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Gerolamo Cardano: Gambling out of Darkness

Gambling
Gambling shows our interest in quantifying the ideas of probability for
millennia, but exact mathematical descriptions arose much later.

Gerolamo Cardano (16th century)
While gambling he developed the following rule!!!

Equal conditions
“The most fundamental principle of all in gambling is simply equal
conditions, e.g. of opponents, of bystanders, of money, of situation, of the
dice box and of the dice itself. To the extent to which you depart from
that equity, if it is in your opponent’s favour, you are a fool, and if in your
own, you are unjust.”
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Gerolamo Cardano’s Definition

Probability
“If therefore, someone should say, I want an ace, a deuce, or a trey, you
know that there are 27 favorable throws, and since the circuit is 36, the
rest of the throws in which these points will not turn up will be 9; the
odds will therefore be 3 to 1.”

Meaning
Probability as a ratio of favorable to all possible outcomes!!! As long all
events are equiprobable...

Thus, we get

P (All favourable throws) = Number All favourable throws
Number of All throws (1)
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Intuitive Formulation

Empiric Definition
Intuitively, the probability of an event A could be defined as:

P (A) = lim
n→∞

N(A)
n

Where N(A) is the number that event a happens in n trials.

Example
Imagine you have three dices, then

The total number of outcomes is 63
If we have event A = all numbers are equal, |A| = 6
Then, we have that P (A) = 6

63 = 1
36
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Some Famous Examples

Famous Coin Tosses
Count of Buffon tossed a coin 4040 times. Heads appeared 2048
times.
K. Pearson tossed a coin 12000 times and 24000 times.

I The heads appeared 6019 times and 12012, respectively.

Something Notable
For these three tosses the relative frequencies of heads are 0.5049,
0.5016,and 0.5005.
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Axioms of Probability

Axioms
Given a sample space S of events, we have that

1 0 ≤ P (A) for A ⊆ S
2 P (S) = 1
3 If A1 and A2 are mutually exclusive events (i.e. P (A1 ∩A2) = 0),

then:
P (A1 ∪A2) = P (A1) + P (A2)
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Events as Sets

For example, in a dice experiment

A = {i|with i an even number}

Thus, we have the following set operations
1 A ∪B = {x|x ∈ A or x ∈ B}
2 A ∩B = {x|x ∈ A and x ∈ B}
3 AC = {x|x /∈ A}

12 / 170



Events as Sets

For example, in a dice experiment

A = {i|with i an even number}

Thus, we have the following set operations
1 A ∪B = {x|x ∈ A or x ∈ B}
2 A ∩B = {x|x ∈ A and x ∈ B}
3 AC = {x|x /∈ A}

12 / 170



Events as Sets

For example, in a dice experiment

A = {i|with i an even number}

Thus, we have the following set operations
1 A ∪B = {x|x ∈ A or x ∈ B}
2 A ∩B = {x|x ∈ A and x ∈ B}
3 AC = {x|x /∈ A}

12 / 170



Events as Sets

For example, in a dice experiment

A = {i|with i an even number}

Thus, we have the following set operations
1 A ∪B = {x|x ∈ A or x ∈ B}
2 A ∩B = {x|x ∈ A and x ∈ B}
3 AC = {x|x /∈ A}

12 / 170



Therefore

We can use combinations
Of such events with the previous operations to describe random
phenomenas

Set of all throws even and greater than 3
A = {i|i is even}
B = {i|i > 3}

Then

A ∩B = {i|i is even and i > 3}
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Example

The Probability of the empty set is

P (S) = P (S ∪ ∅) = P (S) + P (∅)

Given that S = ∅, therefore

P (∅) = 0
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Examples

The union A ∪B of two events A and B
It is an event that occurs if at least one of the events A or B occur

For mutually exclusive events

P (A ∪B) = P (A) + P (B)
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Further

In the General Case

P (A ∪B) = P (A) + P (B)− P (A ∩B)

In the case of the complement

P
(
AC
)

= 1− P (A)

Given that

P (S) = P
(
AC
)

+ P (A)
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Example

Setup
Throw a biased coin twice

HH 0.36 HT 0.24

TH 0.24 TT 0.16

We have the following event
At least one head!!! Can you tell me which events are part of it?

What about this one?
Tail on first toss.
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We have that experiments in Probability are Defined as

We have
1 The Set B of all experimental outcomes
2 The Borel Field of all events of B
3 The Probability of Such Events

Remark about the Borel Field
We us this fields because we are given a way to measure infinite
phenomenas but Bounded.

