[
A=\{i \mid \text { with } i \text { an even number }\}
\]

Thus, we have the following set operations
(1) \(A \cup B=\{x \mid x \in A\) or \(x \in B\}\)
(2) \(A \cap B=\{x \mid x \in A\) and \(x \in B\}\)
(3) \(A^{C}=\{x \mid x \notin A\}\)

\section*{Therefore}

We can use combinations
Of such events with the previous operations to describe random phenomenas

\section*{Therefore}

\section*{We can use combinations}

Of such events with the previous operations to describe random phenomenas

\section*{Set of all throws even and greater than 3}
- \(A=\{i \mid i\) is even \(\}\)
- \(B=\{i \mid i>3\}\)

\section*{Therefore}

\section*{We can use combinations}

Of such events with the previous operations to describe random phenomenas

\section*{Set of all throws even and greater than 3}
- \(A=\{i \mid i\) is even \(\}\)
- \(B=\{i \mid i>3\}\)

Then
\[
A \cap B=\{i \mid i \text { is even and } i>3\}
\]

\section*{Example}

The Probability of the empty set is
\[
P(S)=P(S \cup \emptyset)=P(S)+P(\emptyset)
\]

\section*{Example}

The Probability of the empty set is
\[
P(S)=P(S \cup \emptyset)=P(S)+P(\emptyset)
\]

Given that \(\bar{S}=\emptyset\), therefore
\[
P(\emptyset)=0
\]

\section*{Examples}

The union \(A \cup B\) of two events \(A\) and \(B\)
It is an event that occurs if at least one of the events \(A\) or \(B\) occur

\section*{Examples}

The union \(A \cup B\) of two events \(A\) and \(B\)
It is an event that occurs if at least one of the events \(A\) or \(B\) occur

\section*{For mutually exclusive events}
\[
P(A \cup B)=P(A)+P(B)
\]

\section*{Further}

\section*{In the General Case}
\[
P(A \cup B)=P(A)+P(B)-P(A \cap B)
\]

\section*{Further}

\section*{In the General Case}
\[
P(A \cup B)=P(A)+P(B)-P(A \cap B)
\]

In the case of the complement
\[
P\left(A^{C}\right)=1-P(A)
\]

\section*{Further}

\section*{In the General Case}
\[
P(A \cup B)=P(A)+P(B)-P(A \cap B)
\]

\section*{In the case of the complement}
\[
P\left(A^{C}\right)=1-P(A)
\]

\section*{Given that}
\[
P(S)=P\left(A^{C}\right)+P(A)
\]

\section*{Outline}
(1) Basic Theory
- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{Example}

\section*{Setup}

Throw a biased coin twice

\section*{Example}

\section*{Setup}

Throw a biased coin twice

We have the following event
At least one head!!! Can you tell me which events are part of it?

\section*{Example}

\section*{Setup}

Throw a biased coin twice

We have the following event
At least one head!!! Can you tell me which events are part of it?

\section*{What about this one?}

Tail on first toss.

\section*{Outline}
(1) Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

We have that experiments in Probability are Defined as
We have
(1) The Set \(\mathcal{B}\) of all experimental outcomes
(2) The Borel Field of all events of \(\mathcal{B}\)
(3) The Probability of Such Events

We have that experiments in Probability are Defined as

\section*{We have}
(1) The Set \(\mathcal{B}\) of all experimental outcomes
(2) The Borel Field of all events of \(\mathcal{B}\)
(3) The Probability of Such Events

\section*{Remark about the Borel Field}
- We us this fields because we are given a way to measure infinite phenomenas but Bounded.

\section*{We have that experiments in Probability are Defined as}

\section*{We have}
(1) The Set \(\mathcal{B}\) of all experimental outcomes
(2) The Borel Field of all events of \(\mathcal{B}\)
(3) The Probability of Such Events

\section*{Remark about the Borel Field}
- We us this fields because we are given a way to measure infinite phenomenas but Bounded.

\section*{Therefore}
- If you have a measure over a set \(\mathcal{B}\), we would love to be able to measure:
- The Union of such events
- The Measure should be bounded.

\section*{Measuring Countable Spaces}

If \(\mathcal{B}=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}\)
\[
P\left(A_{i}\right)=p_{i}
\]

\section*{Measuring Countable Spaces}
\[
\text { If } \mathcal{B}=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}
\]
\[
P\left(A_{i}\right)=p_{i}
\]

\section*{Where}
\[
p_{1}+p_{2}+\ldots+p_{N}=1
\]

\section*{Measuring Countable Spaces}

If \(\mathcal{B}=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}\)
\[
P\left(A_{i}\right)=p_{i}
\]

\section*{Where}
\[
p_{1}+p_{2}+\ldots+p_{N}=1
\]

Then, if you have \(B=A_{1} \cup \ldots \cup A_{k}\) and \(k \leq N\)
\[
P(B)=\sum_{i=1}^{k} P\left(A_{i}\right)
\]

\section*{In the Case of Equally Likely Events}

We have that
\[
p_{i}=\frac{1}{N}
\]

\section*{In the Case of Equally Likely Events}

We have that
\[
p_{i}=\frac{1}{N}
\]

Therefore
\[
P(B)=\sum_{i=1}^{k} P\left(A_{i}\right)=\sum_{i=1}^{k} \frac{1}{N}=\frac{k}{N}
\]

\section*{The Real Line}

\section*{Here the Borel Sets}
- It comes to save us...

\section*{The Real Line}

\section*{Here the Borel Sets}
- It comes to save us...

\section*{Something Notable}
- In this case we are using events as intervals \(x_{1} \leq x \leq x_{2}\)
- And their finite Unions and Intersections

\section*{The Real Line}

\section*{Here the Borel Sets}
- It comes to save us...

\section*{Something Notable}
- In this case we are using events as intervals \(x_{1} \leq x \leq x_{2}\)
- And their finite Unions and Intersections

For this, we define \(\mathcal{B}\)
The smallest Borel Field that includes half lines \(x \leq x_{1}\) with \(x_{i} \in \mathbb{R}\).

\section*{Important}

This contains all the open and closed intervals, and all points
- This is not all possible subsets

\section*{Important}

This contains all the open and closed intervals, and all points
- This is not all possible subsets

Those sets are not result of countable unions and intersections of intervals
- A Vitali set is a subset \(V\) of the interval \([0,1]\) of real numbers such that, for each real number \(r\) :
- There is exactly one number \(v \in V\) such that \(v-r\) is a rational number

\section*{Important}

\section*{This contains all the open and closed intervals, and all points}
- This is not all possible subsets

Those sets are not result of countable unions and intersections of intervals
- A Vitali set is a subset \(V\) of the interval \([0,1]\) of real numbers such that, for each real number \(r\) :
- There is exactly one number \(v \in V\) such that \(v-r\) is a rational number

They do not describe experiments of interest
- These are of no interest for Probability

\section*{Therefore, we have}

Assume that we have a function \(\alpha(x)\) such that
\[
\int_{-\infty}^{\infty} \alpha(x) d x=1 \text { and } \alpha(x) \geq 0
\]

Therefore, we have

Assume that we have a function \(\alpha(x)\) such that
\[
\int_{-\infty}^{\infty} \alpha(x) d x=1 \text { and } \alpha(x) \geq 0
\]

We define that
\[
P\left(x \leq x_{1}\right)=\int_{-\infty}^{x_{1}} \alpha(x) d x
\]

Therefore, we have

Assume that we have a function \(\alpha(x)\) such that
\[
\int_{-\infty}^{\infty} \alpha(x) d x=1 \text { and } \alpha(x) \geq 0
\]

We define that
\[
P\left(x \leq x_{1}\right)=\int_{-\infty}^{x_{1}} \alpha(x) d x
\]

Further, \(x_{1} \leq x \leq x_{2}\) is defined as
\[
P\left(x_{1} \leq x \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} \alpha(x) d x
\]

\section*{Example}

We have the following probability of emission of radioactive probabilities
\[
\alpha(t)=c e^{-c t} I[t \geq 0] \text { and } t \in \mathbb{R}
\]

\section*{Example}

We have the following probability of emission of radioactive probabilities
\[
\alpha(t)=c e^{-c t} I[t \geq 0] \text { and } t \in \mathbb{R}
\]

Therefore, the probability ob being emitted in the interval \(\left(0, t_{0}\right)\)
\[
\int_{0}^{t_{0}} c e^{c t} d t=1-e^{-c t_{0}}
\]

\section*{Outline}
(1) Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expectied Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{We need to count!!!}

We have four main methods of counting
(1) Ordered samples of size \(r\) with replacement

\section*{We need to count!!!}

\section*{We have four main methods of counting}
(1) Ordered samples of size \(r\) with replacement
(2) Ordered samples of size \(r\) without replacement

\section*{We need to count!!!}

\section*{We have four main methods of counting}
(1) Ordered samples of size \(r\) with replacement
(2) Ordered samples of size \(r\) without replacement
(3) Unordered samples of size \(r\) without replacement

\section*{We need to count!!!}

\section*{We have four main methods of counting}
(1) Ordered samples of size \(r\) with replacement
(2) Ordered samples of size \(r\) without replacement
(3) Unordered samples of size \(r\) without replacement
(9) Unordered samples of size \(r\) with replacement

\section*{Ordered samples of size \(r\) with replacement}

\section*{Definition}

The number of possible sequences \(\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)\) for \(n\) different numbers is \(n \times n \times \ldots \times n=n^{r}\)

\section*{Ordered samples of size \(r\) with replacement}

\section*{Definition}

The number of possible sequences \(\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)\) for \(n\) different numbers is \(n \times n \times \ldots \times n=n^{r}\)

\section*{Example}

If you throw three dices you have \(6 \times 6 \times 6=216\)

\section*{Ordered samples of size \(r\) without replacement}

\section*{Definition}

The number of possible sequences \(\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)\) for \(n\) different numbers is \(n \times n-1 \times \ldots \times(n-(r-1))=\frac{n!}{(n-r)!}\)

\section*{Ordered samples of size \(r\) without replacement}

\section*{Definition}

The number of possible sequences \(\left(a_{i_{1}}, \ldots, a_{i_{r}}\right)\) for \(n\) different numbers is \(n \times n-1 \times \ldots \times(n-(r-1))=\frac{n!}{(n-r)!}\)

\section*{Example}

The number of different numbers that can be formed if no digit can be repeated. For example, if you have 4 digits and you want numbers of size 3.

\section*{Unordered samples of size \(r\) without replacement}

\section*{Definition}

Actually, we want the number of possible unordered sets.

\section*{Unordered samples of size \(r\) without replacement}

\section*{Definition}

Actually, we want the number of possible unordered sets.