Therefore
If you have a measure over a set B, we would love to be able to
measure:

I The Union of such events
I The Measure should be bounded.
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Measuring Countable Spaces

If B = {A1, A2, ..., AN}

P (Ai) = pi

Where

p1 + p2 + ...+ pN = 1

Then, if you have B = A1 ∪ ... ∪ Ak and k ≤ N

P (B) =
k∑

i=1
P (Ai)
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In the Case of Equally Likely Events

We have that

pi = 1
N

Therefore

P (B) =
k∑

i=1
P (Ai) =

k∑
i=1

1
N

= k

N
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The Real Line

Here the Borel Sets
It comes to save us...

Something Notable
In this case we are using events as intervals x1 ≤ x ≤ x2

And their finite Unions and Intersections

For this, we define B
The smallest Borel Field that includes half lines x ≤ x1 with xi ∈ R.
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Important

This contains all the open and closed intervals, and all points
This is not all possible subsets

Those sets are not result of countable unions and intersections of
intervals

A Vitali set is a subset V of the interval [0, 1] of real numbers such
that, for each real number r:

I There is exactly one number v ∈ V such that v− r is a rational number

They do not describe experiments of interest
These are of no interest for Probability
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Therefore, we have

Assume that we have a function α (x) such that∫ ∞
−∞

α (x) dx = 1 and α (x) ≥ 0

We define that

P (x ≤ x1) =
∫ x1

−∞
α (x) dx

Further, x1 ≤ x ≤ x2 is defined as

P (x1 ≤ x ≤ x2) =
∫ x2

x1
α (x) dx
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Example

We have the following probability of emission of radioactive
probabilities

α (t) = ce−ctI [t ≥ 0] and t ∈ R

Therefore, the probability ob being emitted in the interval (0, t0)∫ t0

0
cectdt = 1− e−ct0

26 / 170



Example

We have the following probability of emission of radioactive
probabilities

α (t) = ce−ctI [t ≥ 0] and t ∈ R

Therefore, the probability ob being emitted in the interval (0, t0)∫ t0

0
cectdt = 1− e−ct0

26 / 170



Outline
1 Basic Theory

Intuitive Formulation
Famous Examples

Axioms
Using Set Operations
Example

Finite and Infinite Space
Counting, Frequentist Approach
Independence
Repeated Trials
Cartesian Products

Unconditional and Conditional Probability
Conditional Probability
Independence
Law of Total Probability
Bayes Theorem
Application in Universal Hashing

2 Random Variables
Introduction
Formal Defintion
Probability of a Random Variable
Types of Random Variables
Distribution Functions
Function of Random Variables
Some Properties of the Distribution Functions
Relations Between Join and Individual Densities

3 Expected Value
Introduction
Definition
Properties
Minimizing Distances
Variance
Definition of Variance 27 / 170



We need to count!!!

We have four main methods of counting
1 Ordered samples of size r with replacement
2 Ordered samples of size r without replacement
3 Unordered samples of size r without replacement
4 Unordered samples of size r with replacement
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Ordered samples of size r with replacement

Definition
The number of possible sequences (ai1 , ..., air ) for n different numbers is
n× n× ...× n = nr

Example
If you throw three dices you have 6× 6× 6 = 216
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Ordered samples of size r without replacement

Definition
The number of possible sequences (ai1 , ..., air ) for n different numbers is
n× n− 1× ...× (n− (r − 1)) = n!

(n−r)!

Example
The number of different numbers that can be formed if no digit can be
repeated. For example, if you have 4 digits and you want numbers of size
3.
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Unordered samples of size r without replacement

Definition
Actually, we want the number of possible unordered sets.

However
We have n!

(n−r)! collections where we care about the order. Thus

n!
(n−r)!
r! = n!

r! (n− r)! =
(
n
r

)
(2)

31 / 170



Unordered samples of size r without replacement

Definition
Actually, we want the number of possible unordered sets.

However
We have n!

(n−r)! collections where we care about the order. Thus

n!
(n−r)!
r! = n!

r! (n− r)! =
(
n
r

)
(2)

31 / 170



Unordered samples of size r with replacement

Definition
We want to find an unordered set {ai1 , ..., air} with replacement

Thus (
n+ r − 1

r

)
(3)
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How? Use a digit trick for that
Change encoding by adding more signs
Imagine all the strings of three numbers with {1, 2, 3}

We have
Old String New String

111 1+0,1+1,1+2=123
112 1+0,1+1,2+2=124
113 1+0,1+1,3+2=125
122 1+0,2+1,2+2=134
123 1+0,2+1,3+2=135
133 1+0,3+1,3+2=145
222 2+0,2+1,2+2=234
223 2+0,2+1,3+2=235
233 2+0,3+1,3+2=245
333 3+0,3+1,3+2=345
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333 3+0,3+1,3+2=345
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Sometimes

We would like to model certain phenomena like

P (A1, A2, ..., AK)

The Problem is the complexity of calculating the joint distribution
We would like something simpler