\section*{However}

We have \(\frac{n!}{(n-r)!}\) collections where we care about the order. Thus
\[
\begin{equation*}
\frac{\frac{n!}{(n-r)!}}{r!}=\frac{n!}{r!(n-r)!}=\binom{n}{r} \tag{2}
\end{equation*}
\]

\section*{Unordered samples of size \(r\) with replacement}

\section*{Definition}

We want to find an unordered set \(\left\{a_{i_{1}}, \ldots, a_{i_{r}}\right\}\) with replacement

\section*{Unordered samples of size \(r\) with replacement}

\section*{Definition}

We want to find an unordered set \(\left\{a_{i_{1}}, \ldots, a_{i_{r}}\right\}\) with replacement
Thus
\[
\begin{equation*}
\binom{n+r-1}{r} \tag{3}
\end{equation*}
\]

How? Use a digit trick for that
Change encoding by adding more signs
Imagine all the strings of three numbers with \(\{1,2,3\}\)

\section*{How? Use a digit trick for that}

\section*{Change encoding by adding more signs}

Imagine all the strings of three numbers with \(\{1,2,3\}\)

\section*{We have}
\begin{tabular}{|c|c|}
\hline Old String & New String \\
\hline \hline 111 & \(1+0,1+1,1+2=123\) \\
\hline 112 & \(1+0,1+1,2+2=124\) \\
\hline 113 & \(1+0,1+1,3+2=125\) \\
\hline 122 & \(1+0,2+1,2+2=134\) \\
\hline 123 & \(1+0,2+1,3+2=135\) \\
\hline 133 & \(1+0,3+1,3+2=145\) \\
\hline 222 & \(2+0,2+1,2+2=234\) \\
\hline 223 & \(2+0,2+1,3+2=235\) \\
\hline 233 & \(2+0,3+1,3+2=245\) \\
\hline 333 & \(3+0,3+1,3+2=345\) \\
\hline
\end{tabular}

\section*{Outline}

\section*{(1) Basic Theory}
- Intuitive Formulation
- Famous ExamplesAxioms
(1) Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach

\section*{- Independence}
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{Sometimes}

We would like to model certain phenomena like
\[
P\left(A_{1}, A_{2}, \ldots, A_{K}\right)
\]

\section*{Sometimes}

We would like to model certain phenomena like
\[
P\left(A_{1}, A_{2}, \ldots, A_{K}\right)
\]

The Problem is the complexity of calculating the joint distribution We would like something simpler

\section*{Sometimes}

We would like to model certain phenomena like
\[
P\left(A_{1}, A_{2}, \ldots, A_{K}\right)
\]

The Problem is the complexity of calculating the joint distribution We would like something simpler

\section*{Something like}
\[
P\left(A_{1}, A_{2}, \ldots, A_{K}\right)=\text { Operation }_{i=1}^{k} P\left(A_{1}\right)
\]

\section*{Independence}

\section*{Definition}

Two events \(A\) and \(B\) are independent if and only if
\(P(A, B)=P(A \cap B)=P(A) P(B)\)

\section*{Example}

\section*{We have two dices}

Thus, we have all pairs \((i, j)\) such that \(i, j=1,2,3, \ldots, 6\)

\section*{Example}

\section*{We have two dices}

Thus, we have all pairs \((i, j)\) such that \(i, j=1,2,3, \ldots, 6\)

We have the following events
- \(A=\{\) First dice 1,2 or 3\(\}\)

\section*{Example}

\section*{We have two dices}

Thus, we have all pairs \((i, j)\) such that \(i, j=1,2,3, \ldots, 6\)

We have the following events
- \(A=\{\) First dice 1,2 or 3\(\}\)
- \(B=\{\) First dice 3,4 or 5\(\}\)

\section*{Example}

\section*{We have two dices}

Thus, we have all pairs \((i, j)\) such that \(i, j=1,2,3, \ldots, 6\)

We have the following events
- \(A=\{\) First dice 1,2 or 3\(\}\)
- \(B=\{\) First dice 3,4 or 5\(\}\)
- \(C=\{\) The sum of two faces is 9\(\}\)

\section*{Example}

\section*{We have two dices}

Thus, we have all pairs \((i, j)\) such that \(i, j=1,2,3, \ldots, 6\)

We have the following events
- \(A=\{\) First dice 1,2 or 3\(\}\)
- \(B=\{\) First dice 3,4 or 5\(\}\)
- \(C=\{\) The sum of two faces is 9\(\}\)

\section*{So, we can do}

Look at the board!!! Independence between \(A, B, C\)

\section*{Outline}

\section*{1 Basic Theory}
- Intuitive Formulation
- Famous ExamplesAxioms
(1) Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance

三
- Definition of Variance

\section*{Outline}

\section*{1 Basic Theory}
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance

三
- Definition of Variance

\section*{We have that}

Given two sets \(\mathcal{A}\) and \(\mathcal{B}\)
\[
\mathcal{A} \times \mathcal{B}=\{(a, b) \mid a \in \mathcal{A} \text { and } b \in \mathcal{B}\}
\]

\section*{We have that}

Given two sets \(\mathcal{A}\) and \(\mathcal{B}\)
\[
\mathcal{A} \times \mathcal{B}=\{(a, b) \mid a \in \mathcal{A} \text { and } b \in \mathcal{B}\}
\]

Example \(\mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}\) and \(\mathcal{B}=\left\{b_{1}, b_{2}\right\}\)
\[
\mathcal{A} \times \mathcal{B}=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right)\right\}
\]

\section*{Furthermore}

\section*{If \(A \subseteq \mathcal{A}\) and \(B \subseteq \mathcal{B}\)}
\[
C=A \times B
\]

\section*{Furthermore}

\section*{If \(A \subseteq \mathcal{A}\) and \(B \subseteq \mathcal{B}\)}
\[
C=A \times B
\]

\section*{Look At the Board}
- It is interesting!!!

\section*{Furthermore}

If \(A \subseteq \mathcal{A}\) and \(B \subseteq \mathcal{B}\)
\[
C=A \times B
\]

\section*{Look At the Board}
- It is interesting!!!

Therefore, \(A \times \mathcal{B}\) and \(\mathcal{A} \times B\)
\[
A \times B=A \times \mathcal{B} \cap \mathcal{A} \times B
\]

\section*{Re-framing Independence}

We have
- \(P(A \times \mathcal{B})=P((a, b) \mid a \in A\) and \(b \in \mathcal{B})=P(A)\)
- \(P(\mathcal{A} \times B)=P((a, b) \mid a \in \mathcal{A}\) and \(b \in B)=P(B)\)

\section*{Re-framing Independence}

\section*{We have}
- \(P(A \times \mathcal{B})=P((a, b) \mid a \in A\) and \(b \in \mathcal{B})=P(A)\)
- \(P(\mathcal{A} \times B)=P((a, b) \mid a \in \mathcal{A}\) and \(b \in B)=P(B)\)

Therefore, we can use our previous relation and assuming \(A \times \mathcal{B}\) and \(\mathcal{A} \times B\) independent events
\[
P(A \times B)=P(A \times \mathcal{B} \cap \mathcal{A} \times B)=P(A) P(B)
\]

\section*{We can use this to derive the Binomial Distribution}

What???
We can do something quite interesting

First, we use a sequence of \(n\) Bernoulli Trials

We have this
- "Success" has a probability \(p\).

\section*{First, we use a sequence of \(n\) Bernoulli Trials}

\section*{We have this}
- "Success" has a probability \(p\).
- "Failure" has a probability \(1-p\).

\section*{First, we use a sequence of \(n\) Bernoulli Trials}

\section*{We have this}
- "Success" has a probability \(p\).
- "Failure" has a probability \(1-p\).

\section*{Examples}
- Toss a coin independently \(n\) times.

\section*{First, we use a sequence of \(n\) Bernoulli Trials}

\section*{We have this}
- "Success" has a probability \(p\).
- "Failure" has a probability \(1-p\).

\section*{Examples}
- Toss a coin independently \(n\) times.
- Examine components produced on an assembly line.

\section*{First, we use a sequence of \(n\) Bernoulli Trials}

\section*{We have this}
- "Success" has a probability \(p\).
- "Failure" has a probability \(1-p\).

\section*{Examples}
- Toss a coin independently \(n\) times.
- Examine components produced on an assembly line.

\section*{Now}

We take \(S=\) all \(2^{n}\) ordered sequences of length \(n\), with components \(\mathbf{0}\) (failure) and 1 (success).

\section*{First}

\section*{How do we represent such events?}

We can use a sequence as
\[
\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle
\]

\section*{First}

How do we represent such events?
We can use a sequence as
\[
\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle
\]

With the following features
\[
a_{i} \in S=\{0,1\}
\]

\section*{Meaning}

\section*{We have one event \(A\)}
\(A=\) Success \(=1\)

\section*{Meaning}

We have one event \(A\)
\(A=\) Success \(=1\)
The Other Event \(A^{C}\)
\(A^{C}=\) Failure \(=0\)

\section*{Thus, taking a sample \(\omega\)}
\[
\begin{aligned}
& \omega=11 \cdots 10 \cdots 0=\{0,1\} \times \cdots\{0,1\} \\
& k \text { 1's followed by } n-k 0 \text { 's. }
\end{aligned}
\]

Thus, taking a sample \(\omega\)
\[
\omega=11 \cdots 10 \cdots 0=\{0,1\} \times \cdots\{0,1\}
\]
\(k\) 1's followed by \(n-k 0\) 's.
We have then
\[
\begin{aligned}
P(\omega) & =P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k} \cap A_{k+1}^{c} \cap \ldots \cap A_{n}^{c}\right) \\
& =P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{k}\right) P\left(A_{k+1}^{c}\right) \cdots P\left(A_{n}^{c}\right) \\
& =p^{k}(1-p)^{n-k}
\end{aligned}
\]

\section*{Did you notice the following?}

\section*{After mapping the events through the probability}
- We are loosing the internal event structure

\section*{Did you notice the following?}

\section*{After mapping the events through the probability}
- We are loosing the internal event structure

\author{
Which is not important because
}

Events are mutually independent!!!

\section*{Did you notice the following?}

\section*{After mapping the events through the probability}
- We are loosing the internal event structure

\section*{Which is not important because}

Events are mutually independent!!!

\section*{Important}

The number of such sample is the number of sets with \(k\) elements.... or...
\[
\binom{n}{k}
\]

\section*{Therefore}

We do not care where the 1's and 0's are
Thus all the probabilities are equal to \(p^{k}(1-p)^{k}\)

\section*{Therefore}

\section*{We do not care where the 1's and 0's are}

Thus all the probabilities are equal to \(p^{k}(1-p)^{k}\)

Thus, we are looking to sum all those probabilities of all those combinations of 1's and 0's
\[
\sum_{k 1^{\prime} \mathrm{s}} p\left(\omega^{k}\right)
\]

\section*{Therefore}

\section*{We do not care where the 1's and 0's are}

Thus all the probabilities are equal to \(p^{k}(1-p)^{k}\)
Thus, we are looking to sum all those probabilities of all those combinations of 1's and 0's
\[
\sum_{k \text { 1's }} p\left(\omega^{k}\right)
\]

\section*{Then}
\[
\sum_{k \text { 1's }} p\left(\omega^{k}\right)=\binom{n}{k} p(1-p)^{n-k}
\]

\section*{Proving this is a probability}

\section*{Sum of these probabilities is equal to 1}
\[
\sum_{k=0}^{n}\binom{n}{k} p(1-p)^{n-k}=(p+(1-p))^{n}=1
\]

\section*{Proving this is a probability}

Sum of these probabilities is equal to 1
\[
\sum_{k=0}^{n}\binom{n}{k} p(1-p)^{n-k}=(p+(1-p))^{n}=1
\]

The other is simple
\[
0 \leq\binom{ n}{k} p(1-p)^{n-k} \leq 1 \forall k
\]

\section*{Proving this is a probability}

Sum of these probabilities is equal to 1
\[
\sum_{k=0}^{n}\binom{n}{k} p(1-p)^{n-k}=(p+(1-p))^{n}=1
\]

The other is simple
\[
0 \leq\binom{ n}{k} p(1-p)^{n-k} \leq 1 \forall k
\]

This is know as
The Binomial probability function!!!

\section*{Outline}

\author{
1 Basic Theory
}
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random VariablesIntroduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{Unconditional Probability}

\section*{Definition}

An unconditional probability is the probability of an event \(A\) prior to arrival of any evidence.

\section*{Unconditional Probability}

\section*{Definition}

An unconditional probability is the probability of an event \(A\) prior to arrival of any evidence.

\section*{For Example}
- \(P(\) Cavity \()=0.1\) means that in the absence of any other information.

\section*{Unconditional Probability}

\section*{Definition}

An unconditional probability is the probability of an event \(A\) prior to arrival of any evidence.

\section*{For Example}
- \(P(\) Cavity \()=0.1\) means that in the absence of any other information. - "There is a \(\mathbf{1 0 \%}\) chance that the patient is having a cavity"

\section*{Conditional Probability}

\section*{Definition}

A conditional probability is the probability of one event if another event occurred.

\section*{Conditional Probability}

\section*{Definition}

A conditional probability is the probability of one event if another event occurred.

\section*{For Example}
- \(P(\) Cavity \(/\) Toothache \()=0.8\) means that

\section*{Conditional Probability}

\section*{Definition}

A conditional probability is the probability of one event if another event occurred.

\section*{For Example}
- \(P(\) Cavity \(/\) Toothache \()=0.8\) means that
- "there is an \(80 \%\) chance that the patient is having a cavity given that he is having a toothache"

\section*{Outline}
（1）Basic Theory
－Intuitive Formulation
－Famous ExamplesAxioms
－Using Set Operations
－Example
－Finite and Infinite Space
－Counting，Frequentist Approach
－Independence
－Repeated Trials
－Cartesian Products
－Unconditional and Conditional Probability
－Conditional Probability
－Independence
－Law of Total Probability
－Bayes Theorem
－Application in Universal Hashing
（2）Random Variables
－Introduction
－Formal Defintion
－Probability of a Random Variable
－Types of Random Variables
－Distribution Functions
－Function of Random Variables
－Some Properties of the Distribution Functions
－Relations Between Join and Individual Densities
（3）Expected Value
－Introduction
－Definition
－Properties
－Minimizing Distances
－Variance
－Definition of Variance

\section*{Basically}

Using Set Theory

\section*{However}

We need a distribution!!!
\[
\sum_{A \subseteq S} P(A)=1
\]

However

We need a distribution!!!
\[
\sum_{A \subseteq S} P(A)=1
\]

We then do the following
\[
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
\]

\section*{Therefore}

The conditional probability of \(A\) given \(B\) is written \(P(A \mid B)\)
\[
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A, B)}{P(B)}
\]
with \(P(B)>0\)

\section*{We have that this are probabilities}

\section*{First given \(0<P(B)\) and \(0 \leq P(A \cap B)\)}

Then,
\[
\frac{P(A, B)}{P(B)} \geq 0
\]

We have that this are probabilities

\section*{First given \(0<P(B)\) and \(0 \leq P(A \cap B)\)}

Then,
\[
\frac{P(A, B)}{P(B)} \geq 0
\]

\section*{Second, given if \(B \subseteq A\)}
\[
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(B)}{P(B)}=1
\]

We have that this are probabilities

First given \(0<P(B)\) and \(0 \leq P(A \cap B)\)
Then,
\[
\frac{P(A, B)}{P(B)} \geq 0
\]

Second, given if \(B \subseteq A\)
\[
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(B)}{P(B)}=1
\]

If \(A \subseteq B\)
\[
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(A)}{P(B)} \geq P(A) \geq 0
\]

\section*{Finally}

We have that for \(A \cap B=\emptyset\)
\[
P(A \cup B \mid C)=\frac{P([A \cup B] \cap C)}{P(C)}=\frac{P([A \cap C] \cup[B \cap C])}{P(C)}
\]

\section*{Finally}

We have that for \(A \cap B=\emptyset\)
\[
P(A \cup B \mid C)=\frac{P([A \cup B] \cap C)}{P(C)}=\frac{P([A \cap C] \cup[B \cap C])}{P(C)}
\]

Then
\[
P(A \cup B \mid C)=\frac{P(A \cap C)+P(B \cap C)}{P(C)}=\frac{P(A \cap C)}{P(C)}+\frac{P(B \cap C)}{P(C)}
\]

\section*{Chain Rule}

\section*{Chain Rule}

The probability that two events \(A\) and \(B\) will both occur is
\[
P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)
\]

\section*{Chain Rule}

The probability that two events \(A\) and \(B\) will both occur is
\[
P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)
\]

\section*{How?}

Any Ideas?

\section*{Therefore}

This is also know
As the chain rule

\section*{Therefore}

This is also know
As the chain rule

\section*{Prove by induction}
\(P\left(A_{1}, \ldots, A_{n}\right)=\)
\(P\left(A_{n} \mid A_{n-1} \ldots A_{1}\right) P\left(A_{n-1} \mid A_{n-2} \ldots A_{1}\right) \cdots P\left(A_{2} \mid A_{1}\right) P\left(A_{1}\right)\)

\section*{Therefore}

This is also know
As the chain rule

> Prove by induction
> \(P\left(A_{1}, \ldots, A_{n}\right)=\)
> \(P\left(A_{n} \mid A_{n-1} \ldots A_{1}\right) P\left(A_{n-1} \mid A_{n-2} \ldots A_{1}\right) \cdots P\left(A_{2} \mid A_{1}\right) P\left(A_{1}\right)\)

\section*{Proof}

Any idea?

\section*{Outline}

\section*{1) Basic Theory}
- Intuitive Formulation
- Famous ExamplesAxioms
-
ing Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance

三
- Definition of Variance

\section*{Independence}
```

If two events are independent
P(A|B)=P(A) and P(B|A)=P(B).

```

\section*{Independence}

If two events are independent
\(P(A \mid B)=P(A)\) and \(P(B \mid A)=P(B)\).
Therefore, two events \(A\) and \(B\) are independent if
\[
P(A, B)=P(A) P(B)
\]

\section*{Example}

\section*{Experiment}

It involves a random draw from a standard deck of 52 playing cards.

\section*{Example}

\section*{Experiment}

It involves a random draw from a standard deck of 52 playing cards.

\section*{Define events \(A\) and \(B\) to be}
\(A=\) The card is heart and \(B=\) The card is queen

\section*{Example}

\section*{Experiment}

It involves a random draw from a standard deck of 52 playing cards.

\section*{Define events \(A\) and \(B\) to be}
\(A=\) The card is heart and \(B=\) The card is queen

Are the events independent?
How do we do it?

\section*{Example}

\section*{We have that}
\[
P(A, B)=\frac{1}{52}
\]

\section*{Example}

\section*{We have that}
\[
P(A, B)=\frac{1}{52}
\]

\section*{But}
\[
P(A) P(B)=\frac{13}{52} \times \frac{4}{52}
\]

What happen when you have independence in conditional setups?

What happen when you have independence in conditional setups?

\section*{Conditional independence}
\(A\) and \(B\) are conditionally independent given \(C\) if and only if
\[
P(A \mid B, C)=P(A \mid C)
\]
```

Example
$P($ WetGrass $\mid$ Season, Rain $)=P($ WetGrass $\mid$ Rain $)$.

```

\section*{Example}

Three cards are drawn from a deck
Find the probability of no obtaining a heart

\section*{Example}

\section*{Three cards are drawn from a deck}

Find the probability of no obtaining a heart
```

We have

- 52 cards
- 39 of them not a heart

```

\section*{Example}

\section*{Three cards are drawn from a deck}

Find the probability of no obtaining a heart

\section*{We have}
- 52 cards
- 39 of them not a heart

\section*{Define each of the draws \\ \(A_{i}=\{\) Card \(i\) is not a heart \(\}\) Then?}

\section*{Outline}
(1) Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{We have}

\section*{Definition}

Events \(H_{1}, H_{2}, \ldots, H_{n}\) form a partition of the sample space \(S\) if

\section*{We have}

\section*{Definition}

Events \(H_{1}, H_{2}, \ldots, H_{n}\) form a partition of the sample space \(S\) if
(1) They are mutually exclusive \(H_{i} \cap H_{j}=\emptyset\) and \(i \neq j\)

\section*{We have}

\section*{Definition}

Events \(H_{1}, H_{2}, \ldots, H_{n}\) form a partition of the sample space \(S\) if
(1) They are mutually exclusive \(H_{i} \cap H_{j}=\emptyset\) and \(i \neq j\)
(2) Their union is the sample space \(S, \cup_{i=1}^{n} H_{i}=S\)

\section*{We have}

\section*{Definition}

Events \(H_{1}, H_{2}, \ldots, H_{n}\) form a partition of the sample space \(S\) if
(1) They are mutually exclusive \(H_{i} \cap H_{j}=\emptyset\) and \(i \neq j\)
(2) Their union is the sample space \(S, \cup_{i=1}^{n} H_{i}=S\)

The events \(H_{1}, H_{2}, \ldots, H_{n}\) are usually called hypotheses
\[
P(S)=P\left(H_{1}\right)+P\left(H_{2}\right)+\cdots+P\left(H_{n}\right)
\]

\section*{Now}

Let the event of interest \(A\) happens under any of the hypotheses \(H_{i}\)
- With a know conditional probability \(P\left(A \mid H_{i}\right)\)

\section*{Now}

\section*{Let the event of interest \(A\) happens under any of the hypotheses \(H_{i}\)}
- With a know conditional probability \(P\left(A \mid H_{i}\right)\)

\section*{Assume}
- The probabilities of hypotheses \(H_{1}, \ldots, H_{n}\) are known.

\section*{Now}

Let the event of interest \(A\) happens under any of the hypotheses \(H_{i}\)
- With a know conditional probability \(P\left(A \mid H_{i}\right)\)

\section*{Assume}
- The probabilities of hypotheses \(H_{1}, \ldots, H_{n}\) are known.

\section*{Total Probability Formula}
\[
P(A)=P\left(A \mid H_{1}\right) P\left(H_{1}\right)+\cdots+P\left(A \mid H_{n}\right) P\left(H_{n}\right)
\]

\section*{Example}

Two-headed coin
Out of 100 coins one has heads on both sides.

\section*{Example}

\section*{Two-headed coin \\ Out of 100 coins one has heads on both sides. \\ One coin is chosen at random and flipped two times}

\section*{Example}

\section*{Two-headed coin}

Out of 100 coins one has heads on both sides.

\section*{One coin is chosen at random and flipped two times}

What is the probability to get
(1) Two heads?
(2) Two tails?

\section*{Example}

\section*{Let \(A\) be the event that two heads are obtained}

Denote by \(H_{1}\) the event (hypothesis) that a fair coin was chosen.

\section*{Example}

\section*{Let \(A\) be the event that two heads are obtained}

Denote by \(H_{1}\) the event (hypothesis) that a fair coin was chosen.

\section*{Now}

The Hypothesis \(H_{2}=H_{1}^{C}\) is the event that the two-headed coin was chosen.

\section*{Example}

\section*{Let \(A\) be the event that two heads are obtained}

Denote by \(H_{1}\) the event (hypothesis) that a fair coin was chosen.

\section*{Now}

The Hypothesis \(H_{2}=H_{1}^{C}\) is the event that the two-headed coin was chosen.