Something like

P (A1, A2, ..., AK) = Operationk
i=1P (A1)
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Independence

Definition
Two events A and B are independent if and only if
P (A,B) = P (A ∩B) = P (A)P (B)
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Example

We have two dices
Thus, we have all pairs (i, j) such that i, j = 1, 2, 3, ..., 6

We have the following events
A ={First dice 1,2 or 3}
B = {First dice 3, 4 or 5}
C = {The sum of two faces is 9}

So, we can do
Look at the board!!! Independence between A,B,C
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We have that

Given two sets A and B

A× B = {(a, b) |a ∈ A and b ∈ B}

Example A = {a1, a2, a3} and B = {b1, b2}

A× B = {(a1, b1) , (a2, b1) , (a3, b1) , (a1, b2) , (a2, b2) , (a3, b2)}
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Furthermore

If A ⊆ A and B ⊆ B

C = A×B

Look At the Board
It is interesting!!!

Therefore, A× B and A×B

A×B = A× B ∩A×B
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Re-framing Independence

We have
P (A× B) = P ((a, b) |a ∈ A and b ∈ B) = P (A)
P (A×B) = P ((a, b) |a ∈ A and b ∈ B) = P (B)

Therefore, we can use our previous relation and assuming A× B and
A×B independent events

P (A×B) = P (A× B ∩A×B) = P (A)P (B)
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We can use this to derive the Binomial Distribution

What???
We can do something quite interesting

43 / 170



First, we use a sequence of n Bernoulli Trials

We have this
“Success” has a probability p.
“Failure” has a probability 1− p.

Examples
Toss a coin independently n times.
Examine components produced on an assembly line.

Now
We take S =all 2n ordered sequences of length n, with components 0
(failure) and 1 (success).
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First

How do we represent such events?
We can use a sequence as

〈a1, a2, ..., an〉

With the following features

ai ∈ S = {0, 1}
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Meaning

We have one event A
A = Success = 1

The Other Event AC

AC = Failure = 0
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Thus, taking a sample ω

ω = 11 · · · 10 · · · 0 = {0, 1} × · · · {0, 1}
k 1’s followed by n− k 0’s.

We have then

P (ω) = P
(
A1 ∩A2 ∩ . . . ∩Ak ∩Ac

k+1 ∩ . . . ∩Ac
n

)
= P (A1)P (A2) · · ·P (Ak)P

(
Ac

k+1
)
· · ·P (Ac

n)
= pk (1− p)n−k
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Did you notice the following?

After mapping the events through the probability
We are loosing the internal event structure

Which is not important because
Events are mutually independent!!!

Important
The number of such sample is the number of sets with k elements.... or...(

n
k

)
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Therefore

We do not care where the 1’s and 0’s are
Thus all the probabilities are equal to pk (1− p)k

Thus, we are looking to sum all those probabilities of all those
combinations of 1’s and 0’s ∑

k 1’s
p
(
ωk
)

Then ∑
k 1’s

p
(
ωk
)

=
(
n
k

)
p (1− p)n−k
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Proving this is a probability

Sum of these probabilities is equal to 1
n∑

k=0

(
n
k

)
p (1− p)n−k = (p+ (1− p))n = 1

The other is simple

0 ≤
(
n
k

)
p (1− p)n−k ≤ 1 ∀k

This is know as
The Binomial probability function!!!
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Unconditional Probability

Definition
An unconditional probability is the probability of an event A prior to
arrival of any evidence.

For Example
P (Cavity) = 0.1means that in the absence of any other information.

I “There is a 10% chance that the patient is having a cavity”
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Conditional Probability

Definition
A conditional probability is the probability of one event if another event
occurred.

For Example
P (Cavity/Toothache) = 0.8 means that

I “there is an 80% chance that the patient is having a cavity given that
he is having a toothache”
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Basically
Using Set Theory
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However

We need a distribution!!! ∑
A⊆S

P (A) = 1

We then do the following

P (A|B) = P (A ∩B)
P (B)
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Therefore

The conditional probability of A given B is written P (A|B)

P (A|B) = P (A ∩B)
P (B) = P (A,B)

P (B)
with P (B) > 0
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We have that this are probabilities

First given 0 < P (B) and 0 ≤ P (A ∩B)
Then,

P (A,B)
P (B) ≥ 0

Second, given if B ⊆ A

P (A|B) = P (A,B)
P (B) = P (B)

P (B) = 1

If A ⊆ B

P (A|B) = P (A,B)
P (B) = P (A)

P (B) ≥ P (A) ≥ 0
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Finally

We have that for A ∩B = ∅

P (A ∪B|C) = P ([A ∪B] ∩ C)
P (C) = P ([A ∩ C] ∪ [B ∩ C])

P (C)

Then

P (A ∪B|C) = P (A ∩ C) + P (B ∩ C)
P (C) = P (A ∩ C)

P (C) + P (B ∩ C)
P (C)
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Chain Rule

The probability that two events A and B will both occur is

P (A,B) = P (B)P (A|B) = P (A)P (B|A)

How?
Any Ideas?
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Therefore

This is also know
As the chain rule

Prove by induction
P (A1, ..., An) =
P (An|An−1...A1)P (An−1|An−2...A1) · · ·P (A2|A1)P (A1)

Proof
Any idea?
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Independence

If two events are independent
P (A|B) = P (A) and P (B|A) = P (B).

Therefore, two events A and B are independent if

P (A,B) = P (A)P (B)
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Example

Experiment
It involves a random draw from a standard deck of 52 playing cards.

Define events A and B to be
A =The card is heart and B =The card is queen

Are the events independent?
How do we do it?
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Example

We have that

P (A,B) = 1
52

But

P (A)P (B) = 13
52 ×

4
52
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What happen when you have independence in conditional
setups?

Conditional independence
A and B are conditionally independent given C if and only if

P (A|B,C) = P (A|C)

Example
P (WetGrass|Season,Rain) = P (WetGrass|Rain).
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Example

Three cards are drawn from a deck
Find the probability of no obtaining a heart

We have
52 cards
39 of them not a heart

Define each of the draws
Ai = {Card i is not a heart} Then?
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We have

Definition
Events H1, H2, ...,Hn form a partition of the sample space S if

1 They are mutually exclusive Hi ∩Hj = ∅ and i 6= j

2 Their union is the sample space S, ∪n
i=1Hi = S

The events H1, H2, ..., Hn are usually called hypotheses

P (S) = P (H1) + P (H2) + · · ·+ P (Hn)
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Now

Let the event of interest A happens under any of the hypotheses Hi

With a know conditional probability P (A|Hi)

Assume
The probabilities of hypotheses H1, ...,Hn are known.

Total Probability Formula

P (A) = P (A|H1)P (H1) + · · ·+ P (A|Hn)P (Hn)
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Example

Two-headed coin
Out of 100 coins one has heads on both sides.

One coin is chosen at random and flipped two times

What is the probability to get
1 Two heads?
2 Two tails?
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Example
Let A be the event that two heads are obtained
Denote by H1 the event (hypothesis) that a fair coin was chosen.

Now
The Hypothesis H2 = HC

1 is the event that the two-headed coin was
chosen.

Then, we have that

P (A) = P (A|H1)P (H1) + P (A|H2)P (H2)

= 1
4 ×

99
100 + 1× 1

100
= 103

400
= 0.2575
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What about the second one

Exercise
Answer: 0.2475
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Bayes Theorem

First
Let the event of interest A happens under any of hypotheses Hi with a
known (conditional) probability P (A|Hi).

Assume
That the probabilities of hypotheses H1, ...,Hn are known (prior
probabilities).

Then
The conditional (posterior) probability of the hypothesis Hi given that A
happened is

P (Hi|A) = P (A|Hi)P (Hi)
P (A)
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Given the independence of the events

H1, H2, ..., Hn form a partition of the sample space S
Therefore

A = S ∩A = (H1 ∪H2 ∪ · · · ∪Hn) ∩A

Therefore

A = ∪n
i=1 (Hi ∩A)
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Where

We have

P (A) = P (H1 ∩A) + P (H2 ∩A) + · · ·+ P (Hn ∩A)
= P (A|H1)P (H1) + · · ·+ P (A|Hn)P (Hn)
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Bayes Law of Total Probability

Therefore for an event Hi

p (A,Hi) = P (A|Hi)P (Hi)

Then

P (Hi|A) = p (A,Hi)
P (A)

78 / 170



Bayes Law of Total Probability

Therefore for an event Hi

p (A,Hi) = P (A|Hi)P (Hi)

Then

P (Hi|A) = p (A,Hi)
P (A)

78 / 170



Thus
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Another Interpretation
One Version

P (A|B) = P (B|A)P (A)
P (B)

Where
P (A) is the prior probability or marginal probability of A.

I It is "prior" in the sense that it does not take into account any
information about B.

P (A|B) is the conditional probability of A, given B.
I It is also called the posterior probability because it is derived from or

depends upon the specified value of B.
P (B|A) is the conditional probability of B given A.

I It is also called the likelihood.
P (B) is the prior or marginal probability of B, and acts as a
normalizing constant.
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Example

Setup
Throw two unbiased dice independently.