Then, we have that
\[
\begin{aligned}
P(A) & =P\left(A \mid H_{1}\right) P\left(H_{1}\right)+P\left(A \mid H_{2}\right) P\left(H_{2}\right) \\
& =\frac{1}{4} \times \frac{99}{100}+1 \times \frac{1}{100}
\end{aligned}
\]

\section*{Example}

\section*{Let \(A\) be the event that two heads are obtained}

Denote by \(H_{1}\) the event (hypothesis) that a fair coin was chosen.

\section*{Now}

The Hypothesis \(H_{2}=H_{1}^{C}\) is the event that the two-headed coin was chosen.

Then, we have that
\[
\begin{aligned}
P(A) & =P\left(A \mid H_{1}\right) P\left(H_{1}\right)+P\left(A \mid H_{2}\right) P\left(H_{2}\right) \\
& =\frac{1}{4} \times \frac{99}{100}+1 \times \frac{1}{100}
\end{aligned}
\]

\section*{Example}

\section*{Let \(A\) be the event that two heads are obtained}

Denote by \(H_{1}\) the event (hypothesis) that a fair coin was chosen.

\section*{Now}

The Hypothesis \(H_{2}=H_{1}^{C}\) is the event that the two-headed coin was chosen.

Then, we have that
\[
\begin{aligned}
P(A) & =P\left(A \mid H_{1}\right) P\left(H_{1}\right)+P\left(A \mid H_{2}\right) P\left(H_{2}\right) \\
& =\frac{1}{4} \times \frac{99}{100}+1 \times \frac{1}{100} \\
& =\frac{103}{400}
\end{aligned}
\]

\section*{Example}

\section*{Let \(A\) be the event that two heads are obtained}

Denote by \(H_{1}\) the event (hypothesis) that a fair coin was chosen.

\section*{Now}

The Hypothesis \(H_{2}=H_{1}^{C}\) is the event that the two-headed coin was chosen.

Then, we have that
\[
\begin{aligned}
P(A) & =P\left(A \mid H_{1}\right) P\left(H_{1}\right)+P\left(A \mid H_{2}\right) P\left(H_{2}\right) \\
& =\frac{1}{4} \times \frac{99}{100}+1 \times \frac{1}{100} \\
& =\frac{103}{400} \\
& =0.2575
\end{aligned}
\]

\section*{What about the second one}

\section*{Exercise}

Answer: 0.2475

\section*{Outline}
（1）Basic Theory
－Intuitive Formulation
－Famous ExamplesAxioms
－Using Set Operations
－Example
－Finite and Infinite Space
－Counting，Frequentist Approach
－Independence
－Repeated Trials
－Cartesian Products
－Unconditional and Conditional Probability
－Conditional Probability
－Independence
Law of Total Probability
－Bayes Theorem
－Application in Universal Hashing
（2）Random Variables
－Introduction
－Formal Defintion
－Probability of a Random Variable
－Types of Random Variables
－Distribution Functions
－Function of Random Variables
－Some Properties of the Distribution Functions
－Relations Between Join and Individual Densities
3）Expectied Value
－Introduction
－Definition
－Properties
－Minimizing Distances
－Variance
－Definition of Variance

\section*{Bayes Theorem}

\section*{First}

Let the event of interest \(A\) happens under any of hypotheses \(H_{i}\) with a known (conditional) probability \(P\left(A \mid H_{i}\right)\).

\section*{Bayes Theorem}

\section*{First}

Let the event of interest \(A\) happens under any of hypotheses \(H_{i}\) with a known (conditional) probability \(P\left(A \mid H_{i}\right)\).

\section*{Assume}

That the probabilities of hypotheses \(H_{1}, \ldots, H_{n}\) are known (prior probabilities).

\section*{Bayes Theorem}

\section*{First}

Let the event of interest \(A\) happens under any of hypotheses \(H_{i}\) with a known (conditional) probability \(P\left(A \mid H_{i}\right)\).

\section*{Assume}

That the probabilities of hypotheses \(H_{1}, \ldots, H_{n}\) are known (prior probabilities).

\section*{Then}

The conditional (posterior) probability of the hypothesis \(H_{i}\) given that \(A\) happened is
\[
P\left(H_{i} \mid A\right)=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P(A)}
\]

\section*{Given the independence of the events}

\section*{\(H_{1}, H_{2}, \ldots, H_{n}\) form a partition of the sample space \(S\)}
- Therefore
\[
A=S \cap A=\left(H_{1} \cup H_{2} \cup \cdots \cup H_{n}\right) \cap A
\]

\section*{Given the independence of the events}
\(H_{1}, H_{2}, \ldots, H_{n}\) form a partition of the sample space \(S\)
- Therefore
\[
A=S \cap A=\left(H_{1} \cup H_{2} \cup \cdots \cup H_{n}\right) \cap A
\]

Therefore
\[
A=\cup_{i=1}^{n}\left(H_{i} \cap A\right)
\]

\section*{Where}

\section*{We have}
\[
\begin{aligned}
P(A) & =P\left(H_{1} \cap A\right)+P\left(H_{2} \cap A\right)+\cdots+P\left(H_{n} \cap A\right) \\
& =P\left(A \mid H_{1}\right) P\left(H_{1}\right)+\cdots+P\left(A \mid H_{n}\right) P\left(H_{n}\right)
\end{aligned}
\]

\section*{Bayes Law of Total Probability}

Therefore for an event \(H_{i}\)
\[
p\left(A, H_{i}\right)=P\left(A \mid H_{i}\right) P\left(H_{i}\right)
\]

\section*{Bayes Law of Total Probability}

Therefore for an event \(H_{i}\)
\[
p\left(A, H_{i}\right)=P\left(A \mid H_{i}\right) P\left(H_{i}\right)
\]

Then
\[
P\left(H_{i} \mid A\right)=\frac{p\left(A, H_{i}\right)}{P(A)}
\]

\section*{Thus}

We have that
\[
P\left(H_{i} \mid A\right)=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P(A)}
\]

\section*{Thus}

\section*{We have that}
\[
P\left(H_{i} \mid A\right)=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P(A)}
\]

\section*{Finally}
\[
P\left(H_{i} \mid A\right)=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P\left(A \mid H_{1}\right) P\left(H_{1}\right)+\cdots+P\left(A \mid H_{n}\right) P\left(H_{n}\right)}
\]

\section*{Another Interpretation}

\section*{One Version}
\[
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\]

\section*{Another Interpretation}

\section*{One Version}
\[
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\]

\section*{Where}
- \(P(A)\) is the prior probability or marginal probability of \(A\).
- It is "prior" in the sense that it does not take into account any information about \(B\).

\section*{Another Interpretation}

\section*{One Version}
\[
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\]

\section*{Where}
- \(P(A)\) is the prior probability or marginal probability of \(A\).
- It is "prior" in the sense that it does not take into account any information about \(B\).
- \(P(A \mid B)\) is the conditional probability of A , given B .
- It is also called the posterior probability because it is derived from or depends upon the specified value of \(B\).

\section*{Another Interpretation}

\section*{One Version}
\[
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\]

\section*{Where}
- \(P(A)\) is the prior probability or marginal probability of \(A\).
- It is "prior" in the sense that it does not take into account any information about \(B\).
- \(P(A \mid B)\) is the conditional probability of A , given B .
- It is also called the posterior probability because it is derived from or depends upon the specified value of \(B\).
- \(P(B \mid A)\) is the conditional probability of B given A .
- It is also called the likelihood.

\section*{Another Interpretation}

\section*{One Version}
\[
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\]

\section*{Where}
- \(P(A)\) is the prior probability or marginal probability of \(A\).
- It is "prior" in the sense that it does not take into account any information about \(B\).
- \(P(A \mid B)\) is the conditional probability of A , given B .
- It is also called the posterior probability because it is derived from or depends upon the specified value of \(B\).
- \(P(B \mid A)\) is the conditional probability of B given A .
- It is also called the likelihood.
- \(P(B)\) is the prior or marginal probability of B , and acts as a normalizing constant.

\section*{Example}

\section*{Setup}

Throw two unbiased dice independently.

\section*{Example}

\section*{Setup}

Throw two unbiased dice independently.
(1) \(A=\{\) sum of the faces \(=8\}\)
(2) \(B=\{\) faces are equal \(\}\)

\section*{Example}

\section*{Setup}

Throw two unbiased dice independently.

Let
(1) \(A=\{\) sum of the faces \(=8\}\)
(2) \(B=\{\) faces are equal \(\}\)

\section*{Then calculate \(P(B \mid A)\)}

Look at the board

\section*{Another Example}

\section*{We have the following}

Two coins are available, one unbiased and the other two headed

\section*{Another Example}

\section*{We have the following}

Two coins are available, one unbiased and the other two headed

\section*{Assume}

That you have a probability of \(\frac{3}{4}\) to choose the unbiased

\section*{Another Example}

\section*{We have the following}

Two coins are available, one unbiased and the other two headed

\section*{Assume}

That you have a probability of \(\frac{3}{4}\) to choose the unbiased

\section*{Events}
- \(A=\{\) head comes up \(\}\)
- \(B_{1}=\{\) Unbiased coin chosen \(\}\)

\section*{Another Example}

\section*{We have the following}

Two coins are available, one unbiased and the other two headed

\section*{Assume}

That you have a probability of \(\frac{3}{4}\) to choose the unbiased

\section*{Events}
- \(A=\{\) head comes up \(\}\)
- \(B_{1}=\{\) Unbiased coin chosen\}
- \(B_{2}=\{\) Biased coin chosen \(\}\)

\section*{Another Example}

\section*{We have the following}

Two coins are available, one unbiased and the other two headed

\section*{Assume}

That you have a probability of \(\frac{3}{4}\) to choose the unbiased

\section*{Events}
- \(A=\{\) head comes up \(\}\)
- \(B_{1}=\{\) Unbiased coin chosen\}
- \(B_{2}=\{\) Biased coin chosen \(\}\)
- Find that if a head come up, find the probability that the two headed coin was chosen

\section*{Outline}

\section*{1 Basic Theory}
- Intuitive Formulation
- Famous ExamplesAxioms
(1)

Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance

三
- Definition of Variance

\section*{Universal Hashing}

\section*{Example}

\section*{Definition of Universal Hash Functions}

\section*{Definition}

Let \(H=\{h: U \rightarrow\{0,1, \ldots, m-1\}\}\) be a family of hash functions. \(H\) is called a universal family if
\[
\begin{equation*}
\forall x, y \in U, x \neq y: \underset{h \in H}{\operatorname{Pr}}(h(x)=h(y)) \leq \frac{1}{m} \tag{4}
\end{equation*}
\]

\section*{Definition of Universal Hash Functions}

\section*{Definition}

Let \(H=\{h: U \rightarrow\{0,1, \ldots, m-1\}\}\) be a family of hash functions. \(H\) is called a universal family if
\[
\begin{equation*}
\forall x, y \in U, x \neq y: \underset{h \in H}{\operatorname{Pr}}(h(x)=h(y)) \leq \frac{1}{m} \tag{4}
\end{equation*}
\]

\section*{Main result}

With universal hashing the chance of collision between distinct keys \(k\) and \(l\) is no more than the \(\frac{1}{m}\) chance of collision if locations \(h(k)\) and \(h(l)\) were randomly and independently chosen from the set \(\{0,1, \ldots, m-1\}\).

\section*{Example of key distribution}

\section*{Example, mean \(=488.5\) and dispersion \(=5\)}

\section*{Example with 10 keys}

\section*{Universal Hashing Vs Division Method}

\section*{Example with 50 keys}

\section*{Universal Hashing Vs Division Method}

\section*{Example with 100 keys}

\section*{Universal Hashing Vs Division Method}

\section*{Example with 200 keys}

\section*{Universal Hashing Vs Division Method}

\section*{Outline}

Basic Theory
－Intuitive Formulation
－Famous ExamplesAxioms
－Using Set Operations
－Example
－Finite and Infinite Space
－Counting，Frequentist Approach
－Independence
－Repeated Trials
－Cartesian Products
－Unconditional and Conditional Probability
－Conditional Probability
－Independence
－Law of Total Probability
－Bayes Theorem
－Application in Universal Hashing

\section*{（2）Random Variables}
－Introduction
－Formal Defintion
－Probability of a Random Variable
－Types of Random Variables
－Distribution Functions
－Function of Random Variables
－Some Properties of the Distribution Functions
－Relations Between Join and Individual Densities
（3）Expected Value
－Introduction
－Definition
－Properties
－Minimizing Distances
－Variance
－Definition of Variance

\section*{Random Variables}

\section*{In many experiments,}

It is easier to deal with a summary variable than with the original probability structure.

\section*{Example}

\title{
In an opinion poll, we ask 50 people whether agree or disagree with a certain issue \\ - Suppose we record a " 1 " for agree and " 0 " for disagree.
}

\section*{Example}

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue
- Suppose we record a " 1 " for agree and " 0 " for disagree.

The sample space for this experiment has \(2^{50}\) elements
- Why?

\section*{Example}

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue
- Suppose we record a " 1 " for agree and " 0 " for disagree.

The sample space for this experiment has \(2^{50}\) elements
- Why?

Suppose we are only interested in the number of people who agree
- Define the variable \(X=\) number of " 1 " 's recorded out of 50 .
- Easier to deal with this sample space (has only 51 elements).

\section*{Thus}

It is necessary to define a function "random variable as follow"
\[
X: S \rightarrow \mathbb{R}
\]

\section*{Thus}

It is necessary to define a function "random variable as follow"
\[
X: S \rightarrow \mathbb{R}
\]

\section*{Graphically}

\section*{Definition}

\section*{How?}

What is the probability function of the random variable is being defined from the probability function of the original sample space?

\section*{Definition}

\section*{How?}

What is the probability function of the random variable is being defined from the probability function of the original sample space?

\section*{For this}
- Suppose the sample space is \(S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}\)

\section*{Definition}

\section*{How?}

What is the probability function of the random variable is being defined from the probability function of the original sample space?

\section*{For this}
- Suppose the sample space is \(S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}\)

\section*{Now}
- Suppose the range of the random variable \(X=<x_{1}, x_{2}, \ldots, x_{m}>\)

\section*{Then}

\section*{We have that}
- We observe \(X=x_{i}\) if and only if the outcome of the random experiment is an \(s \in S\) s.t. \(X(s)=x_{j}\)

\section*{Then}

\section*{We have that}
- We observe \(X=x_{i}\) if and only if the outcome of the random experiment is an \(s \in S\) s.t. \(X(s)=x_{j}\)
\[
P\left(X=x_{j}\right)=P\left(s \in S \mid X(s)=x_{j}\right)
\]

\section*{Therefore}

If the events in \(S\) are disjoint
\[
P\left(X=x_{j}\right)=\sum_{s \in S} P\left(s \mid X(s)=x_{j}\right)
\]

\section*{Therefore}

\section*{If the events in \(S\) are disjoint}
\[
P\left(X=x_{j}\right)=\sum_{s \in S} P\left(s \mid X(s)=x_{j}\right)
\]

Therefore if we can decompose \(S\)
We can easily see the relationship between Random Variables and The Events in \(S\)

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

\section*{(2) Random Variables}
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance

三
- Definition of Variance

\section*{We have}

\section*{Definition}
- A Random Variable \(X\) is a process of assigning a number \(X(A)\) to every outcome \(A\).

\section*{We have}

\section*{Definition}
- A Random Variable \(X\) is a process of assigning a number \(X(A)\) to every outcome \(A\).

The resulting function must satisfy the the following two conditions
(1) The set \(\{X \leq x\}\) is an event for every \(x \in \mathbb{R}\).
(2) The probability of the events \(\{X=\infty\}\) and \(X=-\infty\) equal zero:
\[
P\{X=\infty\}=0 P\{X=-\infty\}=0
\]

\section*{Example}

\section*{Setup}

Throw a coin 10 times, and let \(R\) be the number of heads.

\section*{Example}

\section*{Setup}

Throw a coin 10 times, and let \(R\) be the number of heads.
```

Then
$S=$ all sequences of length 10 with components H and T

```

\section*{Example}

\section*{Setup}

Throw a coin 10 times, and let \(R\) be the number of heads.

\section*{Then}
\(S=\) all sequences of length 10 with components H and T
```

We have for
\omega=HHHHTTHTTH }=>R(\omega)=

```

\section*{Example}

\section*{Setup}

Let \(R\) be the number of heads in two independent tosses of a coin.
- Probability of head is . 6

\section*{Example}

\section*{Setup}

Let \(R\) be the number of heads in two independent tosses of a coin.
- Probability of head is 6

What are the probabilities?
\(\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}\)

\section*{Example}

\section*{Setup}

Let \(R\) be the number of heads in two independent tosses of a coin.
- Probability of head is 6

\section*{What are the probabilities?}
\(\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}\)
Thus, we can calculate
\(P(R=0), P(R=1), P(R=2)\)

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
-
Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

\section*{(2) Random Variables}
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables

O Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

三

\section*{Note}

\title{
If we are interested in a random variable \(X\) \\ We want to know its probabilities
}

\section*{Note}

If we are interested in a random variable \(X\)
We want to know its probabilities

\section*{Basically}

Measurement of such variables leads to measurements as
\[
a \leq X \leq b
\]

\section*{Note}

If we are interested in a random variable \(X\)
We want to know its probabilities

\section*{Basically}

Measurement of such variables leads to measurements as
\[
a \leq X \leq b
\]

Therefore, we are looking at the following probabilities
\[
P(s \mid a \leq X(s) \leq b)
\]

\section*{Then}

\section*{Definition}
- The distribution of a Random Variable \(X\) is the function
\[
F_{X}(x)=P\{X \leq x\}
\]
- Defined for all \(x \in \mathbb{R}\)

\section*{Example}

\section*{For example, if a coin is tossed independently \(n\) times} With:
(1) Probability \(p\) of coming heads on a given toss.
(2) And \(X\) is the number of heads

\section*{Example}

\section*{For example, if a coin is tossed independently \(n\) times}

With:
(1) Probability \(p\) of coming heads on a given toss.
(2) And \(X\) is the number of heads

We have that
\[
P(a \leq X(s) \leq b)=\sum_{k=1}^{b}\binom{n}{k} p^{k}(1-p)^{n-k}
\]

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

\section*{(2) Random Variables}
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

三

\section*{We have Two Types of Random Variables}

\section*{Definition}

The Random Variable \(X\) is said to be discrete if and only if the set of possible values of \(X\) is finite or countably infinite.

\section*{We have Two Types of Random Variables}

\section*{Definition}

The Random Variable \(X\) is said to be discrete if and only if the set of possible values of \(X\) is finite or countably infinite.

\section*{Then}

If \(x_{1}, x_{2}, \ldots\) are the values of \(X\) that belong to the range \(R\) of it,
\[
P\left(X=x_{1}, X=x_{2}, \ldots\right)=\sum_{x \in R} p_{X}(x)
\]

\section*{In the case of Continuous Random Variables}

Definition
A continuous random variable can assume a continuous range of values.

\section*{In the case of Continuous Random Variables}

\section*{Definition}

A continuous random variable can assume a continuous range of values.
However, we would use something more formal for this
Using integrals.

\section*{Examples}

Random variable \(X\) has uniform \(U(a, b)\) distribution if its density is given by
\[
f(x \mid a, b)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { else }\end{cases}
\]

\section*{Examples}

Random variable \(X\) has uniform \(U(a, b)\) distribution if its density is given by
\[
f(x \mid a, b)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { else }\end{cases}
\]

\section*{For Example}

\section*{Example}

\section*{Bernoulli Distribution}

Random variable \(X\) has Bernoulli \(\operatorname{Ber}(p)\) distribution with parameter \(0 \leq p \leq 1\)

\section*{Example}

\section*{Bernoulli Distribution}

Random variable \(X\) has Bernoulli \(\operatorname{Ber}(p)\) distribution with parameter \(0 \leq p \leq 1\)
if its probability mass function is given by
\[
f(x \mid p)=p^{x}(1-p)^{1-x}, x \in\{0,1\}
\]

\section*{Example}

\section*{Bernoulli Distribution}

Random variable \(X\) has Bernoulli \(\operatorname{Ber}(p)\) distribution with parameter \(0 \leq p \leq 1\)
if its probability mass function is given by
\[
f(x \mid p)=p^{x}(1-p)^{1-x}, x \in\{0,1\}
\]

\section*{What is the structure of the distribution}

Any idea?

\section*{Basic Properties}

\section*{As you can imagine}

They need to follow the rules of a probability.

\section*{Basic Properties}

\section*{As you can imagine}

They need to follow the rules of a probability.
The Probability sums to one
For the PMF and PDF

\section*{Basic Properties}

\section*{As you can imagine}

They need to follow the rules of a probability.

\section*{The Probability sums to one}

For the PMF and PDF
- \(\sum_{x} f(x)=1\)

\section*{Basic Properties}

\section*{As you can imagine}

They need to follow the rules of a probability.

\section*{The Probability sums to one}

For the PMF and PDF
- \(\sum_{x} f(x)=1\)
- \(\int_{-\infty}^{\infty} f(x) d x=1\)

\section*{The Probability}

\section*{It can be "easily" calculated}
- One of my ironies.

\section*{The Probability}

\section*{It can be "easily" calculated}
- One of my ironies.

PMF
\[
F_{X}(a<X<b)=\sum_{k=a}^{b} f_{X}(k)
\]

\section*{The Probability}

It can be "easily" calculated
- One of my ironies.

PMF
\[
F_{X}(a<X<b)=\sum_{k=a}^{b} f_{X}(k)
\]

\section*{PDF}
\[
F_{X}(a<X<b)=\int_{a}^{b} f_{X}(t) d t
\]

\section*{In the Continuous Case}

\section*{We have}
\[
F_{X}(a<X<b)=F_{X}(b)-F_{X}(a)
\]

\section*{In the Continuous Case}

\section*{We have}
\[
F_{X}(a<X<b)=F_{X}(b)-F_{X}(a)
\]

\section*{Additionally, we have that for a single point}
\[
F_{X}(a<X<a)=F_{X}(a)-F_{X}(a)=0
\]

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

\section*{(2) Random Variables}
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

三

\section*{Now}

\section*{We have some basic ideas about the descriptions of the Random Variables}

We need to be more formal to connect our basic intuitions on continuous spaces.

\section*{Now}

\section*{We have some basic ideas about the descriptions of the Random Variables}

We need to be more formal to connect our basic intuitions on continuous spaces.

\section*{Theorem}
- Let \(f\) be a nonnegative real-valued function on \(\mathbb{R}\) with \(\int_{-\infty}^{\infty} f(x) d x=1\).