Let
1 A ={sum of the faces =8}
2 B ={faces are equal}

Then calculate P (B|A)
Look at the board
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Another Example

We have the following
Two coins are available, one unbiased and the other two headed

Assume
That you have a probability of 3

4 to choose the unbiased

Events
A= {head comes up}
B1= {Unbiased coin chosen}
B2= {Biased coin chosen}

I Find that if a head come up, find the probability that the two headed
coin was chosen

82 / 170
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Universal Hashing

Example

Set of hash functions

Choose a hash function randomly

(At the beginning of the execution)

HASH TABLE
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Definition of Universal Hash Functions

Definition
Let H = {h : U → {0, 1, ...,m− 1}} be a family of hash functions. H is
called a universal family if

∀x, y ∈ U, x 6= y : Pr
h∈H

(h(x) = h(y)) ≤ 1
m

(4)

Main result
With universal hashing the chance of collision between distinct keys k and
l is no more than the 1

m chance of collision if locations h(k) and h(l) were
randomly and independently chosen from the set {0, 1, ...,m− 1}.
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Example of key distribution

Example, mean = 488.5 and dispersion = 5
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Example with 10 keys

Universal Hashing Vs Division Method
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Example with 50 keys

Universal Hashing Vs Division Method
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Example with 100 keys

Universal Hashing Vs Division Method
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Example with 200 keys

Universal Hashing Vs Division Method
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Random Variables

In many experiments,
It is easier to deal with a summary variable than with the original
probability structure.
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Example

In an opinion poll, we ask 50 people whether agree or disagree with a
certain issue

Suppose we record a “1” for agree and “0” for disagree.

The sample space for this experiment has 250 elements
Why?

Suppose we are only interested in the number of people who agree
Define the variable X =number of “1” ’s recorded out of 50.

I Easier to deal with this sample space (has only 51 elements).
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Thus

It is necessary to define a function “random variable as follow”

X : S → R

Graphically
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Definition

How?
What is the probability function of the random variable is being defined
from the probability function of the original sample space?

For this
Suppose the sample space is S = {s1, s2, ..., sn}

Now
Suppose the range of the random variable X =< x1, x2, ..., xm >
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Then

We have that
We observe X = xi if and only if the outcome of the random
experiment is an s ∈ S s.t. X(s) = xj

Or

P (X = xj) = P (s ∈ S|X(s) = xj)
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Therefore

If the events in S are disjoint

P (X = xj) =
∑
s∈S

P (s|X (s) = xj)

Therefore if we can decompose S
We can easily see the relationship between Random Variables and The
Events in S
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We have

Definition
A Random Variable X is a process of assigning a number X (A) to
every outcome A.

The resulting function must satisfy the the following two conditions
1 The set {X ≤ x} is an event for every x ∈ R.
2 The probability of the events {X =∞} and X = −∞ equal zero:

P {X =∞} = 0 P {X = −∞} = 0
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Example

Setup
Throw a coin 10 times, and let R be the number of heads.

Then
S = all sequences of length 10 with components H and T

We have for
ω =HHHHTTHTTH ⇒ R (ω) = 6
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Example

Setup
Let R be the number of heads in two independent tosses of a coin.

Probability of head is .6

What are the probabilities?
Ω ={HH,HT,TH,TT}

Thus, we can calculate
P (R = 0) , P (R = 1) , P (R = 2)
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Note

If we are interested in a random variable X
We want to know its probabilities

Basically
Measurement of such variables leads to measurements as

a ≤ X ≤ b

Therefore, we are looking at the following probabilities

P (s|a ≤ X (s) ≤ b)
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Then

Definition
The distribution of a Random Variable X is the function

FX (x) = P {X ≤ x}

I Defined for all x ∈ R
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Example

For example, if a coin is tossed independently n times
With:

1 Probability p of coming heads on a given toss.
2 And X is the number of heads

We have that

P (a ≤ X (s) ≤ b) =
b∑

k=1

(
n
k

)
pk (1− p)n−k
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We have Two Types of Random Variables

Definition
The Random Variable X is said to be discrete if and only if the set of
possible values of X is finite or countably infinite.

Then
If x1, x2, ... are the values of X that belong to the range R of it,

P (X = x1, X = x2, ...) =
∑
x∈R

pX (x)
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In the case of Continuous Random Variables

Definition
A continuous random variable can assume a continuous range of values.

However, we would use something more formal for this
Using integrals.
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Examples

Random variable X has uniform U(a, b) distribution if its density is
given by

f (x|a, b) =
{ 1

b−a a ≤ x ≤ b
0 else

For Example

109 / 170



Examples

Random variable X has uniform U(a, b) distribution if its density is
given by

f (x|a, b) =
{ 1

b−a a ≤ x ≤ b
0 else

For Example

109 / 170



Example

Bernoulli Distribution
Random variable X has Bernoulli Ber(p) distribution with parameter
0 ≤ p ≤ 1

if its probability mass function is given by

f (x|p) = px (1− p)1−x , x ∈ {0, 1}

What is the structure of the distribution
Any idea?
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Basic Properties

As you can imagine
They need to follow the rules of a probability.