\section*{Now}

\section*{We have some basic ideas about the descriptions of the Random Variables}

We need to be more formal to connect our basic intuitions on continuous spaces.

\section*{Theorem}
- Let \(f\) be a nonnegative real-valued function on \(\mathbb{R}\) with \(\int_{-\infty}^{\infty} f(x) d x=1\).
- There is a unique probability measure \(P\) defined in the Borel Subsets of \(\mathbb{R}\).

\section*{Now}

\section*{We have some basic ideas about the descriptions of the Random Variables}

We need to be more formal to connect our basic intuitions on continuous spaces.

\section*{Theorem}
- Let \(f\) be a nonnegative real-valued function on \(\mathbb{R}\) with \(\int_{-\infty}^{\infty} f(x) d x=1\).
- There is a unique probability measure \(P\) defined in the Borel Subsets of \(\mathbb{R}\).
- Such That
\[
P(B)=\int_{B} f(x) d x
\]

\section*{Now}

\section*{We have some basic ideas about the descriptions of the Random Variables}

We need to be more formal to connect our basic intuitions on continuous spaces.

\section*{Theorem}
- Let \(f\) be a nonnegative real-valued function on \(\mathbb{R}\) with \(\int_{-\infty}^{\infty} f(x) d x=1\).
- There is a unique probability measure \(P\) defined in the Borel Subsets of \(\mathbb{R}\).
- Such That
\[
P(B)=\int_{B} f(x) d x
\]

For all intervals \(B=(a, b]\)

\section*{Therefore}

\section*{Definition}

The random variable \(X\) is said to be absolutely continuous if and only if there is a non-negative function \(f=f_{X}\) defined over \(\mathbb{R}\) such that
\[
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
\]

\section*{Therefore}

\section*{Definition}

The random variable \(X\) is said to be absolutely continuous if and only if there is a non-negative function \(f=f_{X}\) defined over \(\mathbb{R}\) such that
\[
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
\]

\section*{Here}
\(f_{X}\) is called the Density function of \(X\) and \(F_{X}\) is called a Cumulative Density Function (CDF).

\section*{Graphically}

\section*{Example uniform distribution}

\section*{Properties}

\section*{CDF's Properties \\ - \(F_{X}(x) \geq 0\)}

\section*{Properties}

\section*{CDF's Properties}
- \(F_{X}(x) \geq 0\)
- \(F_{X}(x)\) in a non-decreasing function of \(X\).

\section*{Properties}

\section*{CDF's Properties}
- \(F_{X}(x) \geq 0\)
- \(F_{X}(x)\) in a non-decreasing function of \(X\).

\section*{Example}
- If \(X\) is discrete, its CDF can be computed as follows:
\[
F_{X}(x)=P(f(X) \leq x)=\sum_{k=1}^{N} P\left(X_{k}=p_{k}\right)
\]

\section*{Example on Discrete Function}

\section*{Derivative of Cumulative Densitiy Function}

\section*{Continuous Function}

If \(X\) is continuous, its CDF can be computed as follows:
\[
F(x)=\int_{-\infty}^{x} f(t) d t
\]

\section*{Derivative of Cumulative Densitiy Function}

\section*{Continuous Function}

If \(X\) is continuous, its CDF can be computed as follows:
\[
F(x)=\int_{-\infty}^{x} f(t) d t
\]

\section*{Remark}

Based in the fundamental theorem of calculus, we have the following equality.
\[
f(x)=\frac{d F}{d x}(x)
\]

\section*{Derivative of Cumulative Densitiy Function}

\section*{Continuous Function}

If \(X\) is continuous, its CDF can be computed as follows:
\[
F(x)=\int_{-\infty}^{x} f(t) d t
\]

\section*{Remark}

Based in the fundamental theorem of calculus, we have the following equality.
\[
f(x)=\frac{d F}{d x}(x)
\]

\section*{Note}

This particular \(p(x)\) is known as the Probability Distribution Function (PDF).

\section*{Some Basic Properties of These Densities}

\section*{Conditional PMF/PDF}

We have the conditional pdf:
\[
p(y \mid x)=\frac{p(x, y)}{p(x)}
\]

From this, we have the general chain rule
\[
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) p\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \ldots p\left(x_{n}\right)
\]

\section*{Some Basic Properties of These Densities}

\section*{Conditional PMF/PDF}

We have the conditional pdf:
\[
p(y \mid x)=\frac{p(x, y)}{p(x)}
\]

From this, we have the general chain rule
\[
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) p\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \ldots p\left(x_{n}\right)
\]

\section*{Independence}

If \(X\) and \(Y\) are independent, then:
\[
p(x, y)=p(x) p(y)
\]

\section*{Also the Law of Total Probability}

Law of Total Probability is still working correctly
\[
p(y)=\sum_{x} p(y \mid x) p(x) .
\]

\section*{Outline}

Basic Theory
－Intuitive Formulation
－Famous ExamplesAxioms
－Using Set Operations
－Example
－Finite and Infinite Space
－Counting，Frequentist Approach
－Independence
－Repeated Trials
－Cartesian Products
－Unconditional and Conditional Probability
－Conditional Probability
－Independence
－Law of Total Probability
－Bayes Theorem
－Application in Universal Hashing

\section*{（2）Random Variables}
－Introduction
－Formal Defintion
－Probability of a Random Variable
－Types of Random Variables
－Distribution Functions
－Function of Random Variables
－Some Properties of the Distribution Functions
－Relations Between Join and Individual Densities
（3）Expected Value
－Introduction
－Definition
－Properties
－Minimizing Distances
－Variance
－Definition of Variance
三 \(\quad\) のヘ

\section*{We have a common problem}

\section*{Given a function \(g\) \\ Describing a specific phenomena.}

\section*{We have a common problem}

\section*{Given a function \(g\)}

Describing a specific phenomena.
We can have a stochastic input
For example a Random Variable \(X_{1}\)

\section*{We have a common problem}

\section*{Given a function \(g\)}

Describing a specific phenomena.
We can have a stochastic input
For example a Random Variable \(X_{1}\)

Then, we have another random variable
\[
X_{2}=g\left(X_{1}\right)
\]

\section*{Example}

Let \(X_{1}\) a random variable such that \(X_{2}=X_{1}^{2}\)
What is the density function of \(X_{2}\) ?

\section*{Example}

\section*{Let \(X_{1}\) a random variable such that \(X_{2}=X_{1}^{2}\)}

What is the density function of \(X_{2}\) ?

\section*{For this, we need to express the event \(\left\{X_{2} \leq y\right\}\)}

In terms of the random variable \(X_{1}\)

\section*{Example}

Let \(X_{1}\) a random variable such that \(X_{2}=X_{1}^{2}\)
What is the density function of \(X_{2}\) ?

For this, we need to express the event \(\left\{X_{2} \leq y\right\}\)
In terms of the random variable \(X_{1}\)

\section*{First \(X_{2} \geq 0\)}

Thus, we have that for \(y<0\)
\[
F_{2}(y)=F\left(X_{2} \leq y\right)=0
\]

\section*{Then}

> if \(y \geq 0\) then \(R_{2} \leq y\)
> If and only if \(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\)

\section*{Then}
if \(y \geq 0\) then \(R_{2} \leq y\)
If and only if \(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\)
Then
\[
F\left(X_{2} \leq y\right)=F\left(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\right)=\int_{-\sqrt{y}}^{\sqrt{y}} f_{1}(x) d x
\]

Then
if \(y \geq 0\) then \(R_{2} \leq y\)
If and only if \(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\)
Then
\[
F\left(X_{2} \leq y\right)=F\left(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\right)=\int_{-\sqrt{y}}^{\sqrt{y}} f_{1}(x) d x
\]

If
\[
f_{1}(x)= \begin{cases}0 & \text { if } x<-1 \\ \frac{1}{2} & \text { if }-1 \leq x<0 \\ \frac{1}{2} \exp \{-x\} & \text { if } 0 \leq x\end{cases}
\]

\section*{We have then}

\section*{if \(0 \leq y \leq 1\)}
\[
F_{2}(y)=\int_{-\sqrt{y}}^{\sqrt{y}} f_{1}(x) d x
\]

\section*{We have then}

\section*{if \(0 \leq y \leq 1\)}
\[
\begin{aligned}
F_{2}(y) & =\int_{-\sqrt{y}}^{\sqrt{y}} f_{1}(x) d x \\
& =\int_{-\sqrt{y}}^{0} \frac{1}{2} d x+\int_{0}^{\sqrt{y}} \frac{1}{2} \exp \{-x\} d x
\end{aligned}
\]

\section*{We have then}
if \(0 \leq y \leq 1\)
\[
\begin{aligned}
F_{2}(y) & =\int_{-\sqrt{y}}^{\sqrt{y}} f_{1}(x) d x \\
& =\int_{-\sqrt{y}}^{0} \frac{1}{2} d x+\int_{0}^{\sqrt{y}} \frac{1}{2} \exp \{-x\} d x \\
& =\frac{1}{2} \sqrt{y}+\frac{1}{2}(1-\exp \{-\sqrt{y}\})
\end{aligned}
\]

\section*{If \(y>1\)}

What is \(F_{2}(y)\) ?

\section*{Finally}

For \(y<0\)
\[
f_{2}(y)=\frac{d F_{2}(y)}{d y}=0
\]

\section*{Finally}

\section*{For \(y<0\)}
\[
f_{2}(y)=\frac{d F_{2}(y)}{d y}=0
\]

For \(0<y<1\)
\[
f_{2}(y)=\frac{d F_{2}(y)}{d y}=\frac{1}{4 \sqrt{y}}(1+\exp \{-\sqrt{y}\})
\]

\section*{Finally}

\section*{For \(y<0\)}
\[
f_{2}(y)=\frac{d F_{2}(y)}{d y}=0
\]

For \(0<y<1\)
\[
f_{2}(y)=\frac{d F_{2}(y)}{d y}=\frac{1}{4 \sqrt{y}}(1+\exp \{-\sqrt{y}\})
\]

For \(y>1\)
\[
f_{2}(y)=\frac{d F_{2}(y)}{d y}=\frac{1}{4 \sqrt{y}} \exp \{-\sqrt{y}\}
\]

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
-
Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

\section*{(2) Random Variables}
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

三

\section*{The Situation Becomes Interesting}

When you take into account two or more variables
Here, we have two random variables that are defined by a density function:
\[
f_{X, Y}(x, y)
\]

\section*{The Situation Becomes Interesting}

\section*{When you take into account two or more variables}

Here, we have two random variables that are defined by a density function:
\[
f_{X, Y}(x, y)
\]

\section*{Therefore}

We need to understand how these random variables interact.

\section*{Joint Distributions}

\section*{Suppose we have a non-negative function real-valued function \(f\) in \(\mathbb{R}^{2}\)}
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
\]

\section*{Joint Distributions}

Suppose we have a non-negative function real-valued function \(f\) in \(\mathbb{R}^{2}\)
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
\]

\section*{Now, if we define}
\(X_{1}(x, y)\) and \(X_{2}(x, y)\), then
\[
P\left(\left(X_{1}, X_{2}\right) \in B\right)=P(B)=\iint_{B} f(x, y) d x d y
\]

\section*{Therefore}

The Joint Distribution Function is defined as
\[
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v
\]

\section*{Example}

\section*{Let}
\[
f(x, y)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0 & \text { elsewhere }\end{cases}
\]

\section*{Example}

\section*{Let}
\[
f(x, y)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0 & \text { elsewhere }\end{cases}
\]

\section*{It looks like}

The Unit Square in \(\mathbb{R}^{2}\)

\section*{Then}

\section*{Assume the following random variables \\ \(X_{1}(x, y)=x\) and \(X_{1}(x, y)=y\).}

\section*{Then}

\section*{Assume the following random variables}
\(X_{1}(x, y)=x\) and \(X_{1}(x, y)=y\).
Why don't we calculate the following probability? For
\[
\frac{1}{2} \leq X_{1}+X_{2} \leq \frac{3}{2}
\]

\section*{Then}

\section*{Assume the following random variables}
\(X_{1}(x, y)=x\) and \(X_{1}(x, y)=y\).
Why don't we calculate the following probability? For
\[
\frac{1}{2} \leq X_{1}+X_{2} \leq \frac{3}{2}
\]

Therefore
\[
\frac{1}{2} \leq x+y \leq \frac{3}{2}
\]

\section*{Look}

We have the following
\[
P\left\{\frac{1}{2} \leq x+y \leq \frac{3}{2}\right\}=\iint_{B} 1 d x d y
\]

\section*{Look}

We have the following
\[
P\left\{\frac{1}{2} \leq x+y \leq \frac{3}{2}\right\}=\iint_{B} 1 d x d y
\]

\section*{What is \(B\) ?}

We can draw it!!!

\section*{Look}

We have the following
\[
P\left\{\frac{1}{2} \leq x+y \leq \frac{3}{2}\right\}=\iint_{B} 1 d x d y
\]

\section*{What is \(B\) ?}

We can draw it!!!
Therefore
\[
P\left\{\frac{1}{2} \leq x+y \leq \frac{3}{2}\right\}=1-2\left(\frac{1}{8}\right)
\]

\section*{Outline}

Basic Theory
-
Intuitive Formulation
- Famous ExamplesAxioms
-
Using Set Operations
- ExampleFinite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials

Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

\section*{(2) Random Variables}
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions - Relations Between Join and Individual Densities
(3) Expected ValueIntroduction
-
Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

\section*{If we have a Joint Distribution}

\section*{Can we get the Individual Distributions?}

Actually, we have that we can integrate one of the variables.

\section*{If we have a Joint Distribution}

\section*{Can we get the Individual Distributions?}

Actually, we have that we can integrate one of the variables.

\section*{For Example}

What if we have the following age-weight distributions
\begin{tabular}{|c|c|c|c|}
\hline\(X_{1}=\) Weight & & & \\
\hline \hline \(170-160\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \\
\hline \(160-150\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \\
\hline & \(20-25\) & \(25-30\) & \(X_{2}=\) Age \\
\hline
\end{tabular}

Therefore

The Joint Distribution for two discrete variables
\[
f(x, y)=F\left(X_{1}=x, X_{2}=y\right)
\]

Therefore

The Joint Distribution for two discrete variables
\[
f(x, y)=F\left(X_{1}=x, X_{2}=y\right)
\]

Then
\[
\left\{X_{1}=x\right\}=\left\{X_{1}=x, X_{2}=y_{1}\right\} \cup\left\{X_{1}=x, X_{2}=y_{2}\right\} \cup \ldots
\]

Therefore

The Joint Distribution for two discrete variables
\[
f(x, y)=F\left(X_{1}=x, X_{2}=y\right)
\]

Then
\[
\left\{X_{1}=x\right\}=\left\{X_{1}=x, X_{2}=y_{1}\right\} \cup\left\{X_{1}=x, X_{2}=y_{2}\right\} \cup \ldots
\]

\section*{Remember}

The events are independent!!!

\section*{Therefore}

\section*{We have the marginal distribution for \(X_{1}\)}
\[
f_{1}(x)=F\left(X_{1}=x\right)=\sum_{y} f(x, y)
\]

\section*{Therefore}

We have the marginal distribution for \(X_{1}\)
\[
f_{1}(x)=F\left(X_{1}=x\right)=\sum_{y} f(x, y)
\]

\section*{Similarly}
\[
f_{2}(y)=F\left(X_{2}=y\right)=\sum_{x} f(x, y)
\]

\section*{Therefore}

We have
\[
F\left(x_{0} \leq X_{1} \leq x_{0}+d x_{0}\right) \approx f_{1}\left(x_{0}\right) d x_{0}
\]

\section*{Therefore}

\section*{We have}
\[
F\left(x_{0} \leq X_{1} \leq x_{0}+d x_{0}\right) \approx f_{1}\left(x_{0}\right) d x_{0}
\]

\section*{Basically}

\section*{Then}

\section*{We have}
\[
\begin{aligned}
F\left(x_{0} \leq X_{1} \leq x_{0}+d x_{0}\right) & =F\left(x_{0} \leq X_{1} \leq x_{0}+d x_{0},-\infty<X_{2}<\infty\right) \\
& =\int_{x_{0}}^{x_{0}+d x_{0}} d x \int_{-\infty}^{\infty} f(x, y) d y \\
& \approx d x_{0} \int_{-\infty}^{\infty} f(x, y) d y
\end{aligned}
\]

\section*{Therefore}

\section*{We have if \(f(x, y)\) is well behaved}
\[
f_{1}\left(x_{0}\right) d x_{0} \approx d x_{0} \int_{-\infty}^{\infty} f\left(x_{0}, y\right) d y
\]

\section*{Therefore}

\section*{We have if \(f(x, y)\) is well behaved}
\[
f_{1}\left(x_{0}\right) d x_{0} \approx d x_{0} \int_{-\infty}^{\infty} f\left(x_{0}, y\right) d y
\]

Then
\[
f_{1}\left(x_{0}\right) \approx \int_{-\infty}^{\infty} f\left(x_{0}, y\right) d y
\]

\section*{In this way}

We have
\[
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y
\]

\section*{In this way}

We have
\[
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y
\]

Also
\[
f_{2}(y)=\int_{-\infty}^{\infty} f(x, y) d x
\]

\section*{Example}

Given
\[
f(x, y)= \begin{cases}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
\]

\section*{Example}

Given
\[
f(x, y)= \begin{cases}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
\]

Then for \(0 \leq x \leq 1\)
\[
f_{1}(x)=\int_{0}^{x} 8 x y d y=4 x^{3}
\]

\section*{Example}

\section*{Given}
\[
f(x, y)= \begin{cases}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
\]

Then for \(0 \leq x \leq 1\)
\[
f_{1}(x)=\int_{0}^{x} 8 x y d y=4 x^{3}
\]

\section*{If \(y<0\) or \(y>1\)}
\[
f_{2}(y)=0
\]

Therefore

We have for \(0 \leq y \leq 1\)
\[
f_{2}(y)=\int_{y}^{1} 8 x y d x=4 y\left(1-y^{2}\right)
\]

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- U

Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions - Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance三
- Definition of Varlance

\section*{Expectation}

\section*{Imagine the following situation}

You have the random variables \(R_{1}, R_{2}\) representing how long is a call and how much you pay for an international call

\section*{Expectation}

\section*{Imagine the following situation}

You have the random variables \(R_{1}, R_{2}\) representing how long is a call and how much you pay for an international call
\[
\begin{aligned}
& \text { if } 0 \leq R_{1} \leq 3 \text { (minute) } R_{2}=10(\text { cents }) \\
& \text { if } 3<R_{1} \leq 6\left(\text { minute) } R_{2}=20(\text { cents })\right. \\
& \text { if } 6<R_{1} \leq 9 \text { (minute) } R_{2}=30(\text { cents })
\end{aligned}
\]

We have then the probabilities
\[
P\left\{R_{2}=10\right\}=0.6, P\left\{R_{2}=20\right\}=0.25, P\left\{R_{2}=10\right\}=0.15
\]

\section*{Then}

We have then the probabilities
\[
P\left\{R_{2}=10\right\}=0.6, P\left\{R_{2}=20\right\}=0.25, P\left\{R_{2}=10\right\}=0.15
\]

If we observe \(N\) calls and \(N\) is very large
We can say that we have \(N \times 0.6\) calls and \(10 \times N \times 0.6\) the cost of those calls

\section*{Expectation}

\section*{Similarly}
- \(\left\{R_{2}=20\right\} \Longrightarrow 0.25 \mathrm{~N}\) and total cost 5 N

\section*{Expectation}

\section*{Similarly}
- \(\left\{R_{2}=20\right\} \Longrightarrow 0.25 \mathrm{~N}\) and total cost 5 N
- \(\left\{R_{2}=20\right\} \Longrightarrow 0.15 \mathrm{~N}\) and total cost 4.5 N

\section*{Expectation}

\section*{Similarly}
- \(\left\{R_{2}=20\right\} \Longrightarrow 0.25 \mathrm{~N}\) and total cost 5 N
- \(\left\{R_{2}=20\right\} \Longrightarrow 0.15 \mathrm{~N}\) and total cost 4.5 N

We have then the probabilities
The total cost is \(6 N+5 N+4.5 N=15.5 N\) or in average 15.5 cents per call

\section*{Then}

The weighted average
\[
\begin{aligned}
\frac{10(0.6 N)+20(.25 N)+30(0.15 N)}{N} & =10(0.6)+20(.25)+30(0.15) \\
& =\sum_{y} y P\left\{R_{2}=y\right\}
\end{aligned}
\]

\section*{Then}

The weighted average
\[
\begin{aligned}
\frac{10(0.6 N)+20(.25 N)+30(0.15 N)}{N} & =10(0.6)+20(.25)+30(0.15) \\
& =\sum_{y} y P\left\{R_{2}=y\right\}
\end{aligned}
\]

\section*{Then}

The Expected Value is a weighted average!!!

\section*{Then}

\author{
John Cage
}

\author{
Assume
}

Given \(X\) a simple random variable i.e. a discrete random variable with a finite range!

\section*{Then}

John Cage

\section*{Assume}

Given \(X\) a simple random variable i.e. a discrete random variable with a finite range!

We define the expectation of as
\[
E(X)=\sum_{x} x P(X=x)
\]

\section*{Then}

John Cage

\section*{Assume}

Given \(X\) a simple random variable i.e. a discrete random variable with a finite range!

We define the expectation of as
\[
E(X)=\sum_{x} x P(X=x)
\]

Given that you have a simple random variable
The sum is finite and there are not convergence problems.