The Probability sums to one
For the PMF and PDF∑

x f(x) = 1∫∞
−∞ f(x)dx = 1
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The Probability

It can be “easily” calculated
One of my ironies.

PMF

FX(a < X < b) =
b∑

k=a

fX(k).

PDF

FX(a < X < b) =
∫ b

a
fX(t)dt
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In the Continuous Case

We have

FX(a < X < b) = FX (b)− FX (a)

Additionally, we have that for a single point

FX(a < X < a) = FX (a)− FX (a) = 0
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Now
We have some basic ideas about the descriptions of the Random
Variables
We need to be more formal to connect our basic intuitions on continuous
spaces.

Theorem
Let f be a nonnegative real-valued function on R with∫∞
−∞ f (x) dx = 1.
There is a unique probability measure P defined in the Borel Subsets
of R.
Such That

P (B) =
∫

B
f (x) dx

For all intervals B = (a, b]
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Therefore

Definition
The random variable X is said to be absolutely continuous if and only if
there is a non-negative function f = fX defined over R such that

FX (x) =
∫ x

−∞
fX (t) dt

Here
fX is called the Density function of X and FX is called a Cumulative
Density Function (CDF).
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Graphically
Example uniform distribution

1
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Properties

CDF’s Properties
FX(x) ≥ 0
FX(x) in a non-decreasing function of X.

Example
If X is discrete, its CDF can be computed as follows:

FX(x) = P (f(X) ≤ x) =
∑N

k=1 P (Xk = pk).
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Example on Discrete Function

.16

.48

.36

.16

.48

.36

1 2 1 2

1
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Derivative of Cumulative Densitiy Function
Continuous Function
If X is continuous, its CDF can be computed as follows:

F (x) =
∫ x

−∞
f(t)dt.

Remark
Based in the fundamental theorem of calculus, we have the following
equality.

f(x) = dF

dx
(x)

Note
This particular p(x) is known as the Probability Distribution Function
(PDF).
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Some Basic Properties of These Densities

Conditional PMF/PDF
We have the conditional pdf:

p(y|x) = p(x, y)
p(x) .

From this, we have the general chain rule

p(x1, x2, ..., xn) = p(x1|x2, ..., xn)p(x2|x3, ..., xn)...p(xn).

Independence
If X and Y are independent, then:

p(x, y) = p(x)p(y).
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Also the Law of Total Probability

Law of Total Probability is still working correctly

p(y) =
∑

x

p(y|x)p(x).
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We have a common problem

Given a function g
Describing a specific phenomena.

We can have a stochastic input
For example a Random Variable X1

Then, we have another random variable

X2 = g (X1)
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Example

Let X1 a random variable such that X2 = X2
1

What is the density function of X2?

For this, we need to express the event {X2 ≤ y}
In terms of the random variable X1

First X2 ≥ 0
Thus, we have that for y < 0

F2 (y) = F (X2 ≤ y) = 0
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Then

if y ≥0 then R2 ≤ y

If and only if −√y ≤ X1 ≤
√
y

Then

F (X2 ≤ y) = F (−√y ≤ X1 ≤
√
y) =

∫ √y

−√y
f1 (x) dx

If

f1 (x) =


0 if x < −1
1
2 if − 1 ≤ x < 0
1
2 exp {−x} if 0 ≤ x
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We have then

if 0 ≤ y ≤ 1

F2 (y) =
∫ √y

−√y
f1 (x) dx

=
∫ 0

−√y

1
2dx+

∫ √y

0

1
2 exp {−x} dx

= 1
2
√
y + 1

2 (1− exp {−√y})

If y > 1
What is F2 (y)?
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Finally

For y < 0

f2 (y) = dF2 (y)
dy

= 0

For 0 < y < 1

f2 (y) = dF2 (y)
dy

= 1
4√y (1 + exp {−√y})

For y > 1

f2 (y) = dF2 (y)
dy

= 1
4√y exp {−√y}
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The Situation Becomes Interesting

When you take into account two or more variables
Here, we have two random variables that are defined by a density function:

fX,Y (x, y)

Therefore
We need to understand how these random variables interact.
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Joint Distributions

Suppose we have a non-negative function real-valued function f in R2∫ ∞
−∞

∫ ∞
−∞

f (x, y) dxdy = 1

Now, if we define
X1 (x, y) and X2 (x, y), then

P ((X1, X2) ∈ B) = P (B) =
∫ ∫

B
f (x, y) dxdy
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Therefore

The Joint Distribution Function is defined as

F (x, y) =
∫ x

−∞

∫ y

−∞
f (u, v) dudv
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Example

Let

f (x, y) =
{

1 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
0 elsewhere

It looks like
The Unit Square in R2
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Then

Assume the following random variables
X1 (x, y) = x and X1 (x, y) = y.

Why don’t we calculate the following probability? For
1
2 ≤ X1 +X2 ≤

3
2

Therefore
1
2 ≤ x+ y ≤ 3

2
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Look

We have the following

P

{1
2 ≤ x+ y ≤ 3

2

}
=
∫ ∫

B
1dxdy

What is B?
We can draw it!!!

Therefore

P

{1
2 ≤ x+ y ≤ 3

2

}
= 1− 2

(1
8

)
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If we have a Joint Distribution

Can we get the Individual Distributions?
Actually, we have that we can integrate one of the variables.

For Example
What if we have the following age-weight distributions

X1=Weight
170-160 2 3
160-150 4 5

20-25 25-30 X2=Age
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Therefore

The Joint Distribution for two discrete variables

f (x, y) = F (X1 = x,X2 = y)

Then

{X1 = x} = {X1 = x,X2 = y1} ∪ {X1 = x,X2 = y2} ∪ ...

Remember
The events are independent!!!
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Therefore

We have the marginal distribution for X1

f1 (x) = F (X1 = x) =
∑

y

f (x, y)

Similarly

f2 (y) = F (X2 = y) =
∑

x

f (x, y)
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Therefore

We have

F (x0 ≤ X1 ≤ x0 + dx0) ≈ f1 (x0) dx0

Basically
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Then

We have

F (x0 ≤ X1 ≤ x0 + dx0) = F (x0 ≤ X1 ≤ x0 + dx0,−∞ < X2 <∞)

=
∫ x0+dx0

x0
dx

∫ ∞
−∞

f (x, y) dy

≈ dx0

∫ ∞
−∞

f (x, y) dy
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Therefore

We have if f (x, y) is well behaved

f1 (x0) dx0 ≈ dx0

∫ ∞
−∞

f (x0, y) dy

Then

f1 (x0) ≈
∫ ∞
−∞

f (x0, y) dy
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In this way

We have

f1 (x) =
∫ ∞
−∞

f (x, y) dy

Also

f2 (y) =
∫ ∞
−∞

f (x, y) dx
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Example

Given

f (x, y) =
{

8xy 0 ≤ y ≤ x ≤ 1
0 elsewhere

Then for 0 ≤ x ≤ 1

f1 (x) =
∫ x

0
8xydy = 4x3

If y < 0 or y > 1

f2 (y) = 0
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Therefore

We have for 0 ≤ y ≤ 1

f2 (y) =
∫ 1

y
8xydx = 4y

(
1− y2

)
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Expectation

Imagine the following situation
You have the random variables R1, R2 representing how long is a call and
how much you pay for an international call

if 0 ≤ R1 ≤ 3(minute) R2 = 10(cents)
if 3 < R1 ≤ 6(minute) R2 = 20(cents)
if 6 < R1 ≤ 9(minute) R2 = 30(cents)

147 / 170



Expectation

Imagine the following situation
You have the random variables R1, R2 representing how long is a call and
how much you pay for an international call

if 0 ≤ R1 ≤ 3(minute) R2 = 10(cents)
if 3 < R1 ≤ 6(minute) R2 = 20(cents)
if 6 < R1 ≤ 9(minute) R2 = 30(cents)

147 / 170



Then

We have then the probabilities
P {R2 = 10} = 0.6, P {R2 = 20} = 0.25, P {R2 = 10} = 0.15

If we observe N calls and N is very large
We can say that we have N × 0.6 calls and 10×N × 0.6 the cost of

those calls
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Expectation

Similarly
{R2 = 20} =⇒ 0.25N and total cost 5N
{R2 = 20} =⇒ 0.15N and total cost 4.5N

We have then the probabilities
The total cost is 6N + 5N + 4.5N = 15.5N or in average 15.5 cents per

call
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Then

The weighted average

10 (0.6N) + 20 (.25N) + 30 (0.15N)
N

= 10 (0.6) + 20 (.25) + 30 (0.15)

=
∑

y

yP {R2 = y}

Then
The Expected Value is a weighted average!!!
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Then

John Cage

Assume
Given X a simple random variable i.e. a discrete random variable with a
finite range!