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions - Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

Now

This expected function can be extended to random functions too
\[
E\left(X_{2}\right)=E\left(g\left(X_{1}\right)\right)=\sum_{x} g(x) f_{X_{1}}(x)
\]

\section*{Now}

\section*{This expected function can be extended to random functions too}
\[
E\left(X_{2}\right)=E\left(g\left(X_{1}\right)\right)=\sum_{x} g(x) f_{X_{1}}(x)
\]

In a similar way, it is possible to define for the continuous random variables
\[
E\left(X_{3}\right)=\int_{-\infty}^{\infty} x f_{x_{3}}(x) d x
\]

\section*{Now}

This expected function can be extended to random functions too
\[
E\left(X_{2}\right)=E\left(g\left(X_{1}\right)\right)=\sum_{x} g(x) f_{X_{1}}(x)
\]

In a similar way, it is possible to define for the continuous random variables
\[
E\left(X_{3}\right)=\int_{-\infty}^{\infty} x f_{x_{3}}(x) d x
\]

\section*{Similarly}
\[
E\left(g\left(X_{3}\right)\right)=\int_{-\infty}^{\infty} g(x) f_{X_{3}}(x) d x
\]

\section*{Example}

\section*{Normal Density Function}
\[
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}
\]

\section*{Example}

\section*{Normal Density Function}
\[
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}
\]

Then
\[
E[X]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x \exp \left\{-\frac{x^{2}}{2}\right\} d x
\]

\section*{Example}

\section*{Normal Density Function}
\[
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}
\]

\section*{Then}
\[
E[X]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x \exp \left\{-\frac{x^{2}}{2}\right\} d x
\]

\section*{Then}
\[
E[X]=-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left\{-\frac{x^{2}}{2}\right\} d\left\{-\frac{x^{2}}{2}\right\}
\]

\section*{Finally}

We have
\[
E[X]=-\left.\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}\right|_{-\infty} ^{\infty}=0
\]

\section*{Example}

\section*{Imagine the following \\ We have the following functions}

\section*{Example}

\section*{Imagine the following}

We have the following functions
(1) \(f(x)=e^{-x}, x \geq 0\)

\section*{Example}

Imagine the following
We have the following functions
(1) \(f(x)=e^{-x}, x \geq 0\)
(2) \(g(x)=0, x<0\)

\section*{Example}

\section*{Imagine the following}

We have the following functions
(1) \(f(x)=e^{-x}, x \geq 0\)
(2) \(g(x)=0, x<0\)

\section*{Find}

The expected Value

\section*{Outline}
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions - Relations Between Join and Individual Densities
(3) Expected Value

O Introduction
- Definition
- Properties
- Minimizing Distances

O Variance
- Definition of Variance

三

\section*{Then}

Given a random variable \(X\), and \(a, b, c\) constants
Then, for any functions \(g_{1}(x)\) and \(g_{2}(x)\) whose expectation exists

\section*{Then}

Given a random variable \(X\), and \(a, b, c\) constants
Then, for any functions \(g_{1}(x)\) and \(g_{2}(x)\) whose expectation exists
(1) \(E\left[a g_{1}(x)+b g_{2}(x)+c\right]=a E\left[g_{1}(x)\right]+b E\left[g_{2}(x)\right]+c\)

\section*{Then}

Given a random variable \(X\), and \(a, b, c\) constants
Then, for any functions \(g_{1}(x)\) and \(g_{2}(x)\) whose expectation exists
(1) \(E\left[a g_{1}(x)+b g_{2}(x)+c\right]=a E\left[g_{1}(x)\right]+b E\left[g_{2}(x)\right]+c\)
(2) If \(g_{1}(x) \geq 0\) for all \(x\), then \(E\left[g_{1}(x)\right] \geq 0\)

\section*{Then}

\section*{Given a random variable \(X\), and \(a, b, c\) constants}

Then, for any functions \(g_{1}(x)\) and \(g_{2}(x)\) whose expectation exists
(1) \(E\left[a g_{1}(x)+b g_{2}(x)+c\right]=a E\left[g_{1}(x)\right]+b E\left[g_{2}(x)\right]+c\)
(2) If \(g_{1}(x) \geq 0\) for all \(x\), then \(E\left[g_{1}(x)\right] \geq 0\)
(3) If \(g_{1}(x) \geq g_{2}(x)\) for all \(x\), then \(E\left[g_{1}(x)\right] \geq E\left[g_{2}(x)\right]\)

\section*{Then}

\section*{Given a random variable \(X\), and \(a, b, c\) constants}

Then, for any functions \(g_{1}(x)\) and \(g_{2}(x)\) whose expectation exists
(1) \(E\left[a g_{1}(x)+b g_{2}(x)+c\right]=a E\left[g_{1}(x)\right]+b E\left[g_{2}(x)\right]+c\)
(2) If \(g_{1}(x) \geq 0\) for all \(x\), then \(E\left[g_{1}(x)\right] \geq 0\)
(3) If \(g_{1}(x) \geq g_{2}(x)\) for all \(x\), then \(E\left[g_{1}(x)\right] \geq E\left[g_{2}(x)\right]\)
(9) If \(a \leq g_{1}(x) \leq b\) for all, then \(a \leq E\left[g_{1}(x)\right] \leq b\)

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition

Properties
- Minimizing Distances
- Vefiance

三
\(159 / 170\)

\section*{Minimizing Distances}

\section*{Observation}

The expected value of a Random Variable has an important property!!!

\section*{Minimizing Distances}

\section*{Observation}

The expected value of a Random Variable has an important property!!!

\section*{One can be seen as}

The interpretation of \(E[X]\) as a good guess for \(X\)

\section*{Minimizing Distances}

\section*{Observation}

The expected value of a Random Variable has an important property!!!

\section*{One can be seen as}

The interpretation of \(E[X]\) as a good guess for \(X\)

\section*{Suppose the following}

We measure the distance between a random variable \(X\) and a constant \(b\) by \((X-b)^{2}\)
- The closer the \(b\) is to \(X\), the smaller the quantity is!!!

\section*{Then}

We can then determine the value of \(b\)
\[
E(X-b)^{2}=E(X-E X+E X-b)^{2}
\]
\[
\begin{aligned}
E(X-b)^{2} & =E(X-E X+E X-b)^{2} \\
& =E((X-E X)+(E X-b))^{2}
\end{aligned}
\]
\[
\begin{aligned}
E(X-b)^{2} & =E(X-E X+E X-b)^{2} \\
& =E((X-E X)+(E X-b))^{2} \\
& =E(X-E X)^{2}+(E X-b)^{2}+\ldots
\end{aligned}
\]

\section*{We can then determine the value of \(b\)}
\[
\begin{aligned}
E(X-b)^{2} & =E(X-E X+E X-b)^{2} \\
& =E((X-E X)+(E X-b))^{2} \\
& =E(X-E X)^{2}+(E X-b)^{2}+\ldots \\
& =2 E((X-E X)(E X-b))
\end{aligned}
\]

\section*{We notice the following}

We have
\[
E((X-E X)(E X-b))=(E X-b) E(X-E X)=0
\]

We notice the following

We have
\[
E((X-E X)(E X-b))=(E X-b) E(X-E X)=0
\]

Then
\[
E(X-b)^{2}=E(X-E X)^{2}+(E X-b)^{2}
\]

We notice the following

We have
\[
E((X-E X)(E X-b))=(E X-b) E(X-E X)=0
\]

Then
\[
E(X-b)^{2}=E(X-E X)^{2}+(E X-b)^{2}
\]

\section*{What if we choose \(b=E X\)}
\[
\min _{b} E(X-b)^{2}=E(X-E X)^{2}
\]

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions - Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance

Definition of Variance

\section*{First, the central moments}

\section*{Definition}

For each integer \(n\), the \(n^{t h}\) moment of \(X, m_{n}\), is
\[
m_{n}=E\left[X^{n}\right]
\]

\section*{First, the central moments}

\section*{Definition}

For each integer \(n\), the \(n^{\text {th }}\) moment of \(X, m_{n}\), is
\[
m_{n}=E\left[X^{n}\right]
\]

The \(n^{\text {th }}\) central moment of \(X\) is
\[
\mu_{n}=E[X-\mu]^{n}
\]

\section*{First, the central moments}

\section*{Definition}

For each integer \(n\), the \(n^{t h}\) moment of \(X, m_{n}\), is
\[
m_{n}=E\left[X^{n}\right]
\]

The \(n^{\text {th }}\) central moment of \(X\) is
\[
\mu_{n}=E[X-\mu]^{n}
\]

\section*{Where}
\[
\mu=\mu_{n}=E X
\]

\section*{Outline}

Basic Theory
- Intuitive Formulation
- Famous ExamplesAxioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
- Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing
(2) Random Variables
- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions - Relations Between Join and Individual Densities
(3) Expected Value
- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

三

\section*{Definition}

The Variance of a Random Variable \(X\) is its second central moment
\[
\operatorname{Var} X=E[X-E X]^{2}
\]

\section*{Then}

\section*{Definition}

The Variance of a Random Variable \(X\) is its second central moment
\[
\operatorname{Var} X=E[X-E X]^{2}
\]

\section*{Then}
- The standard deviation is simply \(\sigma=\sqrt{\operatorname{Var}(X)}\).

\section*{Now}

The variance gives a measure of the degree of spread around its mean
Then, we have two cases

\section*{Now}

The variance gives a measure of the degree of spread around its mean
Then, we have two cases

\author{
A large variance \\ In such case \(X\) is more variable
}

The variance gives a measure of the degree of spread around its mean
Then, we have two cases

\section*{A large variance \\ In such case \(X\) is more variable}

At the extreme
- If \(\operatorname{Var} X=E(X-E X)^{2}=0\), then \(X=E X\) with probability 1 .
- No Variation!!!

\section*{Example}

\section*{Exponential Variance}

Let \(X\) have the exponential \((\lambda)\) distribution.

\section*{Example}

\section*{Exponential Variance}

Let \(X\) have the exponential \((\lambda)\) distribution.

\section*{We know that \(E X=\lambda\)}

\section*{Example}

\section*{Exponential Variance}

Let \(X\) have the exponential \((\lambda)\) distribution.

\section*{We know that \(E X=\lambda\)}
\[
\operatorname{Var} X=E(X-\lambda)^{2}
\]

\section*{Example}

\section*{Exponential Variance}

Let \(X\) have the exponential \((\lambda)\) distribution.

\section*{We know that \(E X=\lambda\)}
\[
\begin{aligned}
\operatorname{Var} X & =E(X-\lambda)^{2} \\
& =\int_{0}^{\infty}(x-\lambda)^{2} \frac{1}{\lambda} \exp \left\{-\frac{x}{\lambda}\right\} d x
\end{aligned}
\]

\section*{Example}

\section*{Exponential Variance}

Let \(X\) have the exponential \((\lambda)\) distribution.

\section*{We know that \(E X=\lambda\)}
\[
\begin{aligned}
\operatorname{Var} X & =E(X-\lambda)^{2} \\
& =\int_{0}^{\infty}(x-\lambda)^{2} \frac{1}{\lambda} \exp \left\{-\frac{x}{\lambda}\right\} d x \\
& =\int_{0}^{\infty}\left(x^{2}-2 x \lambda+\lambda^{2}\right) \frac{1}{\lambda} \exp \left\{-\frac{x}{\lambda}\right\} d x
\end{aligned}
\]

\section*{Further}

We can use integration by parts to find the variance
\[
\int u d v=u v-\int v d u
\]

\section*{Further}

We can use integration by parts to find the variance
\[
\int u d v=u v-\int v d u
\]

\section*{Please, try to calculate it}

Answer: \(\operatorname{Var} X=\lambda^{2}\)

\section*{About the Possible Linearity}

\section*{We have}

If \(X\) is a random variable with finite variance, then for any constants \(a\) and \(b\)
\[
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X
\]

\section*{About the Possible Linearity}

\section*{We have}

If \(X\) is a random variable with finite variance, then for any constants \(a\) and \(b\)
\[
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X
\]

\section*{Alternative formula for the variance}
\[
\operatorname{Var} X=E X^{2}-(E X)^{2}
\]

\section*{About the Possible Linearity}

\section*{We have}

If \(X\) is a random variable with finite variance, then for any constants \(a\) and \(b\)
\[
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X
\]

\section*{Alternative formula for the variance}
\[
\operatorname{Var} X=E X^{2}-(E X)^{2}
\]

\section*{Proof}

At the White Board```