We define the expectation of as

E (X) =
∑

x

xP (X = x)

Given that you have a simple random variable
The sum is finite and there are not convergence problems.
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Now

This expected function can be extended to random functions too

E (X2) = E (g (X1)) =
∑

x

g (x) fX1 (x)

In a similar way, it is possible to define for the continuous random
variables

E (X3) =
∫ ∞
−∞

xfx3 (x) dx

Similarly

E (g (X3)) =
∫ ∞
−∞

g(x)fX3(x)dx
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Example

Normal Density Function

fX (x) = 1√
2π

exp
{
−x

2

2

}

Then

E [X] = 1√
2π

∫ ∞
−∞

x exp
{
−x

2

2

}
dx

Then

E [X] = − 1√
2π

∫ ∞
−∞

exp
{
−x

2

2

}
d

{
−x2

2}
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Finally

We have

E [X] = − 1√
2π

exp
{
−x

2

2

}∣∣∣∣∣
∞

−∞
= 0
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Example

Imagine the following
We have the following functions

1 f (x) = e−x, x ≥ 0
2 g (x) = 0, x < 0

Find
The expected Value
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Then

Given a random variable X, and a, b, c constants
Then, for any functions g1 (x) and g2 (x) whose expectation exists

1 E [ag1 (x) + bg2 (x) + c] = aE [g1 (x)] + bE [g2 (x)] + c

2 If g1 (x) ≥ 0 for all x, then E [g1 (x)] ≥ 0
3 If g1 (x) ≥ g2 (x) for all x, then E [g1 (x)] ≥ E [g2 (x)]
4 If a ≤ g1 (x) ≤ b for all, then a ≤ E [g1 (x)] ≤ b
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Minimizing Distances

Observation
The expected value of a Random Variable has an important property!!!

One can be seen as
The interpretation of E [X] as a good guess for X

Suppose the following
We measure the distance between a random variable X and a constant b
by (X − b)2

The closer the b is to X, the smaller the quantity is!!!
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Then

We can then determine the value of b

E (X − b)2 =E (X − EX + EX − b)2

=E ((X − EX) + (EX − b))2

=E (X − EX)2 + (EX − b)2 + ...

=2E ((X − EX) (EX − b))
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We notice the following

We have

E ((X − EX) (EX − b)) = (EX − b)E (X − EX) = 0

Then

E (X − b)2 = E (X − EX)2 + (EX − b)2

What if we choose b = EX

min
b
E (X − b)2 = E (X − EX)2
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First, the central moments

Definition
For each integer n, the nth moment of X, mn, is

mn = E [Xn]

The nth central moment of X is

µn = E [X − µ]n

Where

µ = µn = EX
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Then

Definition
The Variance of a Random Variable X is its second central moment

V ar X = E [X − EX]2

Then
The standard deviation is simply σ =

√
V ar(X).
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Now

The variance gives a measure of the degree of spread around its mean
Then, we have two cases

A large variance
In such case X is more variable

At the extreme
If V ar X = E (X − EX)2 = 0, then X = EX with probability 1.

I No Variation!!!
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Example

Exponential Variance
Let X have the exponential(λ) distribution.

We know that EX = λ

V ar X = E (X − λ)2

=
∫ ∞

0
(x− λ)2 1

λ
exp

{
−x
λ

}
dx

=
∫ ∞

0

(
x2 − 2xλ+ λ2

) 1
λ

exp
{
−x
λ

}
dx

168 / 170



Example

Exponential Variance
Let X have the exponential(λ) distribution.

We know that EX = λ

V ar X = E (X − λ)2

=
∫ ∞

0
(x− λ)2 1

λ
exp

{
−x
λ

}
dx

=
∫ ∞

0

(
x2 − 2xλ+ λ2

) 1
λ

exp
{
−x
λ

}
dx

168 / 170



Example

Exponential Variance
Let X have the exponential(λ) distribution.

We know that EX = λ

V ar X = E (X − λ)2

=
∫ ∞

0
(x− λ)2 1

λ
exp

{
−x
λ

}
dx

=
∫ ∞

0

(
x2 − 2xλ+ λ2

) 1
λ

exp
{
−x
λ

}
dx

168 / 170



Example

Exponential Variance
Let X have the exponential(λ) distribution.

We know that EX = λ

V ar X = E (X − λ)2

=
∫ ∞

0
(x− λ)2 1

λ
exp

{
−x
λ

}
dx

=
∫ ∞

0

(
x2 − 2xλ+ λ2

) 1
λ

exp
{
−x
λ

}
dx

168 / 170



Example

Exponential Variance
Let X have the exponential(λ) distribution.

We know that EX = λ

V ar X = E (X − λ)2

=
∫ ∞

0
(x− λ)2 1

λ
exp

{
−x
λ

}
dx

=
∫ ∞

0

(
x2 − 2xλ+ λ2

) 1
λ

exp
{
−x
λ

}
dx

168 / 170



Further

We can use integration by parts to find the variance∫
udv = uv −

∫
vdu

Please, try to calculate it
Answer: V ar X = λ2
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About the Possible Linearity

We have
If X is a random variable with finite variance, then for any constants a
and b

V ar (aX + b) = a2V ar X

Alternative formula for the variance

V ar X = EX2 − (EX)2

Proof
At the White Board
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